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2 Lars G~lrding. 

Introduction. 

Let C(oo) be the class of complex functions f(x)  of n real variables xl, . . . ,  xn 

which are defined and infinitely differentiabte for all x. Let q (~)-~q (~1 . . . .  , Cn) 

be a polynomial in $1 . . . .  , r with complex coefficients and let A (q) be the class 

of all functions f in C(oo) which satisfy 

q ( O l a x ) , f ( x )  = o 

for all x. 

Every polynomial q can be written in the form p + r where p is homogeneous 

and, if q is not a constant, the degree of p is greater than the degree of r. I f  

q is a constant we p u t t  ---- q. We call the polynomialp thus defined the principal 

part of q. 

Let $-~ (~1,-. . ,  $,,)~ o be a real vector. We say that  q is hyperbolic with 

respect to ~ if p(~) ~ 0 and if there exists a real number to such that  q(t$+i~7) ~ 0 
when t > to and ~ is any real vector. I f  q is hyperbolic with respect to ~, it is 

clearly hyperbolic with respect to any positive multiple of ~ and we will show 

that  it is hyperbolic also with respect to any negative multiple of ~. We say 

that  (i) is a hyperbolic differential equation if q is hyperbolic with respect to 

at  leas t  one ~. 

Let f l , f 2 , . . . , f i , . . ,  be a sequence of elements in C(oo). I f  fk and every 

derivative of fk tends to zero with I /k  uniformly on every compact 1 set in the 

plane ( y , ~ ) = y l ~ l + . . , +  Y , ~ = o  or in the entire space we say t h a t f ~  tends 

to zero in the plane (y, ~)-= 0 or in the entire space and write 

(a) 
and 

(b) 

respectively. 

o 

f k  --> O 

I t  is clear that  (b) implies (a) but the converse is not true. In 

Chapter I the following theorem is proved 2 

i A set  S whose  e l e m e n t s  are  real  vec tors  x = (x l  . . . . .  Xn) is  ca l led b o u n d e d  if I x l  = m a x  k l Xk [ 
i s  b o u n d e d  w h e n  x is  in  S, and  closed, i f  i t  t o g e t h e r  w i t h  t h e  e l e m e n t s  of a s equence  x(k) also 

con t a i n s  every  x s u c h  t h a t  l i m  Ix(k) - - x  I =  o. I t  is  c o m p a c t  if i t  i s  b o t h  b o u n d e d  and  closed.  

i T h e  t h e o r e m s  I and  ] I I  were a n n o u n c e d  in G.~RDI.NG [3], an  ou t l ine  of t he  c o n s t r u c t i o n  

of t he  Riesz  ke rne l  and  t he  so lu t ion  of C a u c h y ' s  p rob lem in  G~.RDING [2]. See, however ,  t h e  f irst  
foo tnote  to  C h a p t e r  5- 
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Theorem I. Let f kEA  (q), (k-~ I, 2 , . . . ) .  I f  there exists a point x such that 

(x, ~) ~ o and f i  (X) tends to zero with I / k whenever fk tends stro~gly to zero in the 

plane (y, ~ ) =  o, then q i s  hyperbolic with respect to ~. 

Put f(~, y ) =  e (~,y-~) where .~ is a complex vector~such tha t  q(~)-~ o. Then 

f (~ , - )  is in A (q), it equals I at  the  point  x, and the proof,  whose origin was a 

remark by H a d a m a r d  ([4] P- 4o), uses the fact  tha t  if q is not  hyperbol ic  with 

respect  to ~, then we can always find a sequence of vectors ~(~) . . . .  , ~(k), . . .  such 

tha t  q(~(~))=o for  all k and .f(~(k), . ) .§  o (~).1 

The main object  of the rest  of the paper  is the fol lowing theorem which 

is a s t rong converse of Theorem I. 

Theorem II.  Let f~ ~A (q), (k = ~, 2 . . . .  ) and let q be hyperbolic with respect 

to ~. Then i f  f~ tends stro~gly to zero in the plane (y, ~ ) =  0 it tends strongly to 

zero in the entire space. 

Combining the  two theorems we have the fol lowing concise theorem. 

Theorem I I I .  Let f~eA(q ) ,  (k = i, 2 , . . . ) .  Then a necessary and sufficient 

condition that (a) implies (b) is that q is hyperbolic with respect to ~. 

The simplest  not  trivial hyperbol ic  equation is the wave equat ion in two 

variables which corresponds to the case n = 2 and q = r  Then q is hyper-  

bolic with respect  to $ = ( I , o ) .  In  fact,  p ( ~ ) = q ( ~ ) =  i r~o  and q ( t ~ + i ~ ) =  

= ( t + i ( ~  + ~ ] z ) ) ( t + i ( V l - - ~ ] 2 ) ) ~ o  when t > o  (or t < o ) .  Also i f f E A ( q )  one 

has the  e lementary  formula  

~ r ~ -  x 1 

(2) f (x )  = ~ (f(o, x2 + xl) + f(o,  x~ --  Xl)) + �89 f f '  (o, t) d t 
Z 2 - -  X 1 

where f ' ( x ) =  Of(x)/Oxl. Hence  if A (q)~fk and j~. tends  s t rongly to zero in the 

plane (x, ~ ) =  xl  ~ o, i.e. on the x2-axis, it  follows tha t  fi(x) tends to zero for  

all x and, more generally,  tha t  fk tends  strongly to zero in the  entire space. 

This proves Theorem I [  in our special case. The proof  in the general  case is 

similar. In  fact, if  q is not  cons tant  and hyperbolic  with respect  to ~', it  is 

possible to cons t ruc t  a l inear  funct ional  K ( f ) =  K(~, x, f) ,  in the  case ju s t  con- 

sidered given by the right side of (2), with the fol lowing properties.  

1 T h e  proof  r e s t s  m a i n l y  on a l e m m a  on t h e  ra te  of g r o w t h  of ce r t a in  a lgebra ic  func t ions .  

T h i s  l e m m a  is  p e r h a p s  Of i n t e r e s t  in  i t se l f  and  i t  p roves  a con jec tu re  by  PETROWSKY ([9] foot- 
no te  p. 24). 
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I t  is a projection of C ( ~ )  upon A(q), i.e, it is defined for all  f in C(c~) 

and is itself an element of A (q), and it reproduces the elements of A (q)so that  

f (x)  -~ K (~, .% f )  

for all x if f belongs to A (q). If  fk tends strongly to zero in the plane (y, ~ )=o  

then K(~, ' ,fk) tends strongly to zero in the entire space. Moreover, if the 

derivatives of order < m of f vanish in a certain compact part  B(x) of the plane 

(y, ~ ) = o ,  then K(~ ,x , f )  vanishes, m being the degree of q. Finally, the deriva- 

tives of order < m  of f - - K ( ~ , . , f )  vanish on the plane ( y , ~ ) = o .  At  least 

when q is homogeneous one can write K explicitly in a form similar to (2) as 

a sum of certain integrals over B(x). 
The functional K also gives the solution of the problem of Cauchy to which 

we give the following seemingly sophisticated, but  in fact simple and convenient 

form. Given an element g~ C(oo), find an element u in A(q) such that  the 

derivatives of u - - g  of order < m vanish on the plane (y, ~ ) =  o. In fact, one 

solution is simply 
u (x) = K (~, x, g) 

and because the difference v of any two solutions is an element in A(q) whose 

derivatives of  order < m vanish on the plane (y, ~)-~ o it follows from the pro- 

perties of K that  v(x)----K(~, x, v)----o for all x and hence the solution is unique. 

Conversely, assume that  for a given ~ # o and not constant q and an ar- 

bitrary g E C(oo) t h e  problem of Cauchy has a unique solution H(~,x, g) with  

the property that  H(~,x ,  gk) tends to zero with I /k  for at least one x with 

(x, ~) # o whenever g~ -~ o (~). Then if A (q) contains every element of the sequence 

f l  . . . .  ,fk, . . .  and fk -" o(~) we get that  fk(x) -~ H(~, x,fk) tends to zero with I/k. 
Hence the requirements of Theorem I are satisfied and it follows that q is hyper- 

bolic with respect to ~. I t  then follows that  H(~, x, g) ----- K(~, x, g) for all x and 

all g e C (oo). 

The continuity property of H used above is a variant of Hadamard's  classical 

condition t h a t  the problem of Cauchy should be correctly set ([5] PP. 4o--4I) .  

Another variant was given by Petrowsky [9] who, however, restricts the be- 

haviour of the function g at infinity in the plane (y, ~)----o. The consequence is 

that  in his  case there are other than hyperbolic equations, e.g. the heat equa- 

tion, for which one can find a suitable correctly set Cauchy problem. 

Most equations (I) which so far have been classified as hyperbolic are hyper- 

bolic in our sense, in particular the equations considered by Herglotz [6] and 
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Petrowsky [8]. Slightly modified, Petrowsky's definition runs as follows. 1 A homo- 

geneous polynomial p of positive degree is called hyperbolic with respect to 

r  if p ( 2 ) # o  and the zeros of the equation p ( t ~ + y ) = o  are all real and 

different if ~ is real and not proportional s 2. I f  m is the degree of p it then 

follows that  p ( t ~ + i ~ ) - ~ i ' ~ p ( - - i t ~ + ~ ) # o  when t > o  (or t < o )  and ~ is 

real, so that  p is hyperbolic in our sense. More generally, one can show that  if 

p is a homogeneous polynomial of degree m > o which in the sense of Petrowsky 

is hyperbolic with respect to ~, and r' is any polynomial of degree less than m, 

then q' : p  + r' is (in our sense) hyperbolic with respect to ~. I f p  is hyperbolic 

merely in our sense, this need not be true. A rather  trivial example is given 

by q ' :  ~ + ~2, a less trivial one by q'= ~ ( ~ - - ~ ) +  ~. In both cases the 

principal parts are hyperbolic with respect to (I, o), but the polynomials are not. 

Hence the hyperbolic character of a polynomial is in general not determined by 

i~s principal part alone. I t  is, however, true that  if a polynomial is hyperbolic 

with respec t to a vector ~, then also its principal part is. 

We study in the first section of Chapter 2 the effect of a linear transforma- 

tion, x ' :  x~I, where 1~ is the transpose of a real, square and not singular 

matrix M, upon (I). I t  is transformed into 

q ' ( O / O x ' ) J ' ( x ' )  = o, 

where f (x') =f(x; ~i -~) ~-f(x) and q' (~') = q (~). We call the polynomial q reduced 

if there is no M such that  q' is a polynomial in ~ , . . . ,  ~ alone where l <  n. 

The fact that  a polynomial is not always reduced introduces some complications 

in the proof of Theorem II. Let $2(q) be the linear manifold of all real vectors 

such that  q(ty + y')=q(~?') for all real t and ~'. Then q is reduced if and 

only if $2 (q) contains only the element ~ = o. 

Later in Chapter 2 we collect some facts concerning not constant hyper- 

bolic polynomials. Let the polynomial q be hyperbolic with respect to ~. Then 

the same is true of its principal part p. Let the common degree m of q and p 

1 In the paper [8] Petrowsky considers only homogeneous equations with constant coeffi 
cients, in [9] and [Io], however, he extends what  is substantial ly the definiiion given above to  
very general systems of differential equations which need not even be linear. For them he solves 
the problem of Cauchy. - -  The wellknown textbook Methoden der Math. Physik by R. COURANT 
and D. HII.BERT (Berlin 1937) , has a terminology which differs from ours. There the equation (I) 
is called hyperbolic unless it is elliptic and i t  is elliptic if the principal part  of q is a definite 
polynomial. An equation which is hyperbolic in the sense of Petrowsky is called totally hyper- 
bolic (1.c. I I p .  373--374). 
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be positive. Because ~ ( ~ ) ~ o ,  the degree of p ( t ~ + ~ )  with respect to t is m 

and we can write i t  in the form p (~) [ i ( t  + u,.) where u,, -~ u~(~, ~) are certain 
1 

complex numbers. I t  turns out tha t  if  ~] is real then also the numbers u~(~,~) 

are real. They need not  all be different when ~ is not  proport ional  to $, but  

if  they  are, we have the case considered by Petrowsky.  Let  F(q, ~) be the set 

of all real ~/ such tha t  min~ u~ (~, ~?)> o or briefly, 

r ( q ,  = mi, , > o). 

I t  turns  out  t h a t  F(q, ~ ) =  F(p, ~) is the in ter ior  of a convex cone conta in ing ~:. 

Also, if ~ 'e  F(q, ~) then  q is hyperbolic with respect to both ~' and - -~ ' ,  and 

we have / ' ( q , ~ ' ) =  F(q,~). W e  also consider the dual cone C-= C(q,~) of 

lz '= F(q, ~) defined as the set of all real vectors x such tha t  ( x , ~ ) ~  o for all 

~/e F, or briefly 
C(q, ~) -~ (x; (x, ~) >-- o, *] e F(q, ~')). 

I t  is convex and or thogonal  to Y2(q). I t s  inter ior  is not  empty if q is reduced, 

and the part  of C where (x, $')--~ b is closed and bounded if 8 'e  F. 

The central  question in the Chapters 3 and 4 is the effective determinat ion 

of the  l inear  funct ional  K(~, ~, f ) .  We  use a method  of f ract ional  in tegrat ion 

developed by M. Riesz [ii] for the wave equation. Again,  let the polynomial  q 

be not  constant  and hyperbolic with respect to ~. Le t  /'1 = Fl(q, ~) be the set 

of vectors ~' in / ' ~  F(q, ~) for which there exists a to < I such tha t  q (t~' + i,/) ~ o 

when ~/ is real and t > to. I f  ~ e F, then  a suitable positive multiple of ~ is i n / ' 1 .  

Le t  ,] be real, let ~' be in F1, put  ~ = ~' + i*] and define q(~)-~ as e -all~ 
Then i t  turns  out  t h a t  arg q and hence also q(~)-~ is if locally continuous also 

singlevalued when ~ ' e / ' 1  and ~/ is real. Different  choices of arg q at  a point  

will affect q(~),~ only by a factor  e - ~ "  where k is an integer.  Assume for a 

moment  tha t  q is reduced and tha t  ~ a  > n. ~ Then q(~)-~ is the Fourier-Laplace 

transform" of a continuous funct ion Q(a, x) which vanishes  outside C, and we 

have the reciprocal formulas 

1 ~ m e a n s  t h e  real part of  a .  



Linear Hyperbolic Partial Differential Equations with Constant Coefficients. 7 

where the  integrals  are t aken  over the whole space. W h e n  q = ~ - -  $~ . . . . .  ~ ,  

in which case (i) becomes the wave equat ion,  then q is hyperbolic  with respect  

to any 8 such tha t  q ( 8 ) > o .  One finds tha t  F = ( ~ ; 8 1 ~ 1 > o , q ( * / ) > o ) ,  t ha t  

C-~(x;  x151 >-o, q(x)>-o) and t h a t  with a suitable choice of arg q, 

Q x) = q r r ( .  - ( , , -  2)) 

when xE C and zero elsewhere. This, with a changed to l a ,  is the  kernel  of 

M. Riesz. 

Re tu rn ing  to the general  case, we proceed as follows. Le t  S : S(8) be the 

plane (y, 8 ) : o  and T : T ( 8 )  the  region (y, 8 ) > o .  W h e n  hEC(oo) ,  x E T  and 

a ~ n we define the Riesz opera tor  I ~ by the formula. 

I ~ h (x) = f q (a, x - -  y) h(y) d y .  
T 

All y such tha t  x - - y e  C and y e T + S, i.e. such tha t  ( x - - y ,  8)<--(x, 8), con- 

s t i tu te  a compact  set C(x), and the in tegrand  vanishes outside C(x). Hence  the 

in tegra l  always exists. Le t  a = a ,  e C(~) ,  let  az(y)= I when y e C ( x ) a n d  let  

a~ (y) = o when ] y ] = maxk ]yk ] is large enough.  Le t  8' fi/ '1 (q, 8), put  ~ = 8' + i ~/and 

H~ (~) = f h (y) az (y) e-  (;, :t) d y. 
.r 

Then  by vir tue of Parseval ' s  theorem,  ano the r  form of I~h(x) is 

;7~ - -  n loh(x)=(z ) f 

When  q is not  necessari ly reduced,  we define I ~h(x) by this  formula.  Then  it  

8' is i ndependen t  of 8' and az as long as e F  1 and a,  equals one on C(x); and 

the formula  is valid as long as the in tegra l  is absolutely convergent ,  i.e. when 

a > o .  I t  is shown in Chap te r  4 tha t  when x e T ,  I~h(x) is an ent i re  func- 

t ion of a, t ha t  for  all values of a 

t inuous in T and at  the same t ime 

= F ' h ( x )  and tha t  I - k h ( x ) = q ( O /  

on C(x) then  I ~ h ( x ) =  0 for  all a. 

are cont inuous in T + S and those 

all its derivat ives with respect  to x are con- 

ent i re  funct ions  of a, t ha t  q (0/0 x ) I  ~§ h(x) -~ 

0x) kh(x) when k ~ o ,  1 , 2 , . . .  I f  h vanishes 

Fur the r ,  all the  der ivat ives  of l h  (x) ---- 11 h(x) 

of order  ~ m vanish on S. 

Le t  I ~_ be the Riesz opera tor  cons t ructed  as above but  with 8 changed to 

- -  8. Then  I ~ - h (x) is defined when x e  T -  : T ( - - 8 )  and i t  vanishes if h vanishes on 

the  compact  set C-  (x) : (y; x --  y E C(q, - -  _~) = - -  C, (y, 8) >--- (x, 8)). I t  turns  out  t h a t  

all the  derivat ives of 11__ h(x) --  I h  (x) vanish when x e S. We put  Ih(x) : I [  h (x) 
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when xE T- .  Then Ih  E C(oo) and one can prove tha t  i fhk  -~ O, then  also Ihk ~ o. 
Also, if all the derivatives of h (x) of order < m vanish when x E S, or briefly, 

if h (x) (m) o, (x E S), then  

(3) h (x) -~ Iq  (O/Ox) h(x). 

I n  terms of the operator  / ,  the linear funct ional  K(2, x , f )  is given by the 

formula  
K (2, x,.f) : f (x)  -- Iq  (0 / 0 x)f(x).  

t t  follows f rom (3) tha t  if  f and g are in C(oo) and f ( x ) - - g ( x )  ('')o, (xES), 
the r ight  s ide  of this formula  does not  change if  we change f to g. Pu t  1 

m--1 

Pi f ( x )  = ~.j (a, 2)-': (x, 2)k f (k) (x -- (a, ~)-1 (x, 2) a)/k[ 
o 

where a is a vector such tha t  (a, 2 ) # o  and f (k)(x)=(a,  O/Ox)kf(x). Then 

P~fEC(oo) and f (x)- -P~f(x)~m)o,  (xES), and consequently another  form of 

K($, x , f )  is 
K (2, x , f )  -= P~f(x)  --  Iq  (O / O x) P~f(x). 

Now P ~ f  depends only on the values of f and its derivatives of order < m in 

the plane (y, 2) = o a n d  it  is easy to see t ha t  if  fk -+ o (2) then  P~f i  ~ o. Hence 

if fk ~ o($) i t  follows tha t  K(~, ",fk)--> o. Moreover, if  f E A ( q )  then 

f (x )  = K(2, x, f).  

This proves Theorem I I  when q is not  a constant .  I f  q is a constant ,  i t  is not  

zero so tha t  A (q) contains only the element f---- o and the theorem is trivially true. 

I t  is clear t ha t  K(2, x , f )  depends only on the values of f and its derivatives 

i n  the  pointset  B(x) -~ (y; x --  yE C1, (•, 2) = o), where Cx = + C according as 

x E T or x E T , ,  and B (x) = x when x E S. Moreover, B (x) is bounded and closed, 

i.e. compact,  and K ( ~ , x , f )  vanishes if  the derivatives of f of order  < m  vanish 

on B (x). 

In  Chapter  5 we consider the problem of Cauchy when a suitable surface 

plays the part  of the plane S-----S(~), but  only for the case t ha t  q is homo- 

geneous and reduced. 2 

1 p ~ f  i s  the beginning of a Taylor series for f with respect t o t h e  variable (x,  ~). 

s In GARDING [2] the results of this  chapter were announced for arbitrary hyperbolic and 
reduced q, not necessarily homogeneous. See the first footnote to Chapter 5. The third footnote 
to the same chapter contains a correction to G),~DINO [4], 
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In Chapter  6, finally, we give some remarks concerning the domain of de- 

pendence of the operator  I and the operator  J defined by J f ( x ) - ~ f ( x ) - -  

- - I q ( O / O x ) f ( x ) .  I t  summarizes the impor tan t  progress in the theory of phe- 

nomena connected with Huygens '  principle t h a t  has been made recently in a paper 

by Petrowsky [8] and also in a paper by the au thor  [ 4 ] . -  I want to t h a n k  here 

C. Hyltdn-Cavallius,  who proved Lemma 2.2, and H.  Jacobinski  for  a critical 

reading of parts of the manuscript .  

