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2 Lars Gérding.

Introduction.
Let C(co) be the class of complex functions f(z) of n real variables x;, . .., xn
which are defined and infinitely differentiable for all z. Let q({)=gq(ly, ..., &a)
be a polynomial in ,, ..., {n with complex coefficients and let 4 (g) be the class

of all functions f in C(oo) which satisfy

(1) q(0/02) flx)=o

for all «.

Every polynomial ¢ can be written in the form p+r where p is homogeneous
and, if ¢ is not a constant, the degree of p is greater than the degree of r. If
g i8 a constant we put p ==¢. We call the polynomial p thns defined the principal
part of q.

Let &= (&, ..., &) 0 be a real vector. We say that ¢ is hyperbolic with
respect to £ if p(&) 7 o and if there exists a real number #, such that q (t£+4%9) # 0
when ¢ > 1, and 7 is any real vector. If ¢ is hyperbolic with respect to &, it is
clearly hyperbolic with respect to any positive multiple of & and we will show
that it is hyperbolic also with respect to any negative multiple of & We say
that (1) is a hyperbolic differential equation if ¢ is hyperbolic with respect to
at least. one &.

Let fi, /5, .-« fi.... be a sequence of elements in C(co). If f; and every
derivative of f; tends to zero with 1/% uniformly on every compact® set in the
plane (y,& =ys3& + - -+ ynén =0 or in the entire space we say that fi tends
to zero in the plane (y, &) =0 or in the entire space and write

(a) Ji > o(§)
and
(b) fi =0

respectively. It is clear that (b} implies (a) but the converse is not true. In
Chapter 1 the following theorem is proved?®

! A set 8§ whose elements are real vectors « = (xy, ..., «,,) is called bounded if || = max; [ x|
is bounded when x is in 8, and closed, if it together with the elements of a sequence x(k) also
contains every = such that lim | — x| =o0. It is compact if it is both bounded and closed.

* The theorems I and III were announced in GARDING [3], an outline of the construction

of the Riesz kernel and the solution of Cauchy's problem in GArDING [2]. See, however, the first
footnote to Chapter 5.
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Theorem I. Let fi€Alg), (k=1,2,...). If there exists a point x such that
(z, &) #~ 0 and fi(x) tends to zero with 1]k whenever f. tends strongly to zero in the
plane (y, &) = o, then q is hyperbolic with respect to &.

Put f($,y) =e>¥~® where { is a complex vector such that ¢(f) =o0. Then
SI& -) is in A (g), it equals 1 abt the point x, and the proof, whose origin was a
remark by Hadamard ([4] p. 40), uses the fact that if ¢ is not hyperbolic with
respect to & then we can always find a sequence of vectors [, ..., (™, ... such
that ¢ ((®) = o for all k and f(C®,.) - o (&)

The main object of the rest of the paper is the following theorem which

is a strong converse of Theorem I.

Theorem II. Let fi€A(q), (k=1,2,...) and let q be hyperbolic with respect
to & Then if fi tends strongly to zero in the plane (y, &) = 0 it tends strongly to

zero tn the entire space.
Combining the two theorems we have the following concise theorem.

Theorem III. Let fr€Alg), k=1,2,...). Then a }zecessary and sufficient
condition that (a) implies (b) is that q is hyperbolic with respect to E.

The simplest not trivial hyperbolic equmation is the wave equation in two
variables which corresponds to the case » =2 and ¢ = (7 — (3. Then ¢ is hyper-
bolic with respect to &=(1,0). In fact, p()=q(&) =150 and g(t& + in =
=+ 0y +n))(t+ 70— 7u2) #0 when >0 (or t<o0). Also if f€A(q) one
has the elementary formula

ot
(2) S@) =} (fO, 2y + 2y + flO, 2 — 2p) + } ff,(ox tydt

PRy
where f'(z) =0 f(x)/0x,. Hence if 4(g)3f: and f; tends strongly to zero in the
plane (x, &) =ux;=o0, ie. on the xyaxis, it follows that fi(x) tends to zero for
all  and, more generally, that f; tends strongly to zero in the entire space.
This proves Theorem II in our special case. The proof in the general case is
similar. In fact, if ¢ is not constant and hyperbolic with respect to &, it is
possible to counstruct a linear functional K{f)= K (& z, f), in the case just con-
sidered given by the right side of (2), with the following properties.

! The proof rests mainly om a lemma on the rate of growth of certain algebraic functions.
This lemma is perhaps of interest in itself and it proves a conjecture by PETROWSKY ([9] foot-
note p. 24).
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It is a projection of C(oo) upon A (g), i.e. it is defined for all f in C(o0)
and is itself an element of A(g), and it reproduces the elements of A(g) so that

Slx) = K (&, x, f)

for all z if f belongs to A(q). If f tends strongly to zero in the plane (y, £)=o0
then K(&, -, /i) tends strongly to zero in the entire space. Moreover, if the
derivatives of order <<m of f vanish in a certain compact part B(x) of the plane
(v, §) = o, then K (£, x, f) vanishes, m being the degree of g. Finally, the deriva-
tives of order <m of f— K(£ -, f) vanish on the plane (y, &) =o0. At least
when ¢ is homogeneous one can write K explicitly in a form similar to (2) as
a sum of certain integrals over B (x).

The functional K also gives the solution of the problem of Cauchy to which
we give the following seemingly sophisticated, but in fact simple and convenient
form. Given an element g€ C(co), find an element » in A(q) such that the
derivatives of u —g of order <m vanish on the plane (y, &) =o0. In fact, one
solution is simply

ulx) = K (&, g)
and because the difference v of any two solutions is an element in A(g) whose
derivatives of order << m vanish on the plane (y, &) = o it follows from the pro-
perties of K that v(x) = K (£, x, v) =0 for all z and hence the solution is unique.

Conversely, assume that for a given £ % 0 and not constant ¢ and an ar-
bitrary g€ C(co) the problem of Cauchy has a unique solution H (£, z,g) with
the property that H (&, x,g:) tends to zero with 1/k for at least one x with
(z, &) 7% 0 whenever g — 0(&). Then if 4 (g) contains every element of the sequence
Jir - o Se ... and fr > 0(&) we get that fi(x) = H (&, z, fi) tends to zero with 1/%.
Hence the requirements of Theorem I are satisfied and it follows that ¢ is hyper-
bolic with respect to & It then follows that H (& «,g) = K (&, z, g) for all x and
all g € C(o0).

The continuity property of H used above is a variant of Hadamard’s classical
condition that the problem of Cauchy should be correctly set ([5] pp. 40—41).
Another variant was given by Petrowsky [g] who, however, restricts the be-
haviour of the function ¢ at infinity in the plane (y, &) =o0. The consequence is
that in his case there are other than hyperbolic equations, e.g. the heat equa-
tion, for which one can find a suitable correctly set Cauchy problem.
~ Most equations (1) which so far have been classified as hyperbolic are hyper-
bolic in our sense, in particular the equations considered by Herglotz [6] and
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Petrowsky [8]. Slightly modified, Petrowsky's definition runs as follows.! A homo-
geneous polynomial p of positive degree is called hyperbolic with respect to
&40 if p(£)# 0 and the zeros of the equation p(t£ + 7) =0 are all real and
different if # is real and not proportional te & 1f m is the degree of p it then
follows that p(t& +din)=imp(—ité+ n)#£0 when ¢t>0 (or t<o0) and 7§ is
real, so that p is hyperbolic in our sense. More generally, one can show that if
» is a homogeneous polynomial of degree m > o which in the sense of Petrowsky
is hyperbolic with respect to & and #’ is any polynomial of degree less than m,
then ¢'=p + ' is (in our sense) hyperbolic with respect to & If p is hyperbolic
merely in our sense, this need not be true. A rather trivial example is given
by ¢ =+ &,, a less trivial one by ¢ = 2(2— 3 + 3. In both cases the
principal parts are hyperbolic with respect to (1,0), but the polynomials are not.
Hence the hyperbolic character of a polynomial is in general not determined by
its principal part alone. It is, however, true that if a polynomial is hyperbolic
with respect to a vector & then also its prinecipal part is.

We study in the first section of Chapter 2 the effect of a linear transforma-
tion, ' =z M, where M is the transpose of a real, square and not singular

matrix M, upon (1). It is transformed into
g @/0)f (&) =o,

where f' (') = f(z' M—') = f(x) and ¢ (¢') = q(¢). We call the polynomial ¢ reduced
if there is no M such that ¢’ is a polynomial in ¢, ..., {; alone where I < n.
The fact that a polynomial is not always reduced introduces some complications
in the proof of Theorem II. Let £2(g) be the linear manifold of all real vectors
n such that q(tn + 5') =¢q(#') for all real ¢ and #%’. Then g is reduced if and
only if 2(g) contains only the element 7 =o.

Later in Chapter 2 we collect some facts concerning not constant hyper-
bolic polynomials. Let the polynomial ¢ be hyperbolic with respeet to & Then
the same is true of its principal part p. Let the common degree m of ¢ and p

! In the paper (8] Petrowsky considers only homogeneous equations with constant coeffi
cients, in [9] and {10), however, he extends what is snbstantially the definition given above to
very general systems of differential equations which need not even be linear. For them he solves
the problem of Cauchy. — The wellknown textbook Methoden der Math. Physik by R. COURANT
and D. HILBErT (Berlin 1937), has a terminology which differs from ours. There the equation (1)
is called hyperbolic unless it is elliptic and it is elliptic if the principal part of ¢ is a definite
polynomial. An equation which is hyperbolic in the sense of Petrowsky is called totally hyper-
bolic (L.e. II p. 373—374).
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be positive. Because p(&) 5% 0, the degree of p(t& -+ 5) with respect to ¢ is m
m

and we can write it in the form p (&) II (t + u,) where w, = u, (£, 7) are certain
1

complex numbers. It turns out that if % is real then also the numbers w, (&, 7)
are real. They need not all be different when # is not proportional to &, but
if they are, we have the case considered by Petrowsky. Let I'(g, &) be the set
of all real % such that min, u, (£, ) > 0 or briefly,

I'(g, & = (y; min, u, (& 7) > o).

It turns out that I'(q, &) = I'(p, &) is the interior of a convex cone containing &.
Also, if £€I'(g, &) then q is hyperbolic with respect to both & and — &, and
we have I'(q, &)= I'(q,£). We also consider the dual cone (= C(g, &) of
I'=1T(q, & defined as the set of all real vectors x such that (x,#)= o for all

n€lr, or briefly
Clg, &) = (@; @, =0, neI'(g, &).

It is convex and orthogonal to Q(g). Tts interior is not empty if ¢ is reduced,
and the part of ¢ where (x, &) < b is closed and bounded if £ €I

The central question in the Chapters 3 and 4 is the effective determination
of the linear functional K (&, =z, f). We use a method of fractional integration
developed by M. Riesz [11] for the wave equation. Again, let the polynomial ¢
be not constant and hyperbolic with respect to & Let Iy = I(q, &) be the set
of vectors & in I'=I'(q, &) for which there exists a t, << 1 such that ¢(t& +in)#o0
when % is real and ¢>t,. If £€ I then a suitable positive multiple of £ is in I}.
Let 5 be real, let & be in Iy, put {=§ + i7n and define ¢ ({)~ as e~@/ogg+iargq),
Then it turns out that arg ¢ and hence also ¢(¢) is if locally continuous also
singlevalued when & €Iy and 7 is real. Different choices of arg ¢ at a point
will affect ¢(£)~* only by a factor e 27?*¢ where k is an integer. Assume for a
moment that ¢ is reduced and that Ra > n'! Then ¢()~*is the Fourier-Laplace
transform’ of a continuous function @(a, ) which vanishes outside C, and we

have the reciprocal formulas
20 = [ Qla,a)e 57 da

Qaa) = (27" [ g(&) el dn

! R o means the real part of «.
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where the integrals are taken over the whole space. When ¢ =1¢2— (3 — - — (2,
in which case (1) becomes the wave equation, then ¢ is hyperbolic with respect
to any & such that q(&)>o0. One finds that I'=(y; &% >0, ¢ > 0), that
C=(x; 7 & =0, ¢@) = 0) and that with a suitable choice of arg ¢,

Q(a, z) = gla)e ¥ [at =2 22¢1 P(g) I'(a@ — } (n— 2))

when x€ (C and zero elsewhere. This, with a changed to {a, is the kernel of
M. Riesz.

Returning to the general case, we proceed as follows. Let S= S(£) be the
plane (y,& =0 and T = T(£) the region (y, &) >o0. When h€ C(o0), x€T and
Ra>n we define the Riesz operator I* by the formula

Ithie) = [ @la,x —y) k() dy.

All y such that x —y€C and y€T + S, ie. such that (x —y, & < (z, &), con-
stitute a compact set C(z), and the integrand vanishes outside C(x). Hence the
integral always exists. Let a =a,€ C(c0), let a.{y)=1 when y€ C(x) and let
a.(y) =0 when |y| = max; |y| is large enough. Let & € I, (g, &), put L =& + iy and

H,(Z) =£h(y) az(y) e~ GV dy.

Then by virtue of Parseval's theorem, another form of I*h(x) is
Fhig)=(a)™ [ H.(0) g (0) 59 dn.

When ¢ is not necessarily reduced, we define I*h(x) by this formula. Then it
is independent of &' and a, as long as £ € I'; and a, equals one on C(xz); and
the formula is valid as long as the integral is absolutely convergent, i.e. when
Ra>o0. It is shown in Chapter 4 that when x€ T, I*h(x) is an entire func-
tion of e, that for all values of a all its derivatives with respect to z are con-
tinuous in 7' and at the same time entire functions of a, that q(0/0 x) I**1h(zx) =
= J*h(x) and that I"*h(x)=q(0/0x)*h(x) when k=o0, 1, 2,... If h vanishes
on C(z) then I*h(x)=o0 for all a. Further, all the derivatives of Ih(x)= I'h(x)
are continuous in 7 + § and those of order <<m vanish on S.

Let I® be the Riesz operator constructed as above but with § changed to
— & Then I¢ h(x) is defined when x € T~ = T(— &) and it vanishes if h vanishes on
the compact set C-(x)=(y; z —y € Clg, — 5= — C, (y, & = (x, &). It turns out that
all the derivatives of I h{x) — Ih(x) vanish when x€S. We put Th(z) = I' h(x)
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when x € T-. Then I'h € C(c0) and one can prove that if h; — 0, then also Tk — o.
Also, if all the derivatives of h(x) of order < m vanish when z €S, or briefly,
if h(z)@o, (z€S), then

(3) h{x) = Iq(0/0z)h(z).

In terms of the operator I, the linear functional K (& x,f) is given by the

formula

K (&, f) =f(x) — 1¢(0/0z) f(x).
(m)

It follows from (3) that if f and g are in ((o0) and f(x) — g(x)= o, (x€8),
the right side of this formula does not change if we change f to g. Put!

m-—1
P: flx) = 2 (a, &z, &F f¥ (x — (@, &1 (, H a) k!
0
where a is a vector such that (@, &0 and f%(zx)=(a, O/Ox)kf(,c) Then
P:feC(0) and f(x) — P:if(x) ™o, (x€S), and consequently another form of
K (¢, f) is
K¢ =, f)=P:flx) — Iq(8/0z) P f(=).

Now P:f depends only on the values of f and its derivatives of order < m in
the plane (y,£) =o0 and it is easy to see that if f; — 0(&) then P;f; - 0. Hence
if fx —> o(&) it follows that K(&, -, fi) > 0. Moreover, if f€ 4(g) then

flz)=K(¢ =, f).

This proves Theorem II when ¢ is not a constant. If ¢ is a constant, it is not
zero 80 that 4 (g) contains ouly the element f= 0 and the theorem is trivially true.

It is clear that K(£ «,f) depends only on the values of fand its derivatives
in the pointset B(x)=(y;x —y€ C, (y, & =0), where C; =+ C according as
€T or x€T~, and B(x)=x when x€ 8. Moreover, B(x) is bounded and closed,
i.e. compact, and K (& z,f) vanishes if the derivatives of f of order <<m vanish
on B(x).

