ON THE UNSYMMETRIC TOP
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This paper is in the nature of a sequel to that published by the aunthor in
the Acta mathematica for August 1932, Vol. 59, page 423. In that paper the
center of gravity was taken on one of the principal axes of the momental
ellipsoid of the body corresponding to the fixed point. The kinetic energy and
the angular momentum were assumed to be quadratic functions of wg, the projec-
tion of the angular velocity vector on the principal axis on which the center
of gravity lies. This assumption led to the two cases given in that paper. The
purpose of the paper is to find all similar cases' in which the kinetic energy
and the angular momentum squared are expressible as polynomials in w,. It
upholds the best traditions of workers on the top problem by giving one new
case, but to the authors mind the most interesting part of the paper is its limit-
ing character. It will be shown that there are no more cases of this parti-
cular type.

The equations of motion for the top with its center of gravity on the z-
axis are:

(1) Lo + (I~ IL)o,0;,=  Whgin @cos @
(2) Lo, + (I, — I,)w,w; = — Whsin @sin @

! N. Kowalevski: Math, Annalen 65, p. 528, 1908, tried to find all possible cases for which
o} and ®3 can be expressed as polynominals of the third degree in w;. He found one new case,
reference to which is made farther on in this paper.
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The angular velocities (w, , w,, w,) are connected with Euler’s angles (@, @, ¥) by:

(4) 6= wcos®— w,sin®

(5) ® = — w,sin D cot @ — w,cos D cot O + w,
(6) P — o, sin @ese @ + w,cos @ cse O

or by:

(7) w, = @cos® + ¥sin Osin @

(8) w, = — @sin ® + PFsin Ocos @

(9) wy= @+ Fecos®

and the angular velocities (w:, wy, w:) are connected with Euler's angles by:

(10) w;= @cos¥ + Dsin OsinF
(11) w, = Osin ¥ — Osin Ocos F
(12) w:— W+ Dcos @

The origin, O, is taken at the fixed point and the following notation is
used: (x,y,z) denote the fixed system of axes; (x,, ¥,, 2,) the moving system which
is taken coincident with the principal axes of the momental ellipsoid at O;
(wy, 0y, wy) are the components of the instantaneous angular velocity vector, w,
along the moving axes; (w,w,, w.) are its components along the fixed axes;
(I,,I,, I,) are the principal moments of inertia at O; W is the weight of the
body; and, h is the distance of the center of gravity from the origin.

The classical integrals are:

(13) 2 Wheos @ =F — [,w} — [} — I, w}

+

which states that the total energy is a conmstant, %;

(14) I, 0, 5in @sin @ + I, wy,sin @cos @ + I, wzcos @ =k

which states that the projection of the angular momentum on the vertical is a
constant, k; and, the trigonometric identity

(15) (sin @sin @)? + (sin @ cos D)® + cos> @ =1.

In order to simplify our problem we shall reduce it to the solution of two

symmetric differential equations of the second order. Substituting for i,‘ its

value from equation (3) in equations (1) and (2) we get:
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(16) LI~ L)w, wydw, + L{I; — I,) o, wsd wy = W h I, d w, sin @ cos @
(17) L — L) w,wydwy + I,(I, — I,)w, wgd wg = — WhI,dw,sin @sin @.
Now let us introduce two new variables » and v:
(18) w=I,(I, — I)o} + I,(I, — I,) w}
(19) v=I (I - LI)w} + I,(I, — I,) w}.

These variables are closely related to the variables used by Hess-Schiff’
in the so called Hess-Schiff reduced differential equations since I,u + I, v =
= (I, — L) (I 0} + I} v} + I} w}), that is, equals a constant times angular mo-
mentum squared and u + v = (I, — L) (I; 0} + I, 0% + I, w3), that is, equal a con-
stant times kinetic energy.