Chapter  x. 

P r o o f  o f  T h e o r e m  I. 

Le t  q be an arbi t rary polynomial  in n variables with complex coefficients, 

let ~ = (~1 . . . .  , ~n)#  0 be an arbi t rary  real vector and define A (q) as in the in- 

t roduction.  W h a t  is meant  by f k  -~ 0 and 9r ~ 0(~) when f k ,  (k = I, 2 , . . . ) ,  is a 

sequence of elements .in C(oo) is explained in the introduct ion.  I t  is assumed 

t h a t  there is a real point  x ---- (Xl, �9 �9 x,~) such tha t  (x, ~) ---- Xl ~1 + ' "  + xn ~,, # 0 

and f~(x) -+ 0 with I / k  whenever A ( q ) ~ f k  ~ 0(~) and we have to show tha t  in 

this case q is hyperbolic with respect to ~. I t  is shown in Lemma 2.2 in the 

next chapter  tha t  if q is hyperbolic with respect to ~ i t  is also hyperbolic with 

respect to - -~ .  Hence changing  if necessary ~ to - - ~  we may suppose wi thout  

loss of general i ty tha t  (x, ~ ) >  o. 

Le t  ~ be a complex vector and t a complex number  (if any) such tha t  

q(tt 

Then A (q) contains the funct ion  

f (t, ~, y) : e ('-x,t~+~). 

I t  is clear t h a ~ f ( t , ~ , x ) = I  and when ( y ,~ ) - ~ o  one has 

(2) f ( t ,  ~, y) = e -t(~'~) e Iv-x,~-) 

Clearly our  assumpt ion implies t h a t  we cannot  find a sequence t (k), ~(~') sat isfying 

(I) such tha t  f ( t  (~), $(k), .)_> o(~). Le t  us first assume tha t  there exists a vector 

-~ ~' such tha t  (I) is satisfied for all t. Le t  D f  be a fixed derivative of f with 

respect to y and B a compact  set in the plane (y, ~) = o. T h e n  if  t is real, per- 

forming the differentiat ion and put t ing  (y, ~)---~ o af terwards we get as in (2) 

D f t  -~ D r ( t ,  ~', V) = 0 (t M) e - t  (x, ~), ( M  >-- o), 
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un i fo rmly  in B.  L e t t i n g  t ~  co it  fol lows t h a t  j~ -§  0(2). Hence  there  can be 

no vector  s such t ha t  (I) is satisfied for  all  t. 

L e t  s be a complex n u m b e r  and  pu t  ~ = s t '  wi th  a rb i t r a ry  but  fixed ~'. 

Then  the po lynomia l  q(z, a) = q (r ~ + a~')  in the  i nde t e rmina t e s  ~ and a is no t  

zero for  any  complex  value s of  a. 1 L e t  the  degree  of q (v ,a )  wi th  respec t  to 

bo th  i nde t e rmina t e s  and  the  i nde t e rmina t e  v be m' and m respect ively.  W e  are 

go ing  to show t h a t  m ~ m'. W r i t e  q(z, a) accord ing  to descending  powers  of ~, 

= + . .  

I f  q~(a) is no t  a cons t an t  t hen  m ' >  m and  there  exists  a complex  n u m b e r  so 

such t h a t  q~Is0)~-o .  I n  a ce r ta in  ne ighbo rhood  of s = s o, every zero t = t (s) of 

q ( t , s ) - ~ o  is of the  f o r m  t(s) = o or 

(3) t(s) = a ( s  - -  so) ~ (I + o(I)), 

where a r o, b is r a t iona l  and  o(I) -~ o as s -~ so. N o t  all  t(s) are bounded when  

s -~ So, because then  q (t', So) = l im q,~ (s) II (t' - -  t(s)) = o fo r  every complex n u m b e r  t'. 
8 ~ 8  o 

Hence  we m a y  assume t h a t  b < o in (3). W e  also choose arg  ( s - - s o )  so t h a t  

a ( s - - s o )  b is real  and  positive. Then ~ t ( s ) =  la] I s - - s 0 ] b ( I  + o(I)) and  i t  is easy 

to see t h a t  

D f ~  = D f ( t ( s ) ,  s$ ' ,  y) = O(]s --s01 -M) e -(~, ~)~t('s), (M > o), 

un i fo rmly  in B so t h a t  f ,  ~ o(2) as s--,  so. N e x t  assume t h a t  qm is a cons tan t  

bu t  t h a t  r n ' >  m, in which case m is necessar i ly  posit ive.  In  a cer ta in  neigh- 

borhood of s = c o ,  every zero t = t ( s )  of q ( t , s ) = o  is of the  fo rm t ( s ) = o  or 

(4) t (,~) = a s b ( I + o (I)), 

where  a # o , b  is r a t iona l  and  o ( I ) - + o  as s - ~ o o .  N o t  every b is --< I because 

o therwise  q(t ' s ,  s) = q,~ II (t's -- t(s)) = O(s  '~) for  every complex n u m b e r  t '  which 

con t rad ic t s  the  a s sumpt ion  m ' >  m. Le t  b > I in (4) and choose a r t  s so t h a t  

as  b is real  and  pos i t ive  and  consequent ly  ~Rt(s)-= la l  Is lb(I + o(I)). Then  one gets  

Df~ =- D f ( t  (s), s r y) ~- 0 (1 s I M,) e M, I, I e-(~, ~) ~t (.~), (3/i ,  M2 > o), 

u n i f o r m l y  in B so t h a t  f~ --, o (~:) as s -~ co. 

Now le t  p be the  p r inc ipa l  p a r t  of q, so t h a t  q = p  + r w h e r e p  is homo- 

T o  s a y  t h a t  q(v, s) i s  z ero  m e a n s  b e c a u s e  v i s  an  i n d e t e r m i n a t e ,  t h a t  i t  i s  i d e n t i c a l l y  zero ,  

c o n s i d e r e d  as  a p o l y n o m i a l  in  z .  
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geneous and the  degree of p is g rea te r  than the degree of r, or if q is a con- 

s tant ,  r =  o: Because q is not  ident ical ly zero, p is not  ident ical ly zero. Hence  

we can choose $' so t h a t  p(~') ~ o. I f  p(~) = o then  for  q(3~ + a~') one would 

have m ' >  m which is impossible. Hence  p ( ~ ) ~  o, and m is the common degree 

of p and q. I f  m = o  then  q ( t ~ + i ~ ) = p ( ~ ) ~ o .  Consider  the case r e > o ,  let  

~7 be real  and consider  the zeros t = t ( i ~ )  of the equat ion  q(t~ + i ~ ) = o .  Let  

~t(i~l)  a t t a in  its max imum t ' ( 8 ) i n  the domain max~]vk } ~ s  when ~ = ~ ( s ) a n d  

t( i~)  = t(s). By vir tue  of the lemma proved next  in this chapter ,  for  sufficiently 

large s one has t ' ( s )=  o or 

(5) t'(s) = + 0(,))  

where a is real  and not  zero, b is ra t iona l  and 0(I)-+ o as s -~  co. I t  is clear 

t ha t  t ( s ) =  O(s v) for  some b ' > o ,  (actually b ' -~  I). I f  t ' ( s )were  not  bounded 

from above when s -> c~, one would have a > o and b > o in (5) and then  

Df~ : D f ( t  (s), V (s), y) = 0 (s ~r) e -(x, ~)t' (~), (M > o), 

uni formly in B so tha t  f~-~ o (8) as s-+ co. 

I f  t ' ( s ) ~ t  o one has q ( t ~ + i ~ ? ) ~ o  when t > t 0  and ~ is real. This  reduces 

the proof  of Theorem I to the proof  of the fol lowing lemma. 

Lemma.  Let  q(T, e l , . . . ,  a~) be a complex polynomial in the i~determi,  ates 

3, al . . . . .  a, such that when sl . . . . .  8, are real, the degree with respect to 3 of the 

polynomial q ( T ) =  q(3, s~ . . . .  , s~) is positive a~d independe~t of  s ~ , . . . ,  sn. ~ Let  

M(s) be the maximum of the real parts of the zeros of the equation7 q (3) = o when 

maxl~ Isk ] ~ s. Then for sufficiently large s, either 51 (s) = o or 

+ 

where a is real and not zero, b is rat io,el  a~d o(I) -~ o as s-+ c>o. 

Proof .  Le t  ~ r  = M ~ ( S l , . . . ,  s~) be the maximum of the  real parts  of the 

zeros of the equa t ion  q(3)-~ o. I t  is clearly a cont inuous  func t ion  of s ~ , . . . , s , .  

Le t  I S l , . . . , s ~  I be the  g rea t e s t  of the numbers  I S l [ , . . . ,  Is,,I. Let  M ~ =  

= ]Ie(s~ . . . . .  s~, s) be the max imum of M~ when s~, . . . ,  se are fixed and se+~ . . . .  , s~ 

vary so tha t  Is~+~ . . . .  , s,,] ~ s. I t  is also a cont inuous  func t ion  of s ~ , . . . ,  s~, s. 

This  is a lmost  evident,  bu t  we give here  a formal  proof. P u t  M~. ~ Me (s~,..., s~, s') 

1 I f  w e  w r i t e  q in  t h e  f o r m  X' qk (el  . . . .  ' an) vk w h e r e  qm (61 . . . .  , am) is  n o t  ( i d e n t i c a l l y )  ze ro  
0 

t h i s  m e a n s  t h a t  m > o a n d  t h a t  qm(Sl  . . . .  , sn) is  n e v e r  zero .  
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and  suppose t h a t  I S l - - S ' l , . . . ,  & - - s ' k ,  s - - s ' [  <--J. Choose s1:+~ . . . .  , sn such t h a t  

M n  -~ Mn(s l  . . . .  , Sn) = Mk and  put  sj = csj,  ( j  > k), where c ~- I when s '  --~ s and  

c : s ' / s  when s ' < s .  Then  [ s - - s ~ ,  . . . , s n - - s ~ [ - - ~ l t ~ , ( I - - c )  sl ~ [ ( ~ , s - s ' l ~  and 
! 

also [s~.+l , . . . ,  s~,[ ~ cs  ~--s'. H e n c e  by the  defini t ion of M~. we get  M ~ - -  ~ M ; ~ =  

= i n  (81,' . . . ,  S~)' so t h a t  ~T/i --> ~/~ - I1] / ,  - M g l .  Now when It - -  t l , . . . ,  tn--t,,' I -~ 

and  ]tl . . . .  , t~, t~, . . . ,  t~] is less t h a n  some cons tan t  g r ea t e r  t h a n  Is1, . . . , s n ,  

sl . . . .  , snl then  by un i fo rm  cont inu i ty ,  ] M n ( t i , . . . ,  in) - -  . ~ l n ( t ' , . . . ,  t')] ~-- S(~) 

where  e(6) -~ o as ~ -~ o. Hence  Ms ~ M k - -  e ( J~and  by s y m m e t r y ,  Mk ~ - -  M ' k - - e ( 5 )  

so t h a t  I M k  - -  ~ / ; I  -< e (6). 

Let  C -~ C[u 1 . . . .  , ud be the  r ing  of all real  po lynomia l s  in the  inde te rmina te s  

u l , . . . , u t .  An d e m e n t  q E C  is called a p roper  f ac to r  of  p E C  if  p ~ q q '  where 

q' E C and q and  q '  are no t  real  numbers .  An d e m e n t  p is called pr imi t ive  wi th  

respec t  to ul if  i t  conta ins  no p roper  f ac to r  i ndependen t  of Ul. 

L e t  Ak be the  class of  all real  po lynomia l s  /0=- -P(v ,  al . . . .  , a~, a ) ~  o 1 

sa t i s fy ing  

(6) P (Mk, Sl . . . .  , Sk, S) = 0 

for  all  real  sl . . . .  , sk, s such  t h a t  s ~ o and  hav ing  no proper  f ac to r  wi th  the  

same proper ty .  I t  t hen  fol lows t r iv ia l ly  t h a t  P has  no p roper  mul t ip le  fac to r s  

bu t  also t h a t  i t  is p r imi t ive  with respec t  to T. I n  fact ,  le t  P =  P1P2  where  

/)2 is p r imi t ive  and  Px is i ndependen t  of T. The  f o r m u l a  (6) shows t h a t  

P 2 ( M k ,  sl . . . .  , & , s ) : o  at  every po in t  where  /01(sl . . . .  ,sk,  s ) ~ o .  Bu t  these  

poin ts  are  dense in the  region s-----o and  M ,  is con t inuous  the re  so t h a t  (6) 

fol lows for  P2 and  consequen t ly  /)1 is a cons t an t  so t h a t  P is pr imit ive .  

T h a t  An has  a t  leas t  one e lement  can be seen as follows. There  is ce r ta in ly  

a real  po lynomia l  Q' (T, al ,  . . . ,  an) ~ o which vanishes  when  aj = sj, ( j  = I, . . . ,  n), 

and T ~ �89 (tj + t~), (j ,  k = i ,  . . . ,  m), where  ti, �9 �9 tm are the  m > o zeros of  the  

equa t ion  q(T, Sl, �9 �9 s,) ~ o. Consequent ly  it  has  a t  leas t  one f ac to r  Q in An. 

Assume now t h a t  k > o  and t h a t  P E A k .  W e  are  go ing  to cons t ruc t  an  

e l emen t  P ' E A k - 1 .  I f  P ~ = O P / O a k : o ,  t hen  /0 is i ndependen t  of  ak, SO t h a t  

because  Mk is con t inuous  i t  is i ndependen t  of sk fo r  such sl . . . . .  sk, s t ha t  

P(T ,  sl  . . . .  , sk, s) ~ o. But  these  are dense in the  reg ion  where  Mk is defined 

so t h a t  because Mk is con t inuous  it  is i ndependen t  of  sk fo r  all values of  the  

o the r  a rgumen t s .  Hence  P ' =  P E Ak-~. Assume  t h a t  /ok ~ o and  let  

1 F r o m  n o w  on in  t h i s  chapter ,  s m a l l  G r e e k  l e t t ers  i n d i c a t e  i n d e t e r m i n a t e s .  T h a t  _ P = o  t h e n  

m e a n s  t h a t  a l l  t h e  coef f i c ients  of  t> v a n i s h .  
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M k - 1  : M k ( 8 1 ,  . . . ,  8 k - l ,  Jk, 8) 

for  fixed s l , . . . ,  sk-1 and s. I f  Iss we have one of the  equali t ies 

(7) P(Mk-1 ,  sl, . . . ,  Sk-1, +_ S, s) = O. 

Assume nex t  t ha t  Is~[ ~ s. Le t  the values of Ot)/OT and Pk be cl and c~ rr 

speetively when T----M~-I, a l : S l , . . . , a k : S ~  and a : s .  I f  not  c l = c 2 - ~ o ,  the  

plane curve whose points  are (sk, Mk), (]S~ I < S), has a t a n g e n t  at  the  point  

(s~, Mk-1) and because Mk--~ Mk- i  i t  follows f rom e lementary  considera t ions  tha t  

this t a n g e n t  must  be parallell  to the sk-axis and this  again implies t h a t  c2----o. 

Hence  we get  
p 

s 81 . . . .  , 8k-1 ,  8k, 8) -~- 0 
(S) 

P k  (Mk-l, 81 . . . .  , 8k--1, 81, 8) ~- O, 

and these equat ions  are also t rue  if  cl = c2-= o. 

Consider  the discriminaDt /~ of P with respect  to ak. I t  belongs to 

C =  C[T, a l , . . . ,  ak-1, a] and we want  to prove tha t  i t  does no t  vanish. P u t  

C1 = C [T, al ,  ., ak, a], let  C' be the quot ien t  field of  C and let  C'  [ak] be the  

r ing  of all real  polynomials  in ak with coefficients in C'. I t  is clear t h a t  an 

e lement  in C' [a~.] whose der ivat ive with respect  to ak vanishes is independen t  

of ak. Hence  because /~ depends on ak, it  follows I t h a t  if B = o  then  P is of 

the fo rm P 2 P  2 where /)1 and /)2 are in C' [ak] and /)1 depends on ak. But  then  2 

we can also wri te  P as P [P~  where P1 ---~ Pl/)1 and t)2 : P 2  P~ are in C1 and Pl 

and P2 are suitable elements  of C'. Hence  P has the  proper  mult iple  fac to r  151 

so t h a t  P ~  Ak against  the  assumption.  Consequent ly  R ~ o. 

I t  follows f rom (8) t ha t  

(9) /~ (Mk-1, 81, . . . ,  8k-1, 8) = O .  

Moreove r , / )+  ~ P (T, al ,  �9 �9 _+ a, g) ~ o because o therwise  JP has the fac to r  ak T a 

which implies tha t  P is not  pr imit ive with respect  to v agains t  the assumption 

tha t  P E A k .  Hence  if / ' I = P + P - R  we have P x ~ O  and by vir tue of (7) and (9) 

PI(Mk-1,  .el, . . . ,  8k-1, 8)-= 0 

when s ~ o. Hence  P has a t  least  one f ac to r  P '  in Ak-1. S ta r t ing  f rom Q in 

A ,  we can thus  cons t ruc t  an e lement  Qn-IEAn-1 and,  cont inuing,  finally an 

1 VAN DER WAERDEN [ I2 ]  I p. 93" 

2 1.C.p. 75--77.  
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e lement  G in Ao, Because M ( s ) ~  Mo(s)we get  G(M(s), 8 ) :  o, (s ~ o). Now in 

a ne ighborhood  N of s = o %  every solut ion t of G( t , s ) -~ -o  is equal  t o o n e o f a  

finite number  of different  convergen t  series of cer ta in  real  f rac t iona l  descending 

powers of s, one of which may vanish ident ical ly while the others  have the form 

(1o) a s  b + . . . .  a s b ( I  + o(I)), 

where a ~ o, b is ra t ional  and s b is the h ighes t  power of s t h a t  occurs in the 

series, so t ha t  o(I)--> o as s -~  co. All these series assume different  values in a 

suitable N and because M(s) is cont inuous  it  is ident ical  with one of them there  

and we assume tha t  i t  is (Io). Then a is real  because it is the l imit  of M(s)s -b 
as s-+ 0% and this proves the lemma, which of course also is t rue  if we by 

M(s) mean  the min imum of the real  parts  of the zeros of q ( T ) ~  o in the  region 

maxk l skl -< 8. 

Chapter  2. 

H y p e r b o l i c  P o l y n o m i a l s .  

Reduced  po lynomia l s .  Le t  q ( ~ ) ~  q ( ~ l , . . . ,  C~) be a polynomial  in ~1 . . . .  , ~n 

with complex coefficients and consider the  different ia l  equat ion 

(I) q (0/0 x)f(x) = o, 

where  f ( x ) : f ( x l , . . . ,  x,) is a complex and infinitely differentiable func t ion  of 

n real  variables x l , . . . ,  x , .  Wr i t e  x----(Xx . . . .  , x~) and consider  a real  l inear  

t r ans fo rmat ion  

X' ~ X ]~V 

where _~r is the transpose of a real  quadrat ic  non-singular  matr ix  M. ] t  then  

follows tha t  O/Ox-=(O/Ox')_~[ so t h a t  (I) becomes 

(2) q (o/o~'  M) f(x'  5t-~) = o. 

Let  us put  q'($')=q(~'M) and f ' ( x ' )= f ( x ' ]~ - l ) .  I t  is clear f rom (2) t ha t  

f ~ - f '  is a l inear  one-to-one mapping  of the  solutions of (I) upon the solutions of 

(3) q' (O/Ox') f '  (x') = o. 

Because the a rgumen t  O/Ox of q in (1) and the  a rgumen t  x of f t r a n s f o r m  

differently and we have to consider  a rguments  of q which like x are vectors 

with numerica l  components ,  i t  is convenient  to do as follows. Consider  two vector  

spaces E and E* where E consists of all vectors with n real  components  and 
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E* consists of all vectors with n complex components.  We denote the elements 

of E by Lat in  let ters x, y , . . .  and those of E* by Greek letters ~, ~, ~ , . . .  I f  

E* is subjected to the l inear t ransformat ion  ~-~ ~ 'M,  the elements of E should 

be t ransformed according to the formula  x -~  x ' ~ - l .  In  such a way the scalar 

product  
( x ,  = x :  + . - .  + 

remains invar iant  if  we subst i tu te  x'  for  x and $' for  ~. When it  is a complex 

or real vector, the a rgument  of q should always be t hough t  of as an element 

of E*, while the a rgument  of a solution of (I) ought  to be considered an element 

of E. We have tacit ly stuck to this convention in the preceding chapter.  

A suitable choice of M may make (3) easier to handle  than  (I). Le t  l be 

the least  of all integers l' for which there exists a matr ix  M" such tha t  q(~'M')  

is a polynomial  in ~ { , . . . ,  $'t, only when ~ { , . . . ,  ~n are considered as indeter- 
p 

minaLes. I f  M is a matr ix  corresponding to l it  is clear tha t  x'z+l . . . .  , xn enter  

into (3) only as parameters.  A polynomial  for which l ---- n will be called reduced. 