In Chapter 5 we consider the problem of Cauchy when a suitable surface
plays the part of the plane S = S(£), but only for the case that ¢ is homo-

geneous and reduced.?

t PE S is the beginning of a Taylor series for f with respect to the variable (x, &).

% In GARDING [2] the results of this chapter were announced for arbitrary hyperbolic and
reduced ¢, not necessarily homogeneous. See the first footnote to Chapter 5. The third footnote
to the same chapter contains a correction to GARDING [4).
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In Chapter 6, finally, we give some remarks concerning the domain of de-
pendence of the operator I and the operator J defined by Jf(x)=f(z)—
—Iq(@/0x)f(x). It summarizes the important progress in the theory of phe-
nomena connected with Huygens’ principle that has been made recently in a paper
by Petrowsky [8] and also in a paper by the author [4]. — I want to thank here
C. Hyltén-Cavallivg, who proved Lemma 2.2, and H. Jacobinski for a critical

reading of parts of the manuscript.

Chapter 1.
Proof of Theorem 1.

Let ¢ be an arbitrary polynomial in » variables with complex coefficients,
let £ =(&,..., &) > 0 be an arbitrary real vector and define 4 (¢) as in the in-
troduction. What is meant by fi > o and fi > 0(£) when fi, (k=1,2,...), is a
sequence of elements .in C(co) is explained in the introduction. It is assumed
that there is a real point z ={ay, ..., ) such that (z, &) =2, & + -+ + 2 &a5%0
and fx(x) > o with 1/% whenever 4(g)3fi > o(£) and we have to show that in
this case ¢ is hyperbolic with respect to & It is shown in Lemma 2.2 in the
next cha,pter-' that if ¢ is hyperbolic with respect to & it is also hyperbolic with
respect to — & Hence changing if necessary & to — £ we may suppose without
loss of generality that (x, &) > o.

Let  be a complex vector and ¢ a complex number (if any) such that

) q(té + ) =o.
Then A (g) contains the function
S8, E, y) = elr—mts+D),
Tt is clear that f(t,Z, ) =1 and when (y,&) =0 one has
@) ft, L, y) = et glv=0),

Clearly our assumption implies that we cannot find a sequence t®, ¥ satisfying
(1) such that f(¢®, (% ) > 0(&). Let us first assume that there exists a vector
¢ =1{" such that (1) is satisfied for all ¢. Let Df be a fixed derivative of f with
respeet to y and B a compact set in the plane (y, &) =o. “Then if ¢ is real, per-
forming the differentiation and putting (y, &) = o afterwards we get as in (2)

Dfi=Df(t,,y) = (M) 9, (M = o),
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uniformly in B. Letting ¢~ oo it follows that f; - o(£). Hence there can be
no vector ¢ such that (1) is satisfied for all ¢.

Let s be a complex number and put {=s{’ with arbitrary but fixed .
Then the polynomial ¢(r,0) =¢q(t& + o{’) in the indeterminates v and ¢ is not
zero for any complex value s of ¢.! Let the degree of ¢(z, o) with respect to
both indeterminates and the indeterminate = be m’ and m respectively. We are

going to show that m =m'. Write ¢(z, o) according to descending powers of 7,
¢(1,0) =gm(o)T" + ---.

If gn(o) is not a constant then m’ > m and there exists a complex number s,
such that ¢n{s) =o0. In a certain neighborhood of s =s,, every zero ¢ = t(s) of

q(t,s)=o0 is of the form #(s) = o0 or
(3) tls) =als — s (1 + 0(1),

where a # 0, b is rational and o(1) > 0 as s -~ s,. Not all ¢(s) are bounded when

s =gy, because then q(t', sp) = lim gy (s) [T (¢’ — £(s)) = o for every complex number ¢’.

Hence we may assume that b <o in (3). We also choose arg (s — sp) so that
a(s —s,)? is real and positive. Then Ré(s) =|a||s — s’ (1 + 0(1) and it is easy
to see that

Dfi=Df(ts), s, y) = O(ls — 50|~ ¥) e~ IMO, (M > o),

uniformly in B so that f; > 0(f) as s >s,. Next assume that gn is a constant
but that m' >m, in which case m is necessarily positive. In a certain neigh-
borhood of s= oo, every zero t=t(s) of g(t s)=o0 is of the form t(s) =0 or

() t(s)=as’(1 + o(1),

where a 5 0, b is rational and o(1) -~ 0 as s > oo. Not every b is = 1 because
otherwise ¢(f's, s) = qu I (f's —£(s) = O(s™) for every complex number ¢ which
contradicts the assumption m > m. Let b > 1 in (4) and choose arg s so that
as® is real and positive and consequently R¢(s) =|a||s’ (1 + o(1). Then one gets

Dfi=Df(ts), s, y) = O(ls|") eelel e = DR, (M, My > o),

uniformly in B so that f; — o(&) as s -+ oo,
Now let p be the principal part of ¢, so that ¢ =p + r where p is homo-

! To say that ¢(t,s) is zero means because v is an indeterminate, that it is identically zero,
considered as a polynomial in 7.
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geneous and the degree of p is greater than the degree of r, or if ¢ is a con-
stant, » = 0. Because ¢ is not identically zero, p is not identically zero. Hence
we can choose ¢’ so that p({) £ 0. If p(&) =0 then for ¢(v& + o) one would
have m' > m which is impossible. Hence p (&) 7 0, and m is the common degree
of p and ¢. If m =0 then q(t& + ¢5) = p (&) # 0. Consider the case m > o, let
n be real and consider the zeros t=1t(¢7) of the equation ¢q(¢& + in)=o0. Let
Ne(dn) attain its maximum ¢ (s) in the domain max; |n:] <s when 5 =7(s) and
t(¢n) = t(s). By virtue of the lemma proved next in this chapter, for sufficiently

large s one has t'(s) = 0 or
(5) t(s)=as’{1 + o(1)

where @ is real and not zero, b is rational and o(1) - 0 as s - co. It is clear
that (s)= O(s") for some b > o0, (actually ' =1). If ¢ (s) were not bounded
from above when s - oo, one would have ¢ >0 and b >0 in (5) and then

Dfs = D f(ts),n(s), y) = O(s¥) e =91 (M > o),
uniformly in B so that f; » o(£) as s -~ oo,

If ¢'(s) < t, one has q(¢t& + ¢7) £ 0 when ¢ >{, and # is real. This reduces
the proof of Theorem I to the proof of the followiug lemma.

Lemma. Let q(z, 04, ..., 0a) be a complex polynomial in the tndeterminates
T, Oq, - - ., On Such that when sy, ..., s, are real, the degree with respect to © of the
polynomial q(z)=q(z, sy, ..., sn) @s positive and independent of sy, ... snt Let

M (s) be the maximum of the real parts of the zeros of the equalion q(t) =0 when
max; |s] <s. Then for sufficiently large s, either M(s) = o or

M(s)=as’(1 + o(1)

where a is real and not zero, b is rational and o(1) ~ 0 as s > oo.

Proof. Let Mn==M,(s;, ..., s, be the maximum of the real parts of the
zeros of the equation ¢(z) =o0. It is clearly a continuous function of &,. .., S
Let |sy, ... ss] be the greatest of the numbers [sq], ..., [sa]. Let M=
= M(sy, ..., Sk, s) be the maximum of M, when sy, .. ., s; are fixed and s¢+41, ..., Sa
vary so that |si+1, ..., 8,] <s. It is also a continuous function of sy, ..., sk, s.
This is almost evident, but we give here a formal proof. Put My = My(s, ..., sk, §)

m
1 if we write ¢ in the form X 4, (01, .. -, 6,) % where g,, (61, ..., 6,) is not (identically) zero

0
this means that m > o and that q,,(s1, ..., 8,) is never zero.
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and suppose that |s;—s1, ..., sc— sk, s — 8| <48, Choose siy1, ..., s» such that
My = Mn(sy, ..., s) = My and put s;=cs;, (> k), where ¢ =1 when s = s and
c=s"/s when s’ <s. Then|s—si,...,sn—sn|<[6,(1 —¢)s| <[6,5s—¢ | =0 and
also |ski1, ..., sn] <e¢s=<s. Hence by the definition of M; we get M;= M, =
= Ma(st, ..., sn) so that My = My — | M, — M,|. Now when |t —1f1,..., tx—t,| <&
and |t, ...t t1, ..., ta] is less than some constant greater than |s;, ..., sn,
Sty ..., S»] then by uniform continuity, |Ma(ty, ..., 1) — Ma(t, ..., )] = &(9)

where ¢(d) > 0 as 6 > 0. Hence My = My — ¢(d) and by symmetry, My = M; — &{0)
so that My — Mi| < &(d).

Let C= C[uy, ..., w] be the ring of all real polynomials in the indeterminates
#y, ..., w. An element g€ C is called a proper factor of p€C if p=¢qq where
g'€C and ¢ and ¢’ are not real numbers. An element p is called primitive with
respect to w, if it contains no proper factor independent of ;.

Let A; be the class of all real polynomials P= P(t, 0y, ..., 0k, 0) < 0?

satisfying
(6) P(Mk,sl, - Sk,S):O
for all real s,,..., s, s such that s = 0 and having no proper factor with the

same property. It then follows trivially that P has no proper multiple factors
but also that it is primitive with respect to v. In fact, let P = P, P, where
P, is primitive and P; is independent of 7. The formula (6) shows that
Py(My, sy, ..., 8, 8)=0 at every point where Pj(s;, .+ Sk, 8) 7% 0. But these
points are dense in the region s =0 and M; is continuous there so that (6)
follows for P, and consequently P; is a constant so that P is primitive.

That 4, has at least one element can be seen as follows. There is certainly

a real polynomial ’(z, oy, ..., 04) % 0 which vanishes when ¢;=3;, (=1, ..., n),
and v=§( + &), (J,k=1,...,m), where #, ..., tn are the m > 0 zeros of the
equation ¢(z, sy, ..., s») = 0. Consequently it has at least one factor @ in A,.

Assume now that 2> o and that PeAd;. We are going to construct an
element P'€4;_;. If P,=0P/0or=o0, then P is independent of oy, so that
because M; is continuous it is independent of s; for such s, ..., sk, s that
P(z,s1,..., 8,8 7 0. But these are dense in the region where M; is defined
so that because Jf; is continuous it is independent of sx for all values of the
other arguments. Hence P’ = P€ A;_;. Assume that P o and let

! From now on in this chapter, small Greek letters indicate indeterminates, That P = o then
means that all the coefficients of P vanish.
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Mi—y = My (sy, ..., Sk—1, 8k, 8)
for fixed s;, ..., s—1 and s. If |si]| =s we have one of the equalities
(7) P(Mi1, 81, ..., Sk~1, T 5, 8) =o0.

Assume next that |si| <<s. Let the values of dP/07 and P; be ¢, and ¢, re-
spectively when 7= Mj—1, 0y =51, ..., 0x =35, and o =s. If not ¢; = ¢y = 0, the
plane curve whose points are (s, My), (|si] <s), has a tangent at the point
(s, Mr—1) and because My < M;_, it follows from elementary considerations that
this tangent must be parallell to the s;-axis and this again implies that ¢, =o0.
Hence we get

(8)

7 d 4
P(My-1, 81, ..., Sk—1, $k, 8) =0
’
Py(Mi—1, 81, .. ., Sk-1, Sk, §) =0,

and these equations are also true if ¢; =¢; = o.

Consider the discriminant B of P with respeet to or. It belongs to
C=Clz, 04,... 0k—1,0] and we want to prove that it does not vanish. Put
C,=Clr,0q,..., 0, 0], let C' be the quotient field of C and let C’[oi] be the
ring of all real polynomials in o with coefficients in C’. It is clear that an
element in C'[o:] whose derivative with respect to o; vanishes is independent
of o:. Hence because P depends on ¢, it follows® that if R =0 then P is of
the form P} P, where P, and P, are in O’ [o:] and P, depends on o;. But then?
we can also write P as P?P, where P, =p, P, and P, =p, Py are in C; and p,
and p, are suitable elements of C’. Hence P has the proper multiple factor P,
so that P€ A, against the assumption. Consequently R # o.

It follows from (8) that

(9) R(Mk_l, S1y ¢ 0oy SE—1, 8) = 0.

Moreover, Pt = P(z, gy, ..., T 0, 0) % 0 because otherwise P has the factor o; F o
which implies that P is not primitive with respect to v against the assumption
that P€ Ax. Hence if P; = P* P~ R we have P; £ 0 and by virtue of (7) and (9)

Pl(Mk_l, S1y + ooy Sk-1, S) =0

when s=o0. Hence P has at least one factor P’ in Aj-;. Starting from @ in
A, we can thus construct an element Qn-1€A,—; and, continuing, finally an

! VAN DER WAERDEN [12] I p. 93.

2 le. p. 75—77.
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element G in A,. Because M (s) = My(s) we get G(M(s), s)=o0, (s = 0). Now in
a neighborhood N of s = oo, every solution f of G (t,s)=o0 is equal to one of a
finite number of different convergent series of certain real fractional descending

powers of s, one of which may vanish identically while the others have the form
(10) as® + - =as’(1 + o(1),

where @ 7 0, b is rational and s is the highest power of s that occurs in the
series, so that o(1) > 0 as s - co. All these series assume different values in a
suitable N and because M(s) is continuous it is identical with one of them there
and we assume that it is (10). Then a is real because it is the limit of M (s)s—?
as s-»00, and this proves the lemma, which of course also is true if we by
M(s) mean the minimum of the real parts of the zeros of ¢(z) = o in the region
max; |si] < s.

Chapter 2.
Hyperbolic Polynomials.

Reduced polynomials. Let ¢ ({)=¢q(Cy, ..., {x) be a polynomial in {y, ..., x
with complex coefficients and consider the differential equation

(1) q(0/0 x) f(x) = o,
where f(x) = f(zy, ..., x») is a complex and infinitely differentiable function of
n real variables xy, ..., x,. Write 2 =(x;, ..., x,) and consider a real linear
transformation .

2 =xM,

where M is the transpose of a real quadratic non-singular matrix M. It then
follows that 0/0x = (0/02’) M so that (1) becomes

(2) q(8/02’ M) fz' M) =o.

Let us put ¢’ (¢)=g¢(C' M) and f' (&) =f(’ M~Y). Tt is clear from (2) that
f=/f" is a linear one-to-one mapping of the solutions of (1) upon the solutions of

(3) g @/ox) f () =o.

Because the argument d/0x of ¢ in (1) and the argument x of f transform
differently and we have to consider arguments of ¢ which like x are vectors
with numerical components, it is convenient to do as follows. Consider two vector

spaces £ and E* where E consists of all vectors with » real components and
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E* consists of all vectors with » complex components. We denote the elements
of E by Latin letters x, y, ... and those of E* by Greek letters {, & 9, ... If
E* is subjected to the linear transformation ¢ — ¢’ M, the elements of E should
be transformed according to the formula x -2’ M~1. In such a way the scalar
product
(@, =z 0+ + anla

remains invariant if we substitute 2’ for x and {’ for {. When it is a complex
or real vector, the argument of ¢ should always be thought of as an element
of E*, while the argument of a solution of (1) ought to be considered an element
of E. We have tacitly stuck to this convention in the preceding chapter.

A suitable choice of M may make (3) easier to handle than (1). Let [ be
the least of all integers I’ for which there exists a matrix #/’ such that ¢ (¢’ M)
is a polynomial in &,...,{r only when &, ..., ¢ are considered as indeter-
minates. If M is a matrix corresponding to I it is clear that w141, ..., an enter
into (3) only as parameters. A polynomial for which [ = » will be called reduced.

Let ¢ be an arbitrary polynomial in % variables with complex coefficients.
The following concept is useful.

Definition. Let 2(g) be the set of all real vectors 7" in E* such that

gy +ty)=qn)

for all real numbers ¢ and real vectors z in E*.