In terms of the new variables equations (16), (17), and (13) become:

(20) wydv= 2 WhI,dw,sin @cos @

(21) w, du=—2WhlI,dw,sin @sin @
_ E(L[—L)—(u+v)

(22) 2 Wheos @ = I—1 =y

Where 7 is a new variable defined by equation (22). If we now substitute
for sin @sin @, sin @cos @, and cos @ in equations (14) and (15) their values in
terms of #, v, and 7 we get:

23 — LI, —Liw}du + L,(I, — L)widv + B, — L)nw,dw, =
23 .
=2 WhkL,(I,— L) d w,
-—2 2 _
( L1,(I —L)o}du + L LI, ~L)oidv + L LI, — L) Ende, =
24) -
— 4 WL LI (I, — L) dw,.

Of course it would be possible to eliminate w}, w2, and 7 from equations

(23) and (24) leaving two differential equations in three unknowns. However,

for our future work this will not be necessary and the present form is easier

and simpler to write. Throughout the paper the practice is followed of writing

! P. A. Schiff: Moskau Math. Samml. 24, p. 169, 1903. The Hess-Schiff variables are:

I, 0} + I} + I, 0} B ol + Lo} + I o}
:;‘”1_,%-_4‘%, U=J£’lmz;“iﬂ§, S=fI, o, +gT, 0, +hI,o,

T

where (f, g, k) are the coordinates of the center of gravity.
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all equations in the simplest possible form, but of discussing said equations as
though all replacements had been made. Equations (23) and (24) are necessary
and sufficient conditions, that is, they are equivalent to the Euler equations as
long as u, v, and w, are all variable. It is obvious that they are necessary.
The sufficiency part has been discussed at great length by both Stickel and
Lazzarino.! Stickel and Lazzarino discussed the Hess-Schiff variables, however,
the » and v of this paper are merely linear combinations of the Hess-Schiff
variables.

Equations (23) and (24) are, as has been pointed out, necessary and suffi-
cient, but on the other hand they are very complicated and not symmetric. Two
symmetric-equations which are much easier to work with will now be obtained.
These new equations have the disadvantage that they are only neccessary conditions.

To obtain them we differentiate equations (23) and (24) with respect to w,.

2 2
@—&, d wy > and Aan their values as obtained by differentiat-
dw, dw, d wgy

ing equations (18), (19), and (22) with respect to w, and collecting terms we get:

After substituting for

. diu d®v du
—II(II—Ig)w]d—C'UE"'Ig(I I)wzd 2+I(I I)de’ws'*’
(25) i
+13(Is—21)w3d + B, - Lin=o0
du d®u ,dv d¥v
L LI — I)wld do + L L(I, — I2)w23w3dw§
1 du dv du dv : du\®
(26) +5mac~us(2R+Ilm)+IgIs(Iz—I3)w3(m) +
dv\® , [dw | dw)
+II( )w3(m) —111213’)7(d 3+dw3)—o.

It is easily seen that equations (25) and (26) are linear combinations of
the following:

du 1du dv dv
(I, — L) w? "o g+zdwsd%+1Iw3[T—xL
(27) ;
%
+I3(Iz I3)w3du) L Iin=

! P. Stickel: Math. Ann. 65, p. 538, 1908. Math. Ann. 67, p. 399, 1909. — O. Lazzarino:
Rend. d. Soc. reale di Napoli (3¢) 17, p. 68—I1911. R. Accademia dei Lincei atti 28,, p. 266;
P- 325: p. 341, 1919. R. Accademia dei Lincei atti 28,, p. 9; p. 259; p. 329, 19I9.
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v 1du dv du
I(I'—I)wgd2+;%—3dwn IIa)sd +

dv

I3(I3——I)w3d

—LIin=o0.
In actual computation it seems advisable to use both pair of equations,
i. e, (23, 24) and (27, 28) although the sufficiency conditions might be determined
by substituting directly back in Euler's equations and in the classical integrals.
Certain obvious simplifications appear upon writing down the conditions that the
values assumed for # and v shall satisfy both sets of equations.
Let us now assume that » and v may be expressed in the form:

n
ZBz (b + I)wsl, i.e., u=DB,+ ZBiwgi+1

2
( 9) dw3 i=1 i=1
(30) ;—@;:ZAi(a,’—i— )ws%, l.e, v=A4,+ ZAiwgi“.
o i=1
For convenience we write down:
by+b;
(31) (dwg) ”Z‘JlB s Bi(b; + 1) (b + 1) 0l
dv)® < s
(32) ] = 2 A; Ajla; + 1) (@ + 1) 0T
dw, )
du dv <
(33\) (T%) (d—a_);) == 2 A;Bj (ai -+ I)(bj + I)w§’i+bj
7,j=1
d2 h—l
(34) do 12,1Bz (b + 1)
v S a1
(35) dwl EIAZ ai(a; + 1) @l
From equations (18) and (19} we have
6) r
(3 1, ('Il - 12) wi=A4,+ I, (I2 - 13) w§ -+ 2 A;wfit!