Le t  q be an arbi t rary  polynomial  in n variables with complex coefficients. 

The fol lowing concept is useful. 

Definition. Le t  ~9(q) be the set of all real vectors ~' in E* such tha t  

q (7 + t = q (7) 

for all real numbers t and real vectors ~ in E*. 

L e m m a  2.1.  The set ~ (ql is linear over the real numbers. A polynomial q is 

reduced , f  and only ~:f ~ ( q ) - ~ o .  I f  the 

independent and 0 (t+:) . . . .  , 0 (') constitute a 

= q (~i 0 (1) + "'" + ~n 0 (~)) is reduced. 

real vectors 0(1), . . . ,  ()(") are linearly 

basis of Q(q) then q'(~'~,..., ~;)-~ 

Proof. I f  ~/' and ~/" are in f2 (q) then  

q(~? + t'~ I' + t"~?")----q(~ + t '~l ')=q(~l)  

for all real ~/ and real t' and t". Hence  ~Q(q) is linear. Assume tha t  q is no t  

reduced and let /,(1), . . . ,  #(,) be the columns of such a matr ix  M tha t  q ( ~ ' M ) =  
_ _  ' ( 1 )  ' - - q (~ l / ,  + "'" + ~n/, (~)) is independent  of ~n. Then q(~ + t / , (n))=q(~)  for  all 

re~l ~ and t. Hence  ~(q) contains the element  / ,(n)~ o. Conversely, suppose 

tha t  o # y'GS2(q) and let  /,(1),.,., p(n--1) and /,(n)__ 7' be a basis for all real 

vectors ~]. Then 

q (~{ #(z) + ... + ~;, #(,)) _ q (~ #(:) + .,. + 5 - :  #(n-l)) 
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for all real ~ ,  . . . ,  $~. But  then  the same equali ty holds for indeterminate  $~, . . . ,  ~,~ 

and consequently q is no t  reduced. As to the last  assertion of the lemma, the 

same a rgument  shows tha t  q (~ 0/1) + ... + ~ 0(~1) is a polynomial  in ~ ,  . . . ,  ~ alone, 

say q' (~,  . . . ,  $~). I f  q' were not  reduced, then  one could find real numbers 71,-. . ,  T~ 

not  all zero such tha t  

q'(vl + t v l , . . . ,  7, + t T ; ) =  q ( w , . - . ,  W) 

for all real t and T1 , . . . ,7~-  But  then  q ( 7 ) : q ( v  + tT") for all real t and T i f  

T" = T~ t~l) + "" + T~O(~). Hence o ~ V" E t? (q) and 0 (l+l), . . . ,  O(') is no~ a basis of 

Q(q) against  assumption. 

Hyperbo l i c  po lynomia l s .  Let  E consist of all real elements in E*, i.e. of 

all vectors with n real components.  Le t  q be a .po lynomia l  in n variables wi th  

complex coefficients, let i t  be hyperbolic 1 wi th  respect to ~EE and let the degree 

m of q be positive. I f  p is the principal par t  of q and T e E ,  then because 

p(~) # o, the degree of q(t~ + i T ) = p ( ~ ) t  ~ + ... with respect to t is m. Hence 

there are complex numbers  v~ (~, iT) , (v ---- I, . . . ,  m), such tha t  

~n 

(4) q (t + i 7) = p 1-[ (t + v, i T)) 
1 

for  any complex t, Le t  ~ t  be the real and ~ t  the imaginary  part  of t. Because 

q is hyperbolic with respect to ~ we get  

q(t~ + i v ) : q ( ~ t ~  + i(3t~ +T)) ~ o 

if ~ t > to. Now q(t ~ + iT) vanishes when t = --  v, (~, iv). Hence max,  --  ~ v, (~, i T) --~ to 

so that 

(5) min,. ~ v ,  (~, iv) --~ --  to 

for all real T. Conversely, if p (~) # o and (5) is satisfied, i t  follows from (4) t ha t  

q(t~ + i T ) #  o when ~ t  > to so tha t  q is hyperbolic wi th  respect to ~. 

I t  follows directly f rom the definition t h a t  if  q is hyperbolic with respect 

to ~, i~ is also hyperbolic with respect to any positive mult iple  of  ~. The same 

conclusion is, however, also t rue for the negative multiples of ~. In  order to 

prove this it  is sufficient to prove the  fol lowing lemma. 

Lemma 2.9.. I f  a polynomial q is hyperbolic with respect to ~, it is also hyp~'- 

bolic with respect to - -~.  

1 See the definition given in the beginning of the introduction. 
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P r o o f 3  I f  q is a cons tant  it  is no t  zero, and i t  follows t h a t  q is hyperbol ic  

with respect  to all real  vectors,  in pa r t i cu la r  - - ~ .  I f  q is no t  a cons tan t  we 

can use (4). The sum /~ = ~ v l ( ~ , i ~ ] ) +  .-. + ~v~(~,  iv)  is a polynomial  in 

~ ,  . . . ,  Un of degree ~ I and by vi r tue  of (5) bounded  f rom below and hence i t  

mus t  be constant .  Bu t  t hen  with r , - ~  ,~v,(~,i~) we get  

r ,  = R - -  r~ . . . . .  r , _ ~ - -  r,+~ r~ ~ R -F ( m - -  I) t o 

for  all ~. But  then  i t  follows f rom (4) t h a t  q(-- t~+i~) ~ o when t > R + ( m - - I )  to. 

Also p ( - - ~ )  ~ (--  1)~p(~) ~ o. Hence  the lemma is proved.  

The  degree of p(t~ + 7 ) : P ( ~ ) W + " "  with respect  to t is m. Hence  there  

are m complex numbers  u,($, ~), (v = I . . . .  , m), such tha t  for  any complex t, 

(6) p(t~ + ~)=p(~) f i  (t + u,C~,V)) 

and in par t icu lar  when t-~--o, 

(7) p (7) = p ] I  
1 

The  fol lowing ident i t ies  in which a ~ o is a complex number ,  ~' a vector  in E* 

such tha t  p ($') ~ o, U an a rb i t r a ry  e lement  in E* and a suitable label l ing of the  

numbers  u,(~, U) is unders tood  are immedia te  consequences of (6) and the homo- 

genei ty  of p, 
u, (~, ~) = I, u, (~, a 7) = a u, (~, U), 

(8) u, (a~ ,u) :a-Zu , (~ ,~) ,  u,(~,$ + aT)= ~ + au,($,~), 

I t  is clear tha t  (6), (7) and (8) are valid when p is any homogeneous  poly- 

nomi~l of degree m aud p ( $ ) ~  o. 

Lemma 2.3. A necessary and sufficient condition that a homogeneous polynomial 

p of positive degree is hyperbolic with respect to ~ is that p (~)~ o and that the 

numbers u, (~, 7) defined by (6) are all real when ~ is real. 

Proof .  Le t  p be hyperbol ic  with respect  to ~. Applying  (8) we get  if a and 

~/ are real  

I o w e  t h e  p r o o f  to  C. I - IYLT~N-CAVALLIUS.  

2 - 642127 Acts mathematiea. 85 
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By virtue of (5), tile left  side is bounded from below for all v and real a .  But  

this clearly implies tha t  ~ u ,  (~, ~/)-----o for all v. 

Conversely, if  19 (~) ~ o and the  numbers u, ($, ~7) are real when ~/is, applying 

(8) we get  

p(t~ + i~)=p(~)ii(t + i u , ( ~ , r  ~ o 
1 

when t > o (or t < o), so t ha t  p is hyperbolic with respect to ~. 

Remark .  Mult iplying both sides of (7) by p(~)-I we get  

p (~)-~/9 (~) = I [  u,  (~, ~). 
1 

Here the r ight  side is real so t ha t  p ( ~ ) - l p ( r l )  is a real polynomial  in r/. 

Our next  1emma is classical. 

L e m m a  2.4.  L e t  

and 

t m + a I t m-1 -{- " ' "  -~- a, ,  : f i  ( t  - -  t ,)  
1 

m 

t m + bl tin-1 + . .  + b , ~ = l I ( t - - s ~ )  
1 

be two polynomials  w i th  complex coeffieients. Then  there ex i s t ;  a labelling o f  the 

numbers  s x . . . . .  sm such that  max,  It ,  - -  s,  I tends to zero when ax, �9 �9 am are f i x ed  

and  max, la,--b,I tends to zero. 

Ostrowski x proved the more precise result  tha t  if 

e(a, b ) =  4 m  m a x ,  ( I ,  I a, li/", Ib, I 1/') (Y, [a~ --  btz]2) 1.2~n , 
/z 

then there exists a labelling of the numbers  s x , . . . ,  sm such tha t  

max,  It, - s,I -< e(a, b). 

L e m m a  2.5.  I f  a polynomial  q is hyperbolic w i th  res/geet to ~, then also i ts  

p r i n c i p a l  par t  is. 

Proof. I f  q is a constant ,  then  /9 = q and the lemma is trivial. Hence 

assume tha t  the degree m of q is positive, let (6), (7) and (8) refer  to the prin- 

I [7] 1 'j. 2 0 9 - - 2 1 2 .  
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cipal par t  p of q, let  7 and s ~ o be real  and put  q~(t) = s - ' n p ( ~ )  -~ q ( s t ~  + i sn) .  

Then  as s ~ co, qx(t) = t '~ + ... considered as a polynomial  in t tends top~ (t) = 

= p ( ~ ) - l p ( t ~ + i ~ ) .  Now by vir tue  of (4) and ( 6 ) t h e  zeros of q x ( t ) = o  and 

pl( t )  = o are t -~ - -  s -1 v, (~, i s  7) and t = - -  u, (~, i7) respect ively,  (v = I . . . .  , m). 

H e n c e  the  preceding lemma combined with (8) shows ~hat 

min ,  s -X~v~(~ ,  i sT )  -+ min,  ~ t ' u , (~ ,  7) 

as s - + c o .  Here  by vir tue of (5), the l imit  of the lef t  side is > o  so t h a t  

min~ ~ i u , ( ~ , 7 ) > - - o .  Hence  changing  z/ to - - ~  and using (8) we get  

o --< min ~ t u ~  (~ e, - - 7 )  = min~ - -  ~ i u ~ ( ~ ,  7) ~--- - -  max,  ~ i u , ( ~ ,  7), 

so tha t  max,  '~ iu , (8 ,  7)--<o. H en ce  all the  numbers  u,(~,n)  are real  when ~/ is. 

Hence  L e m m a  2.3 shows tha6 ~o is hyperbol ic  with respect  to ~. 

The  converse of this l emma is no t  true.  In  fact ,  p = ~ is hyperbol ic  with 

respee~ to ~ = (I,O) bu t  pu t t ing  q = C~ + ~ we have 

q ( t ,  + i n ) =  (t + i7 ) + = (t + in l  + V )(t + i7 - Vi-7 ) 
so t ha t  

which is no t  bounded f rom below. A less t r ivial  example is given by 

Now there  is one i m p o r t a n t  case when the  converse of our  las t  lemma is 

t rue,  ~ namely when q is not  degenerate .  Le t  (6) re fer  to the  principal  pa r t  p 

of q. We  say t h a t  q is not  degenera te  if u , ( ~ , 7 ) # u v ( ~ , n )  when v # / z  and 7 

is real  and not  p ropor t iona l  to ~. To prove our  assert ion write q ( s ) = q ( s ~  + i~), 

p ( s ) = p ( s ~  + i7) and r ( s ) = r ( s ~  + i7) where r - ~ q - - p  and resolve qi0 -x into 

par t ia l  f rac t ions  as follows 

~-~ r ( - -  i u , ) ,  
(9) q ( 8 ) p ( 8 ) - l m I  + ,'(8)~9(.~) -1 = t  + ~=l~V~..-i: ~ ) [ 8  + i,,~) -1 

where p ' ( s ) =  d p / d s  and u, = u,(~, 7) and where we have used (8). Le t  E~ be a 

l inear  subspace of the  space E of all vectors  with n real  components  such 

t ha t  E~ does not  conta in  ~ and ~ and E~ toge the r  span E. By assumption,  

rain, ]p ' (-- iu, , )]-----min,  [P (~ ) [ I I  I - - u ,  + ut, [ has a posi t ive min imum M1 when 
tt=l 
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7 e E ~  and 171---- max~ 17~1 = ~. N o w  according to (8) every ~, is homogeneous  
of order I in 7. Hence 

min~ I p ' ( - i u ~ ) l  -> Mx 1~1 ~-~ 

when 7 e E l .  Because r is or degree < m then  max,  I r ( - i u . ) l  = 0(1~1 ~-m) when 

[71>--i. Hence there exists an M 2 such tha t  max,[r( - - iu , ) /p ' ( - - iu , . ) [<--M2 

when [7] -> I and ~eE~ so tha t .  by (9) 

Iq(s)l---Ip (s)l (i -(~}~S)-I ~n/2)  > 0 

if  ~ s > M s - = m M z  and 7 e E ~  and ]y[-----I. W h e n  7 e E ,  and [~11--<I then 

max,  --  ~ v, (~, i T) has a maximum M4. Hence q(s)=q(~s~+ i~s~+iV)#o 
when ~ s  > max (Ms, M4) and ~7 e E~ so tha t  q is hyperbolic with respect to ~. 

Le t  the degree m of the polynomial  q be positive, let (6) refer to its principal 

part  p. so tha t  

p (t ~ + 7) = p (~) 1:[ (t + . .  (~, 7)). 
1 

I t  follows f rom Lemma 2. 5 and Lemma 2. 3 tha t  the numbers u~(~,7 ) are all 

real when 7 is real. 

Definition, Le t  F(q, ~) be the set of all real vectors ~' for which 

rain, u, (~, ~') > o.1 

i t  follows from (8) t h a t / ' ( q ,  ~) contains ~. Because rain, u, (~, ~') is a continuous 

funct ion of ~', F(q, ~) is open and hence it also contains all ~' which are suffi- 

eiently close to ~. By virtue of (7) we get  

(~ o) p (~') = p (~) H u, (~, ~') ~ o 
1 

i f '~ '  E F(q, ~), More detailed informat ion is given in Lemma e. 8. For  the moment  

we wan~ to prove 

L e m m a  2.6.  Let the polynomial q be not constant a~2d let it be hyperbolic with 

respect to ~ so that q(t~ + i T ) ~ o  when ~ t >  to and7 is real. Let~'  ~F(q ,~)and 

let ~s>--o. Then also q(t~ + s~" + iT) r ~o i f  91t> to and ~? is real. 

Proof. Le t  m > o be the degree of q and p its principal part  and put  with 

complex t and s 

qx(t,s) = q(t~ + s~" + i7)-----p(QW + p(~')s '~ + .... 

1 T h e  se t  T'(q,  ~) is also t h e  l a rges t  se t  in  E wh ich  is  connec ted  w i th  ~ and  on ly  contains 
vectors  ~' s uch  t h a t  p (~ ' )  ~ o. T h i s  is perhaps the simplest definition. 
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By assumption,  p ( t ) ~ o  and i t  follows f rom (IO) t h a t  p ( t ' ) ~ o .  Hence  the 

equat ion ql( t ,s)-=o defines a ( I ,m)-correspondenee between s and t and also 

between t and s. Le t  s~ . . . .  ,sin be the correspondents  of t and tl . . . .  , tm those 

of s. Consider 
a (s) = max,  ~ t,. 

Because q is assumed to be hyperbol ic  with respect  to t ,  i t  follows tha t  

ql(t, s) • q ( ~ t t  + s t '  + i (~ t~  + ~7)) ~ o 

when ~ t > t o  and ~ s = o .  Hence  we know tha t  a(s)<to  when ~s- - - -o .  In  

order  to prove the  lemma it  is obviously sufficient to  prove tha t  the  same in- 

equal i ty is t rue  when ~ s  > o. 

Consider also the  func t ion  

b (t) ~- max,  ~ s , .  

I t  is cont inuous  and  we want  to s tudy i t  when t is large. P u t  

h!s) = t-m p(t ' )  -~ ql(t, t s ) =  t - m p ( t ' ) - I  q(t~ + t s t '  + iV). 

I t  is clear t ha t  the zeros of h(s) are t - i s , ,  (v-= I , . . . ,  m). When  I ~ then  

h(s) = s in+ ... considered as a polynomial  in s tends to 

hl(S ) ~---p(t ' ) - lp(~ + s t ' )  -~ s "t + " " .  

Using (6) and (8) we may wri te  hi(s) as 

+ 8u ,@,  
1 

Because ~'E/~(q, ~), the numbers  u,(~, t ') are all positive. Hence  the  zeros of 

hi(s) are --u~' l (~,  t ') and consequent ly  i t  follows f rom L e m m a  2.4 tha t  

(I I) max,  ~ t -1 s, --~ - -  min,  u~ -1 (t, t ')  

as Itl oo. 

Assume now tha t  there  exists an s' such tha t  ~ s ' >  o and a(s')>~ to. Then  

s' has at  least one cor responden t  t' such t h a t  ~ t  ' >  to. Now s' is also one of 

the cor respondents  of t' so tha t  i t  follows t h a t  b ( t ' ) >  o. Le t  c(T) be a complex 

cont inuous  func t ion  of the real  variable T such tha t  c (o)---- t', ~ c (r) is s t r ic t ly  

increasing and c (r)--~ r when r is large, and pu t  t = c (r). Th en  as ~ goes ~rom 

o to +oo, b(t) goes f rom b ( t ' ) > o  to - -oo .  In  fact,  w h e n  T is large then  t = r  

is large,  real  and positive so t h a t  t- lb(t)  equals the  lef t  side of (II) .  Because 
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~ 'E / ' (q ,  t), the r ight  side is negat ive and hence b ( t ) ~ - - c o  as �9 ~ +co .  Hence 

there exists a t" such tha t  ~ t " >  ~ t  '>- t o and b ( t " ) :  o. But then  t" has at  

least  one purely imaginary  correspondent  s" and hence p (~')-1 q (t" ~ + s" ~' + i~?)=o 

which is impossible. Consequently a(s)< t o when ~ s  > o and this proves the 

lemma. 

We can now prove the fol lowing impor tan t  lemma. 

L e m m a  2.7.  I f  a polynomial q of  positive degree is hyperbolic with respect to t, 

it is also hyperbolic with respect to any ~" such that ~" E F(q, t) or - -~ 'E  F(q, ~). 

Proof.  Le t  t '  E F = F(q, t). The formula  (Io) shows tha t  if p is the  principal 

par t  of q, then  p(~') ~ o. Because / '  is open there exists a positive number  a 

such tha t  t ' - - a t E  I'. Then by virtue of the preceding lemma one has 

q( t t '  + i~) = q(ta~ + t(t'  --  at) + i~/) # o 

when ~ is real and ~ t > max (o, a -1 to). Hence  q is hyperbolic with respect to ~'. 

I~ - - ~ ' E  F then  q is hyperbolic with respect to - - t '  and hence also, by virtue 

of Lemma 2.2, with respect to t ' .  

L e m m a  2.8. Let q be a not constant polynomial and let it be hyperbolic with 

respect to ~. Then I "=F(q ,  ~) is open, convex and not empty, l f  p is the principal 

part  of  q, then F(p,  ~)= l'(q, ~). I f  a > o, t" E F  and t "  EQ(p) the,~ also a t '  and 

t' + ~" are in I '  and F(q, t ~) = F(q, ~). There are real vectors x such that (x, ~) = 

= X l  ~1 + " '"  + X n  ~]~ > 0 when ~1 E F. 

Proof.  We  know already tha t  F is open and t h a t  i t  contains t.  I t  foltows 

from Lemma 2.5 t ha t  p is hyperbolic with respect to t.  Hence we can form 

F(p, t) and  i t  is clear  t h a t  F(p, ~)= F(q, ~). I f  a > o and  ~ ' e  P t hen  by virtue 

of (8), min, u , ( ~ , a ~ ' ) = a m i n ,  u , ( ~ , ~ ' ) > o  so t ha t  a~'EF.  I f  ~ " E ~ ( p )  then  

p(~ + t t ' +  t $ " ) = p ( ~  + t~') for all real t so t ha t  because p is homogeneous 

we get t ha t  p(t~  + ~' + ~ " ) = p ( t ~  + ~') for  all real t. Hence  (6) shows tha t  

min ,  u, (t, t '  + t" )  = min,  u, (~, $') > o so tha t  t '  + t "  E T'. Because ~ (p) is l inear 

it  also follows tha t  ~ ' +  b ~ " E F  for all real b. 

Le t  ~/ and the number  s be real, let ~'E F and consider 

a = a (s)  : m i n ,  u ,  ( t ,  s t '  + ~/). 

We want  to prove tha t  i t  is a strictly increasing funct ion of s. 