Lemma 2.1. The set 2(q) ¢s linear over the real numbers. A polynomial q s
reduced if and only if Q(g)=o0. If the real vectors 6V, ... 0" are linearly
independent and @'V, .. 0™ constilute a basis of Q(q) then ¢'(C1, ... ) =
=g 00 + -+ 0™ 45 reduced.

Proof. If %' and %" are in Q(g) then

qn+tq + ") =qlun+{q)=qln
for all real % and real ¢ and ¢’. Hence £(g) is linear. Assume that ¢ is not
reduced and let x4, ... u® be the columns of such a matrix M that (' M) =
=gq(Gu™ 4+ - + L p™) is independent of {n. Then q{y + tu™)=q(y) for all
real  and ¢ Hence Q{g) contains the element u™ < o. Conversely, suppose

that o 4" €2(g) and let 4™, ..., 4"V and x™ =3 be a basis for all real
vectors 7. Then

q (Ci M(l) 4 o+ C; M(n)) =gq (Ci Iu(l) 4+ o 4 C;n—l Iu(n-l))
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for all real {1, ..., {». But then the same equality holds for indeterminate {1, ..., {n
and consequently ¢ is not reduced. As to the last assertion of the lemma, the
same argument shows that ¢ (6% + --- + ,6®) is a polynomial in {1, ..., { alone,
say ¢’ (C1, - . ., &1). If ¢’ were not reduced, then one could find real numbers 73, . . ., 9
not all zero such that

O m+itg, .. o+ tg)=qbpn, ..., 7

for all real ¢ and %y, ..., 7. But then ¢(y) = q(y + tn”) for all real ¢ and % if

n 7 Y| n n n
' =n6Y + - + 5,09, Hence 05" €R2(q) and 6¢+V .. . 6" is not a basis of
Q2(q) against assumption.

- Hyperbolic polynomials. Let E consist of all real elements in E*, ie. of
all vectors with » real components. Let ¢ be a polynomial in % variables with
complex coefficients, let it be hyperbolic® with respect to £ € E and let the degree
m of g be positive. If p is the principal part of ¢ and 5 €E, then because
p{&) # o, the degree of ¢{(t& + ¢n) =p(&)t™ + --- with respect to ¢t is m. Hence
there are complex numbers v, (&, 79), (v=1, ..., m), such that

(4) g(té +in)=p@ [t + v. & in)
1

for any complex ¢ Let ¢ be the real and J¢ the imaginary part of {. Because
g is hyperbolic with respect to £ we get

qgté+in)=qRt&E+1JtE+ )40

if Rt>1,. Now q(t& + 7n) vanishes when ¢t =— v,(&,7%). Hence max, — Rv, (£,79) <,
so that

(5) minw ?va (é, in) = — fo

for all real 5. Conversely, if p(&) < 0 and (5) is satisfied, it follows from (4) that
q(t& + in) # o when Rt >, so that ¢ is hyperbolic with respect to &.

It follows directly from the definition that if ¢ is hyperbolic with respect
to &, it is also hyperbolic with respect to any positive multiple of & The same
conclusion is, however, also true for the negative multiples of £ In order to
prove this it is sufficient to prove the following lemma.

Lemma 2.2. If a polynomial q is hyperbolic with respect to &, it is also hyper-
bolic with respect to — &.

! See the definition given in the beginning of the introduction.
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Proof.! If ¢ is a constant it is not zero, and it follows that ¢ is hyperbolic
with respect to all real vectors, in particular —&. If ¢ is not a constant we
can use (4). The sum R = Rey(&,29) + - + Ron(& i) is a polynomial in
N1, ..., Nn of degree =< 1 and by virtue of (5) bounded from below and hence it
must be constant. But then with 7, = Rv,(§ 7)) we get

rv=R—ri— =1y —ry1— - —rm= R+ (m—1)t

for all . But then it follows from (4) that ¢ (—¢£+77n) £ 0 when ¢ > R + (m—1) f,.
Also p(— &) =(—1)"p(f) # 0. Hence the lemma is proved.

The degree of p(t& + n) =p(£)t™ + - - with respect to ¢ is m. Hence there
are m complex numbers u, (&, ), (v =1, ..., m), such that for any complex ¢,

(6) p(te+ ) =p@& ] + w & n)
1

and in particular when {=o,
(7) pm) =p @[] w(&n).
1

The following identities in which @ 7% 0 is a complex number, & a vector in E*
such that p (&) # o, 7 an arbitrary element in E* and a suitable labelling of the
numbers u, (£, %) is understood are immediate consequences of (6) and the homo-
geneity of p,

w8 =1, w(an=aul§mn),

(8) wlad n)=alu,(&n), u(&E+an) =1+ au(é ),
uy (&, 8) = u 1 (g &)

It is clear that (6), (7) and (8) are valid when p is any homogeneous poly-
nomial of degree m and p(&) # o.

Lemma 2.3. A4 necessary and sufficient condition that a homogeneous polyromial
p of positive degree s hyperbolic with respect to & is that p(£) % o and that the
numbers u, (&, n) defined by (6) are all real when n is real.

Proof. Let p be hyperbolic with respect to £ Applying (8) we get if a and
7 are real

Ru, (& ain) =— aJu, (& 7).

' T owe the proof to C. HYLTEN-CAVALLIUS.

2 - 642127 Acta mathematica. 85
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By virtue of (), the left side is bounded from below for all » and real a. But
this clearly implies that Ju, (&, ) =0 for all ».

Conversely, if p(£) > 0 and the numbers «. (£, n) are real when 7 is, applying
(8) we get

pltE+1in) = Ht+1uv\5 n) #~
i

when ¢ > o {or ¢ <o), so that p is hyperbolic with respect to &.

Remark. Multiplying both sides of (7) by p(&)~! we get

= [T w (& »).

Here the right side is real so that p(£)~!p(n) is a real polynomial in 7.
Our next lemma is classical.

Lemma 2.4. Let
t”‘—i—alt’"“1+' Ht_‘tv
1

and

m

e+ by tml ot b= [ (t—s)
1

be two polynomials with complex coefficients. Then there exists a labelling of the
numbers sy, ..., sm such that max, |t, —s,| tends to zero when ay, . .., am are fixed
and max, |a, —b,| tends to zero.

Ostrowski! proved the more precise result that if

ela, ) = 4m max, (1, [a, |1, [17) (3 lau—bal)12m,

“

then there exists a labelling of the numbers s;, ..., sy such that
max, |t, — s, | < ¢a, b).

Lemma 2.5. If a polynomial q is hyperbolic with respect to E, then also its
principal part is.

Proof. If ¢ is a constant, then p=g¢ and the lemma is trivial. Hence
assume that the degree m of ¢ is positive, let (6), (7) and (8) refer to the prin-

1 (71 p. 209—212.
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cipal part p of ¢, let  and s 0 be real and put ¢, (f) = s~ ™ p(£)~1q(st& + is7).
Then as s - oo, q;(f) =™ + --- considered as a polynomial in ¢ tends to p,(f) =
=p(&) 1p(t€é + ¢n). Now by virtue of (4) and (6) the zeros of ¢y (t)=o0 and
pi{ty=o0 are t=—s"'v, (& ¢sn) and t = — u, (& i) respectively, (v =1, ..., m).
Hence the preceding lemma combined with (8) shows that

min, s~ R v, (£ 7s9) > min, Riwu, (& )

as s—>oco. Here by virtue of (5), the limit of the left side is == o so that

min, R7wu, (&, 7) = 0. Hence changing 5 to —z and using (8) we get
o = min Réu, (§, — ) = min, — Rew, (&, ) = — max, Riu, (§ 7),

so that max, fiu, (£, 1) <o. Hence all the numbers u,(&, %) are real when 7% is.
Hence Lemma 2.3 shows that p is hyperbolic with respect to &.

The converse of this lemma is not true. In fact, p = {} is hyperbolic with
respect to £ =(1,0) but putting ¢ =} + ¢, we have

Q& +im) = (t + dm)® + ima = (E+dm + Ving) (¢ + iy — Vi)
so that
min, Rv, (&, ¢9) = min (RVig,, — RVing) = — Vi|n|

which is not bounded from below. A less trivial example is given by
=3@-0+ &

Now there is one important case when the converse of our last lemma is
true," namely when ¢ is not degenerate. Let (6) refer to the principal part p
of ¢. We say that ¢ is not degenerate if ., (£ n) < u, (& %) when » > u and 7
is real and not proportional to & To prove our assertion write ¢ (s) = q(s& + <),
pls)=p(s& +1in) and r(s)=1r(s& + {n) where r =g — p and resolve gp~! into
partial fractions as follows

) 1P =1+ p = 3 T

where p’(s) =dp/ds and u, = u, (£, ) and where we have used (8). Let E; be a

linear subspace of the space E of all vectors with » real components such
that E: does not contain & and £ and E; together span E. By assumption,

m
min, |p’ (— du,)| = min, |p(&)| JJ| — u» + u.| has a positive minimum M; when
u=1
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n€E; and |7|=max; || =1. Now according to (8) every u, is homogeneous
of order 1 in 7. Hence
min, {p’(—iu)| = My [
when n€E;. Because r is of degree < m then max, |7(— zu,)| = O(|5|'"™) when
7| = 1. Hence there exists an M, such that max, |r(—iw)/p’ (—iuw)| < M,
when |7]|=1 and 5 €E; so that. by (9)
la(s)[ = |p ()] (1 — (Rs) " m M) >

if Rs>My=mM, and n€E; and |p|=1. When n€E; and || <1 then
max, — Rov, (£,79) has a maximum M. Hence ¢(s) =q(Rs& + iJsé+in)#o0
when Rs > max (M;, M,) and 5 €E; so that ¢ is hyperbolic with respect to &.

Let the degree m of the polynomial ¢ be positive, let (6) refer to its prineipal
part p so that

pite+n)=pE ¢+ wEn).
1

It follows from Lemma 2.5 and Lemma 2.3 that the numbers w, (£, %) are all

real when # is real.

Definition. Let I'(q, &) be the set of all real vectors & for which
min, u, (£, §) > 0.1
1t follows from (8) that I'(q, &) contains £. Because min, u, (&, &) is a continuous
function of &, I'(¢, &) is open and hence it also contains all & which are suffi-
ciently close to & By virtue of (7) we get

m

(10) pE)=p@E [[u(& &) #0

1

if &' €I'(qg, £). More detailed information is given in Lemma 2.8. For the moment

we want to prove

Lemma 2.6. Let the polynomzial q be not constant and let it be hyperbolic with
respect to & so that q(t& + in) # o when Rt > t, and n is real. Let & € I'(q, &) and
let Rs=o0. Then also q(t& + s& + in)# o0 ¢f Rt >ty and n is real.

Proof. Let m > o be the degree of ¢ and p its principal part and put with
complex ¢ and s

nlt,s)=q(té+s& +in)=p@E) "+ p(&)s™ + -

! The set I'(g,&) is also the largest set in E which is connected with & and only contains
vectors & such that p (&) # o. This is perhaps the simplest definition.
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By assumption, p(£) # 0 and it follows from (10) that p(&’)s o. Hence the
equation ¢;(f,s) =0 defines a (1,m)-correspondence between s and ¢ and also
between ¢ and s. Let ¢, ..., sw be the correspondents of ¢ and %, ..., {n those

of s. Consider
a(s) = max, R¢,.

Because ¢ is assumed to be hyperbolic with respect to &, it follows that
G (t,s)=q(Rt& +s& +iQté+m)#o

when Rt>¢ and Rs=o0. Hence we know that a(s) <t when Rs=o0. In
order to prove the lemma it is obviously sufficient to prove that the same in-
equality is true when s> o.
Consider also the function
b (t) = max, Rs,.

It is continuous and -we want to study it when ¢ is large. Put
his)=t=mp(E) 1 qu(t, ts) =t p(&) 1 q(té + ts& + in)

It is clear that the zeros of h(s) are t~ls,, (#=1,...,m). When |{| > co then
h(s) =¢™ + --- considered as a polynomial in s tends to

h(s)=pE) " p(E +sE)=sm+ -

Using (6) and (8) we may write hy(s) as
@ L+ su & £)).
1

Because & €I'(g,£), the numbers u, (& &) are all positive. Hence the zeros of
hy(s) are —u;1(& &) and consequently it follows from Lemma 2.4 that

(I I) max, mt—l Sy > _minv u;l (57 S’)

as |t| > oo.

Assume now that there exists an s’ such that Rs’ > o0 and a(s')=1t,. Then
s has at least one correspondent ¢ such that R¢ =¢,. Now s is also one of
the correspondents of ¢ so that it follows that b(¢') > 0. Let ¢(z) be a complex
continuous function of the real variable 7 such that c(o)=1¢, Re(r) is strictly
increasing and c(v) =7 when v is large, and put ¢t =c¢(zr). Then as 7 goes from
o to +oo, b(t) goes from b(t') >0 to —oco. In fact, when 7 is large then =71
is large, real and positive so that ¢-15(t) equals the left side of (11). Because
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& €eI(q, &), the right side is negative and hence b(f) > —co as v - +oco. Hence
there exists a ¢’ such that R¢' > R¢ =1, and b(¢")=o0. But then ¢’ has at
least one purely imaginary correspondent s”” and hence p (&)1 q(t” &+ s & +in)=o0
which is impossible. Consequently a(s) <, when s> o and this proves the
lemma.

We can now prove the following important lemma.

Lemma 2.7. If a polynomial q of positive degree 1s hyperbolic with respect to &,
it is also hyperbolic with respect to any & such that &€ I'(q,&) or — & €1'(g, &).

Proof, Let £ €I = I'(q,£). The formnula {10) shows that if p is the principal
part of ¢, then p(&) >~ 0. Because I' is open there exists a positive number a
such that & —a&€l" Then by virtue of the preceding lemma one has

qt& +in)=qtaE + tE& —ad +in)#o0

when 7 is real and R¢> max (0,a"14,). Hence q is hyperbolic with respect to &'
If — & €l then ¢ is hyperbolic with respect to — & and hence also, by virtue
of Lemma 2.2, with respect to &

Lemma 2.8. Let ¢ be a not constant polynomial and let it be hyperbolic with
respect to & Then I'=1Iq, &) s open, convex and not empty. If p is the principal
part of q, then I'(p, &) =1T(q,&). If a>o0, €I and &' € Q(p) then also a& and
&+ & arein I and I'(q, &)= I'(q,E). There are real vectors x such that (x,n) =
=xy1 + < + Zatln > 0 when el

Proof. We know already that I' is open and that it contains & It follows
from Lemma 2.5 that p is hyperbolic with respect to & Hence we can form
I'(p, &) and it is clear that I'(p, &= I'(q,&). If @ > o0 and & € I" then by virtue
of (8), min, u,(¢, af’)=a min, u,(§, &) >0 so that a&' €. 1f & €Q(p) then
pE+tE +tE) =p(&+ t&) for all real ¢ so that because p is homogeneous
we get that p(t&+ & + £ )=p(t& + &) for all real £. Hence (6) shows that
min, u, (&, & + &) = min, u, (£, &) > 0 so that & + &’ €I Because £2(p) is linear
it also follows that & + b&” €I for all real b.

Let n and the number s be real, let £ € I" and consider

a=a(s) = min, u, (€ s& + 7).

We want to prove that it is a strictly increasing function of s.
Put ¢,(t,s) =p(—t& + s& + n) with real s and ¢. Then the coefficients of
t™ and s™ in ¢ (£, s) are (— 1)"p (£) and p (&) respectively. By assumption, p(£) # o
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and it follows from (10) that p(£’) % 0. Hence the equation ¢ (¢, s) = 0 defines
a (1, m)-correspondence between ¢ and s and also between s and {. Let the
correspondents of sbe ty, ..., twand s, ..., sy those of {. By virtue of Lemma 2.5
and Lemma 2.7, p is hyperbolic with respect to both & and &. Hence it follows
from Lemma 2.3 that if s and ¢ are real, then also #, ..., fn and s, ..., sn are
real. It follows from (6) that

a(t,s)=p(—té+s& +n)=pE [l (—t+ w.(&sE + )
1

and hence that

a(s) = min, ¢,.
Consider also

b(t) = max, s,.