=1

39— 33617. Acta mathematica. 62. Imprimé le 18 avril 1934,
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n

(37) 1, (I1 - Iz)wg = Bo + I (Is - Ix) w} + Z B; bt

=1

From equation (22) we get for 7
(38) (L — L)n = E(I,—IL) — (4, + B,) Z (Ai i+t + B olitl),

Upon substituting these values in equations (23), (24), (27), and (28) we
obtain the following:

Z AI'BJ(ai_bj) +b+]+2 13‘41\1_1) i 11‘1';””'*’

1, j=1 i=1

(50) F+ LB {(I;— L) b — I j wbit? + By di(ai + 1) 0% — Ay Bi (b + 1) 0l +
39
+ BE(L—1)— (4, + B)lwy=2 Whk L (I, — L,).
Z [I, Ai Aj B (a: + 1)(a; + 1) @2+ G051 4 I, 4; B; By (b + 1) (B + 1) 0%t o+0+1] +
4,7, k=1

n

+ Z LI,(I,—I)A; dj(a; + 1)(a; + 1) @B*%*? +

i,j=1
+ L, I,(I,—I,)B;: B (bl'*‘ 1)(b + 1) b+bj+2+I1B0AiAj([li+ {a; +1) w%*% +
(40)
+1.A BB bi+b: I I2I‘¥ a;+1 bi+1 a;+1 b+ 1
s Ao BiBj(b: + 1}(b; + 1) ¥ty + —I(A wfitt + Byt ) (4 wiitt + By wlitt)] —
“2ALTS g ) — (4 + B D (Aiatitt + B it +
I —1, =1
L LI . 2 272 2
+ (E(I, — L) — (4, + B)* =4 WK I, [, I3 (I, — ).

n

Z(bfj I)(zbj+ai+1)A¢BJ 2+t +Z[{I (L — L) (bs +1)? Il ‘ }Bz’w‘s’i“+

i, j=1

(41) +{11]3("f+ 1)+ } Wit 4+ Ay B b (b + )wg’t—l]_

LI

- I,— 1, [E(I, — L)— (4, + By) =0
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n

2
> (‘“ ‘)(zaz+bj+1)A Byt +Z{ YR E L B R
g\ 2 I,-1,]

A H

(42) +{—1213(bi+1)+I1—12

}Bz b+1 +B Azaz(az—l_ I) ]'_

LI
I1_‘ Iz

[E(I, — L) — (4o + By)j=o0

In order that the values assumed for # and v as given by equations (29)
and (30) shall be solutions of equations (23) and (24) it is necessary that we
shall be able to determine values for the arbitrary constants such that the ex-
" pressions given in equations (39), (40), (41), and (42) become identities in ws.

Values of the constants which reduce equations (39) and (40) to identities
in w, lead to solutions of the Euler equations since equations (23) and (24) are
necessary and sufficient conditions. HBquations (41) and (42) are used in so far
as possible to compute the constants since they are so much easier to work with.

There are several general conclusions which may be drawn:

I. To show that @, and b, cannot be taken as fractions:
The coefficients of wi s in equations (41) and (42) vanish only if A, or

_Bn:O or if
2by, +a,+1=0
zan+ bn,+ I =0
that is if a, = b, = — ;; But if we take a,= b, = —é, then in order to

make the coefficients of w» ! and wi»! vanish we must take 4,= B, = o.
Furthermore, if 4,= B, =0 then either I, = I, or the energy constant, E,
equals zero.