P u t  q ~ ( t , s ) - ~ p ( - - t t + s t ' + ~ )  with real s and t. Then the coefficients of 

t '~ and s m in q~ (t, s) are (-- I)mp (~) and p (~') respectively. By assumption, p($) ~ o 
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a n d  i t  fo l lows  f r o m  (Io) t h a t  p ( ~ ' ) r  ~ o. H e n c e  the  e q u a t i o n  q l ( t , s ) -~o  def ines  

a ( I , m ) - c o r r e s p o n d e n c e  b e t w e e n  t a n d  s a n d  also b e t w e e n  s a n d  t. L e t  t he  

c o r r e s p o n d e n t s  of  s be  tl ,  . . . ,  tm and  sl ,  �9 �9 s~ those  of  t. By  v i r t ue  of  L e m m a  2.5 

and  L e m m a  2 .7 ,  P is h y p e r b o l i c  w i th  r e s p e c t  to  b o t h  ~ a n d  ~'. H e n c e  i t  fo l lows  

f r o m  L e m m a  2 .3  t h a t  i f  s a n d  t a re  real ,  t h e n  a lso  t l ,  �9 �9 tm and  sl ,  �9 . . ,  s,, a re  

real .  I t  fo l lows  f r o m  (6) t h a t  

q l ( t , s ) = p ( - - t ~  + s~' + ~ ) - ~ p ( ~ ) ] I ( - - t  + u,(~,s  + ~1)) 
1 

a n d  hence  t h a t  
a (s) = ra in ,  t , .  

Cons ide r  also 
b (t) = m a x ,  s, .  

I t  is a c o n t i n u o u s  f u n c t i o n  of  t. I f  It I -§ 0% t h e n  

h (s) -~ p (~')-' t -'~ ql (t, ts) = p (~')-1 t- ,~p ( _  t~ + s t~' + 7) 

c o n s i d e r e d  as a p o l y n o m i a l  in s t ends  to  

h~(s) = p ( ~ ' ) - l p ( _ ~  + s~').  

N o w  t - i s ,  a re  t h e  zeros  of  h(s) a n d  by v i r t u e  of  (6) a n d  (8), t hose  of  hi(s) a re  

u , ( ~ ' , ~ ) = u . ~ l ( ~ , ~ ' ) ,  (v -~  I , . . . ,  m). T h e  coef f ic ien t  o f  s '~ in h(s) is I. H e n c e  

u s i n g  L e m m a  2 . 4  we ge t  
r a in ,  t -1 s,  -+ m i n ,  u~ -1 (~, ~') 

w h e n  I t l -§ oo. Because  ~' E F,  ra in ,  u~ -1 (~, ~') > o a n d  hence  the  r i g h t  s ide is pos i t ive .  

H e n c e  b (t) = m a x ,  s,  = t m i n ,  t -1 s,  -~ - -  c~ if  o > t -~ - -  c~. 

W e  c a n  n o w  p r o v e  t h a t  a(s) is a s t r i c t ly  i n c r e a s i n g  f u n c t i o n  of  s. A s s u m e  

t h a t  s < s'. B e c a u s e  s' is one  of  t he  c o r r e s p o n d e n t s  of  t ' =  a(s') i t  t h e n  fo l lows  

t h a t  b(t') > s'. N o w  b -~ b(t) is c o n t i n u o u s  and  t e n d s  to  - - o o  w h e n  t does.  H e n c e  

t h e r e  ex is t s  a t < t' such  t h a t  b ( t ) =  s. B e c a u s e  t is one  of  t he  c o r r e s p o n d e n t s  

of  s i t  t h e n  fo l lows  t h a t  a (s) ~ t < t '  : a (s'). H e n c e  a (s) : m i n ,  u ,  (~, s ~' + ~) is 

s t r i c t ly  i nc reas ing .  A s l i g h t  m o d i f i c a t i o n  of  t h e  a b o v e  p r o o f  s h o w s  t h a t  a lso  

m a x ,  u ,  ($, s ~ ' +  y) is a s t r ic t ly  i n c r e a s i n g  f u n c t i o n  of  s. 

A s s u m e  n o w  t h a t  ~' a n d  ~" b o t h  a re  in F.  T h e n  we ge t  

o < ra in ,  u ,  (~, ~') < m i n ,  u ,  (~, ~' + s ~") 

w h e n  s > o. H e n c e  in  p a r t i c u l a r  ~' + ~"E  F so t h a t  F is convex .  A c c o r d i n g  to  

L e m m a  2.7,  F(q, ~') has  a sense.  O u r  l a s t  f o r m u l a  c o m b i n e d  wi th  (7) a n d  (6) 

shows  t h a t  
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~ f i  o r p u,  s + - -  p (8 + - -  p (s + C) )  
1 1 

when s--> o. Hence the real numbers u,(~', ~") are all positive and this proves 

that  if ~"e 1"(q, ~) then ~"e 1"(q, ~'). In particular, ~E 1"(q, ~'). Interchanging 

~: and ~=' = we get F(q,~') F(q,~). I f  ~ 'e1" the sum u,(~',7) is l inearand  
1 

homogeneous in  ~/ a n d  real when ~/ is real and hence o f  the form (x, 7 ) =  

: x l ~ / 1  + "'" + xn~/~ with real x. I t  is clear that  (x, 7) > o when ~/E1". This 

completes the proof of the lemma. 

To the geometrical intuition, F(q, ~) appears in the general case as the 

interior of a convex infinite ditch situated entirely on one side of any plane 

(x, 7 ) - - o .  The edge of the ditch is the linear manifold g2(p). I t  will be shown 

later that  ~ ( p ) :  ~(q). Hence if q is reduced, g2(p) contains only the element 

zero, the edge reduces to a point and F(q, ~) is a proper convex cone. 

Let the polynomial q of positive degree be hyperbolic with respect to ~, let 

~'e F(q, ~) and let B(~') be the set of all real numbers to with the property that  

q ( t ~ ' + i T ) ~ O  when t > t o  and 7 is real. Then B(~') has a least element b(~') 

and consists of all t o >--b(~'). In fact, B(~') is closed and by Lemma 2.7 not 

empty. Since the degree of q(t~' + i~?) with respect to t is positive, B(~') does 

not consists of all real numbers, which implies that  it is bounded from below. 

Hence B(~') has a least element b (~') and it obviously consists of all numbers 

to -> b 

Definition. Let  P~(q, ~) be the set of all ~'E 1"(q, ~) for which there exists a 

number t o <  I such that q( t~ '+  i 7 ) ~ o  for all real 7 when t:> to. 

I t  follows from this definition that  if ~'E 1"1 (q, ~) then b (~')< I and con- 

versely. If  q is homogeneous then b (~') = o for all ~' and hence 1"x (q, ~) --  1"(q, ~). 

In  the general case we have 

Lemma 2.9. Let the polynomial q be of positive degree and let it be hyperbolic 
with respect to ~. Then 1"~ (q, ~) is open and connected. I f  ~'e 1"(q, ~) then a suit- 
able positive multiple of ~' is in F~ (q, ~). I f  ~' e 1"~ (q, ~) and ~" E F(q, ~) then 
~' + ~"e 1"1 (q, ~). I f  1"" is a compact subset of 1"~ (q, ~) then there exists a ~umber 
b < ~ such that b(~')<--b when ~'e 1"'. 

Proof. Let s > o .  If  q ( t ~ ' + i ~ ) ~ o  for all real ~ when t > t 0  then 

q( t s~ '+  i 7 ) ~  o for all real ~/ when t >  s-~to and conversely. Consequently 
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b (s ~') = s -~ b (~'). Hence  if ~' e T' = F (q, ~) and s > max (o, b (~')) then  s ~' E F and 
b(s~ ' )=s - lb (~ ' )<I  so tha t  s f i [ ' x =  Fx(q,~). I f  ~'EF~ and ~"ET',  i t  follows 

f rom L e m m a  2.5 tha t  q(t(s ~")+ i7) 
Hence  

(~' + ~") < 

o for  all real 7 when t > max  (o, b (~')). 

max (o, b ($')) 

and because the  r igh t  side is less t han  I i t  follows tha t  ~' + ~"E T'l. I f  s and 

~" are in /'1, then  because T' is open we can choose a > o so small t ha t  a < I 

and ~ ' - - a  E F. But  then  s$ '  and s  s(~' a~") are both  in r~  when s--> i ~ Pf 

and s--> o respectively.  The two expressions are equal when s = a -1. Hence  /'1 

is connected.  

To prove tha t  F 1 is open we do as follows. Le t  ~'E F. Then  we can choose 

a number  s >  I such t ha t  sb(~')< I. Because ( s - -  ~ ) s  and F is open we 

can also choose a number  (~ ~ (~ (~', s) > o which is so small t ha t  ~" = (s - -  I) ~' + 

+s~'EI"  whenever  7' is real  and I~ ' l=m ax k l~ . l - -< (~ .  Then  also ~ ' + ~ ' =  

= s - l ~  ' + (I --s-1)~ ' + 7' eF, and 

b(~' + 7 ' )= sb(s~' + 87')= sb(~' + (s-- I)~' -~ 8 ~ ' ) =  

= s b (~' + ~~ < s m a x  (o,  b (~')) < I.  

Hence  ~ ' +  7 'E  F1 so tha t  F1 is open, and if F '  eq u a l s  the ne ighborhood of ~' 

which consists of all ~' + 7' where 7' is real  and ]7'1 -< 6, then  the last  assert ion 

of the  lemma follows. Now any compact  set / "  can be covered by a finite 

number  of such neighborhoods  and hence the 1emma is proved. 

As an i l lustrat ion of this  chapter  we shall consider two impor t an t  homo- 

geneous hyperbol ic  polynomials.  

E x a m p l e  1. P u t  q (~) = p  (7) = ~ - -  7~ . . . . .  ~ in which case (2. I) ~ becomes 

the wave equation.  Le t  ~ = (I, o, . . . ,  o). Then  ~l (~, 7) -~-- ~1 q- (~2 -4- " ' '  "4- qn)~2~'/* and 

u2(~, ~ ) =  ~ 1 -  (7~ + " "  + */~)'(* are bo th  real  if V is so tha t  q is hyperbolic  with 

respect  to ~. I f  us (~, ~) and u, (~, ~) are both  positive then  ~1 > o and p (~ )>  o 

and conversely. Hence  F(q, ~) consists of all real  vectors ~ such tha t  ~x > o and 

p (~ )>  o. I t  is easy to see t h a t  if  q is hyperbolic  with respect  ~o ~, then  e i ther  

or - - ~  is in F(q,~). 

E x a m p l e  2. ~ Le t  7i* be complex numbers  such tha t  7i* = ~ / s  (j, k -~ I . . . . .  ~). 

Then  the mat r ix  7 = (7i~) is hermit ian.  I t  is de termined  by the  n = f i~  real 

1 The  fo rmula  (I) in  Chap te r  2. 
2 See G~RDI~a [4]. 

t W h e n  a is a complex  number ,  a* denotes  i t s  conjugate .  
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numbers ~/]j, ~ (~/jk + 7k'j), ~ ~ i(7jk --  7j'k), (j  < k). Let  ~h . . . .  ,7,~ be these numbers 

taken in some order and put 

q (7) = P (~) = det 7- 

I f  ~ and 7 are hermit ian and ~ is positive definite, then p ( ~ ) ~  o and the equa- 

t ion p(s~ + 7 ) ~  o has only real zeros so tha t  q is hyperbolic with respect to ~. 

One finds t ha t  F(q, ~) consists of all positive definite matrices. Similarly if ~ is 

negative definite. 

Three  i emmas .  We  now come to three lemmas connect ing the notions of 

hyperbolic and  reduced polynomial.  

Lemma 2.10. Let the polynomial p be not constant, homogeneous and hyper- 

bolic with respect to ~. Then p is reduced ~ and only i f  the equality 

p(~ + t ~ ) = p ( ~ )  

for some real 7 and all real numbers t implies that 7 ~ o. 

Proof. Le t  7 be real and let p(~ + t7 )=p(~: )  for every real t. Then if 

m ~ o is the degree of p, also p ( t~  + U) ~ t~P(~) for every real t, so t ha t  if (6) 

refers to p we get u , ( ~ , 7 ) = o ,  ( v ~  I . . . .  ,m): Le t  ~ 'EF(p ,~ ) .  I t  was shown in 

the proof of Lemma 2.9 t ha t  in this ease rain, u, (~, t ~' + ~) and max,  u, (~, t ~~ + ~) 

are both strictly increasing funct ions of t. Now both vanish when t = o. t tence  

using (7) and (6) we get 

m m 

o ~ p (~) IF[,, ,  (~, t ~' + 7) = p (t ~:' + ~) --  p (g) I [  (t + u,  (~', r  
1 1 

when t > o  or t < o .  I t  follows from Lemma 2.7 and Lemma 2.3 t ha t  the 

numbers  u~ (~', y) are all real, and hence they all vanish. But  then p (t~' + 7 ) =  

= tmp(~ ") and consequently also p(~'  + tv) -=p(~') for  all real t if only ~ 'eF(p ,  ~). 

Now P(p,  ~) is open and hence the last  equality follows for all real ~' and all 

real t. Hence if p is reduced it  follows tha t  7--~ o. I f  p is not  reduced there 

exists a 7 ~ o such tha t  p(~' + tT) =p(~')  for all real t and real ~' and hence 

also for ~ '-= ~. This proves the lemma. 

L e m m a  2.11. I f  a polynomial q of positive degree is hyperbolic with respect 

to ~, p is the principal part  of q, 7 is real and p (~ + tT) is independent of t then 

also q (~ + tT) is independent of  t. 
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Proof .  Consider the polynomial  q~ (s, t) ---- q (s ~ + t ~). By assumption,  p (s ~ + t n ) =  

~-smp(~ + ts-l~l)-----s~p(~) where m is the  common degree of p and q and s ~ o 

is real, and hence p(s~ + t~) ---- s~p(~) for  all real s and t. Hence  qi is of the form 

2) p + t) 

where the degree of rt is less than  m. Because q is hyperbol ic  with respect  to 

it fol lows tha t  if Pi  is the principal  par t  of q~, then  p x ( I , o ) : p ( ~ ) #  o. 

Moreover,  qi(s, it) = q(s~ + i t s )  # o when t is real  and 9is is grea ter  t han  some 

fixed number  and hence ql is hyperbol ic  with respect  to (I,O). Le t  v i ( t ) , . . . , v m ( t  

be complex numbers  such tha t  

ql (s, t) = p (~) f i  (s - -  v, (t)) 
1 

for  all complex s and t. I t  follows f rom (t 2) t ha t  if It[ ~ oo, then p (~:)-~ t - "  q, (st, t) 
considered as a polynomial  in s tends to sm. The zeros of the two polynomials 

are t - l v i ( t )  . . . .  , t -lv,~(t) and o . . . .  , o respectively and the  coefficient of s ~ is 

one in both. Hence  Lemma 2.4 shows tha t  

(13) m a x ,  Iv, ( t ) l  = o(Itl)  

as I t J -+ o o .  Because ql is hyperbolic  with respect  to (I,O) it  follows tha t  max,. ~v,( i t )  
is bounded f rom above when t is real. Now by the classical theory  of algebraic 

funct ions  there  exist  m descending powerseries in t 1/,', z ,  (t), each conta ining only 

a finite number  of positive powers and convergent  in a suitable ne ighborhood  

of t ~ 0% such t h a t  when t E N one can label vi(t), . .., v~ (t) in such a fashion 

tha t  z ,  ( t ) :  v,(t) for  all v. I f  we vary arg t, then  the series z ,  ( t ) , . . . ,  z , ,  (t) are 

permuted  among each other.  I t  follows f rom (I3) t ha t  

--oo 

m--1 

Now if k and m are integers  and m > k > o  and a # o ,  t hen  one can choose 

arg t such tha t  t is real  and ~a( i t )  ~/m-~ a'[t] "/'~ where a ' >  o. Hence  because 

m a x , ~ v , ( i t )  is bounded f rom above in N it  follows tha t  a , ~ = o  when k > o  

and hence tha t  all v,(t) are bounded. But  t hen  ql (s, t) is bounded for  all complex 

t when s is fixed and hence qi is a polynomial  in s alone, i e .  q i ( I ,  t) ---- q(~ + t)/) 

is independen t  of t. This  proves the lemma. 
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L e m m a  2.12.  Let the polynomial q be not constant and hyperbolic with respect 

to 2 a , d  let p be its principal part. Then ~ ( p ) =  12(ff). In  particular, i f  q is 

reduced, then p is reduced. 

Proof .  I f  q(7 + t T ' ) =  q(7) for  every real 7 and t and some real  ,)', t hen  

q ( s7  § is t rue  under  the same condi t ions if  s is real.  Hence  

iden t i fy ing  the coefficients of  s m we get  t h a t  P(7 + t ~ ' ) = P ( 7 ) f o r  all real  7 

and t. Hence  ~(p )~Y2(q ) .  Conversely,  let  ~ ' E Y 2 ( p ) s o  t h a t  p ( 7 +  tT')----p(7) 

fo r  all real  ~ and t. Now if 7 e / ' =  F(q,  2), t hen  q is hyperbol ic  with respect  

to ~ and by vir tue of the preceeding lemma we have q(7 + tT")=q(~) fo r  all 

real  t and 7 E P .  But  F i s  open so tha t  the same is t rue  for  a n y r e a l 7 .  Hence  

7 ' e  Y2(q) so tha t  ~ 9 ( p ) <  f2(q). This proves the lemma. 

T h e  dual  cone.  Le t  F(q,  2) be the cone associated with a polynomial  q of 

positive degree which is hyperbolic  with respect  to 2. Fol lowing the  convent ion 

in t roduced  in the beginning of this chap te r  we shall consider it  as a subset of  

the vector  space E which consists of all real  e lements  in E* 

Definit ion.  Le t  C(q, 2) be the set of all real  vectors  x such tha t  

( x , ~ ) = x ~ l +  ""  + x ~ 7 ~  ~ o  
for  all ~ in F(q,  2). 

W e  shall prove tha t  C(q, 2) is a cone and we shall call i t  the  dual  cone of 

F(q, 2). I t  i s  to  be considered as a subset of the vector  space E defined in the  

beginning  of this chapter .  

L e m m a  2.13.  C =  C(q, 2) contains elements # o, it is co,vex and closed and 

i f  x e  C and b ~ o then b x e  C. The part of  C where (x, 2') ~ b is closed and bounded 

i f  2'eF(q, 2). All elements of  C are orthogonal to Y2(q). I f  q is reduced, the in- 

terior of  C is not empty. 

Proof .  The  first s t a tement  follows f rom Lem m a  2.9,  the  th ree  fol lowing 

are immediate.  P u t  I*1 = m a ~  l z~l. Le t  there  be a sequence x (k), (k = I, 2 , . . . ) ,  

such t h a t  x (k) E C and (x (~), 2') ~ b and lira Ix(k) l = c~. Then  there  exists a 7 with 

I v i = m a x [ T k l ~ - -  I such tha t  l i m ( x  (k),7)-~c~. Because F = F ( q ,  2) is open we 

can choose a > o so small t ha t  2' - -  a 7  e F. Bu t  t hen  lim (x (k), 2' - -  aT) = - -  c~, 

which cont rad ic t s  the assumption tha t  all x (k) are in C. Hence  the  par t  of C 

where (x, 2') g b is bounded and i t  is clear t h a t  it  is closed. Combining the  Lemmas  

2.1 and 2. I2 we see t ha t  S2(q)=t~(p) is l inear and hence i t  follows f rom 
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L e m m a  2.8 tha t  if ~ ' E F  and ~ " e ~ ( q )  and t is real  t hen  ~' + t ~ " e F .  Hence  

if x e  C i t  follows tha t  (x,~'  + t$")~--o for  all t which implies t h a t  ( x , $ " ) ~ - o .  
m 

Le t  ~ ' e F .  Then  ~ u , ( ~ ' , O )  is of the  form (x,~) where x e E  and it  is clear 
1 

t ha t  x e C. Le t  q be reduced so tha t  /2 (p) ---- ~Q (q) - -  o. Then  if  u, (~:', ~])~ o fo r  

all ~ i t  follows f rom (6) t h a t  p(~'  + t~)~--p(~') for  all real  t and hence f rom 

Lemma  2. io  t ha t  ~'--~o. Hence  the min imum of (x,~) when ~ e F  and ] ~ ] ~  I 

is positive. Hence  the  same is t rue  of the  min imum of (x + y , ~ ) w h e n  V e F  

and [~1--~ ~ provided t ha t  [y[ > o is small enough.  Bu t  this  means t h a t  x + y 

belongs to C if  [y] ~ o is small enough.  This proves the lemma. 

Consider the two examples on p. 25. 

E x a m p l e  1. L e t  ~eT ' (p ,  ~) and let  xl ~ o and 2)(x)= x~ - - x~  . . . . .  x ~ > o .  

Then  it  is easily verified t h a t  (x, ~) ~ o. On the  o ther  hand,  if xi  < o or p (x) < o 

then  one can find a ~ e F ( p , ~ )  such tha t  (x, ~ ) <  o. I t  follows tha t  C(p,~) con- 

sists of all x such t ha t  Xl ~ o and p ( x ) ~  o. 