It is a continuous function of ¢ If |¢| -~ oo, then
h(s)=pE) ™ (t ts) =p(E) tmp(—t& + st& + 1)
considered as a polynomial in s tends to
hi(s) =p &) p(— &+ s&).
Now ¢~ ls, are the zeros of h(s) and by virtue of (6) and (8), those of hy(s) are
u, (E, 8 =u;1( &), (w=1,...,m). The coefficient of s™ in h(s) is 1. Hence
using Lemma 2.4 we get

min, {1s, - min, u71(&, &)

v

when |t] >oco. Because & € I', min, %! (£, £) > 0 and hence the right side is positive.
Hence b(t) = max, s, = ¢ min, t"'s, > —o0 if 0 >t > —oo.

We can now prove that a(s) is a strictly increasing function of s. Assume
that s <s'. Because s' is one of the correspondents of ¢ = a(s’) it then follows
that b(t) >s". Now b= b(f) is continuous and tends to —oo when ¢ does. Hence
there exists a ¢ << ¢ such that b(f) =s. Because ¢ is one of the correspondents
of s it then follows that a(s) <t <t =a(s'). Hence a(s) = min, u, (£, s& + 7) is
strictly increasing. A slight modification of the above proof shows that also
max, 4, (§, s& + ) is a strictly increasing function of s.

Assume now that & and £” both are in I. Then we get

0 < min, u, (&, &) < min, u, (£, & + s&”)

when s > 0. Hence in particular & + £” €' so that I' is convex. According to
Lemma 2.7, I'(g,&) has a sense. Our last formula combined with (7) and (6)
shows that
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m

0 p&) [[un(t s& + &) =ps& + ) =pE]]s + w&, &)
1

1

when s=o0. Hence the real numbers u, (&, ") are all positive and this proves
that if &'€I'(q, &) then &' €I'(q, &) In particular, &€ I'(q, &). Interchanging

& and & we get I'(q,&)=TI(q,&). If £ €l the sum Zuv(é', n) is linear and
1

homogeneous in % and real when 7 is real and hence of the form (z, )=
=xym + - + Tayn with real z. It is clear that (x,7) > o0 when €I This
completes the proof of the lemma.

To the geometrical intuition, I'(g, &) appears in the general case as the
interior of a convex infinite ditch situated entirely on one side of any plane
(z,n) ==o0. The edge of the ditch is the linear manifold Q(p). It will be shown
later that Q(p)= 0(q). Hence if g is reduced, Q(p) contains only the element
zero, the edge reduces to a point and I7(g, &) is a proper convex cone.

Let the polynomial ¢ of positive degree be hyperbolic with respect to £, let
£ €I'(q & and let B(£) be the set of all real numbers #, with the property that
q(t& +4n) £ 0 when ¢>t, and 7 is real. Then B(&') has a least element b (&)
and consists of all #, =b(£). In fact, B(¢) is closed and by Lemma 2.7 not
empty. Since the degree of g(t& + in) with respect to ¢ is positive, B (&) does
not consists of all real numbers, which implies that it is bounded from below.
Hence B(f) has a least element b(&) and it obviously consists of all numbers
to = b(&).

Definition. Let I (g, &) be the set of all & € I'(q, &) for which there exists a
number fy < 1 such that q{t& + 77n) % o for all real n when > ¢,.

It follows from this definition that if & € Iy (g, &) then (&) < 1 and con-
versely. 1f ¢ is homogeneous then b (&) = o for all & and hence I (g, &) == I'(q, &)
In the general case we have

Lemma 2.9. Let the polynomial q be of positive degree and let ¢t be hyperbolic
with respect to & Then I'y(q, &) is open and connected. If & € I'(q, &) then a suit-
able positive multiple of & is in Iy(q, &). If §€ly(q &) and £ €' (q,&) then
E+8el(q8. If I' is a compact subset of T'y(q, &) then there exists a number
b <1 such that b(&)<b when &€,

Proof. Let s >o0. If ¢(t& +i& o0 for all real  when t>>{#, then
q(ts& +in)2 0 for all real  when ¢>s"17¢ and conversely. Consequently
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Cb(s&)=s5"1b(¢). Hence if £€I'=TI(q,£) and s> max (0, b(&")) then s& € I"and
b(s&)=s"1b(f)<1 so that s& €Iy =1Ty(q, &). If &€, and £ €T, it follows
from Lemma 2.6 that ¢(t@& + &)+ i9) £ o for all real 5 when ¢ > max (0, b(&).
Hence
H(& + &) < max (o, b(&))

and because the right side is less than 1 it follows that & + & €. If & and
¢’ are in I, then because I" is open we can choose a > 0 so small that ¢ < 1
and & —a&” €I. But then s& and &’ + s(& — a&”) are both in Iy when s=1
and s = o respectively. The two expressions are equal when s=ga"1. Hence I}
is connected.

To prove that Iy is open we do as follows. Let & € I. Then we can choose
a number s> 1 such that sb(&) < 1. Because (s— 1)& €I and I' is open we
can also choose a number 6 = §(&',s) > o which is so small that &’ = (s — 1) & +
+ sn'€I" whenever 7’ is real and |7'|=max;|7:|<9d. Then also & + 7y =
=1+ (1—s V) +9€rl, and

(& + %) =sb(s& + sy)=sb(& + (s— D& + s7) =
=sb(& + &) < smax (0, b&)) < 1.

Hence & + ' €1y so that I3 is open, and if I equals the neighborhood of &
which consists of all & + 5" where %’ is real and |5’| < ¢, then the last assertion
of the lemma follows. Now any compact set I” can be covered by a finite
number of such neighborhoods and hence the lemma is proved.

As an illustration of this chapter we shall consider two important homo-

geneous hyperbolic polynomials.

Example 1. Put g(y) =p(n)=nf — 9} — - — 52 in which case (2. 1)! becomes
the wave equation. Let £=(1,0,...,0). Then u (£, ) =19, + (93 + - + 73" and
us(E,m)=n — (i + - + 53" are both real if % is so that ¢ is hyperbolic with
respect to £ If uy(E &) and uy(E, &) are both positive then & > o and p(&) >0
and conversely. Hence I'(q, &) consists of all real vectors & such that & > o and
p(&)>o0. It is easy to see that if ¢ is hyperbolic with respect to &, then either
&or —¢&isin I'(q,§).

Example 2.2 Let 7 be complex numbers such that 7y = %% (j, k=1, ..., 7).
Then the matrix 7 =(n;;) is hermitian. It is determined by the 7 = @2 real

! The formula (1) in Chapter 2.
? See GARDING [4].
® When @ is a complex number, a* denotes its conjugate.
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numbers 7;;, (e + n), —3e(mpie— nf), (j<k). Let 4, ..., 7. be these numbers

taken in some order and put

q(n) = pn) = det 7.

If & and 7 are hermitian and & is positive definite, then p(£) > o and the equa-
tion p(s& + n) =0 has only real zeros so that ¢ is hyperbolic with respect to &
One finds that I'(g, &) consists of all positive definite matrices. Similarly if £ is
negative definite.

Three lemmas. We now come to three lemmas connecting the notions of
hyperbolic and reduced polynomial.

Lemma 2.10. Let the polynomial p be not constant, homogeneous and hyper-
bolic with respect to & Then p s reduced <if and only if the equality

pé+tn)=p(f

Jor some real 1 and all real numbers t implies that n=o.

Proof. Let n be real and let p(£ + t) =p(& for every real £. Then if
m >0 is the degree of p, also p(t& + n) =t"p (&) for every real ¢, so that if (6)
refers to p we get u,(£,9)=o0, (v=1,...,m). Let &€ '(p, &). It was shown in
the proof of Lemma 2.9 that in this case min, u, (&, t& + %) and max, u, (&, t& + 7)
are both strictly increasing functions of ¢ Now both vanish when ¢ = 0. Hence
using (7) and (6) we get

o#pE[[us(EtE +m)=pt& +n)=pE [+ w&, n)
1 1

when t>o0 or t<<o. It follows from Lemma 2.7 and Lemma 2.3 that the
numbers «, (&', 7n) are all real, and hence they all vanish. But then p(t& + ) =
= " p(£) and consequently also p(& + tn) =p (&) for all real ¢ if only & € I'(p, &).
Now I'(p,£) is open and hence the last equality follows for all real ¢ and all
real £. Hence if p is reduced it follows that  =o. If p 18 not reduced there
exists a 77 0 such that p(& + t5) =p (&) for all real ¢ and real £ and hence
also for & =& This proves the lemma.

Lemma 2.11. If a polynomial q of positive degree is hyperbolic with respect
to &, p is the principal part of q, n is real and p(& + tn) is independent of t then
also q(& + tn) is independent of t.
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Proof. Consider the polynomial ¢, (s, {) =¢(s&+¢%). By assumption, p(s&+ )=
=s"p(&+ ts~1n) =s"p(&) where m is the common degree of p and ¢ and s # 0
is real, and hence p(s& + ty) = s™p (&) for all real s and ¢t. Hence ¢, is of the form

(12) p(&)s™ +11(s,9)

where the degree of r, is less than m. Because ¢ is hyperbolic with respect to
& it follows that if p, is the principal part of ¢,, then p,(1,0)=p(&) #o.
Moreover, qy(s,7t) =q(s& + 2tn) ¢ 0 when ¢t is real and s is greater than some
fixed number and hence ¢; is hyperbolic with respect to (1,0). Let v1(f), ..., vn (¢
be complex numbers such that

01 (5, 0) =p (&) f[ (s — va (D)

for all complex s and ¢. It follows from (12) that if |¢] > oo, then p (&)~ =™ g, (st, 1)
considered as a polynomial in s tends to s™. The zeros of the two polynomials
are t~1vy(f), ..., t7 vn(f) and o, ..., 0 respectively and the coefficient of s™ is
one in both. Hence Lemma 2.4 shows that

(r3) max, [v, (t)| = o(|t])

as |t] >oo. Because ¢, is hyperbolic with respect to (1,0) it follows that max, Rv, (?)
is bounded from above when t is real. Now by the classical theory of algebraic
functions there exist m descending powerseries in (1™, 7, (), each containing only
a finite number of positive powers and convergent in a suitable neighborhood
N of t=oco, such that when t€ N one can label v;(f), ..., vx(f) in such a fashion
that 7, (f) = v,(t) for all ». If we vary arg ¢, then the series 7, (¢f), ..., n(t) are
permuted among each other. It follows from (13) that

— 00

7, (f) = D) (™) ayy.
m—1
Now if £ and m are integers and m > £ >0 and a o, then one can choose
arg ¢ such that ¢ is real and RNa(it)’" =a’|¢]¥" where @’ > 0. Hence because
max, Rv,(¢1) is bounded from above in N it follows that a,r =0 when £ >0
and hence that all »,(¢) are bounded. But then ¢ (s, {) is bounded for all complex
¢t when s is fixed and hence ¢, is a polynomial in s alone, ie. ¢, (1, t) = q(& + ¢7)
is independent of ¢{. This proves the lemma.
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Lemma 2.12. Let the polynomial q be not constant and hyperbolic with respect
to & and let p be uts principal part. Then Q(p)= Q(q). In particular, if q is
reduced, then p s reduced.

Proof. If q(n+ tn')=gq(y) for every real n and ¢ and some real %', then
g(sp + sin)=q(sn) is true under the same conditions if s is real. Hence
identifying the coefficients of s™ we get that p(n + %) =pl(y) for all real 5
and ¢. Hence Q(p)> Q(g). Conversely, let 5 € 2(p) so that p(y + ty') =p(n)
for all real # and £ Now if g€l = ['(q, &), then ¢ is hyperbolic with respect
to n# and by virtue of the preceeding lemma we have ¢(y + ¢%') = q(y) for all
real ¢ and n€ . But I' is open so that the same is true for any real . Hence
7 € 2(q) so that 2(p) < Q(q). This proves the lemma.

The dual cone. Let I'(g, &) be the cone associated with a polynomial ¢ of
positive degree which is hyperbolic with respect to £ Following the convention
introduced in the beginning of this chapter we shall consider it as a subset of
the vector space E which consists of all real elements in E*.

Definition. Let Cl(g, &) be the set of all real vectors x such that

(@, ) =M + - + X =0
for all 5 in I'(q, &).

We shall prove that C(g, &) is a cone and we shall call it the dual cone of
I'(g.£). It is to be considered as a subset of the vector space E defined in the
beginning of this chapter.

Lemma 2.13. O= C(q, &) contains elements # o, it is convex and closed and
if x€C and b= o0 then br € C. The part of C where (x, &) < b 15 closed and bounded
if £el'(q, 8. All elements of C are orthogonal to Q2(q). If q is reduced, the in-
terior of C is not empty.

Proof. The first statement follows from Lemma 2.9, the three following
are immediate. Put |z|= max;|x:|. Let there be a sequence ¥, (k=1,2,...),
such that ¥ € € and (2™, £) < b and lim |2®| = co. Then there exists a 7 with
[7]=max |g] =1 such that lim (z®,#)=oco. Because I'= I'(g, &) is open we
can choose a >0 so small that & —an€I. But then lim (2%, & —an) = — oo,
which contradicts the assumption that all x® are in C. Hence the part of C
where (x, £) < b is bounded and it is clear that it is closed. Combining the Lemmas
2.1 and 2.12 we see that Q(¢)= Q(p) is linear and hence it follows from
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Lemma 2.8 that if &€l and £ €Q(q) and £ is real then & + t£"€I. Hence
if z€C it follows that (x, & + t£”) = o for all ¢ which implies that (x, £’) =o.

m
Let £ €I Then Zuw (£',n) is of the form (x,7) where x € E and it is clear
1

that € C. Let ¢ be reduced so that 2(p)= £2(q) =o0. Then if u, (£, n) = o for
all » it follows from (6) that p(& + t5)=p(&) for all real ¢ and hence from
Lemma 2.10 that #'=o0. Hence the minimum of (x,%) when n€ I and |y|=1
is positive. Hence the same is true of the minimum of (x + y.%) when €I
and |y|=1 provided that [y|> 0 is small enough. But this means that =z + y
belongs to C if |y| > o is small enough. This proves the lemma.

Consider the two examples on p. 25.

Example 1. Let £€I'(p,£) and let o; =0 and p(x)=af — 23— - —a2=o0.
Then it is easily verified that (x, &) = 0. On the other hand, if 2{ << 0 or p(x) <o
then one can find a £€ I'(p, &) such that (x, &) <o. It follows that C(p, &) con-
sists of all & such that x; = 0 and p(x) = o.

Example 2. Let x = (z), (j, k=1, ...,4), be a hermitian matrix so that
zjr=xi; and let xy, ..., Z, be the numbers zj;, (2 + 2fi), 2 (rjx — 2f), (7 < k),
in some order. With a suitable choice of this order we have
{or, &) = D)y &5 + 2 Mg + a0 (& + &) + ) Hlaje — 2 (G — &) =

J j=<k J<k
= D xpp=o(xt)
gk
where &* is the conjugate of £ and o (x£*) is the trace of the matrix x&*. Tt is
wellknown that if &€ I'(p,£), ie. if £ is positive definite, and all the charac-
teristic roots of x are not negative then o{zf*)= 0. But if x has at least one

negative root then we can find a £€I'(p, &) such o(x&*) <o. Hence C(p,§)
consists of all matrices x with not negative roots.

Chapter 3.
The Riesz Kernel.

A lemma. In this chapter we are going to construct a Riesz kernel for the
differential equation

(1) q(3/9z)f(x) = o,

where q is a polynomial in n variables with complex coeflicients which is assumed
to be of positive degree m, reduced, and hyperbolic with respect to a real
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vector £. It then follows from Lemma 2.3 and Lemma 2.12 that the same is
true of its principal part p.