E x a m p l e  2. L e t  x--~ (Xjk), ( j , )~  ~--- I , . . . ,  ~), be a hermi t ian  mat r ix  so t h a t  

xjk = x~.~ and let  x l ,  . . . ,  x,~ be the  numbers  xj~, (xjk + xh), i (xjk --  xj*k), (j < k), 

in some order. W i t h  a suitable choice of this  order  we have 

ix, ~) = ~  ~ ~ ,  + ~ ~ (x~ + xj*~)(ej~ + ~;~) + ~ 1 (xj~ - ~;~)(ej~ - ~;~) = 
j j<k  j<k  

= ~ ~ = o ( x ~ * )  
j, 

where $~ is the  conjuga te  of ~ and a(x~*) is the t race  of the  mat r ix  x~*. I t  is 

wel lknown tha t  if ~e F(p,  ~), i.e. if  ~ is positive definite, and all the charac- 

terist ic roots of x are not  negat ive  then  ~ ( x ~ * ) ~  o. But  if  x has a t  least  one 

negat ive root  t hen  we can find a ~eT ' (p ,~ )  such a ( x ~ * ) < o .  Hence  C(p,~) 

consists of all matr ices  x with no t  negat ive  roots.  

Chapter  3. 

The Riesz Kernel. 

A l emma .  In  this chap te r  we are going to cons t ruc t  a Riesz kernel  for  the 

differential  equat ion 

(x) q (o/ox)f(x) = o ,  

where q is a polynomial  in n variables with complex coefficients which is assumed 

to be of positive degree m, reduced,  and hyperbol ic  with respect  to a real  
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vector  ~. I t  then  follows f rom Lemma 2.3 and Lemma 2. I2 tha t  the same is 

t rue  of its pr incipal  par t  p. 

F rom the  definition of /~1 (q, ~) it  follows tha t  q(s~ + i T ) ~  o when ~e I~(q, ~), 

s ~> I and T is real. Our  nex t  lemma gives us more precise informat ion.  Because 

the  degree of q ( s ~ +  i~7)=p(~)s  '~ + ... with respect  to s is m there  exist 

complex numbers  v,(~, i~) ,  (r = I , . . . ,  m), such tha t  for  any complex s we have 

(2) q (8~ + iT) = p  (~) H (8 + ~,,(~, iT)). 
1 

Let  b(~) be the func t ion  defined in connect ion with Lem m a  2.9.  Because 

q(t~ + i~1)~ o when ~ t >  b(~) and ~/ is real  it  follows tha t  - -  ~v~(~,i~l) <-- b(~) 

fo r  all r and T and hence t h a t  

(3) min, ~v~(~, i~) + b(~) -> o 

for  all rea l  T. P u t  v, --= v,(~, iT) and le t  s >  b(~). Then  by virtue of (3) 

(4) min,. Is + v,. l - -  > s + min,  ~ v, ~ s - -  b (~). 

Le t  u ~ = m ( ~ , i T ) ,  ( v =  I , . . . ,  m), be defined by (2.6). According to .Lemma 2. 3 

and the  formulas  (2.8) the numbers  u, = iu,,(~, ~1) are all purely imaginary.  Hence  

because s is real  we get 

(5) 18 + v~l -> 18 + ~ 1 -  I ~  - ~',! ~ I ~ , . I -  lu, - v,I. 

Let  I~l = maxk I T~I > o and put q = p + r. Using (2) and (2.6) we get  

fi(s + v~lTl-~)= f i ( s  + u~iT[ -a) + I~l-lp(~)-xlTl~-', '(sln[# + iT) 
1 1 

for  all complex s. Here  both  sides are polynomials  in s of order  m where the  

coefficients of s m are I and the o ther  coefficients are cont inuous  funct ions  of 

(~h, . - - ,  ~/,~, ~1 . . . .  , ~ )  when ]r/[ > o  and ~EF(q ,~) .  Hence  we can ident i fy  the  

lef t  side and the first t e rm of the r igh t  side with the two polynomials  of 

Lemma 2.4. Then  the last  t e rm of the r ight  side equals ~ ( a , - - b , ) s  m-" and 
1 

Ostrowski 's  func t ion  c(a, b) is cont inuous  in (T~ , . . . ,  ~ , . . . ) .  Le t  c0(t,~) be its 

maximum when IT[ is real  and IT1-1 --~ t. Then Co(t, ~)is cont inuous  in (t, ~=) when 

t > o and because max,  l a , ,  b,[ is uni formly  bounded and max ,  l a , - -  b~l tends  

uni formly  to zero when IT[-~ oo and ~ belongs to a compact  subset of F it  
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follows tha t  if we put  e 0(o, ~ ) :  o, then co(t , ~) is continuous when t--> o. More- 

over, we can label the numbers ul . . . .  , u~ so tha t  

(6) max,  I~'~ - -  u,I < I~l eo (]~l -x, #). 

We suppose tha t  this  labelling is used also in (5). 

I f  ~/ is such tha t  u 1 . . . . .  u r n = o ,  then as in the proof of Lemma 2. IO, 

the fac t  tha t  p is reduced implies tha t  ~] = o. Consequently the cont inuous func- 

t ion max,  lu,(~,~)l has a positive min imum c1(~) when 171 = ' .  This funct ion 

is clearly continuous when ~ r (q ,  ~). I t  follows f rom (S)and (6 ) tha t  if 171 > o then  

rain, Is + v,I >-- (c1(~)- co(l~1-1, a>)I~1. 

Es[imat ing one of the factors in (2) by means of this fornmla and (4) and the 

others by m e a n s  of (4) only we get  

(7) [q(s# + i~) l  -> Iv(a)l ( s -  b - eo(l t -1, 

if I B ] >  o and s > b(~). The formula  is t rue for  all real ~ if we agree to inter- 

pret the r igh t  side as IP(~)] ( s - -  b(~)) ~ when IBI : o. 

Le t  Y' ~ / ' 1  be compact, let  cl and c2 be the minima of el (~) and IP (~)l when 

E Y'. Further ,  let e0 (t) be the maximum of e0 (t, ~) and b the least upper bound 

of b(~) when ~ E F ' .  Then by virtue of (7) 

[q (s~ + i~)] --> c2 (s --  b) m-1 max (s --  b, (cl - -  Co(I ~ l-1)) I~ ]) 

if s >  b and we interpret  the r igh t  side as c2(s--b) ~ when I B ] :  o. I t  follows 

f rom Lemma 2.9 tha t  b < I and we know tha t  cl and e~ are positive and tha t  

co(t) tends to zero with t. Hence  it follows tha t  [q(s~ § iB)[(~ + [ ~ [ ) - l ( s - - b ) - ~  

has a positive lower bound when s ~ I. Hence we have proved 

L e m m a  3.1.  To erery compact F '  ~ 111 (q, ~) there exist ~umbers B > o and 

b < I such that 

Iq(s# + iV) I --> B ( s - - b )  m (I + I~1) 

when ~ E_P' and s >-- ~. 

Const ruc t ion  of  t he  kerne l .  Le t  ~r so tha t  q(s~ + iT) ~ o when s ~ I 

and ~ is real. Then if the numbers v ~ : v , ( ~ , i ~ ) a r e  defined by (2 )we  have 

- - ~ r , <  ~ so tha t  if s--> I then  

(8) min~ ~ (s + v,,) > o. 
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Let  (2.6) refer to p and put  ~ = ~ and 2/~--~ in (2.7). 

m 

1 

Because ~ E F then  

(IO) min,  U,(~, ~) > O. 

I t  follows from (2) and (9) tha t  

q (~ ~ + i2/) = ~ (~) I ] , , ,  (~, ~) I ]  (~ + v,)  
1 1 

Hence if we define 

Then 

~rg q (~ ~ + i2/) ---- arg p (~) r ~ arg (s + ,'~) 
1 

where a r g p ( ~ ) i s  fixed once for  all and max~ larg (s + v , ) [ <  �89 ~, then  i t  follows 

f rom (8) and (IO) tha t  a r g q ( s ~ +  i2/) is a continuous funct ion  of s, ~ and 2/ 

when ~E/"1, s--> I and 2/ is real. W h e n  a is a complex number  we put  wi th  

q • q(s~ + i2/), 

( I  I )  q- -a  ~ e - -a  (log [ q [ + i arg q). 

In  this way different choices of arg p(~) will affect q-"  only by a factor  

e -2"ki" where k is ei ther  a positive or a negative integer.  Now only in tegra l  

values of a will be used in our final results and hence the part icular  choice of 

arg p (~) is of no real importance to us. I f  p (~) > o then we can choose a r g p  (~)= o. 

This simple s i tuat ion is brought  about  also in the general  case provided tha t  

we change q to p(~)- lq,  a change which does not  affect the manifold  of solu- 

t ions of (I). 

Le t  B be an open subset of a real vector space of finite order. We  define 

C(k, B) to be the class of all eomplexvalued funct ions  whose derivatives of order 

--< k exist and are continuous in /~. Sometimes we write only C(k), indicat ing B 

in another  fashion. We let C(oo, B) be the intersection of all dr(k, B) for all 

possible k. When  /~ is a part  of the boundary of B we mean by C(k,B + B) 
the class of all functions in C(k, B) whose derivatives of order --< k have con- 

t inuous extensions to B + _/~. 

Because M. Riesz [i i] was the first to consider i t  in connection wi th  the  

wave equation, we shall call the funct ion  Q (a, x) defined in our next  theorem 

the Riesz kernel associated with q and ~. 
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T h e o r e m  3 .1 ,  Let q be a polynomial in n variables with complex coefficients 

which is reduced and hyperbolic with respect to ~. Let ~ a  ~ n, let ~ E Fl(q , ~), let 

q(~)-~ where ~ = ~  + i~ and ~l is real, be defined by ( I I )  and put 

(I 2) Q (a, x) = (2 z)-'~ f q (~)-" e(~, ~:) d ~/. 

Then Q(a, x) is independent of ~ and vanishes when xE C(q, ~). I f  k < ~ a - -  n, 

it belongs to C(k) considered as a function of  x and all its derivatives of  order <-- k 

are analytic in a when ~ a ~ n + k and one has the inversion formula 

f 
c (q, ~) 

Proof .  Le t  F '  be a compact  set in [1-----Pl(q,~)- I t  follows f rom (II)  and 

L e m m a  3. I t h a t  

(14) Iq(s~ + i~)-~l  - -  Iql-~=e ar~q~ <- ( s -  b)-~B-~el~l(�89 + I l) 

where s ~  I, b ~ I ,  B ~ o  and ~ E F ' .  Consequent ly  the  r igh t  side of ( I 2 ) i s  

absolutely and un i fo rmly  convergent  when ~ E F ' ,  ~ a  > n and I xl--max  I is 

hounded  and we get  

-[-oo -boo 

~(a, x) ~- (2 ~q:)-n f e(~,x)-~hXh d711 . .  " d~h-i  d~h-ki . . . d~n f q(~)-a e~hX h d~h 
- - C o  - - O O  

for  all h. Because /11 is open, (Lemma 2.9), there  exists a 6 ~ o such tha t  all 

~:' with [ ~ -  ~:'[ ~ ~ are in F1. Hence  by an immedia te  appl ica t ion of Cauehy 's  

theorem,  the  inner  in tegra l  does no t  change  if we replace ~h by any ~ such t h a t  

[ ~a - -  ~il ~ ~. Le t  { ~ - -  ~'{ _~ ~ n -~ and change successively ~a to ~i, (h---- ~ , . . . ,  n). 

Then  Q(a, x) does not  change.  Because T'~ is open and connected,  (Lemma 2.9), 

this proves t ha t  Q(a, x) is independen t  of ~ as long as ~e/11. 

I f  x ~ C ~ C ( q , ~ )  there  exists a ~ ' e / ' ~ - - ] ~ ( q , ~ ) s u c h  t h a t  ( x , ~ ' ) < o .  Bu t  

then  according to L e m m a  2.9 a suitable positive mul t ip le  ~" of ~' is in / '1, and 

put t ing  ~ - - s ~ "  in ( I 2 )  and le t t ing  s -~  co i t  follows f rom ( I 4 ) a n d  ( x , ~ ) < 0  

tha t  the in tegrand  tends  un i formly  to zero and hence t h a t  Q(a, x) vanishes.  

Consider the formal  der ivat ives  wi th  respect  to x of order  ~ ~ a - -  n of the 

r igh t  side of (~2). The  resul t ing  in tegrands  are cont inuous  in (x~ , . . . ,  x,~, ~ , . . . ,  ~ )  

1 Integrals of the type (I2) and ([3) when the integrand of (I2) is square integrable occur 
in a wellknown theorem by R. E: A. C. PALEY and N. WIE~CER (Fourier transforms in the complex 
domain, Amer. Math. Soc. Coll. Publ. XIX (I934) Theorem V p. 8) and in a generalization to 
several variables by S. BOCHI~ER (Bounded analyiic functions in several variables and multiple 
Laplace integrals. Amer. Journ. of Math. 59 (I937) P- 732) �9 

3 - 642127 A c t a  m a t h e m a t / e a .  85  
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and analytic in a, and by virtue of (I4) the integrals are absolutely and uniformly 

convergent when I xl is bounded. Hence Q(a,x) E C(k) and its derivatives.of 

order --< k are analytic in a when ~ a  > n + k. 

Let ~E_r'l. I t  follows from (I4) that  f l q (~  + i~)-~12d~ < c~ and hence by 

Parseval's theorem also that  fe-2(~,~)lQ(a,  x)l 2 dx  < ~ .  Consider the integral 

in (I3). Because F1 is open there exists a ~ ' E F  such that ~ - - ~ ' E F  1. By 

Schwarz's inequality 

{f ]e  -(~, ~' Q (a, x)] dx} ~ ~ f,-~<,,, e-~')I Q (a, ~)1 ~ d~ f e-~(~,~"dx. 
6' c c 

Because F is open and C closed, (x, ~') has a positive minimum (5 when 

xE C and Ixl = I. I t  follows that (x, ~') >-- Ixl (5 when xE C and consequently the 

right side of our last formula is finite. Hence the integral of (13) is absolutely 

and square convergent and the formula follows from Plancherel's theorem. 

Remark.  If  q is homogeneous then we have Q(a, tx) = t *"~-~ Q(a, x) when 

t > o. I n  fac~, multiplying if necessary ~ in (IZ) by a positive number we may 

assume that  t ~ E F  1. Then putting C : t - l ~  ' we get 

Q(a, t x ) = ( z  z)-'~ f q(t-I C')-" d;',~') t-" d~' -= t m"-~ Q(a,x). 

Theorem 3.2. I f  ~ a > n  + m and ~ f l > n  and Q(a,x) is' defined by the 
preceding theorem then 

(15) q(O/Ox) Q(a,x)--= Q ( a -  I, x) 

and 
(~6) f Q (~, ~ - y) q (#, y) d y = Q ( .  + #, x) 

x-yEC',yEC 

where C =  C(q, ~). 

Proof. The formula (15) follows by differentiation of (12), and (I6)from (I3) 

and Plancherel's theorem. 

Two examples.  In the two special cases treated on p. 25, 20 we can cal- 

culate the Riesz kernel explicitly. 1 

Example 1. In this case q ( ~ ) = p ( ~ ) = ~ 7 ~ - - ~  . . . . .  ~ .  Let / ' = F ( q , ~ )  

and C=C(q,~)  be defined as before, let _~eF and let ~ a > � 8 9  Then by 

a Lorentz transformation and some elementary integrations we get 

1 In  mos t  cases  one cannot  hope  to get  so s i m p l e  e x p l i c i t  e x p r e s s i o n s  for t he  Riesz  k e r n e l  

as  in  these  examples .  
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('7) q (~)-~ = f q(x)~ H,,(a) e-(~':')dx 
C 

where 

35 

H . ( ~ )  = ~ ( , , -~ )r (~  . )  r ( .  - ~ ( .  - : ) ) / r ( a  + 1). 

I f  we replace ~ by ~ - - ~  + i~ 7 where ~7 is real, both sides of (x7) are analyt ic  

in ~ if only ~EP.  Now they are equal when ~ = o  so tha t  i t  follows tha t  they" 

are equal for all ~. Hence by virtue of (i3) we get 

Q(a,x) = { o,x~C 
q (x)'~, �89 n/H~, (a), x q C. 

This kernel  was int roduced directly by M. Riesz and it  is the s ta r t ing  point  in 

his theory of the wave equation. 1 

Example  2. We have with  our previous notat ions  q (~)=p(~) - - - -de t  ~7. Let 

I ~ = F(q, ~) and C-= C(q, ~) be defined as before, let ~ q F, let ~ a > ~. A formula  

by Boehner ([I] p. 694--696) reads 

q (~)-'~ = f 
q(x) ,~-~ (I 8) L;-, (a) e-~(~*) dx  

C 

where 

L,,(a)= r ( . -  k + 
1 

Arguing  as in Example I above we see t ha t  (x8) is still valid if  ~ is changed 

to ~: + i~  where ~ is hermitian.  Hence we get  

Q ( a , x ) = {  o, x ~ C  
q(x)'~-~/L,~(a), Xe C. 

I t  is easy to verify tha t  in terms of the variables xjk ins tead of X l , . . ~  the 

associated differential  operator  becomes 

q (0/0~')---- det (0/0.~.k). 

The  Riesz ke rne l  and the  e l e m e n t a r y  so lu t ion .  Hadamard  has called Q(I ,x)  

of Example I the elementary solution of the wave equat ion if  n is odd. ~ The 

corresponding funct ion has been used also by others in more general  situations. 

Consider (I2) and  assume for a moment  t ha t  a =  I and tha t  q=-p is homo- 

[If] p. 31--33. 
2 See l~iESZ [II] p. 95--99. 
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geneous and not degenerate. Assume also that  ~ : ~ : (i, o, . .., o) and perform 

the integration with respect to 71. Formally the result is 

m 

Q ( , , x ) = ( 2 = ) l - =  f p z l ( a , ) e ' a ,  . . . dn, , 
1 

where a, = a, (~z . . . .  , ~/~) are the necessarily real zeros o f p  (t, ~/~ . . . .  , ~7~) = o and 

Pl : O p / O n l .  The integral is easily seen to converge when m > n and is the 

starting point in the work by Herglotz [6] and Petrowsky [8]. Zeilon [I3] uses as 

elementary (fundamental) solution of (I) the formal expression 

(2 ~)-"f q-l(in)e:(~,~)aT 

which he sums by various devices, not confitSng himself to hyperbolic q. 

A close study of the kernel Q(a, x) will give much information about the 

differential, equation (I). As is shown by the work of lZlerglotz and Petrowsky 

and our examples we must expect the vectorspace E where Q is defined to uplit 

into a finite number of open subsets Ek, domains of analytieity for Q and a 

n - - I -d imens iona l  part  E '  such tha t  Q(a,x) is an entire function of a when 

xEEk and satisfies (i5) there. On E" the kernel Q is defined by continuity when 

~ a  is large but might be. discontinuous there for other values of a; as is the 

case in Example I. In this case E 1 equals the interior C ~ of C while E 2 = E - -  C 

and E ' =  C ~  C i. For any hyperbolic q, E - -  C(q,~) is a trivial domain of ana- 

lyticity because Q(a, x) vanishes identically there. In Chapter 6 we will return 

to these considerations. 

Our main object in the next chapter is Theorem 4.1 whose formulation 

does not involve the Riesz kernel. I t  is in fact  also possible to prove this theorem 

by means of an immediate generalization of Lemma 3. I to not necessarily reduced 

hyperbolic polynomials. The same remark applies to Lemma 4. I. Because only 

Theorem 4. I and Lemma 4. I are used to prove Theorem I I  of the introduction 

it would be possible and perhaps also natural  to prove this theorem without, 

any use of the Riesz kernel. However, the generalization of Riesz's theory for 

the wave equation which we give in Theorem 4.2 might be worth giving for 

i~s own sake. In Chapter 5 we give a more complete generalization of Riesz's 

theory but only for homogeneous and reduced polynomials. Here the theory 

yields very explicit results and eliminates to a great extent the heavy use of 

Fourier-Laplace transforms which is its only known substitute in this case. 



Linear Hyperbolic Partial Differential Equations with Constant Coefficients. 37 

Chapter  4. 

T h e  R i e s z  O p e r a t o r .  

Definition of the Riesz opera tor .  Two theo rems .  I t  is assumed in this  

section tha t  q is a no t  constant  polynomial  in n variables which is hyperbolic 

with respect to ~. Le t  / ' =  F(q,~) and C =  C(q,~) be the two cones associated 

with q and defined in Chapter  2. Assume for a moment  tha t  q is also reduced. 

Then we can construct  the Riesz kernel Q(a, x) corresponding to q and ~. Le t  

S = S (~) be the plane (y, ~) = o and T = T(~) the region (y, ~) > o. Finally,  let 

f E  C(c~, T + S). We  define the Riesz operator  I ~ by the formula x 

(I) I f(x) = f Q (a, x - y ) f ( y ) d y  
T 

when ~ a > n  and x E T .  The kernel Q ( a , x - - y )  is different  f rom zero only in 

the set C(x) of points y E T +  S such tha t  x - - y E C ,  i.e. when ( x - - y , ~ ) - ~  

= (x, ~) --  (y, ~) <: (x, ~), which is bounded and closed by L e m m a  2. 13. Hence the 

in tegral  always exists. 

Le t  C O be the set of funct ions in C ( c ~ ) ~  C(oo, E) which vanish outside 

some compact  set. Le t  A 1 be a bounded open set in T and let A be its comple- 

t ion with  r e spec t  to C, i.e. the closure of the union of all C(x) where x EA. 

Then A is bounded and closed and its own completion with respect to C. Le t  

a E C  O and let a ( y ) =  x when y E A .  Then if  x E T A  ~ it  is clear tha t  I '~f(x)~- 

I ~ a(x)f(x).  Now let ~E I"1----/11 (q, ~) and let Fa be the Fourier-Laplace trans- 

form of at,  

(2) Fa(~ + iU) ---- f e -(~+i'~,v> a (y)f(y) dy. 
T 

I t  follows from this formula,  Theorem 3-I,  the formula  (3.14) and Parseval 's  

formula  that 

(3) I~ f (x )  = (2 7~) -n f Fa (~ + i~) q (~ + iu) -a e (~+in' "~) d U 

when ~ a  > n and x E T A .  I t  will be shown tha t  also when q is no t  necessarily 

reduced, the r ight  side has a sense even when ~ a  > o, tha t  i t  is independent  

of ~, a and A as long as ~EF1 and T A g x .  The funct ion q(~ + i~) ~ is here 

still assumed to be defined by (3. i I) which obviously applies to all no t  cons tant  

hyperbolic polynomials, reduced or not  reduced. 

1 RIE$Z [ I I ]  p.  47" 

2 T A  s t a n d s  for t h e  c o m m o n  p a r t  of T and  A. 
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Because q is hyperbolic also with respect to --~, (Lemma 2.2), we may 

perform the constructions above starting from q a n d - - ~ .  Then we have to 

consider F -  = F(q, - -  ~) which obviously equals -- F and C- = C(q, - -  ~) = - -  C 

and if q is reduced, the corresponding Riesz kernel Q-(a, x). The Riesz operator 

I ~_ is in this case defined by 

(4) P _ f ( x )  = f Q-  (a, x - -  y ) f ( y )  dy  
"1"- 

where f E C ( o o ,  T - +  S) and x E T - =  T ( - -~ ) ,  i.e. (x ,~)<  o. Proceding as above 

we define C- (x) to be the set of all y E I ' -  + S such that  x -- y E C-. I t  is bounded 

and closed. Let At- be an open and bounded set in T -  and A -  its completion 

with respect to C- and let a - E C  o and let a - ( y ) = I  when y E A - .  Then i f ~ i s  

chosen so that  besides ~E/"1 (q, ~) also - - ~  E/'1 ( q , -  ~) we get 

(5) I ~ _ f ( x ) = ( 2 n : ) - n f  F~--(-- ~ + i ~ ) q ( - -  ~ + iv)-"e(-a+'~.,x) d~ 

where {Ra > n, xE T-  A-  and 

(6) F g - ( - -  ~ -!- i~) = f a -  (y) f (y)  e - ( -~ `~ ,  ~') dy .  

As (3) the formula (5) has a sense also when q is not reduced and its right side 

is independent of ~, a -  and A -  as long as - -~E  F l(q, --~) and 2 ' - A - ~ x .  

The following theorem lists the most important properties of the Riesz 

operator 

Theorem 4. 1. I f  q is a not constant polynomial which is hyperbolic with 

respect to ~, i f  f E  C(oo, T + S) and x E T ,  the function I ' f ( x )  defined by (3) when 

,~ a 2> o is independent of  ~, A and a as long as ~eE/'l(q,~) and T A ~ x. I t  is 

entire analytic in a and for  all values of  a i t  belongs to C(oo, I") considered as a 

function of x and all its' derivatives with respect to x are entire analytic in a. 

[ b r  all a it vanishes at a point  x i f  f vanishes in C(x) and one has 

(7) 

and i f  ~ a , ~ f l > n  

(S) 

q (0 / 0 x) I "+lf~x) = [ " f ( x )  

I '~ I f l f ( z )  = I"+~f(x) ,  

and when k is a positive integer or zero, 

(9) I -  k f ( x )  = q (0 / 0 x) k f (x) .  
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Let f l , f ~ , . . . , f i , - . ,  be a sequence of functions in C(c~). What  is meant  

by saying that  fk-~ o, i.e. that  fk tends strongly to zero with I/k, is explained 

in the introduction. The proof of our next theorem is the main step in the 

proof of Theorem II. 

Theorem 4.2. I f  fEC(oo,  T +  S) then I f - - I ~ f  is in C(oo, T +  S). I f  m i s  
the degree of q, the derivatives of I f  of order < ~n vanish on S and one has 

(IO) q (0 / 0 x) I f (x)  = f(x). 

I f  f e  C(oo) and If(x) is defined as l k  f(x) when x e T - ,  i.e. when (x, ~ )<  o, 

then I f  belongs to C(oo) and i f  fk tends strongly to zero with Ilk, the same is 
true of Ifk. 

Proof  of Theorem 4.1. Let M be a real square matrix of order n whose 

determinant det M has absolute value 1 and change variables in (2)and  (3) 

according to the formulas x -~ x' ~1-1 and ~ ~ $' M where ~r is the transpose of 

M and ~-=~ + i T and ~'-~ ~' + iT'. With q ' (~ ' )=q(~ 'M) :q (~ )  andf ' (y ' ) -~f(y)  
the result is 

/W r (I 1) l ~ f  ' (x') = (2 z)-n f a' (~) q' ($')-~ e(~', ~'1 dT' 

where x' belongs to the image A' of A under the mapping 

(1:2) 

and 

X ---> X '  -.~_ X M 

F'a, (~') =,,f e- (~', Y') a' (y') f" (y') d y' 

where T ' :  r(~'), f '  (y ' )=f(y '  31-1) : f ( y )  and a' ( y ' ) :  a (y). 

Now (II) and (13) define together the Riesz operator I s when it refers to 

q' and ~ ' = ~ M .  In fact, if S ' : S ( ~ ' )  then f ' e C ( c ~ , T ' +  S'), the degree of q' 

is the same as that  of q and hence positive, if p' is the principal part of q' 
t h e n p ' ( ~ ' ) - ~ p ( ~ ) ~ o .  Also, q ' ( t ~ ' + i T ' ) : q ( t  ~ + i T ) ~ o  if ~/ is real and t> to  
where t o is large enough, so that q' is hyperbolic with respect to ~'. I t  i s  

immediate to verify that  r " ~  F(q',~') and F~ ~--Fl(q',~') are the images of 

F ~ F ( q , ~ )  and F l ~ / ' l ( q , ~ )  under the mapping T - ~ T ' = T M - 1 .  Hence ~' is 

in /'~ and C'-~ C(q',~')and C'(x'), defined as the set of all y' such tha~ 

x'--y'eC' and (y',~')-->o, are the images of C and C(x) under (12) and if A~ 

and A' are the images of A1 and A it is clear that  A~' is an open bounded set in 
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it" and t ha t  A' is its complet ion wi th  respect  to C'. Finally,  a'E C o and a ' ( y ' )~  I 

when y'  E A'. 
Assume for  a momen t  t h a t  the  theorem is t rue  when i t  refers  to q' and ~'. 

Then  we know in par t icu lar  t ha t  I '~ f ' ( x  ') as defined by (I I) and (I3) when ~Ra> o 
and  x ' e  T' is independen t  of ~', a' and A'  as long as ~ ' E / ' i  and  T 'A '~x ' .  But  

then  the  first sentence of the  theorem follows for  I'~f(x) = I '~f(x ' .~1-1) : P f '  (x') 
and i t  is a m a t t e r  of s t r a igh t fo rward  verification to show th a t  the ent i re  theorem 

is t rue  fo r  I'~f(x). Hence  it  is enough to prove the  theorem when i t  refers  to 

q' and ~'. The  same remark  is in a similar  fashion seen to apply to Theorem 4.2 

and  L e m m a  4. I a t  the end of this chapter .  

I t  is clear t ha t  ~ 2 ( q ) .  Hence  L e m m a  2. I shows t h a t  i f  we choose the  

columns 7](1),.. -, 7](n) of M such t h a t  7] (1) i8 a positive mult iple  of ~ and ~2(~+1) . . . .  ,7](,) 

fo rm a basis of S2(q), then  q ( ~ ' M ) = q ' ( ~  . . . .  , $'z) does not  depend on C~+1, . . . ,  ~, 

and is reduced considered as a polynomial  in $~, . . . ,  ~ .  Clearly ~' ----- (~, o, . . . ,  o) 

where ~[ is positive. Clearly we may fulfil these requi rements  with an M such 

tha t  the  absolute value of its de t e rminan t  is I. Hence  dele t ing for  simplicity 

the  primes we may  suppose f rom the  beginning,  wi thou t  loss of general i ty ,  t h a t  

the  polynomia l  q in Theorem 4. I is a reduced polynomial  in $1 . . . .  , $~ alone 

and tha t  ~-~--(~l, o . . . .  , o) where ~i is positive. 

I n t e g r a t i n g  by par t s  in (3) we see t h a t  $15~T'~($) is bounded  when  N is a 

not  negat ive in teger  and k > I. Hence  using the  no ta t ion  

[ c l , . . . ,  Cs[ : max ([Cl[ . . . .  , IceD 

when c~, . . . ,  Cs are any complex numbers  we get  

( I4)  Fa(~)  = 0( ]  I, ~1] -1) 0 ( [  I, ~ 2 , . . . ,  ~n[ -N) 

for  all h r . 

Le t  ~(~) be the  vector  composed by the  first l components  of ~. Corresponding  

to qt = q (~i . . . .  , ~,) and $(0 we can cons t ruc t  It. ---- JF(q,, ~<l)), C~ = C(ql, ~(l)) and a 

Riesz kernel  Q~ (a, x) ~ Q~ (a, x l ,  �9 �9 xl). I t  is clear  t h a t  Y2 (q) consists  of all 7] 

such tha t  711 . . . . .  ?]l ~ o. Hence  i t  follows from L e m m a  2.8 t h a t  F ~  F(q,  ~) 

consists  of all ~ such t ha t  (711 . . . .  ,7]1) E ~ and f ro m  L e m m a  2.13 tha t  C== C(q, ~) 
consists of all x such t ha t  (xl . . . .  , xt) E Cl and xz+l . . . . .  x ,  ~ o. By v i r tue  of 

L e m m a  3. I, 

( i s )  Iq(C)l > -BI I, 711 . . . .  , 7]~l, (B > o), 

so tha t  by (3. I I )  
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(~6) 

when ~ a > o .  

(17) 

q (~)-'~ = 0 (] I, rh, . . . ,  ~l I -~'~) 

I f  ~ a  < o using the same formula  we get 

q(C) -~ = 0(1 I, , ~ , . . . ,  ,~1-"~~ 
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where m is the degree of q. 

Hence  by (I6) and (I4), the in tegrand  of (3) is absolutely and square inte- 

grable and the integral  is analyt ic  in a and continuous in x when ~ a  > o. 

Hence f rom (2) and Plancherel 's  theorem 

I" f(x) = (z z)- '  f q(C)-" Fo (C1,..., C,, x,+,, . . .) e~, ' ,+ '"+~, ' t  d~h . . . d~ t  

where 

Fa (C1,..., C~, X~+l,..., z , ) =  

= f e~,~,+"+~y~ a(Ul, . . . ,  ~,  X~+l . . . .  ) f ( Y l , - . . ,  x~+l, . . . ) ~ Y l - . .  dU~. 
y~ >0 

Hence by Parseval 's theorem and Theorem 3. x we get 

I ~  f ( x )  = f Qz (a, x - - y ) a ( y l , . . . ,  yl, X l + l , . . . ) f ( y l , . . . ,  yl, xz+ l , . . . )  d y ,  . . . d yl 
yl>0 

if ~ a > l .  Here Qt(a, x - - y )  vanishes except when y E  Q(x), i.e. when 

(x l - -Yl  . . . .  , x z -  y~)E Q and Yl > o and in this region a (Y l , . . . ) equa l s  x. Hence 

(~8) 1o f (x )=  f Q~(~,x-y) f (y~ . . . .  , u~, x~+~,..., x,) d u l . . ,  dye, @erA) .  
y ~ 0  

This proves t ha t  if ~ a  > l, then P f ( x )  is independent  of ~, a and A as long 

as ~ E F  l(q,~) and  T A g x  and, naturMly,  a E C  o and a ( y ) =  x when y E A .  More- 

over, i t  vanishes if f vanishes in C(x) .  The same results follow by analyt ical  

cont inuat ion for all a if  we can show, as we will do next,  t ha t  l ' ~ f ( x )  is an 

entire analytic  funct ion of a. 

In  (2) and (3) choose ~E/"1 such tha t  i t  is a positive mult iple of ~. This is 

possible according to Lemma 2. I3. Then ~ 1 ~ 1  + i~1 and ~ k = i ~ k  when k > I .  

Let  g~ (y) = (0 / 0 yx)J g where g ~ a f  and put  

k--I  

(~ 9) (tk (y) = g (y) - -  ~_~ y l  gJ (o, Y2 . . . . .  Y . ) / J  !. 
o 

I t  then  follows from (2) t ha t  

k--1 

0 yx>0 
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Wr i te  the last  sum as 

( ~ )  
k-1 

= ~ c; -~-' ~)  (r �9 �9 c,0 + ~'~(c). 
0 

From the fact  tha t  gj(y) and 9k(Y) are in C(c% T +  S)and  vanish ou ts ide  a 

compact  set and tha t  the derivatives of Pk of order < k with respect to Yl 

vanish when Yl = o it follows by part ial  in tegra t ion  tha t  r  and r162 

are bounded when h--= 2 , . . . ,  n and N is any not  negative integer. Hence 

Fj  ----- O( l I ,  ~/~, . . . ,  ~ l  --Y) 
(22) 

- ~  = O( I  I ,  ~]11 - ~ - 1 )  O ( I  I ,  ~]9. . . . .  , ~n]-/~).  

By virtue of (2) and (2I) we get  

f i f  (23) I " f ( x ) = ( 2 z ) l - "  eC"~'+'"+c'~d~79""" d~ln2 rti 
k~l  ~ _ j ; l ~ 3  " ~"x~d~" 

o q(~)r ~e ;1 + 

Consider the inner  in tegral  of the first term 

(24)  U = 

~l+i~176 k--1 

2 ~r i q(r ~ ~CJ-l F3" e;'~' d r " 
0 ~t - i  oo 

The singular  points of the in tegrand are the zeros ~ = v,(~/)of the  equation 

q ( ~ i , . . . , ~ ) : o ,  ( v =  i , . . . , m ) .  Because ~ E / 1 ,  and - -~EF~-  i t  follows tha t  

max,  ~v,(~)  --< b' < ~1 and tha t  rain,, ~v~.(~) --> b" > --  ~1 for some real b' and b" 

and hence tha t  

(25) max,  I~ ,~(~) l -<  b < ~1 

for  b = I b', b"l and all real V. P u t  

c = e(~)---- ~:1-- b + I v 1 , . . . ,  v,~[ ' 

and let  R be the contour 171 + 172 + Ra wh e r e  R1 is a s t ra ight  line f rom --oo - - i c  

to ~1-- ie, R~ one from ~1-- ie to ~1 + ie and 17a one f rom $1 + ie to - -c~ + ic. 

On and outside 17 we can choose max~ ]arg($~--v , ) ]  < m  Then 

arg q (r r . . . .  , r : arg p (I, o, . . . ,  o) + ~ arg (r - -  v,) 
1 
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and, by virtue of (3. IX), also the integrand of (24) with ~1 changed to $~ is a 

continuous function of ~ in the same region. Obviously the integrand equals 

O({~ ' l ] - l -m~e  ~'~'') there. Hence because xl and ~ a  are positive in (24) we can 

change the contour of integration to R and get 

f k--1 (26) U - -  I . ) - a  ~ [ - j - 1  ' '  ' 2 z i  q(Ci, r  E Fje--, X,d~l. 
0 R 

I t  follows from (25) and the definition of c that 1 ~ - -  v,] > b l =  ~l - -  b > o, 

and hence that  

C1-- V, -- CI--V,] -- bl 

when C~ER. Also, {$~{ >--bx on R so that  the same 

(~' -- v~)/~'l. Hence 

I ~- b l  ] - -  ~1 ~ v~ ~ I ~- b~ 

inequality is true for 

for all v if ~ E R .  ~ O W  

q ( C i ,  c3 . . . .  . . . .  
1 

and c and v~ are both O(lI,  zy2, . . . ,  Ytl). Hence it follows from (3-II) that  

(27) ~1 maq(~'l '  ~ . a , . . . ) - - a =  0 ( [  I ,  ~]2 . . . .  , ~]/[m[~a[) 

for all a when ~ E R .  Because c=c(~)>--bl  it follows that  

C 
It ! ibx[ ~ I~il ~< bit • ibl l  

when ~ ' l = t - - i c E R 1  or $ ' l ~ t + i S E R  a. Hence if h is an integer, positive or 

negative or zero, 
-N 

R t -{- R a -- oo 

The analogous integral over B~ equals O(ch+2d ,~,) and hence we get 

f {~ih eC"*,{ {d~'l] -= 0({ ,, ~ . . . .  , ~]h+2) 
.It 
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uniformly when o < 8 < xi < 8-1. Hence combining this  formula  with (27) and 

(22) i t  follows t h a t  all the derivatives wi th  respect to xi of U =  U (a, xl ,  ~ ,  �9 �9 ~n) 

are cont inuous in xi and analyt ic  in a when xl > o and equal 

0 ( [ I , ~ ] 2 ,  . . . ,  ~]nl -~Y) 

for  every N--- o, uniformly when o < d --- xl  --< d -i .  Hence the first term of (23) 

which can be wri t ten 

(2 ~r)i-'~ f er162 U(a,  x l ,  ~2 . . . .  , ~ )  d~2 . . . d~l,~ 

belongs to C(oo, T) and is together  with all its derivatives with respect to x 

entire analytic in a. Consider the last  term. By virtue of (27) which in par- 

t icular  is valid when ~ = r = 8i + i , h ,  and  (22), i t  is absolutely convergent,  

cont inuous in x and analyt ic  in a when ~ a > - - k / m  and  0ci>---o, i.e. when 

x E T  + S, and its derivatives with respect to x of order < k  + m ~ a  which can 

be computed by formal  different ia t ion under  the  sign of in tegrat ion,  have the 

same properties. Now k is arbi trar i ly large, and tha t  proves the  second sentence 

of the theorem. 

I t  was shown tha t  every derivative of I '~ f (x )  with respect to x ~s entire 

analyt ic  in a. Hence (7) which is an immediate  consequence of Theorem 3-2 

for large g{ a is true for  all a. As to (8) it  follows if we apply Theorem 3.2 and 

use the  form (18) of I a f ( x ) .  

To prove (9) we proceed as follows. Le t  h e  C(oo) and let  i t  vanish outside 

some closed set contained in the in ter ior  of A and put  

(28) H($)  = f elr h ( x ) d x .  

L e t  qx(r be any polynomial and ~, (r qx (--r its adjoinS. Then one gets by 

partial  in tegra t ion  

(29) qi ($)H(r = f e (r v)ql (0/0 x)h  (x) d x. 

The r igh t  side is bounded. Hence 

(3o) 

for any positive h r . 

H ( ~ )  = 0 ( 1 r  . . . .  , r -~')  

Hence from (28) and Plancherel 's  theorem we get 

h (x) = (2 Jr)-~ f H ($) e- (~' ~) d ~/. 

Hence by (3) and  Parseval 's  formula 

f h (x) _rof(x) d x = (2 . ) -~  f H (r Fo (~) q (~)-~ d ,~. 
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Here by virtue of (3o), (14), (i6) and (I7) the r igh t  side is an entire funct ion 

of a, and we know a l r eady  t h a t  the same is true of the lef t  side�9 Pu t t i ng  

a ~ - - -  k, i t  follows by (2) and (29) and Parseval 's  formula  and part ial  integra- 

t ion tha t  

f h (x) i - ~ f  (x) d x = (2 ~)-,, f H (r ~a (~) q (~)~ a ~ = 

= f f ( x )  a (x) ~ (O/Ox) k h (x) d x  -~ 

= f f ( x )  ~ (o/o x) ~ h (x) d x = f h (x) q (0/0 x)~f(x) dx.  

Hence because h is arbitrary,  (9) follows�9 This completes the proof of the 

theorem. 

P r o o f  of  Theorem 4.2.  I t  is already clear by Theorem 4. I tha t  I f(x)  is 

independent  of ~, a and A as long as ~e1"1(q,~) and A g x ,  and t h a t  i t  is in 

C(oo, T). Hence we have to consider i t  when xeS(~), i.e. with our special 

choice of ~, when xl ~ o. 