From the definition of I, (g, £) it follows that q(s& + 79)7 o when &€ I} (g, §),
s=1 and % is real. Our next lemma gives us more precise information. Because
the degree of q(s&+ in)=7p(&s™ + --- with respect to s is m there exist
complex numbers »,{&,27), (v=1, ..., m), such that for any complex s we have

m

(2) q(s&+in) = H + v, (& 7).
1
Let b(£) be the function defined in connection with Lemma 2.9. Because
q(t&+ im) % 0 when R¢> b(£) and » is real it follows that — R, (£ in) = b(§)
for all » and #n and hence that

(3) min, Rv, (§,¢n) + L&) =
for all real . Put v, = v, (£ i) and let s> b(&). Then by virtue of (3)

(4) min, |s + v,| = ¢ + min, Rv, = s — b (&)

Let wu,=u,(&,7n), w=1, ..., m), be defined by (2.6). According to -Lemma 2.3
and the formulas (2.8) the numbers u, = ¢ u, (£, %) are all purely imaginary. Hence

because s is real we get
(5) s + v | = s + w | — |u, — vl Z |ua | — |tts — 01 ].

Let || = maxi |9 >0 and put ¢ =p + ». Using (2) and (2.6) we get

f[(s + || = f[(s +u )+ [T () il (s1n] &+ dm)

for all complex s. Here both sides are polynomials in s of order m where the
coefficients of s are 1 and the other coefficients are continuous functions of
(M1 << ns &4y -+, &) when {y| >0 and £€I'(q,5). Hence we can identify the
left side and the first term of the right side with the two polynomials of

m

Lemma 2.4. Then the last term of the right side equals 2 (a, — b,)s™ " and
1

Ostrowski's function c({a,b) is continuous in (i, ..., &, ...). Let co(t, &) be its
maximum when |#[ is real and |#[~! =¢. Then ¢ (¢, & is continuous in (¢, &) when
t>o and because max,|a,,b,| is uniformly bounded and max,|a,—b,| tends

uniformly to zero when |5]|->oco and & belongs to a compact subset of I' it
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follows that if we put cg(0, £) = 0, then ¢4 (¢, &) is continuous when ¢ = 0. More-
over, we can label the numbers u, ..., un 80 that

(6) max, (v, — w | <|n[e (9], &).

We suppose that this labelling is used also in (s5).

If  is such that #; = --- = us = 0, then as in the proof of Lemma 2. 10,
the fact that p is reduced implies that » = 0. Consequently the continuous func-
tion max, |u, (€, 7)| has a positive minimum ¢, (£) when |g| = 1. This function
is clearly continuous when £ € I'(q, £). It follows from (5) and (6) that if || > o then

min, fs + 0| = (e, & — eo(|7]72, &) [n].

Estimating one of the factors in (2) by means of this formula and (4) and the
others by means of (4) only we get

(7)  la(s& +in)|=|p@)|(s—bE)" ! max (s — b{£), (2 & — e (|n]™L &) |9))

if {#| > o0 and s> b(£). The formula is true for all real % if we agree to inter-
pret the right side as |p(£)}(s—b©&)™ when |y]|=o0.

Let I" < I'y be compact, let ¢; and ¢, be the minima of ¢; (&) and |p(£)| when
&eI”. Further, let ¢,(f) be the maximum of ¢, (¢, &) and b the least upper bound
of b(&) when £€I". Then by virtue of (7)

lg(s& + im)] = cals —b)" " max (s — b, (s — ¢o (|| ") | )

if s>b and we interpret the right side as cy(s— b)™ when || =o0. It follows
from Lemma 2.9 that ) <1 and we know that ¢; and ¢, are positive and that
¢o(f) tends to zero with ¢. Hence it follows that [q(s& + i9)| (1 + |g))~" 1 (s —b)™
has a positive lower bound when s = 1. Hence we have proved

Lemma 3.1. To every compact I" < I'y(q,§) there exist numbers B > o and
b <<1 such that
la(s& +im|= Bls—v)™ (1 + [5])

when E€I and s = 1.
Construction of the kernel. Let £€ I so that q(s& + ¢7) £ 0 when s =1

and 7 is real. Then if the numbers v, =v,(& ¢%) are defined by (2) we have
— RN, <1 so that if s = 1 then

(8) min, R(s + v,) > o.
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Let (2. 6) refer to p and put £=§ and = ¢ in (2.7). Then

(9) p{&=p() Ill uy (£, &).
Because £€ 1" then
(10) min, u, (£, £) > o.

It follows from (2) and (9) that

m

glsé +in=p@][wE s)fns T v,

1
Hence if we define

arg q(s& +in)=arg p(E) + 2 arg (s + )
1
where arg p (&) is fixed once for all and max, |arg (s + v,)| < } =, then it follows
from (8) and (10) that arg q(s& + ¢n) is a continuous function of s, & and
when £€lj,s=1 and % is real. When a is a complex number we put with

g=q(s& + 7n),
(“) q—a—_—e—a(logIQHiargQ).

In this way different choices of arg p(£) will affect ¢~ only by a factor
e~?m%ie where k is either a positive or a negative integer. Now only integral
values of a will be used in our final results and hence the particular choice of
arg p (&) is of no real importance to us. If p(£) > o then we can choose arg p(&) =o.
This simple situation is brought about also in the general case provided that
we change ¢ to p(§)~'q, a change which does not affect the manifold of solu-
tions of (1).

Let B be an open subset of a real vector space of finite order. We define
C(k, B) to be the class of all complexvalued functions whose derivatives of order
< k exist and are continuous in B. Sometimes we write only C(%), indicating B
in another fashion. We let C{co, B) be the intersection of all C(k, B) for all
possible 5. When B is a part of the boundary of B we mean by C(k, B + B)
the class of all functions in C(k, B) whose derivatives of order =< % have con-
tinuous extensions to B + B.

Because M. Riesz [11] was the first to consider it in connection with the
wave equation, we shall call the function Q(a,x) defined in our next theorem
the Riesz kernel associated with ¢ and &.
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Theorem 3.1. Let g be a polynomzal in n variables with complex coefficients
which ts reduced and hyperbolic with respect to E. Let Ra>n, let £€Ty(q,E), let
q(&)~® where L =& + in and n is real, be defined by (11) and put

(12) Qla, @) =(27)™ [q(t)= & dn.

Then Q(a,x) ts independent of & and vanishes when x€ C(q,§). If k<Ra— n,
it belongs to C(k) considered as a function of x and all its derivatives of order < k
are analytic in a when Ra>n + k and one has the inversion formula

(13) q(Q)e= f Qla, z)e 4D dx.t
_ Clg,3)

Proof. Let IV be a compact set in I} = I (g, &). It follows from (11) and
Lemma 3.1 that

(14) |q(s£—‘ + in)—al:lql—fnueargqﬂag(s_b)——mSRD:B—SRadSal(!‘mn-i—largp(f)p(I + |,7|)—91a
where s=1, b<1, B>o0 and £€I". Consequently the right side of (12) is

absolutely and uniformly convergent when &€ I, Ra>n and |x|= max;|x| is
bounded and we get

—+ o0 . + o0
Q(a, x) == (2 71:)_” f e(:» z)—={p 2 d')]l e d7]h—1 d”l])l_yl e d?]n j (I(C)_a 6;” *h d?']h

for all h. Because I} is open, (Lemma 2.9), there exists a d > o such that all
& with |£—&| <9 are in I,. Hence by an immediate application of Cauchy's
theorem, the inner integral does not change if we replace &, by any & such that
[&n — &)< 0. Let |§—&|<0n? and change successively & to &, (h=1,...,7).
Then @Q(a, z) does not change. Because I is open and connected, (Lemma 2.9),
this proves that @(a, ) is independent of £ as long as £€T}.

If 2z€C=C(g,§) there exists a &€I'=I(¢g, &) such that (z, ) <o. But
then according to Lemma 2.9 a suitable positive multiple & of & isin I}, and
putting £=s&" in (12) and letting s - oo it follows from (14) and (z, &) <o
that the integrand tends uniformly to zero and hence that (e, x) vanishes.

Consider the formal derivatives with respect to x of order < R a — % of the

right side of (12). The resulting integrands are continuous in (2, ..., Zn, %y, . .., 7n)

! Integrals of the type (12) and (13) when the integrand of (12) is square integrable occur
in a wellknown theorem by R. E. A. C. PALEY and N. WIENER (Fourier transforms in the complex
domain, Amer. Math., Sec. Coll. Publ. XIX (1934) Theorem V p. 8) and in a generalization to
several variables by S. BocHNER (Bounded analylic functions in several variables and multiple
Laplace integrals. Amer. Journ. of Math. 59 (1937) p. 732).

3642127 Acta mathematica. 85
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and analytic in @, and by virtue of (14) the integrals are absolutely and uniformly
convergent when |z| is bounded. Hence Q{a,x)€ C(k) and its derivatives. of
order <k are analytic in « when Ra>n + k.

Let £€Iy. 1t follows from (14) that f|q(§ + 79)~¢|?dn < co and hence by
Parseval's theorem also that f e 2.8 Q(a, 2)|2dx < co. Consider the integral

in (13). Because I} is open there exists a & €I such that £—£&€Iy. By
Schwarz's inequality

{f]e“(x’ £Q(a, ) dx}2 = fe_?'(“‘» 5| @ (a, ) |2 dxfe_z(x' fdex.
& C &

Because I' is open and C closed, (z, &) has a positive minimum 6 when
x€C and |x|=1. It follows that (x, &) = |x|é when z € C and consequently the
right side of our last formula is finite. Hence the integral of (13) is absolutely
and square convergent and the formula follows from Plancherel's theorem.

Remark. If ¢ is homogeneous then we have @(a, tx) = {"* " Q(a, ) when
t>o. In fact, multiplying if necessary & in (12) by a positive number we may
assume that ¢£€I5. Then putting =11 we get

Qa, ta) = (2m)™ [ g1 L) e D 47" Ay = me Q(q, 2).

Theorem 3.2. If Ra>n+m and RB>n and Q(a, x) is defined by the
wreceding theorem then

(15) 2(0/02) Q(a,2) = Q(a—1,2)
and
(16) o] Q@B ydy=Qlatpa)

where C = C(q, £).

Proof. The formula (15) follows by differentiation of (12), and (16) from (13)
and Plancherel’s theorem.

Two examples. In the two special cases treated on p. 25, 29 we can cal-
culate the Riesz kernel explicitly.

Example 1. In this case q(p)=py) =9} —ni— - —ni Let I'=1TI(q,§)
and C= C(q, &) be defined as before, let £€ " and let Ra> }(n — 2). Then by
a Lorentz transformation and some elementary integrations we get

1 In most cases one cannot hope to get so simple explicit. expressions for the Riesz kernel
as in these examples.
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(17) Q(E)_“=fqgia(;;je“(”’5) dx

where

Hy(a) =tV (2a) I'a— 40— 2)/T'(a+ }).

If we replace & by (=& + ¢n where 7 is real, both sides of (17) are analytic
in { if only £€I. Now they are equal when 7 = o0 so that it follows that they
are equal for all . Hence by virtue of (13) we get

0,2€C

Qla, ) = { q(x)e—t7/ H,(a), z € C.

This kernel was introduced directly by M. Riesz and it is the starting point in
his theory of the wave equation.?

Example 2. We have with our previous notations ¢(n) =p(n) = det 5. Let
I'=T{q,£) and C= C(q, &) be defined as before, let £€ I", let Ra > 7. A formula
by Bochner {[1] p. 694—696) reads

" o= [T g

where

Arguing as in Example 1 above we see that (18) is still valid if £ is changed
to £ + ¢n where 7 is hermitian. Hence we get

o, z€C
Qlaa) =] %7 A
| ¢ @)7/Li(a), z € C.
It is easy to verify that in terms of the variables xj; instead of x;, ... the

associated differential operator becomes

q(0/0.x) = det (0/0.x;x).

The Riesz kernel and the elementary solution. Hadamard has called (1, 2)
of Example 1 the elementary solution of the wave equation if » is odd.2 The
corresponding function has been used also by others in more general situations.
Consider (12) and assume for a moment that a=1 and that ¢ =p is homo-

*{1r] p. 31—33.
? See RiEsz [11] p. 95—99.
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geneous and not degenerate. Assume also that é =& = (1,0, ..., 0) and perform
the integration with respect to %,. Formally the result is

Q1,2) =2 n)1_nfemm+... (pr1 (@) eiawml) dns ... dn,
1

where a, = a,(ns, ..., na) are the necessarily real zeros of p (¢, #;, ..., 7.) = 0 and
pr=0p/0n,. The integral is easily seen to converge when m >n and is the
starting point in the work by Herglotz [6] and Petrowsky [8]. Zeilon [13] uses as
elementary (fundamental) solution of (1) the formal expression

(2)™ [q 1 (in) = dy

which he sums by various devices, not confining himself to hyperbolic ¢.

A close study of the kernel @(a, ) will give much information about the
differential, equation (1). As is shown by the work of Herglotz and Petrowsky
and our evamples we must expect the vectorspace E where @ is defined to split
into a finite number of open subsets Ei, domains of analyticity for @ and a
n — 1-dimensional part E’ such that @(a,x) is an entire function of a when
x € E; and satisfies (15) there. On E’ the kernel ¢ is defined by continuity when
NRa is large but might be discontinuous there for other values of a, as is the
case in Example 1. In this case E; equals the interior C? of C while E,=FE— C
and E' = C— (. For any hyperbolic ¢q, E— C(g, &) is a trivial domain of ana-
lyticity because Q(a, ) vanishes identically there. In Chapter 6 we will return
to these considerations.

Our main object in the next chapter is Theorem 4.1 whose formulation
does not involve the Riesz kernel. It is in fact also possible to prove this theorem
by means of an immediate generalization of Lemma 3.1 to not necessarily reduced
hyperbolic polynomials. The same remark applies to Lemma 4.1. Because only
Theorem 4.1 and Lemma 4.1 are used to prove Theorem II of the introduction
it would be possible and perhaps also natural to prove this theorem without
any use of the Riesz kernel. However, the generalization of Riesz’'s theory for
the wave equation which we give in Theorem 4.2 might be worth giving for
its own sake. In Chapter 5 we give a more complete generalization of Riesz’s
theory but only for homogeneous and reduced polynomials. Here the theory
yields very explicit results and eliminates to a gredt extent the heavy use of

Fourier-Laplace transforms which is its only known substitute in this case.
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Chapter 4.
The Riesz Operator.

Definition of the Riesz operator. Two theorems, It is assumed in this
section that ¢ is a not constant polynomial in » variables which is hyperbolic
with respect to & Let I'= I'(¢g,£) and C = C(q, &) be the two cones associated
with ¢ and defined in Chapter 2. Assume for a moment that ¢ is also reduced.
Then we can construct the Riesz kernel (a, z) corresponding to ¢ and £ Let
S =S() be the plane (y,£) =0 and T = T(£) the region (y,£) > o. TFinally, let
S€C(oo, T+ S). We define the Riesz operator I* by the formula®

(1) I"‘f(x)=TfQ(a,w—y)f(z/)dy

when Ra>n and x€T. The kernel Q(a,x—y) is different from zero only in
the set C(x) of points y€7T + S such that z —y€C, ie. when (zx—y, &)=
=(x, &) — (y, £) < (x, £), which is bounded and closed by Lemma 2. 13. Hence the
integral always exists.

Let C° be the set of functions in C(co) = (oo, E) which vanish outside
some compact set. Let 4; be a bounded open set in T and let A be its comple-
tion with respect to C, ie. the closure of the union of all C(x) where x€ 4.
Then A is bounded and closed and its own completion with respeet to C. Let
a€C’ and let a(y)=1 when y€A. Then if 2z€ TA42 it is clear that I°f(x)=
=TI%a(z) f(x). Now let é€ I'y = I',(q,£) and let F, be the Fourier-Laplace trans-

form of af,
(2) Fa(€ + in) = [e+inva(y) fly) dy.