I f  a :  I, the in tegrand  of (26) equals 0([~1] -l-m) and is a singlevalued 

funct ion of $~. Hence it follows from (25) t ha t  we can deform the contour R 

of (26) to R '  : R~ + //~ + R~ + R~ where R~) is a s t ra ight  line from --  ~1 + ie  

to - - ~ x - - i c ,  B~ one from --~1 i c to ~ l - - ic ,  R'u~R2, and R~ one f rom 

~ l + i c  to - - ~ l + i c .  As when a is arbi t rary we get t ha t  

i f k_l 
(3I) 2 ~ i  q (~ i , .  r 1 6 2  , ~, , 

o 

equals 0(I  ~, ~L~,-.-, ~/,~]-N) for all positive N but  now clearly uniformly when 

Ix1] is bounded. The same is t rue for  its derivatives with respect to xl  which 

all can be computed by formal  differentiat ion.  

/ (3 2)  (2:7/:) 1 - n  e '--'-~ z2+'" "+~nXn d~]2 �9 . . d ~ n  2 ~/:~ 

R' 

Hence the first term of 

0 q(~l, �9 

+ (2 ~) - -  ( e ~ .  ~ q (~)-1 ~,~ d 
J 

is in C(oo, T +  S). I t  follows from (27) and (22) t ha t  the second term is in 

C(k + m - - I ,  T + S). Because k is arbi t rary  and I f(x)  is defined by (32) when 

x e A which is arbi trar i ly large in T + S, this  shows t h a t  I f e  C(oo, T + S). 
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I t  is impor t an t  for  the fol lowing tha t  the derivat ives of order  < k + rn of 

the last  t e rm of (32 ) vanish when xl  = o .  In  fact,  any such derivat ive can be 

computed  formal ly  and the resul t ing in teg rand  tends  uni formly  to zero when  

xl  = o and ~x tends to infinity.  Hence the integral ,  which is independen t  of ~, 

vanishes. The same a rgumen t  applied to (3) with a---- I shows tha t  the derivatives 

of order  < m  of I f ( x )  vanish when x q  S. 

P u t  I - f  (x) = I ~_ f ( x ) .  I t  is defined by (5) when a ---- I and x E A - .  An obvious 

modification of the a rguments  above 

its derivat ives of order  < m vanish on 

have the same derivat ives on S. I f  

t hen  we can obviously pu t  a = a - =  b. 

shows tha t  I - r e  C(c~, T -  + S) and tha t  

S. I t  remains  to show tha t  I f  and I - f  

b E C  o and b ( y ) =  [ when y e a  or y E A -  

P u t t i n g  g = b f  and wri t ing the  fo rmulas  

corresponding to (I9), (2o) and (2I) for  F -  = ~ we get  a f te r  an easy calculat ion 

k-1  
1 Y ' - -  : - -  Z ~ [ j - - 1  Z.~)-- (~2, �9 ' ' ,  ~n) "4- /?k-- (~)" 

0 

Now it is clear t ha t  F ~ - =  ~} for  all j and tha t  in the formula  corresponding 

to (3 I) we have to in tegra te  a long R'  but  in the opposite direction.  Consequently,  

if x E A - ,  then  I - f  (x) is still  defined by (32) with the  only difference t h a t  /?k 

is changed to / ? [  and ~ to - -~ .  Now it follows precisely as for  (32 ) tha t  the  

derivatives of order  < m :5 k of the last t e rm of the modified formula  vanish 

when x 1 = o. Hence  tbe derivat ives of order  < m + k of I f - - l - f  vanish on 

the common par t  A A -  of A and A -  which is a par t  of S. Hence  because k 

is a rb i t ra ry  and A A -  is arbi t rar i ly  large in S it follaws tha t  if we put  I f ( x )  = 

= l - f  (x) when x e T - ,  then  I r e  C(c~) and its derivat ives of order  < m vanish 

on S. As to (Io) i t  follows f rom (7) and  (9)- 

I t  remMns to prove the cont inui ty  par t  of the theorem.  Le t  f r o , . . . , f ( h )  . . .  

be a sequence of funct ions  in C(c~) such t h a t  j'(t,)_+ o. Le t  g(h)=af(h) ,  put  

g(") (,Z') = ( 0 / 0  Xl)J ,~(b)(,92), 
/:--1 

.01{') ( x )  = r  - . . . ,  ,~ j  . ,x , ,  x,,)/j!, 
0 

1~") --  ( q(") (o, x2, x.)  e -:~'~- . . . .  ;,~',, d x .  d x .  j ~ ?  ~ �9 . .~ �9 . . (33) 
and 

(34) H '> = f.o(: ) ( 4  d x. 
~C1>0 

Then if x EA we can write I f  (h) in the form (32), 
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f f k~ ~--j--1 Fjh)e~l,~,d$, 1 + (35) If(h)(x) = (2z) 1-n e~-'~'~+'"+:n~,d~]2 . . .  d~],, 
o q ( ~ ,  .- .) /r 

+ (2 ~)--  f e(~,') q(;)-~ d~. 

Let th, be the maximum of the derivatives off(h) of order < m +  2 k + n  + I 

on the necessarily closed and bounded set where a is different from zero and let 

B denote a constant, not always the same, which depends on q, a and k but is 

independent of h. Then integrating by parts in (33) and (34) we get 

I ~ ) 1  < Btn[ ~, ~ 2 , . . . ,  ~,l -~-~-" -x  

I @ ) I  < B t~ I  x, ~ ,  . . ., ~ , I  - . , - h , - ~ .  

Finally, let 0 = (O/Ox~) ~, . . .  (O/Ox,)'~, where ml + "'" + m, < m + k and consider 

O lf(h)(x) which clearly can be obtained by formal differentiation of (35). Then 

it is evident that  the absolute value of the last term is less than B th. The 

resulting inner integral of the first term is 

"~ e ~,' ~, d $'1. 
2 ~ i  o q (~i, . . . ,  ~,) 

R' 

Its absolute value is les~ than B t h l i ,  ~ 2 , . . . ,  ~ ,[ , , , - , , -k- , .  Hence the absolute 

value of the first term is less than 

(2 ~ ) l - , f  B t n l I ,  ~ 2 , . . . ,  v,, l~ '-~-~-" Iv, . . . .  , ~ ,~ l~ ,++~,~d~z . . .  d~,  

i.e. less than B th. Hence [ 0 I f  (h)(x)] < B th when x E A  so that  0If(h) tends to 

zero with 1/h uniformly on A. A similar argument shows that  the same is true 

when x e A - .  Hence because k is arbitrary and A + A-  is arbitrarily large, it 

follows that  I f  (h) tends strongly to zero with 1/h. This completes the proof of 

Theorem 4.2. 

A lemma. In the next section we shall use 

Lemma 4. 1. Let  f E  C(c~, T + S) and let the derivatives of f of  order < m 

varnish on the common part  of  S and A, where A is a ~ubset oat' T + S Which with 

a point x also contains C(x). Then 

(36) f ( x )  = I q  ( o / o x ) f ( x )  

whe~ever x ~ A .  
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Proof. Let ~ a  > l + m in (I8), let x E A  and integrate by parts in 

l '~+lq(O/Ox)f (x) .  Because the derivatives o f f  of order < m  vanish on the 

common part of S and A and hence in particular also on the common part of 

C(x) and S, the result is 

f f ( Y l  . . . .  , yl, Xl+I, . . . ,  X n ) q ( - -  OlOv) Q,(a + I, x - v) dyl .  
yl>0 

I t  follows from Theorem 3.2 that  

q ( - - 0 / 0 y )  QtIa + I , x - - y ) : q ( 0 / 0 x )  Ql(a+ I ,x- -y)~-~  Qt (a, x -- y). 

Hence 
I a+l q (0/0 x ) f ( x )  -~ I '~f(x)  

when xEA and ~ R a > l + m .  Now if also xET,  both sides are analytic in a so 

tha t  by. virtue of Theorem 4. I, (36 ) follows when x is in the common part 

T A  of T and A. Finally, by Theorem 4.2 the right side of (36) is continuous 

in T + S and hence the equality is true in T A  + S A = A. 

Proof  of Theorem I I ,  Using the results of this chapter we can now prove 

Theorem II  of the introduction in a few lines. 

Let q be a polynomial in n variables with complex coefficients which is 

hyperbolic with respect to r and let A(q) be the set of solutions fe C(oo) of 

the differential equation 
q (O/Ox ) f ( x )  = o. 

Let A(q) contain the sequence f a , f z  . . . .  , f i  . . . .  What  is meant by 

(a) fk -+ o (~) 
and 

(b) fk ~ o 

is explained in the introduction. We have to prove that  (a) implies (b). I f  q is 

a constant, then because q(~)~/9 (~)# o it is not zero and hence A (q) contains 

only the element f-----o and the assertion is trivial. Assume tha t  the degree m 

of q is positive. Then we can apply the results of this chapter, in particular 

Theorem 4.2. Let f E  C(oo) and put 

J r ( x )  -= f ( x )  - -  I q  (0 /0  x ) f ( x )  

where I is defined in Theorem 4.2. I t  follows from (IO) that  JfeA(q). Put  

= _(x, ( x  - a (,, 
(37) P~ f ( x )  o J! (a, ~)J 
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where a is a real  vector  such t h a t  (a, ~) # o and flJ)(x) = (a, O/Ox)Jf(x). Then  

the  derivatives of  f ( x ) - - P ~ f ( x )  vanish when x E S ,  i.e. when (x,~)--=o, and if 

f~.-~ o(~) then  P ~ f i - ~  o. In  fact ,  let  a (1) : a, a(2) , . . . ,  a (n) be a basis for  all real  

vectors,  let  (a (j), ~) = o when j > i and ptit O~ = (a(~l O/Ox). Th en  Oj(x, ~) = o 
when j >  I a n d 0 1 f ( x - - a ( x , ~ ) ~  ~-~ a (x ,~ ) (a ,~ ) - ' eS fo r  ,a,~) ) = o f o r a l l f .  Also, x - -  

all x. Hence  any der ivat ive of P~-~f is a l inear  combinat ion  of the  derivat ives 

of at' in the  plane S where the coefficients are polynomials  in (x, ~). This  proves 

tha t  P~fk-~  o whenever  fk -~  o(~). As to the  o the r  announced  proper ty  of /z~at' 

i t  follows because 0~ P~f(x) =f(h)(x) and 0J: P~f(x)  = O~f(x) whenever  j > I, h <:- m 

and ( x , ~ ) = o .  I f  ~ = ( t , o ,  . . . ,  o) and we choose a = ( J , o  . . . . .  o), (37) takes the 

more  fami l ia r  form 
m - -  1 

P~ f (x)  = ~-a .~'i f(J) (o, x2, . . . ,  x,,)/j ! 
0 

where f t j ) (x)  ----- (0] Oxl)Y f ( x  ). 

I t  is clear t ha t  J f - - J P : , f  is in A(q) and tha t  its derivat ives of order  

< m vanish on S. Hence  L e m m a  4. x shows tha t  i t  vanishes in I '  + S. Now 

i t  follows f rom L e m m a  2.2 t h a t  q is hyperbol ic  also with respect  to - -  ~. Hence  

it  follows t ha t  , I f - - J P _ ~ f  vanishes in S + 1 ' ( - -~)  so tha t  because P - s  = P.  it  

fol lows t ha t  J r ( x ) =  J P ~ f ( x )  fo r  all x. I t  is clear  t ha t  J j ' = f  w h e n e v e r f E  A (q) 

so t h a t  in this case 

f(x) = Pi f (x)  -- Iq  (0/0 x) P=,.f(x) 

for  all x. Apply this  fo rmula  to every  e lement  of a sequence ,/; . . . .  , j~. . . . .  of 

func t ions  in A(q) such tha t  ate.-~ o(~). Then  P~J~-* o so tha t  i t  follows immedi- 

ately f rom Theorem 4.2  tha t  fk--~ O. This  proves Theorem I[ .  

Chapte r  5- 

T h e  Prob lem o f  Cauchy. General izat ions .  

T h e  p r o b l e m  o f  Cauehy,  Le t  us use for  a m o m en t  the assumptions,  nota- 

t ions and results  of the first section of the  preceding chapter .  Le t  ff and h be 

in C(c~, T + S) and pu t  

u(x) = g ( x ) -  Iq(O/Ox).q(x) -~- Ill(x) 

where x ET. W h e n  the  derivat ives of order  < m of a funct ion  defined ill 7' 

have cont inuous  extensions to T + S which vanish on S we write briefly 

f(x)(m)o, (x  e S). I t  follows f rom Theorem 4- 2 tha t  

4-642127 Acta mathematica. 85 hn~ Io 3 . iuit |et  1950. 
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u e  r + S) 

(I) q (0 ] 0 x) u (x) = h (x), (x e T) 

(x) - g (x) o, (x s) .  

Now u is the only funct ion with these properties. In fact, if there were two, 

their  difference satisfies the requirements of Lemma 4. I with A ~ - T  + S and  

hence it vanishes in T + S. Hence the classical problem of Cauchy, which 

is the problem of finding a funct ion u sat isfying (I) for given g and h in 

C(c~, T + S), has a unique solution. I t  is clear t ha t  the solution vanishes if 

h----o in T and g(x)~'~/o, (xeS).  I t  is not difficult to see tha t  the problem 
has a unique solution in C(m, T + S) provided tha t  the funct ions g and h are in 

C(2m + l + I, T + S), but  we do not  give the details. 

The surface  S. I t  is possible to generalize Chapter  4 and the th ings  said 

above to a case when a suitable surface plays the part  so fa r  played by the 

plane S =  S(~). We  will do this  here only when q ~ p  is a homogeneous and 

reduced polynomial.  The method is a little different from tha t  of Chapter  4.1 

Le t  S be an open (n- - I ) -d imens iona l  infinitely differentiabte mani fo ld  in 

the space E with elements x, y , . . .  For  simplicity we assume tha t  S admits  a 

parametric  representat ion of the form 

yj = 8j (t) = 8~. (t~, . . . ,  t,) 

where sy is defined and infinitely differentiable in some open region P of the 

real t-space and tha t  Q , . . . ,  t ,  are uniquely determined by Yl . . . .  , y~. Pu t  

s i . k =  Osi/Otk , let u l , . . . ,  un be indeterminates  and put  

(2) g(u)  = det (uj, sj.~, . . . ,  ~j.,,) ~-- ~ uj ~j(t) 
1 

1 T h e  r e s u l t s  of t h i s  c h a p t e r  were a n n o u n c e d  in Gs I2] for an  a r b i t r a r y  r educed  a n d  

hype rbo l i c  equa t ion ,  n o t  necessa r i ly  h o m o g e n e o u s ,  and  i t  is  in  fact  a lso poss ib le  to prove  t h e m  
in t h i s  case, u s i n g  t h e  m e t h o d  of Chap t e r  4. T h e  p r e s e n t  m e t h o d ,  however ,  is  s imple r .  I t  app l i e s  

to a h o m o g e n e o u s  reduced  p o l y n o m i n a l  p, hype rbo l i c  w i t h  r e spec t  to a vector  ~, or more  gene ra l l y  

by  an  e x p a n s i o n  in ser ies  of 
q - "  = p - ~ ( I  -~- r / p )  - a  

to all  q = p  H-r  where  r is of degree  less  t h a n  t he  degree  of p and  s u c h  t h a t  w h e n  s is real  and  
pos i t ive ,  t h e  l eas t  u p p e r  b o u n d  w h e n  ~ is  real  of t h e  a b s o l u t e  va lue s  of t h e  ze ros  of t he  e q u a t i o n  

q ( t ( s ~ - ~  i y ~ ) =  o t e n d s  to zero w i th  I/s. I t  is p robab le  b u t  no t  p roved  t h a t  a n y  q wh ich  is hyper -  

bolic w i t h  respec t  to ~ h a s  t h i s  p rope r ty .  
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as a definition of aj(t). Then the vector a(t)----(al(t) . . . .  , an(t)) is called the 

normal  of S: I t s  sign d e p e n d s  on the order of the rows in. (2). We suppose 

tha t  i t  is possible to choose this  order so t ha t  for all t in P 

(t) ~ r = r (q, 8) 

where q is assumed to be a homogeneous, reduced and not  constant  polynomial  

which is hyperbolic wi th  respecL to ~. The simplest case of such a surface is a 

plane (y, ~ ) ~  o where ~ e F. T h e n  a is a positive multiple of ~. 

Fig. I. 

Let  ~ be C - ~  C(q, 8) minus the point  x ~ o .  We consider a maximal  set T 

part ly bounded by S with the fo l lowing properties. I t  is open, i t  does not  contain 

points of S and if  x e  T and z e  () then  x - -  h z e  S for some positive tl---- bl(x,z) 

which is continuous in x and z in the product  domain (T + S) • 0, while all 

points x - - c z  where o - - ~ c <  tl are in T. I f  ~ e F  and ze ( ) ,  then  ( z , ~ ) ~ o  and 

hence because F i s  open and z ~ o  it  follows tha t  ( z , ~ ) > o .  Hence if S is the 

plane (y,~:)----o then  x - - t ~ z  is in S i f  and only i f  t~----(x,~)/(z,~), so t ha t  T 

consists in this case of all x such tha t  (x, ~ ) >  o. In the general  case, in a 

suitable neighborhood 1 of one of its points y, S is close to its tangentp lane  

at  y, ( y ' - - y ,  a ) : o .  Hence it follows tha t  every neighborhood of y contains 

points in T. 

As in the preceding chapter  the set of points x -  c z where z e (~' and 

o ----- c --< bl (X, Z) will be called C(x). I t  is necessarily a subset of T +  S. I f  S e N  

and z e 0  we know tha t  ( z , ~ ) > o .  Hence every point  in C(x) is of the form 

1 A ne ighborhood of a poin t  y is an open set conta in ing  y. 
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x - -  cz where o --~ c --< bl (x, z) aud z belongs to the subset C1 of () where (z, }) -~ I. 

Now Lemma 2. I3 shows tha t  C 1 is bounded and closed, i.e. compact. Hence 

bl(x ,z)  which is continuous has a finite maximum on ~ and it follows tha t  

C(x) is bounded. I t  is clear tha t  i t  is closed. 

By the definition of T, if x e T  and zE( )  then  there are real numbers  

tl . . . .  , t~ such t h a t  

(3) x j  = t 1 z j  - -  8j (t2, . . . ,  tn), ( j  = I, . . . ,  1~), 

a n d  tl = b~(x, z) is cont inuous in (T + S) X C. I t  then  follows tha t  every tk, (k> I), 

is a cont inuous funct ion of all x j - -  t lz/ .  Hence it is also a funct ion bk(X, z) of 

x and z which is continuous in (T + S) • (). Let  J(x ,  t) be the absolute value 

of the Jacobian of x with respect to t. I t  follows f rom (3) tha t  J(x ,  t ) =  

= (a, z ) > . o  in ( T +  S ) X  C and with analooous notat ions  t ha t  J ( z ,  t ) - -  

- -  j - 1  (x, z) J (x ,  t) ---- (a, z) ti-" > o in T • (). Hence every funct ion bk (x, z) is for 

z fixed in C(oo, T) and for x fixed in C(co, ()). Now by differentiat ion of (3) 

it  follows tha t  any derivative of  bk (x, z) with respect to x and z is a polynomial  

in the derivatives with respect to t of the r igh t  sides of (3) divided by a power- 

product  of J(x ,  t) and J(z ,  t). Hence bk(x,z) e C(o% T X 0). Moreover; if the 

derivative is taken with respect to x alone, the powerproduct  in question con- 

sists Of a power of J(x ,  t) alone which is continuous and positive in (T + 8) X ('/. 

Hence  the derivative in question is continuous in (T + S) X 0. Put  when zE 

(4) r z) = (x, 

where ~E/ ' .  Then z/(z,~) belongs to Cx which is compact. Hence we get  x 

L e m m a  5.1. The fitnction r (X, z) defined by (4) is in C(c~, T • C'). I ts  deriva- 

tives with respect to x are bounded on every T' X C' where T'  is a compact subset 

of  T + S, and r (x, z) has a positive minimum on T '  X C' whenever T '  is a compact 

subset of  T. 

1 T h i s  l e m m a  co r re sponds  to L e m m a  2 .3  of sec t ion  2 of GS, RDII~O [4]- T h i s  sec t ion  c o n t a i n s  

a w r o n g  s t a t e m e n t  n a m e l y  L e m m a  2 .2  and  a p e r h a p s  d u b i o u s  def in i t ion  n a m e ] y  t h a t  of E (here 
cal led T). However ,  L e m m a  2 .2  is neve r  u sed  a n d  t he  r e s t  of [4] is c e r t a i n ly  p u t  in  order  if i n  

t h e  n o t a t i o n s  of I4] we def ined E (which co r r e sponds  to T above) as t h e  m a x i m a l  open  se t  in t h e  
space  of al l  s y m m e t r i c  ma t r i ce s  of  order  n, w h i c h  does no t  con ta in  p o i n t s  of G and  ha s  t he  p r o p e r t y  

' tha t  t he r e  ex i s t s  a pos i t ive  func t ion  u 1 = Ul(X, Z )  c o n t i n u o u s  in t h e  p roduc t  d o m a i n  (E + G, ~,1) 
s u c h  t h a t  i f  x E E  t h e n  x - - u l Z E G  and  x - - c Z E E  w h e n e v e r  o ~ < c < u  1. T h e n  because  (2.2) is  

sat isf ied,  every  ne ighborhood  of a po in t  in G c o n t a i n s  po in t s  in  E, a n d  L e m m a  2 .3  is  val id.  T h e r e  

s h o u l d  be co r r e spond i ng  c h a n g e s  on p. 786 l ine  7 f rom the  bo t tom,  on p. 789 l ine  I 3 f rom the  
b o t t o m  and  on p. 814, l ine  II  f rom the  bo t tom.  
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The Itiesz operator.  Because q is not constant, reduced and hyperbolic with 

respect to ~, we can construct the Riesz kernel Q(a, x) corresponding to q and ~. 