It follows from this formula, Theorem 3.1, the formula (3.14) and Parseval's

formula that
(3) I f(@) = (2 )™ [ Fa(f + i) g (€ + in) = eS+inody

when Ra>n and z€ T 4. Tt will be shown that also when ¢ is not necessarily
reduced, the right side has a sense even when R a > 0, that it is independent
of & a and A as long as £€ Iy and TA32. The function ¢(£ + 79)~* is here
still assumed to be defined by (3.11) which obviously applies to all not constant
hyperbolic polynomials, reduced or not reduced.

! RiEsz [11] p. 47.
? TA stands for the common part of T and A.
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Because ¢ is hyperbolic also with respect to — & (Lemma 2.2), we may
perform the constructions above starting from ¢ and — £ Then we have to
consider I'™ = I'(q, — £) which obviously equals — I"and C~ = C(q, — §) =—C
and if ¢ is reduced, the corresponding Riesz kernel @~ (@, x). The Riesz operator
I¢ is in this case defined by

(4) I* f(x) =Tf_ Q (a,z—y) fly)dy

where f€C(oo, T~ + S) and z€ T— = T(—&), i.e. (x, &) < o. Proceding as above
we define C~ (x) to be the set of all y € 7~ + S such that x — y € O—. It is bounded
and closed. Let Ay be an open and bounded set in 7~ and A~ its completion
with respect to C~ and let a— € C° and let a~ (y) =1 when y€ A~. Then if &is
chosen so that besides £€ I (q, &) also — £€ Iy (g, — &) we get

(5 I f(@) = (e a) ™ [ Fa(— & + ina(— & + im)od=5+5 dy

where Ra>n, x€T- A~ and

(6) Fe(—&+in)=[a= () fly) e =5+ dy.
i

As (3) the formula (5) has a sense also when ¢ is not reduced and its right side
is independent of & &~ and A~ as long as — &€l (q, —&) and T- A~ 3.

The following theorem lists the most important properties of the Riesz
operator

Theorem 4.1. If q s a wnot constant polynomial which <s hyperbolic with
respect to &, if f€C(oo, T + S) and z€ T, the function I°f(x) defined by (3) when
Ra>o0 s independent of &, A and a as long as E€1'y(q, &) and TA3x. It is
entire analytic tn a and for all values of a 7t belongs to C(oo, T') considered as a
Sunction of x and all its derivatives with respect to x are entive analytic in a.

For all a it vanishes at a point x if f vanishes in C(x) and one has

(7) q(0/0) I*+ f(z) = I*f()
and 2f Re, RE>n
(8) I 1P f () = I°*8 f (),

and when k 7s a positive integer or zero,

(9) I7* f(x) = q (0] 0 x)f f ().
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Let f1,/2, ..., ... be a sequence of functions in C(c0). What is meant
by saying that f; — o, i.e. that f; tends strongly to zero with 1/%, is explained
in the introduction. The proof of our next theorem is the main step in the
proof of Theorem II.

Theorem 4.2. If feC(oo, T+ 8) then If=1'"f14s in C{oo, T+ 8). If m s
the degree of q, the derivatives of If of order <<m vanish on S and one has

(10) q(0/0z) If (x) = f ().

If feC{o0) and Lf(x) is defined as I~ f(x) when x€T-, i.e. when (x, &) <o,
then If belongs to C(oo) and if fi tends strongly to zero with 1/k, the same is
true of If.

Proof of Theorem 4.1. Let M be a real square matrix of order » whose
determinant det M has absolute value 1 and change variables in (2) and (3)
according to the formulas x =2’ M~ and ¢ ={ M where M is the transpose of
M and {=¢§+inand {'=¢& +in. With ¢'({") = q (' M) =q(¢) and 1" (y') = f(y)
the result is

(11) Icf (x ) [ Fu(Z) g (€)= e® =) dyf

where &’ belongs to the image A’ of 4 under the mapping

(12) w2 =xM

and

(13) Fo@)=[eCva (y) £ (v) dy
,1"

where 7' = T'(£), f' () =y’ M) = f(y) and o' () = a(y).

Now (11) and (13) define together the Riesz operator I® when it refers to
¢ and & =EM. In fact, if & = S(f') then f € C{oo, T" + §'), the degree of ¢
is the same as that of ¢ and hence positive, if p’ is the principal part of qd
then p'(E)=p(E) # 0. Also, ¢’ (t§ + i) =q(tE + in) £ o if 5 is real and ¢t >,
where ¢, is large enough, so that ¢’ is hyperbolic with respect to &'. It is
immediate to verify that I" = I'(¢",') and Ii=I(¢’,E) are the images of
I'=T(q,f) and It =T4(¢,§) under the mapping 5> =M. Hence & is
in I1 and O = C(¢,f) and C'(2'), defined as the set of all y such that
'~y €C and (y,&)=o0, are the images of C and C(x) under (12) and if A{
and A’ are the images of 4; and A it is clear that Aj is an open bounded set in
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T and that A4’ is its completion with respect to C’. Finally, a'€ C’ and a’(y')=1
when y' €4’.

Assume for a moment that the theorem is true when it refers to ¢' and £'.
Then we know in particular that I* ' (z’) as defined by (11) and (13) when Ra>o
and 2’ € T" is independent of &', a’ and A’ as long as & €I7 and T"A'92’. But
then the first sentence of the theorem follows for I f(x) = I f(&’ M~Y) = I*f' (x')
and it is a matter of straightforward verification to show that the entire theorem
is true for I°f(x). Hence it is enough to prove the theorem when it refers to
¢ and £. The same remark is in a similar fashion seen to apply to Theorem 4.2
and Lemma 4.1 at the end of this chapter.

It is clear that £€£2(g). Hence Lemma 2.1 shows that if we choose the
columns %W, ..., ™ of M such that % is a positive multiple of £ and 5“1, ..., 5™
form a basis of £2(g), then ¢(¢' M)=q'((1, ..., {1) does not depend on {ii1, ..., ¢n
and is reduced considered as a polynomial in {1, ..., {. Clearly & = (§1,0,...,0)
where £, is positive. Clearly we may fulfil these requirements with an M such
that the absolute value of its determinant is 1. Hence deleting for simplicity
the primes we may suppose from the beginning, without loss of generality, that
the polynomial ¢ in Theorem 4.1 is a reduced polynomial in {y, ..., {; alone
and that £=(, o, ..., 0) where £, is positive.

Integrating by parts in (3) we see that ;¢ Fi(0) is bounded when N is a
not negative integer and k> 1. Hence using the notation

ley, - .., el =max (Je, ], ..., |es])
when ¢, ..., ¢; are any complex numbers we get
(14) Fo@Q)=0(1,n|™MO(1, &, .., Cal™)

for all N.

Let £y be the vector composed by the first [ components of £ Corresponding
to ge=¢q(¢y, ..., &) and &y we can construct I = I'(q:, &), C:= Clq, £y) and a
Riesz kernel @(a,x)= Qi(a,zy, ..., ). It is clear that 2(g) consists of all 5

such that 7, = --- =g =o0. Hence it follows from Lemma 2.8 that I'= I'(q, S)
consists of all 9 such that (n;, ..., )€ [} and from Lemma 2. 13 that C = C(g, §)
consists of all x such that (x;, ..., x)€C and 241 =--- =2, = 0. By virtue of
Lemma 3.1,

(15) l¢@) > B|1, 51, ..., m|, (B>o),

so that by (3.11)
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(16) ¢y =0(1, 1, ..., m|")
when fa>o0. If Ra <o using the same formula we get
(17) g =01, 9y, ..., m| %),

where m is the degree of g¢.

Hence by (16) and (14), the integrand of (3) is absolutely and square inte-
grable and the integral is amnalytic in ¢ and continuous in x when Ra > o.
Hence from (2) and Plancherel’s theorem

Ia 271: lfq aT C17"') Cly Zi+1, _‘_)e‘g11'1+"'+;l-’fldn1._‘dnl

where
Fa(clv ey Cla xl+1; RS xn) ==

= f vt ot hvaly Ly, 2 ) o @, )y d
1,0

Hence by Parseval's theorem and Theorem 3.1 we get

Iaf f Ql a, X — ) (yl’ e Y, Lpga, .. )f(yla s Y, T, .. ) dyl dyl

y,>0

if Ra>1 Here @ (a, x—y) vanishes except when y € C(x), ie. when
(€r—v1, .., 21— y)€ O, and y; > 0 and in this region a(y, ...) equals 1. Hence
(18) I=f f Qla,z—y) flyys - -y o1, g1, -, ) dyy . .. dyr, (weT 4).
>0

This proves that if Ra >1, then I*f(x) is independent of £ a and A as long
as £€I(q,&) and T A3z and, naturally, a€ C® and a(y) =1 when y€A. More-
over, it vanishes if f vanishes in C(z). The same results follow by analytical
continuation for all a if we can show, as we will do next, that I°f(z) is an
entire analytic function of a.

In (2) and (3) choose £€ Iy such that it is a positive multiple of £ This is
possible according to Lewmma 2.13. Then {; =& + ¢7;, and {p = ¢n when £>1.
Let gi(y) =(0/0y,)’g where g = af and put
_ k—1
(19) G =90) — 2 vigi0 ya, .. yu)lj.

0

1t then follows from (2) that

k-1
(20) Fo=F =\ {7 1 e~ ~tutng; (0, 9p, ..., yn)d¥y ... dyn + [ ¥ Gily)dy.
0

>0
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Write the last sum as
k-1

(21) F= {7 FiLy, .- &) + F(0).
0

From the fact that g;j(y) and gk(y) are in C(co, T + S) and vanish outside a
compact set and that the derivatives of jx of order < % with respect to
vanish when y; =0 it follows by partial integration that (¥ F; and (I**(Y F
are bounded when A=2, ..., » and N is any not negative integer. Hence

Iy =0(]1, 2, ..., mu|™%)
(22) _
Fe=0(1,m" 01, 9 - .., 7|~

By virtue of {2} and (21) we get

§itidoo .
) 1= enon [ tintnanyan st [ g,
2mi ) = q()r

+ {2 n)*"fe@r‘”) Feq(Cdy.

Consider the inner integral of the first term

sitioo —1

[ oS Bemac,
0

§i—ioo

I
2w

(24) U=

The singular points of the integrand are the zeros {1 =1,(n) of the equation
qll, ..., &)=o0, w=1,...,m). Because £€I, and — £€IT it follows that
max, R, () < b < & and that min, Re, (§) = " > — & for some real b’ and "
and hence that

(25) max, [Ruv, ()| <b< &
for b=[b",4"| and all real 5. Put
c=cly)=&—b+ vy, ..., vm| -

and let B be the contour R; + R, + R; where R is a straight line from —oo — ¢
to & —7¢, Ry one from & — ¢ to & + 7¢ and Ry one from & + 2¢ to —oo + 7¢c.
On and outside B we can choose max, |arg ({1 — )| < 7. Then

arg q(1, &, ..., &) =argp(1,0,...,0) + Zarg (81— v)
1
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and, by virtue of (3.11), also the integrand of (24) with ¢; changed to {1 is a
continuous function of {; in the same region. Obviously the integrand equals
O(|g1|t~m®Re¢n5') there. Hence because x; and Ra are positive in (24) we can
change the contour of integration to R and get

-1
(26) U= e b ) D B ag,
% 0

It follows from (25) and the definition of ¢ that |{1— v, =b; =& —b> o,
and hence that
51

Ci_vv

§1+|ﬁ—|

1

(N
C,l — Uy

=14+

when (1€R. Also, [{1/=18; on R so that the same inequality is true for

(' —v,)/L1. Hence
[

for all » if (1€ R. Now

$1+ILTI

1

_ba

Cll_'vv

m

Q(ZL C27 . '):.p(I> o, .. )H(Ci_vv)

and ¢ and v, are both O(|1,#,, ..., 7). Hence it follows from (3.11) that

(27) CimaQ(Ci,Cz,...)—“: (|I77727 .”,nllmlmal)

for all a when (1€ R. Because ¢ =c(n) = b, it follows that
|t & iby| =[] = 2|t £ it
1

when (i=1¢—14c€R, or {1=1+ ic€R;. Hence if h is an integer, positive or

negative or zero,

fre

[larévallac) < zl1, /o] [ |t+iby|remtat.

R+ Ry —0o0
The analogous integral over R, equals O(c**2¢%%) and hence we get

[lere's]|a) = 0(1, e, ..., m|"*?)
p.
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uniformly when 0 <d <z, < 1. Hence combining this formula with (27) and
(22) it follows that all the derivatives with respect to x; of U= U (a, o1, &3, - . -, {n)
are continuous in x; and analytic in @ when x; > 0 and equal

0 (I L, 7as o o ﬂ"l_N)
for every N = o, uniformly when o < § <, <6~ 1. Hence the first term of (23)
which can be written

(2 ﬂ)l_,lfeC’TZ+"'+c7‘x" U(ay Xy, CZ: ey Cn) dnz e d’?

belongs to C(co, T) and is together with all its derivatives with respect to x
entire analytic in a Consider the last term. By virtue of (27) which in par-
ticular is valid when {3 =1¢(;, =& + 77;, and (22), it is absolutely convergent,
continuous in x and analytic in « when Ma> —k/m and x; = o, i.e. when
€T + S, and its derivatives with respect to x of order <% + mRa which can
be computed by formal differentiation under the sign of integration, have the
same properties. Now £ is arbitrarily large, and that proves the second sentence
of the theorem.

It was shown that every derivative of I°¢f(z) with respect to x is entire
analytic in a. Hence (7) which is an immediate consequence of Theorem 3.2
for large Ma is true for all a. As to (8) it follows if we apply Theorem 3.2 and
use the form (18) of I¢f(x). ‘

To prove (9) we proceed as follows. Let h€ C(oo) and let it vanish outside
some closed set contained in the interior of 4 and put

(28) H()= [eb2 h(z)dx

Let ¢:(2) be any polynomial and g, () = ¢y (—¢) its adjoint. Then one gets by
partial integration

(29) QO H(Q) =[50 (0/02)h(x) de.
The right side is bounded. Hence
(30) , H(Q) =08, .- &™)

for any positive N. Hence from (28) and Plancherel’s theorem we get
(2 7)~ f H(L
Hence by (3) and Parseval's formula

fh () Ieflx)dae=(2n)" fH ) Fa(l) g Q) dn.
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Here by virtue of (30), (14), (16) and (17) the right side is an entire function
of a, and we know ‘already that the same is true of the left side. Putting

a= —Fk, it follows by (2) and (29) and Parseval’s formula and partial integra-
tion that
[h@) It f (za)y [ H(Q) Fa() g dy =

__ff g(@/0x)h(x)dx =

:ff(x)g(a 2t h(x)de= [ h(x)q(0/0 2}t f(x) da

Hence because h is arbitrary, (9) follows. This completes the proof of the
theorem.

Proof of Theorem 4.2. It is already clear by Theorem 4.1 that If(x) is
independent of & @ and A as long as £€I(q,&) and A3 x, and that it is in
C (oo, T). Hence we have to consider it when xz€S(£), i.e. with our special
choice of £, when x; = o.

If @« =1, the integrand of (26) equals O(|{1]7'~™) and is a singlevalued
function of ;. Hence it follows from (25) that we can deform the contour R
of (26) to R’ = Ro + Ry + R> + R; where Rp is a straight line from — & + ¢¢
to —& —de¢, Ry one from — & —1ic¢ to & —ic, Ro=R,, and R; one from
& +46to —& +7e. As when a is arbitrary we get that

k=1
I e
(31) 21 f (Cla"v ZCI_] lﬁ eLl 1d¢1
R’
equals O(|1, 7, ..., mu|"?) for all positive N but now clearly uniformly when

|| is bounded. The same is true for its derivatives with respect to x; which
all can be computed by formal differentiation. Hence the first term of

- e el CI—J 1 F;
1—n Cp a4+, 2y 5 @y
(32) (2 fe dng...d anf E G ) Tei'm q 8] +

+ (27m)" f &P g ()t Frdy

is in Cfco, T+ S). It follows from (27) and (22) that the second term is in
Clk+m—1, T+ 8S). Because k is arbitrary and If(x) is defined by (32) when
x €4 which is arbitrarily large in T + S, this shows that If€ C(oo, T + 8).
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It is important for the following that the derivatives of order < & + m of
the last term of (32) vanish when o; =o0. In fact, any such derivative can be
computed formally and the resulting integrand tends uniformly to zero when
zy==0 and &, tends to infinity. Hence the integral, which is independent of £,
vanishes. The same argument applied to (3) with a = 1 shows that the derivatives
of order <m of If(x) vanish when x€S.

Put I~ f(x) = It f(x). 1t is defined by (5) when a =1 and x€ A~. An obvious
modification of the arguments above shows that I~ fe C'(oco, T— + S) and that
its derivatives of order << vanish on S. It remains to show that If and I~ f
have the same derivatives on S. If b€ (C® and b(y)=1 when y€4 or ye A~
then we can obviously put a=a~ = 5. Putting g = bf and writing the formulas
corresponding to (19), (20) and (21) for F~ = F,. we get after an easy calculation

k-1
111— - 2 Cl_jﬁl ﬁtf (521 IR C") + 11']—.— (C)'
0

Now it is clear that Fj“ = I'_'j for all j and that in the formula corresponding
to (31) we have to integrate along R’ but in the opposite direction. Consequently,
if x€ A, then I f(x) is still defined by (32) with the only difference that I
is changed to I and & to — & Now it follows precisely as for (32) that the
derivatives of order < m + k of the last term of the modified formula vanish
when )y =o0. Hence tbe derivatives of order <m + %k of 1f— I~ f vanish on
the common part 44~ of A and A~ which is a part of S. Hence because k
is arbittary and 4 A~ is arbitrarily large in S it follows that if we put If(x) =
= I~ f(x) when x€T~, then If€ ((co) and its derivatives of order < m vanish
on S. As to (10) it follows from (7) and (9).

It remains to prove the continuity part of the theorem. Let /), ... f® . .
be a sequence of functions in (/(co) such that f% -»o. Let ¢ =af®, put

o) () = (0/02Y g (2),
k-1
7 @) = g () — X2l 0,y .. i)l
¢

(33) B = [ g0, g, ..., z)e 2% it day . . . dus
and
(34) Fp= [ gh(a)e o da,

2, >0

Then if x€ 4 we can write I/® in the form (32).
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(k) 1— oot e, T 1_‘7 lF oy
(35) If™ ()= (2afl™ | ebnt Fintndy, ... d GG yeda

(2 ) f o9 g ()1 T .

Let t» be the maximum of the derivatives of f® of order <m + 2%k + n + 1
on the necessarily closed and bounded set where a is different from zero and let
B denote a constant, not always the same, which depends on ¢, a and % but is
independent of k. Then integrating by parts in (33) and (34) we get

|17.;'h)| < Bthl L, N2y vy 77n|—m_k—"—1

]lfpk(:h)l < Bthl ) 7 T nnl—m—k—-n—l'
Finally, let 0 =(0/0x)™ ... (0/0xs)"» where my + -~ + ms, <m + k and consider
0 Lf" (x) which clearly can be obtained by formal differentiation of (35). Then

it is evident that the absolute value of the last term is less than Bt,. The
resulting inner integral of the first term is

. KL gimesmt i
- es: 2 dé’l
27 ~ 9(G, ..., ) Cz)
R
Its absolute value is less than B |1, 9, ..., gu|™ ™% Hence the absolute

value of the first term is less than
(2 ”)1_nthhlI’ oy oo M| gy e Ty L d g

i.e. less than Bt,. Hence |0 If™(z)| < Bt, when x€ A so that 0 If® tends to
zero with 1/h uniformly on 4. A similar argument shows that the same is true
when x€A~. Hence because k is arbitrary and 4 + A~ is arbitrarily large, it
follows that If" tends strongly to zero with 1/h. This completes the proof of
Theorem 4. 2.

A lemma. In the next section we shall use

Lemma 4.1. Let feC(oo, T+ 8) and let the derivatives of f of order < m
vanish on the common part of S and A, where A is a subset of T - S which with
a point x also contains C(x). Then

(36) Sla) =1Iq(0/92)f(z)

whenever x€A.
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Proof. Let Ra>1+m in (18), let x€A and integrate by parts in
Iet1q(0/0x) f(x). Because the derivatives of f of order < m vanish on the
common part of S and A and hence in particular also on the common part of
C(x) and S, the result is

ff(ylv s YL i1, .. x")Q(_ a/ay) Ql(a + I7x.—y) d/’/l v dyl

hn>0

It follows from Theorem 3.2 that

g(—0/0y) Qla+ 1,2 —y)=¢q(8/02) Qla+ 1,2 —y) = Qila,z — ).
Hence
I<t1q(0/02) f () = I* f ()
when x€A4 and Ra>1+ m. Now if also z€ T, both sides are analytic in « so
that by. virtue of Theorem 4.1, {36) follows when z is in the common part
TA of T and A. Finally, by Theorem 4.2 the right side of (36) is continuous
in 7+ S and hence the equality is true in T4 + SA4A = A.

Proof of Theorem II. Using the results of this chapter we can now prove
Theorem II of the introduction in a few lines.

Let ¢ be a polynomial in % variables with complex coefficients which is
hyperbolic with respect to £ and let A(g) be the set of solutions f€ (o) of
the differential equation

q(0/0x) f(x) = o.

Let A(g) contain the sequence f;, fa, ..., fi, ... What is meant by
(a) fi~>0(§)

and

(b) fi >0

is explained in the introduction. We have to prove that (a) implies (b). If g is
a constant, then because ¢(£) = p(§) # o it is not zero and hence A (g) contains
only the element f= 0 and the assertion is trivial. Assume that the degree m
of ¢ is positive. Then we can apply the results of this chapter, in particular
Theorem 4.2. Let f€ C(co) and put

Jf(x) = flx) — Iq(0/0) f(x)
where I is defined in Theorem 4.2. It follows from (10) that Jf€A(g). Put

(37) Ps flx) = m;— j!(ff)g)j Sz —ax, B, H)
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where a is a real vector such that (a,£) 2 0 and f'(x) = (a, 8/0x) f(x). Then
the derivatives of f(x) — P;f(x) vanish when 2€S, i.e. when (z,%)=o0, and if
Jr—~ 0(&) then P:fi— 0. In fact, let a¥ =a, a®, ..., a™ be a basis for all real
vectors, let (a¥,f)=o0 when j>1 and pyt 9;=(a",0/0x). Then 0;(x, & =0
when j > 1 and 8, flx — alx, D@, &) =o for all /. Also, x —afx, £){a, 5}~ €S for
all xz. Hence any derivative of P5f is a linear combination of the derivatives
of f in the plane S where the coefficients are polynomials in (r, £). This proves
that P:fi - o whenever f; - o(£). As to the other announced property of F:rf
it follows because 0} P; f(2) = f® (x) and 0} P§ f(x) = 0/ f(x) whenever j > 1, h <<m

and (x,f)=o0. If £=(1,0, ..., 0) and we choose a = (1, O, ..., 0), (37) takes the
more familiar form
m~-1
'ng(x) = Zj "l{f(]) (01 Zg, - .oy J.")/.j!
0

where fU(x)=(0]0z) flz).

It is clear that Jf—JP;:f is in A{q) and that its derivatives of order
< m vanish on S. Hence Lemma 4.1 shows that it vanishes in 7'+ S. Now
it follows from Lemma 2.2 that ¢ is hyperbolic also with respect to — 5. Hence
it follows that Jf— J P_3f vanishes in S + 7'(—£) so that because P_: = P: it
follows that Jf(x) = J P;f(x) for all x. It is clear that J /= f whenever f€ 4 {q)
so that in this case

J(@) = P; flx) — 1q(0/9x) P; f(x)
for all «. Apply this formula to every element of a sequence /i, ... fi, ... of
functions in A (g) such that f; >~ o(f). Then P:f; - o so that it follows immedi-
ately from Theorem 4.2 that fi ~ 0. This proves Theorem IIL.

Chapter s.
The Problem of Cauchy. Generalizations.

The problem of Cauchy. Let us use for a moment the assumptions, nota-
tions and results of the first section of the preceding chapter. Let ¢ and % be
in C{oo, T + S) and put

ulx)=g(x)— Iq(0/02) g(x) + [h(r)
where x€T. When the derivatives of order < m of a function defined in 7'

have continuous extensions to 7 + § which vanish on S we write brielly

f(@)™ o, (x€S8). It follows from Theorem 4.2 that

4- 642127 Acta mathematica. 85 imé I 3 juillet 1850,
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u€ Cloo, T + §)
(1) q(0]0x)u(z) = hiz), (z€T)
u(x) — g (z) 2o, (xes).

Now u is the only function with these properties. In fact, if there were two,
their difference satisfies the requirements of Lemma 4.1 with A=T + § and
hence it vanishes in 7' + S. Hence the classical problem of Cauchy, which
is the problem of finding a function « satisfying (1) for given ¢ and % in
C{co, T + §), has a unique solution. It is clear that the solution vanishes if
h=o0 in T and g(x)™o, (x€S). It is not difficult to see that the problem
has a unique solution in C{m, T + S) provided that the functions ¢ and h are in
C{zm +1+1, T+ S), but we do not give the details.

The surface S. It is possible to generalize Chapter 4 and the things said
above to a case when a suitable surface plays the part so far played by the
plane S = S(§). We will do this here only when ¢q =p» is a homogeneous and
reduced polynomial. The method is a little different from that of Chapter 4.1

Let S be an open {(n— 1)-dimensional infinitely differentiable manifold in
the space E with elements «, y, ... For simplicity we assume that S admits a

parametric representation of the form

y] = Sj (t) = Sj (i27 ERAES) t")

where s; is defined and infinitely differentiable in some open region P of the

real tspace and that #,, ... ¢, are uniquely determined by #,..., y». Put
sj.x=0s;/0t, let uy, ..., u, be indeterminates and put

»
(2) I () = det (w, 859, .. 55.0) = D w5 05(0)

1

! The results of this chapter were announced in GARDING [2] for an arbitrary reduced and
hyperholic equation, not necessarily homogeneous, and it is in fact also possible to prove them
in this case, using the method of Chapter 4. The present method, however, is simpler. It applies
to a homogeneous reduced polynominal p, hyperbolic with respect to a vector 5, or more generally
by an expansion in series of

g e=p=e(1+tr/p-e
to all ¢ =p + r where » is of degree less than the degree of p and such that when s is real and
positive, the least upper bound when 7 is real of the absolute values of the zeros of the equation
q(t(s&+iy)=o0 tends to zero with 1/s. It is probable but not proved that any g which is hyper-
bolic with respect to 5 has this property.
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as a definition of o;(f). Then the vector o(f) = (o1 (@), ..., on(®) is called the
normal of S: Its sign depends on the order of the rows in (2). We suppose
that it is possible to choose this order so that for all ¢ in P

o(tjeI'=I'(q, )

where ¢ is assumed to be a homogeneous, reduced and not constant polynomial
which is hyperbolic with respect to £. The simplest case of such a surface isa
plane (y, £) = o where £€I. Then ¢ is a positive multiple of &.

e\

Fig. 1.

Let ¢ be €= C(g,&) minus the point x =o0. We consider a maximal set T
partly bounded by S with the following properties. It is open, it does not contain
points of S and if x€7T and z€ C then z — t,2€ 8 for some positive #; = b, (z, 2)
which is continuous in 2 and ¢ in the product domain (I + S) X C, while all
points x—cz where 0 <c¢ <t are in T. If £€I and z€C, then {2, & =0 and
hence because I' is open and # 7 o it follows that {z, &) > 0. Hence if S is the
plane (y,&=o0 then 2z — 42z is in S if and only if #; = (z, &)/(z, £), so that T
consists in this case of all x such that (x, &) > 0. In the general case, in a
suitable neighborhood! of one of its points y, S is close to its tangentplane
at y, (¥’ —y,06)=o0. Hence it follows that every neighborhood of ¥ contains
points in 7.

As in the preceding chapter the set of points # — ¢z where z€ ¢ and
0=¢=1(x, 2 will be called C(x). It is necessarily a subset of 7+ S. If £e I
and z€C we know that (z, &) > o. Hence every point in C(z) is of the form

! A neighborhood of a point ¥ is an open set containing y.
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x — ¢z where 0 < ¢ < b, (x, 2) and z belongs to the subset C; of C where (2, &) = 1.
Now Lemma 2.13 shows that () is bounded and closed, i.e. compact. Hence
by (x,2) which is continuous has a finite maximum on () and it follows that
C(x) is bounded. It is clear that it is closed.

By the definition of 7, if z€7 and ze€C then there are real numbers.
ti,..., ta such that

(3) .’L‘j—’=t12j'—‘8j(l’2,..., tn), (j:I,..., H/),

and t; = b, (z, £) is continuous in (T + S) X C. It then follows that every &, (k> 1),
is a continuous function of all 2; — t,2;. Hence it is also a function bx(z, 2) of
« and z which is continuous in (T + 8) X C. Let J(z,¢) be the absolute value
of the Jacobian of = with respect to £ It follows from (3) that J(x, §)=
= (g, 2) >.0 in (T + 8) X C and with analogous notations that J (z, ) =
=J1(x,2)J(x,t) = (0,2)t;* >0 in T x C. Hence every function b (z,2) is for
z fixed in C{oo, T) and for « fixed in C(co, C). Now by differentiation of (3)
it follows that any derivative of bi(x, z) with respect to  and z is a polynomial
in the derivatives with respect to ¢ of the right sides of (3) divided by a power-
product of J(x,t) and J(z,f). Hence bi(x, 2) € C (oo, T X O) Moreover; if the
derivative is taken with respect to x alone, the powerproduct in question con-
sists of a power of J(x, ) alone which is continuous and positive in (7 + 8) X .
Hence the derivative in question is continuous in (7 + S) X C. Put when z€C

(4) (@, 2) = by (2, 2/(e, §)
where £€I. Then z/(z, & belongs to C; which is compact. Hence we get?!

Lemma 5.1. The function r(z, z) defined by (4) is in C(oo, T X (). Its deriva-
tives with respect to x are bounded on every T X C where T' is a compact subset
of T+ 8, and r (x,2) has a positive minimum on T’ X C whenever T' is a compact
subset of T.

! This lemma corresponds to Lemma 2.3 of section 2 of GARDING [4]. This section contains
& wrong statement namely Lemma 2.2 and a perhaps dubious definition namely that of E (here
called 7). However, Lemma 2.2 is never used and the rest of [4] is certainly put in order if in
the notations of {4] we defined E (which corresponds to T above) as the maximal open set in the
space of all symmetric matrices of order n, which does not contain points of G and has the property
that there exists a pesitive function u, = u, (x, Z) continuous in the product domain (E + G, (:“)
such that if x € E then x —u, Z€ G and & — ¢ Z € E whenever 0 < ¢ <<u,. Then because (2. 2) is
satisfied, every neighborhood of a point in G contains peints in E, and Lemma 2. 3 is valid. There
should be corresponding changes on p. 786 line 7 from the bottom, on p. 789 line 13 from the
bottom and on p. 8i4, line 11 from the hottom.
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‘The Riesz operator. Because ¢ is not constant, reduced and hyperbolic with
respect to &, we can construct the Riesz kernel @(a, z) corresponding to g and &.
We define the Riesz operator by the formula
(s) Ifw)= [ Qlaz—~y) /) dy, eD),

Cix)

where Ma>n. When the derivatives of order << m of a function f defined in
T have continuous extensions to 7 + S which vanish on S we write as before

briefly f(z) o, (x€S). We can now prove the following theorem, analogous
to Theorem 4.1.