We define the Riesz operator by the formula 

(5) I~f(x)  = f Q(a, x -  y)f(y) dy, (xE T), 
C ix) 

where ~ a  > n. When the derivatives of order < m of a function f defined in 

T have continuous extensions to T + S which vanish on S we write as before 

briefly f (x)(")o,  (xES). We can now prove the following theorem, analogous 
to Theorem 4. I. 

Theorem 5.1. Let q be a reduced homogeneous and not constaut polynomial in 

n variables which is hyperbolic with respect to ~ and let f E  C(oo, T + S). Then the 

function I~j'(x) defined by (5) when ~ a  is large is entire analytic in a. For all 

values of  a it is in C(oo, T) and its derivatives are entire analytic in a. I t  

satisfies (4.7), (4.8) and (4.9) when x E T, Also I f ( x ) =  11f(x)E C(oo, T + S) and 

(6) Z f ( x )  o,  (x e s ) .  

Proof. Because C(x) is bounded and closed the integral (5) always exists. 

Let us change the variables y to z defined by 

y = x - r (x, z, (y x).  

Because r is homogeneous of order o in z the Jacobian J(y ,z)  equals r n. The 

region C(x) corresponds to the region A of all z E C for which (z, ~) g I. Hence 

using the remark in connection with Theorem 3. I w e  get when ~ a > n 

I " f ( x )  = j" Q (a, z ) f ( x  --  ,'z) r '~" dz. 
A 

Here by virtue of Lemma 5. I we can differentiate under the sign of integration 

any number of times and the resulting integrals will be analytic in a and con- 

tinuous in x when x E T  and ~ a > n .  When k is an integer and ~ a  is large 

enough it follows from (5) and Theorem 3.2 that  

I~-k f (x )  = q (0 / 0 x) ~ I~f(x) .  

Hence the second and third sentence of the theorem follows. The fourth is 

proved precisely as the corresponding part of Theorem 4. I. To prove the fifth 

we observe that  

I f ( x )  = f Q (n + I, z) q (0/0 x)'~f(x - rz),.,n (~+1)dz. 
A 
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Again it follows from Lemma 5. I that  every derivative of I f (x )  is in C(o, T +  S) 

and that  those of order < m tend to zero with the maximum of r(x,z) when 

ze  C. This completes the proof. 

The proof of the following lemma is the same as that  of Lemma 4. i. 

Lemma 5.2. I f  f E  C (0% T + S) satisfies 

f ( x )  (-~-~ o, (x e s) 
then 

f (x)  = Iq  (O/Ox)f(x), (x e T). 

I f  g and h are in C(co, T + S )  then Theorem 5. I shows that  

u(x) = g(x) --  Iq(O/Ox) g( , )  + Ih(x)  

is in C(oo, T + S) and satisfies 

q (0/0  x) u (x) = h (x), (x e T) 

. (x) - -  a ( x ) ~  o, (x e S) 

and it follows from Lemma 5.2 that  a function with these properties is unique. 

The same conclusion is easily seen to be true if u is in C(m, T + S) and g 

and h are in C(m(n + I), T + S) and if all the functions sj defining S are in 

C (m (n + ~), P). 

Chapter 6. 

T h e  D o m a i n  o f  D e p e n d e n c e .  

Introduction. Let q be a not constant complex polynomial in n variables 

which is hyperbolic with respect to ~. Let  F(q,~) and C(q, ~) be the associated 

cones, defined in Chapter 2. Throughout this chapter we shall mean by C(x) 

where xEE ,  the set of points y such tha t  x - -  yE C =  C(q, ~) or briefly 

C(x) = (y; x - y c  c). 

Let S=-S(~) be the plane ( y , ~ ) = o  and T = T ( ~ )  the halfspace ( y , ~ ) > o .  As 

usual we put C(oo)=  C(c~,E) and we let C o be the set of all functions in 

C(oo) which vanish outside some compact set. The properties of the operator I 

defined by 

I f ( x )  = (2 ~)-,, f q (r F(r e(~,~) dv 

where x E T  + S, ~ = ~  + i~, ~EFI(q,~) , f E C  ~ and 
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F ( C )  = f f(v) dv 
T 

are given in the Theorems 4. I and 4.2. We know that  l f E  C(c<), T + S), that  

q(O/Ox) I f (x)=f(x)  and that I f ( x )~  o whenever f vanishes on C(x). 

The solution of Cauchy's problem with respect to the plane S and the 

halfspace T is composed by means of the operator I and another operator J 

defined by 

J f (x )  = f(x) --  [q  (0/0 x) f (x)  

where x E T +  S. 

We define the lacunary set L ~ L ( L  x) attached to a point x e  T and the 

operator / ,  as follows. I t  shall consist of all points y with the property that  

there exists a neighborhood N of y such that  I f (x )  -~ o for all f in C O which 

vanish outside N. 1 I t  is clear that L is open. We define the domain of de- 

pendence D(I , x )  to be the complement of L in E. in  the same way we define 

L (J, x) and D (J, x). 

I t  is immediate that  D(I ,  x) and D(or, x) are both in T + S and because 

C(x) is closed it follows that D(I ,  x) is contained in (~(x). I f  y E S  then there 

is a neighborhood N of y with no point in common with a suitable neighborhood 

of S. Then if f vanishes outside N, it vanishes together with its derivatives 

on S, and it follows from Lemma 4. I that  J f ( x ) - ~  o. t tence D ( J , x )  is con- 

tained in S. 

In order to get more precise results and in order to eliminate x and S 

from D ( I , x )  and D(or, x) it is convenient to do as follows. Let f E C  ~ let a be 

a complex number and put 

(I) J ~ f =  (2 z)-;~ j" q (~)-~/e+ (~) (l~ 

where ~ ~-- ~ + i~], ~ e F1 (q, ~), q (~)-~ is defined by (3. I I) and 

(2) F +  (C) = f f(x) d x. 

Integrating by parts in the last formula we get that  [$1, . . . ,  ~,I~'F+(~) is 

bounded for all positive N, and according to (3.2) and (3.4) which apply also 

to not reduced polynomials, I q($)l is bounded from below. Hence J ~ f  is an 

entire function of a. Assume for a moment that  q is reduced. Then we can 

1 A n e i g h b o r h o o d  of a po in t  y is  an open set  c o n t a i n i n g  y. 
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construct  the Riesz kernel Q(a, x) associated with q and ~, and then if  ~ a  > n 

i t  follows f rom Parseval 's  formula  t h a t  

J ~ f  ~- f Q (a, x ) f ( x )  d x. 

Hence J ' : f  is independent  of ~ as long as ~ e F 1 (q, ~) and i t  vanishes if f vanishes 

on C :  C(q,~). The same results follow by analyt ical  cont inuat ion for  all a. 

An application of the a rguments  used in the beginning of the proof of Theorem 

4. I shows tha t  they are also true if  q is not  reduced. In  par t icular  we shall 

consider 

J ~ f  -~ J~,f  -~ (2 z)-~ f q(r F+ (~) dr/. 

The operator  J1 has a lacunary set L(J1) and a domain of dependence D(Jx) 

which is necessarily a subset of C. In  the  next  section we will prove a lemma 

tha t  expresses J)([ ,  x) and D ( J ,  x) in terms of D1 = D (J1). 

Structure of the domains of dependence of I a n d  J .  

L e m m a  6.1.  The set D (I, x) where x E T consists of  all y in T + S such that 

x --  y E D 1 and the set D (J, x) co~sists o f  all y in S such that x - -  y E D 1. 

Proof. Le t  f E  C O and put  

(3) = f y) f (y)  du 

where ~ --~ ~ + i~/, ~ e / '1  (q, ~) and --  ~ E/~1 (q, - -  ~). Le t  a be a complex number,  

let q (~)-~ be defined by (3. I I) and consider the fol lowing slight modification of 

the Riesz operator  

(4) ITf (x )  = (2 zr)-" f q  (;)-" 1"(~) e(:, x) d y  

where x is an arbi t rary  point  in E. I t  follows from (3.2) and  (3.4) which apply 

also to a not  reduced polynomiM q tha t  ]q(~)] is bounded from below. Inte- 

gra t ing  by parts in (3) we see t ha t  I$1, . . . ,  $,] 'vF($) is bounded for all positive N. 

Hence I ? f ( x )  is an entire funct ion of a, for all values of a i t  is in C(oo) and 

it satisfies q ( O / O x ) I ~ + l f ( x ) - ~ I ~ f ( x ) .  In  par t icular  when a =  I we get with 

I1 ~ 111, using Plancherel 's  theorem, 

q (0 / 0 x) 11 f ( x )  ---- f ( x ) .  

The argmnents  in the beginning of the proof of Theorem 4. I apply wi thout  

change to I~, and they show tha t  I ~ f ( x )  does not  depend on ~ as long as 
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~EFI(q,~) and tha t  ITf(x) vanishes whenever f vanishes in C(x). I f  q is reduced 

this follows from the formula  

I~f(x)  = f Q(a, x - y ) f ( y ) d : /  

which is valid when ~ a  > n and where Q(a,x) is the Riesz kernel associated 

with q and ~. Because C(x) is closed i t  follows f rom the above tha t  

D (/1, x) < C (x) ---- (y; x -- y e C -~ C(q, ~)), 

and if we define I~- as / i  with the only difference t ha t  i t  refers to q and --  ~, tha t  

D(I~, x)< 0- (x)=  (y; x - - y  e - -  C =  C ( q , -  ~)). 

I f  f e  C O then  I l f  and I ~ f  are both in C(oo). I t  follows from Theorem 4.2 

tha t  Ig  and hence also Jg  has a sense and is in C(oo, T + S )  if g is. Hence  

we can form J l l f ( x )  = I l f ( x )  -- Iq  (O/Ox)1.1 f(x) -~ I l f ( x )  -- I f (x)  so tha t  we get  

[ i f (x)  : J l l f ( x )  + I f(x) ,  (xe T). 5) 
Similarly 

(6) I~f(x)  ~ J I s  + I f(x) ,  (x E T). 

We can now prove tha t  

(7) D (J, x) = SD(I ,  x) 

where the r ight  side s tands  for  the common part of S and D(I ,x) .  Let  

y e S L ( J , x )  and put  wi th  ]y] • m a x k  lYk], 

2vr W) = (9; I y - ~ I < ,). 

Then we can choose r >  o so small tha t  x is not  i n  N ~ ( y ) a n d  tha t  Jr(x)  
vanishes if f vanishes outside Nr(y). Consider r  + S). I t  consists of all y'  

of the form ~) - -z  where z E C  and (z,~)--<(t),~). I t  follows from Lemma 2. I3 

t ha t  ]z[ has a finite maximum c I when z E C and (2 ' ,~ ) :  I .  Then [~- -y ' [ - -<  

--<c1(),~) when y'EC(~j)(T+S).  ] tence we can choose r ' > o  so small t ha t  

C(Fj)(T+S) is contained in N , ( y ) ( T + S )  whenever ~ is in _~,(y). Now if a 

point  ~ E T + S is also in D(Is y) then  i t  is necessary t h a t  ~ e (~(~). Hence if 

f e  C o and vanishes outside N~, (y) i t  follows tha t  I ~ f  vanishes in T + 8 outside 

Nr(y) and hence J I ~ f ( x ) ~ o .  Moreover, because xEN~(y )~  hre(y) i t  follows 

tha t  I~ f (x ) -~  o. But then (6) shows tha t  I f ( x ) :  o and hence y E L(I,  x). Con- 
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versely, assume tha t  y E S L ( I , x )  and choose r >  o so tha t  x is not  in Nr(y) 
and tha t  If(x) vanishes if f e  C ~ and vanishes outside Nr(y). Then also Jf(x)=- 
= f ( x ) - - I q ( O / O x ) j ( x ) = f ( x ) = o  under  the same condit ions and this proves 

tha t  y e L ( J ,  x). Hence we have proved (7). 

Next  we want  to show tha t  

(8) L (I, x) = T -  + (T + S) L (/1, x) 

where x E T  and T - ~ - T ( - - ~ ) = ( y ; ( y , ~ ) < o ) .  I f  y is in T there is a neighbor- 

hood N of y which also is in T, and if  f E  C o and vanishes outside /Y we get  

I f ( x )= I~ f ( x )  for  all x in T. This proves t h a t  T L ( I , x ) = T L ( I i , x ) .  I t  is 

obvious tha t  T -  < L (I, x). 

Consider 

_r~f (x) = (z ~)-n f q (~)-~ r(~) ~(~, ~) d~ 

where F(~) is given by (3), and change variables in the integral  so t ha t  x=x'~1-1 
and ~ - - - - ~ ' M =  (~ '+  i~')M, where M is a real square mat r ix  whose de te rminant  

has absolute value I and choose M as in the beginning of the proof of 

Theorem 4. i. Then 

I l f  (x) = (2 ~)-'" f q' (r ~ '  (~') e(Z', ~') d 7f 

where q ' ( ( ' ) =  q(() is a reduced polynomial  in ~ . . . . .  (~, (I --< 1 g n), and with 

f" (y') -~ f.(y), 
F(~) = F'  (~')= f f '  (y')~-(~', ~') dr'. 

P u t  h~(y) = h'~(y'), let h: be in C(c~) and let h:(y') ~-- h'~(yl) be I when yl > o and 

o when y~ < - - e  < o and monotone for the other  values of y~. Consider 

F" (r f f '  (y') h'~ (y') e-('r ~') dr'. 

In t eg ra t ing  by parts in this formula  we get  

(9) y,) o ~h' " ON f'(u')) 

where k > i. Because f E  C ~ the funct ion f '  vanishes outside some set of the form 

p 

A = (y'; { y ; , . . . ,  yn{-< �89 
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Let  ax be the maximum of e -I~'''v'/ and a~ the maximum of the absolute values 

of the derivatives of f '  of order --<-N + I in A. Then because h: is monotone,  

the absolute value of the r ight  side in (9) is no t  greater  than  

+ � 8 9  

ala~an-l f (I + o~h:(y'l))dy'l ~ala~.a"-l(a + I). 
--�89 

Hence 1 ~ [ 1 5 , - . . ,  $~[~VF:($') is bounded for all N ~  o, uni formly  in e. Now it 

follows f rom Lemma 3. I t ha t  Iq'(C')l >- B(~ + ]nil) where B > o. Hence because 
F'(~ ')  Lends to 

(2 ~)-" f f '  (y') e(~', y'l dy' = (z ~)-" f f(y) e(~, ~1 dy, 
T (~') T 

the r ight  side of 

I1 hE (x)f(x) ----- (2 z)-" f q' ($')-1 F~ ($') e (~', ~') d~' 

tends  to If(x) as e tends to zero. Hence if  yESL(II,X) and the neighborhood 

2V of y is chosen so tha t  Ilf(x) vanishes when f is in C o and vanishes outside 

N, i t  follows tha t  Ilh~(x)f(x) and hence also its l imit  If(x) vanish under  the 

same circumstances. This proves t h a t  SL(Ix ,x)< SL([, x). 
To prove the converse inclusion, assume tha t  y E SL(L x) and choose r > o 

so small t ha t  if  f is in C o and vanishes outside 1V, (y) then  both If(x) and Jf(x) 
vanish. This is possible because we have proved (7)- Le t  r '  > o, let i) E Nr' (y), put  

I"1 = (~; I(~, ~)l < ~1) 

and consider T1 C- (9). I t  consists of all points 9 + z in T1 such tha t  z is in C. 

Hence [ ( 9 + z , $ ) ] < s ,  so tha t  ( z ,~ )<] (# ,$ ) l  + s l .  Now because y is in S s o t h a t  

( y , $ ) = o ,  the maximum of I(9,$)] when 9 is in Nr,(y) is of the form c2r' where 

c 2 > o  and hence we get  tha t  ( z , $ ) < c 2 r ' + s l .  But  then if Cl is the maximum 

of [z[ when z6  C and (z, $) --< I i t  follows tha t  ]z] < Cx(c2r' + sl) and then  

l y - 9 - ~ l - <  l y - 9 1  + I~1 < ~' + ~ ( ~ , , " +  ~1)<, ' ,  

if  r '> o and sx > o are small enough. Hence with this choice of r' and sl we 

get  t ha t  /"1 @_ (9) < / ' 1  N~ (y) whenever 9 E N~, (y). Le t  f be in C o and vanish 

outside N~, (y). I t  is clear then  tha t  I l f (~ ) vanishes unless there are points # in 

N~, (y) such tha t  �9 --  9 6 C, i.e. such tha t  x 6 @- (9)- Hence  because T1 @- (9) < 

< T 1 N~ (y) when 9 6 Nr, (y) i t  follows tha t  I~f(x) vanishes in T1 - - / ' 1  N~ (y) so 

t ha t  if g is in C(oo) and vanishes outside T 1 and equals one on the set 
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(2; (2,~)< �89 then the derivatives o f  I l f - - g l l f  vanish on S a n d  g l L f v a n i s h e s  

outside T 1 and in T1 outside T1Nr (y )<  N~(y). Consequently, we get that  

o = J g  (x) l t f ( x )  = J i l l ( x ) .  

Because f vanishes outside Nr, (y )~  _Nr(y) it also follows tha t  If(x)--= o and 

hence (5) shows that  I l f ( x ) =  o and consequently y E L ( I i , x ) .  This proves that  

SL(I, x) = S L ( h ,  x). 5Tow the formulas (1) to (4) show that  I l f ( x )  -- J l f l  where 

Ji(y) is defined as f ( x - - y )  for fixed x. But then it is obvious that  

L (It, x) = (y; x - -  y ~ L1) 

and the lemma follows from (7) and (8). 

Lacunas. We know that  the domain of dependence Dt of the operator J1 

defined by (t) and (2) is contained in C and in general one has in fact D1 = C, 

but there are exceptions. In example I let n = 4 .1 By a simple passage to the 

limit in the formula following (2) one gets 

J ~ f  = ~ f f ( t , x ~ , x a , x , ) t - t  dx ,  dx3dx+, 

where t is the positive square root of x~ + ~ + x~. Hence D1 is in this case 

the boundary of C. I ts  dimension is 3 while tha t  of C is 4. The fact that  

D1 ~ C in this case is sometimes referred to as Huygens'  principle for the wave 

equation and accounts for the possibility of emitting sharp light signals in 

space-time. 2 A still more striking example of the same kind of. anomMy is 

offered by example 2. s Then we have the formula 4 

j r  f =  I f ~_+. f(~* a)lal da 

where a is the vector (at, . . . ,  a+) with real a 1 and complex ak= a'+ + i a'+' when 

k > I, h* its transpose conjugate, lal the positive square root of a+ + lall m + "-" 

and da = dai  da'2 da'2' . . . Hence J t f  is a mean value of f over such hermitian 

matrices x-----a*a which have all its roots zero except one which is not negative 

and i+ follows tha t  JOt consists of all such matrices. In this case the dimensions 

of C and D t are +m and ~++-- I respectively. 

1 See pp. 25, 29 and 34. 
RIESZ [II]  p. 8 3 - - 8 8 .  

3 See pp. 25 , 29 and 34- 
+' G.~RDING [4], Theorem H to .  2 p. 822. 
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Pet rowsky [8] has made an extensive s tudy of lacunary sets. He takes the 

case when q is homogeneous and not  degenerate.  Then if B is a domain of 

analyt ic i ty  of Q(I, .)1 and f vanishes outside a closed and bounded set B '  in B 

it  follows t h a t  
J x f - = :  Q(I, y) f (y )  dy. 

Hence if B'  has a not  empty interior,  i t  is in the lacunary  set L1 of J1 if and 

only if Q(I , . )  vanishes on B'. But then  Q(I,  .) vanishes in B and it follows tha t  

B is contained in L 1. Such a domain of analyt ic i ty  of Q(I, . ) i s  called a lacuna. 

According to Pe t rowsky L 1 is a sum of lacunas and he also gave a necessary 

and sufficient condition of a topological n~ture tha t  a given domain of analyt ic i ty  

be a lacuna. Example 2 above shows t h a t  when q is degenerate,  th ings are 

more complicated. Pract ical ly  no th ing  is known about  the existence of lacunas 

in C in the not  homogeneous case. As is shown by the wave equation, terms 

of lower order t end  to destroy them. ~ 
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