Theorem 5.1. Let g be a reduced homogeneous and not constant polynomzal in
n variables which is hyperbolic with respect to & and let f€ C(co, T + S). Then the
Sunction I1°f(x) defined by (s5) when Ra is large is entire analytic in a. For all
values of a it is in C(oo, T) and its derivatives are entire analytic in a. It
satisfies (4.7), (4.8) and (4.9) when x€T. Also If(x)= I'f(x)€ C(oo, T + S) and

(6) If(x)™o, (x€S).

Proof. Because C(x) is bounded and closed the integral (5) always exists.
Let us change the variables y to 2z defined by

y=x—r(x, 2z, (y # x).

Because » is homogeneous of order o in 2 the Jacobian J(y,z) equals r*. The
region C(x) corresponds to the region A of all 2 € C for which (z, £) < 1. Hence
using the remark in connection with Theorem 3.1 . we get when Ra>n

I*fx) = j Qla,2) fle—rz)rm:de.

Here by virtue of Lemma 5.1 we can differentiate under the sign of integration
any number of times and the resulting integrals will be analytic in a and con-
tinuous in x when x€7 and Ma>n. When % is an integer and Ra is large
enough it follows from (5) and Theorem 3.2 that

I*=*f(x) = ¢(0/ 0} I* f ().

Hence the second and third sentence of the theorem follows. The fourth is
proved precisely as the corresponding part of Theorem 4.1. To prove the fifth
we observe that ‘

Ife)=[Qn+1,2)g@/0a) flo—re)rme+Dge,
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Again it follows from Lemma 5.1 that every derivative of If(x)is in C(o, T+ 8S)
and that those of order < m tend to zero with the maximum of 7(x,2) when
z€C. This completes the proof.

The proof of the following lemma is the same as that of Lemma 4. 1.

Lemma 5.2. If fe C{oo, T + 8) satisfies

fl)Zo, (ze8)
then

flx)y=1q(0/0z)f(x), (x€T).
If g and h are in C(oo, T + S) then Theorem 5.1 shows that
ulz) = glx) — Iq(0/02) g (x) + Ih{x)
is in C(co, T + §) and satisfies
q(0/0%)u (@)= h(z), (x€T)
{m)

u(@)—g(@)=o, (z€8)

and it follows from Lemma 5.2 that a function with these properties is unique.
The same conclusion is easily seen to be true if w is in C(m, T + S) and ¢
and h are in C(m(n+ 1), T+ S) and if all the functions s; defining S are in
Cmxn + 1), P).

Chapter 6.

The Domain of Dependence.

Introduction. Let ¢ be a not constant complex polynomial in » variables
which is hyperbolic with respect to £. Let I'(g,£) and C(g, £) be the associated
cones, defined in Chapter 2. Throughout this chapter we shall mean by C(xz)
where z € E, the set of points y such that x — y € O = C{q, &) or briefly

Clay=(y; z —y€C)

Let S=S(£) be the plane (y,£) =0 and T = T'(£) the halfspace (y,£) > 0. As
usual we put CO(oo0) = (oo, E) and we let C° be the set of all functions in
C(co) which vanish outside some compact set. The properties of the operator I
defined by

' If@@ = (2m) [q() F(t) e dy

where €T + S, C=¢&+ iy, £€T(q,§), f€C® and
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FQ)=[Fly)ecv dy
7

are given in the Theorems 4.1 and 4.2. We know that 1f€ C(oo, T + S), that
q(0/0x) If(x) = f(x) and that If(r)=o0 whenever f vanishes on C(x).

The solution of Cauchy's problem with respect to the plane S and the
halfspace 7 is composed by means of the operator I and another operator J
defined by

Jf (@) = flx) — 1¢(0/0) f(x)
where z€T + S.

We define the lacunary set L = L(I, x) attached to a point x€ 7T and the
operator I, as follows. It shall counsist of all points y with the property that
there exists a neighborhood N of y such that If(z)=o0 for all f in C° which
vanish outside N.!' It is clear that L is open. We define the domain of de-
pendence D (I, z) to be the complement of L in E. In the same way we define
L(J,z) and D (J, x). :

It is immediate that D(I,x) and D(J,z) are both in T + S and because
C(x) is closed it follows that D(I, x) is contained in C(x). If y€ S then there
is a peighborhood N of y with no point in common with a suitable neighborhood
of §. Then if f vanishes outside N, it vanishes together with its derivatives
on S, and it follows from Lemma 4.1 that Jf(x)=o0. Hence D(J, z) is con-
tained in S.

In order to get more precise results and in order to eliminate x and S
from D (I, x) and D(J, x) it is convenient to do as follows. Let f€ (° let a be

a complex number and put
(1) | Iif=(n)™[q)=F. (0 dy
where [ =& + 4y, £€T(q, &), ¢(£)~¢ is defined by (3.11) and
(2) Fi(0)=[f@)e-2da.

Integrating by parts in the last formula we get that |{, ..., Lu|Y F1 (L) is
bounded for all positive N, and according to (3.2) and (3.4) which apply also
to not reduced polynomials, |¢(l)| is bounded from below. Hence J?f is an
entire function of a. Assume for a moment that ¢ is reduced. Then we can

! A neighborhood of a point y is an open set containing .
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construct the Riesz kernel @ (a, x) associated with ¢ and &, and then if Ra>»n

it follows from Parseval’s formula that
Jif = [ Qla,2) f(2) d.

Hence J¢f is independent of £ as long as £€ I, (g, £) and it vanishes if / vanishes
on C= C(q,&). The same results follow by analytical continuation for all a.
An application of the arguments used in the beginning of the proof of Theorem
4.1 shows that they are also true if ¢ is not reduced. In particular we shall

consider

Jof=Jif =(@m) ™ [qL) Fy (0) d.

The operator J; has a lacunary set L(J;) and a domain of dependence D (J,)
which is necessarily a subset of C. In the next section we will prove a lemma
that expresses D(I,z) and D (J,«) in terms of Dy = D (J;).

Structure of the domains of dependence of I and .J.

Lemma 6.1. The set D (I, x) where x €T consists of all y in T + S such that
x —y€D; and the set D(J, x) consists of all y in S such that x — y€ Dy.

Proof. Let fe€C® and put

(3) Ft)=[e 6o fy)dy

where { =& + iy, £€ly(q, &) and — E€ T, (g, —&). Let a be a complex number,
let ¢(¢)~ be defined by (3.11) and consider the following slight modification of

the Riesz operator
(4) Itf(z) = (2m)" [ @) F () e = dy

where z is an arbitrary point in E. It follows from (3.2) and (3.4) which apply
also to a not reduced polynomial g that |¢(Z)| is bounded from below. Inte-
grating by parts in (3) we see that |{y, ..., {a|¥ F(¢) is bounded for all positive N.
Hence I¢f(x) is an entire function of a, for all values of a it is in C(oo) and
it satisfies ¢(0/0x) I¢*!f(x) = I*f(x). In particular when a=1 we get with
I, = I}, using Plancherel’s theorem,

7(0/0x) I, f () = f ().

The arguments in the beginning of the proof of Theorem 4.1 apply without
change to I%, and they show that I*f(z) does not depend on & as long as
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&€l (q,E) and that I f(x) vanishes whenever f vanishes in C(x). If q is reduced
this follows from the formula

If(x)= [ Qla,x — y) fly) dy

which is valid when Ra>n and where Q(a, x) is the Riesz kernel associated
with ¢ and £ Because C(x) is closed it follows from the above that

D(L,2)< Cla)={y, x—y€ C= C(3),
and if we define I[ as I; with the only difference that it refers to ¢ and — &, that
DI, 2) < O-(x)=(y; c —y€— C= Cg, — &)

If f€C° then I, f and Iy f are both in C(co). It follows from Theorem 4.2
that 7g and hence also Jg has a sense and is in C(oo, T + 8) if g is. Hence
we can form JI, f(x)= I, f(x) — Iq(0/0x) I; f(x) = I, f(x) — Lf(x) so that we get

5) L fw)=J1 flz) + If(z), (x€T).
Similarly
(6) It flo) = J It f(z) + If(x), (x€T).

We can now prove that

(7) D(J,z)=8SD(I, z)

where the right side stands for the common part of S and D(I,x). Let
y€SL(J,x) and put with |y| = max; |w],

Ne(y) = (75 |y — g} < 7).

Then we can choose » >0 so small that x is not in N,(y) and that Jf(z)
vanishes if f vanishes outside N;(y). Consider C(y)(T + S). It comsists of all y’
of the form § —z where z€C and (z,£) < (j,£). It follows from Lemma 2.13
that |z| has a finite maximum ¢; when 2€ C and (2,§)==1. Then |§j—¥'| <
<¢,(7,E) when y €C(y)(T + S). Hence we can choose 7 >0 so small that
C#)(T + 8) is contained in N,(y)(T + S) whenever § is in Ny(y). Now if a
point #€7T + S is also in D(I7,y) then it is necessary that € C(j). Hence if
S€C® and vanishes outside N, (y) it follows that I7 f vanishes in 7 + § outside
N,(y) and hence JIi f(x) =o0. Moreover, because x€ N,(y) > N, (y) it follows
that I f(z) = 0. But then (6) shows that If(x) =0 and hence y € L(I, x). Con-
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versely, assume that y€SL(I,x) and choose r > o0 so that z is not in N,(y)
and that If(x) vanishes if f€ C® and vanishes outside N,(y). Then also Jf(x) =
= f(x) —Iq(0/0x) f(x) =f(x) =0 under the same conditions and this proves
that y € L(J, z). Hence we have proved (7).

Next we want to show that

(8) L(I,x)=T +(I+ S)L(I;,x)

where x €7 and T- =T (— &) =(y; (w,&) < o). If y is in T there is a neighbor-
hood N of y which also is in 7, and if f€ C° and vanishes outside N we get
If(x)=1I1f(x) for all x in T. This proves that TL(I,2)= TL(l;,z). It is
obvious that 7— < L(I, x).

Consider

Lf(x ) [q(0)- Jdy

where F({) is given by (3), and change variables in the integral so that x ==z’ M1
and £ = M=(& +in) M, where M is a real square matrix whose determinant
has absolute value 1 and choose M as in the beginning of the proof of
Theorem 4.1. Then

Il 27‘[ nfq x’_;’) d’?,
where ¢ (¢')=¢q({) is a reduced polynomial in 1, ..., &, (1 <1< =), and with
S ) = Fly),
FO)=F ()= [fy dy'.

Put h.(y) = h:(y), let h. be in C(co) and let h:(y’) = hi(y1) be 1 when »; > 0 and
o when 31 < —e& <0 and monotone for the other values of yi. Consider

ff sy)dy"

Integrating by parts in this formula we get

. 0 oV
’ ’_l\' ’ — _( r, 2 r) ’ ’ 14 ’
() G Be) = [ e L (1d) S s )
where & > 1. Because f€ C° the function f’ vanishes outside some set of the form

A= n, .. ,ynl<la
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Let a; be the maximum of =%} and a, the maximum of the absolute values
of the derivatives of /' of order = N + 1 in A. Then because h, is monotone,
the absolute value of the right side in (9) is not greater than

+ia
6 14 ’ 4
ay aga™ ! (1 + O_y'h‘(yl)) dyi < ajaza™'(a + 1).
1
~ia

Hence [Zi}[¢2, - .., Enl¥ Fi(L) is bounded for all N = o, uniformly in & Now it
follows from Lemma 3.1 that |¢'({')]= B(1 + |51]) where B > o. Hence because
Fi(Z') tends to
(2 [ ) ey = (2 2) [ o) 0,
)

TE
the right side of
L) flo) = (2 )™ [ ¢/ €) FLE) e85 o

tends to If(x) as ¢ tends to zero. Hence if y€ SL(I;,x) and the neighborhood
N of y is chosen so that I, f(x) vanishes when f is in C° and vanishes outside
N, it follows that I h.(x)f(x) and hence also its limit If(x) vanish under the
same circumstances. This proves that SL(I;,xz) < SL(I, x).

To prove the converse inclusion, assume that y € SL(I,z) and choose r >0
so small that if f is in C° and vanishes outside N,(y) then both If(x)and Jf(x)
vanish. This is possible because we have proved (7). Let s’ > o, let § € Ny (y), put

Ty =& (2 8] < s)

and consider 7 C_(j). It consists of all points § + ¢ in 7T, such that zisin C.
Hence [(§ + 2,&)| < s so that (2, & < |[(7,§)| + s;. Now because y is in S so that
(y,8) = o, the maximum of [(7,£)| when 7 is in N.(y) is of the form c,7»’ where
¢; > 0 and hence we get that (z,£) < c,» + s;. But then if ¢, is the maximum
of |z| when z€C and (z,£) < 1 it follows that |z| < ¢;(eg?” + ;) and then

ly—g—zl=ly—gl+ el <r' + erleer” + ) <,

if 7 >0 and s, > o are small enough. Hence with this choice of " and s; we
get that 7, C_(j) < Ty N,(y) whenever €N, (y). Let f be in C° and vanish
outside N, (y). It is clear then that I, f(#) vanishes unless there are points § in
Ny (y) such that #— 7€ C, ie. such that € C- (). Hence because Ty C_ (§) <
< T N;(y) when §€N,(y) it follows that I, f(x) vanishes in Ty — Ty N:(y) so
that if g is in C(co) and vanishes outside 7; and equals one on the set
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(2; (2,6) < % s,) then the derivatives of I;f— g, f vanish on S and g, f vanishes
outside 7; and in T, ouilside T N,(y) < N,(y). Consequently, we get that

o=dJg@) 1, flx) =J I, f(x).

Because f vanishes outside N, (y) < N,(y) it also follows that If(x)=o and
hence (5) shows that I, f(xz) = 0 and consequently y € L([;, ). This proves that
SL(I,x)= SL(I,x). Now the formulas (1) to (4) show that I f(x) = J; f; where
f1(y) is defined as f(x — y) for fixed . But then it is obvious that

L(L,2)=(y; z—y€ Ly
and the lemma follows from (7) and (8).

Lacunas. We know that the domain of dependence Dy of the operator J
defined by (1) and (2) is contained in C and in general one has in fact D, = C,
but there are exceptions. In example 1 let » =4.! By a simple passage to the
limit in the formula following (2) one gets

Rf =5 [ 1l weas, 20 g dan e,

where ¢ is the positive square root of 23 + ai + 2. Hence D, is in this case
the boundary of C. Its dimension is 3 while that of C is 4. The fact that
D, 5% C in this case is sometimes referred to as Huygens' principle for the wave
equation and accounts for the possibility of emitting sharp light signals in
space-time.? A still more striking example of the same kind of. anomaly is
offered by example 2.® Then we have the formula*

Ff =g [£@@)lalda

where a is the vector (ay, ..., a;) with real a; and complex ax=ai + ¢ar when
k> 1, a* its transpose conjugate, |a| the positive square root of ai + |aaf® + -
and da=da;dazdas ... Hence J,f is a mean value of f over such hermitian
matrices x = ¢" @ which have all its roots zero except one which is not negative
and it follows that D; consists of all such matrices. In this case the dimensions

of C and D; are #® and 27 — 1 respectively.

! See pp. 25, 29 and 34.

* Riesz [11] p. 83—88.

3 See pp. 25, 29 and 34.

¢ GARDING (4], Theorem H 10.2 p. 822.
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Petrowsky [8] has made an extensive study of lacunary sets. He takes the
case when ¢ is homogeneous and not degenerate. Then if B is a domain of
analyticity of (1, -)! and f vanishes outside a closed and bounded set B’ in B
it follows that

J1f=k[0(1,y)f(y)d!/.

Hence if B’ has a not empty interior, it is in the lacunary set L, of J; if and
only if @(1,-) vanishes on B’. But then @{(1,-) vanishes in B and it follows that
B is contained in L,. Such a domain of analyticity of ¢(1,-)is called a lacuna.
According to Petrowsky L, is a sum of lacunas and he also gave a necessary
and sufficient condition of a topological nature that a given domain of analyticity
be a lacuna. Example 2z above shows that when ¢ is degenerate, things are
more complicated. Practically nothing is known about the existence of lacunas
in C in the not homogeneous case. As is shown by the wave equation, terms
of lower order tend to destroy them?
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