When a, = b, =0 we have:

4,8, LI — Iy — _
5 I, — 1, [E(I, — L) — (4, + By =0

A, B e

"_IZ‘I_I_I[E( 2) (A0+B0)]:O

Subtracting shows K =o0. If [,= 1, we have the Lagrange case.
For the top the energy constant, F, is an essentially positive quantity not
zero. Therefore there is no point in studying the possibilities if ¥ =o.
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II.

II1.

(43)

(44)

(45)

John J. Corliss.

To prove that m must be taken equal to 2.

Let us now assume that
ar=1—1 i=1,2,...,n
bi=1t¢—1 T=1,2,...,m.
For this part of the discussion we assume
n>m?>1I.

(Assuming n =m =1 leads to a case in which w,=a constant and our
equations do not apply.) In order to successfully equate coefficients in
equations (41) and (42) we must have the exponents of the two highest
degree terms equal, that is, the exponents of @ !'*™! and w? must be
equal which means that m = 2. ,

To show that we cannot hope to find a solution by taking n= 7. If we
assume 7 = 7 and m = 2 then equations (41) and (42) are of the 7th degree
in wy. Consequently upon equating coefficients of all powers of w, to zero

we obtain 16 equations to satisfy which we have at our disposal

3 B's + 8 A's 4 one condition ou F + 2 relations

among the I's == 14 arbitrary quantities at most.

Unless it should happen that the coefficients are not independent, then the
equations cannot be satisfied. The relations which may be taken among
the I's are somewhat limited since thev are positive quantities and also
since they must be chosen so as to form the sides of a triangle. For
n >y the situation is still worse. A similar argument could be given to
show that » cannot be taken equal 6. The case of n =6 will be treated
by computation also.

If we assume m =2 and » =6 and equate to the coefficients of all
powers of w; in equations (41) and (42) we obtain the following set of

conditions to be satisfied:

24, By + 4,8, — L (B, — 1) — (4, + B =0
2 I, — 1,
1 IE)IZ y
zAzBO+5‘413,—}]-_};[15(11—12)~(AO+BO)]:o
. I, I3
3 Al Bz + 442B1 + Il I3 Al + I3 ([2 - 13) Bl - ’I;T(“il -+ Bl) =0
1 2
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2
46) 343B,+ 6 4Byt A By — LI By + I(I,— 1) A, + f%ﬁ¢A+BJ=o
2
(47) 443B, + 41, (1, )B+ AB+2II3A +III-‘ (Ay + By) =
1 2
4AQB2+4IJA——LL%+¥%A3BI+12A4BO—21;QB2+
(48)
T AR
I —1
. 2
(49) 5AuBy+ 24, B+ 3L LA+ ;00 4 =0
I1_‘Iz
(50) 9AyB, + oL (I,— L) A, + 144, B, + 204, — B, —I—II_I;IA =0
(51) 6A4,B, +5A5B1+4IIA +II_I*IA =
(52) 16 A4, B, + 16 L,(I, —I))4, +45A5B + 304, B, +II_{}A =0
II
(53) 74;B,+344B, + 5L I A; + I_}As—o
L L
(54) 25 Ay B, + 25 I, (I; — I) 4; + 33 44 B, +Ii_;2A5:0
1
(55) 8A;B, +6I I, A+ L T 4,=0
I—1,
LI
(56) 36 Ag By + 36 Iy (I,—1I) 45 + I,—1, 4¢=o0.

Equating the constant terms of equations (39) and (40) gives the following
two equations which must also be satisfied:

(57) Ay By— Ay By=2 Whk(Il,—I,)

2
m)IBﬁ+IAy+§{§mu—m-m+&W=

=4AWRL LI (I—1).
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IV.
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To show that 4, and A, must be taken equal zero i. e., » must be taken < 4.
To satisfy equations (55) and (56) respectively B, must be chosen:

I.%(6I112—6I§—11I3)

B R G — 1)
B. — L (36 1§ — 36 I I, —36 1, 1; + 35 IzIs).
: 36 (L, — L)

But if we eleminate A, B, between equations (53) and (54) we find that B,
must also satisfy:

L(14 L I, — 24 I, [, — 80 I} + SoIli,,)_
52 (I, — 1)

B,-=

For these three values of B, to be consistents the I's must satisfy:

63, Iy—70lL, I;,—1261; + 1261, I,=0
g1 I, —48 1L, I, — 8213+ 821, I,=o0

which is not possible.
Therefore we must take A; or 4; equal zero. Again if 4= 0, B, must

be chosen so as to satisfy equations (53) and (54), that is,

_Is(SLI.o'_SI?—I]Is

B, =
- 7 (L — 1)

B, — Li(es I§ —2s I, I, —25 I, I, + 24 1, 12)‘
: 25 (I, — L)

And also B, must be chosen so as to satisfy the equation obtained by eliminat-

ing A; B, between equations (51) and (52):

213(71113_1512]3—‘521% + 521, 1)

By 38, — L

For these three values of B, to be consistent the I's must satisfy:

solf— sol, I, —2s I, I, + 281,1,=o0
17417 — 174 L1, — 87 L I, - 105 I, [; =0

which is not possible.

Finally if A;=0 and A;=o0 we see at once from equations (53) and (34)

that B, =o0. To satisfy equations (55) and (36) B, must be chosen:

B :Is(611 12_6I§ —III:-!)
? 8(11_12)




On the Unsymmetric Top.A 311

1,36 I} —36 L[ I, — 36 I, I + 35_£2La‘)

B, =
: 36 (I; — 1)

And also B, must be chosen so as to satisfy the equation (51):

B 213(41112“_41% —1 Is)_
? 6(I1_I2)

For these values of B, to be consistent the I's must satisfy:
631, 1, —70l, I, — 12613 + 126 [, [, =0
I I — 21!+ 2L L,=o0
which is not possible.
Therefore » cannot be taken greater than 4.
Taking » =1 and »= 2 leads to the two cases given in my previous paper.

The case of P. Field published in the Acta, vol. 56, is a special case of n = 2.
Taking % = 3 corresponds to the case of N. Kowalevski.!

New Case.
If we take n» =4, that is if we assume

u=DBy+ B,w, + Byw}

4
v=Ady+ D Adi 0}

=1
we come to a new case.
The constants have the following values:

A — I L,(64 1 —64 L I, + 15 I3 E
 2(L—2L)(9I3— 561, I + 64 13)
_ L4l —3L){641F — 64 L I, + 15 I3)

2(16 I, — o I)(I; — 2 I)
A :I.%(4I1 —3 L) (1611 — 16 L, I + 313)(9 1§ — 56 I, I, + 64 I5)

¢ 16161 —oL)(I,—21,)[L E

B ALLI,—2I)F
¢ (9013 — 561 I, + 64 I3)

A,

B,=— IJ(LI}Z; 3_13)

! N. Kowalevski: Math. Annalen 65, p. 528, 1908.
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The I's must satisfy the relation:

I _ L1617, — 81
16l —9l,

and F must be taken:

F4 Whily—21)(91; — 56 [ I + 64 I3)
(41, — 31,)(64 1} — 641, I3 + 15 I3)

The projection of the angular momentum on the vertical equal zero, that is
k=o.
It is easy to show by numerical computation that the conditions cannot be
satisfied by any other choice of constants.
The value of tan @ is obtained from equations (20) and (21) and is:
du

wldw
e —— 3
tan @ = de

w, 2t
>d w,

To find ¥ and the time in terms of w, elliptic functions must be in-
troduced. Knowing ¥ the space cone could be found and the motion com-
pletely described. The equation of the body cone is obtained by eliminating

2 2 2
) X Kj 21 .
the w's from ~} = 1 ==1 and is:
0} 0w} ol

L{ol, —16 I, (8 I, — 6 )2t — 256 I} (8 [, — 3 L) (8 I, — 5 L)y} —
— 1615 (I~ 2I) (9l — 16 I, a} 2} — 256 I3 (I, — 2 I,) (9 I, — 16 I,) x} y} —
— 321327 I§ — 144 I§ I, + 320 L, I} — 256 I) (9 I, — 16 1)y} 21 = o.
The literature on the top problem is extensive but it is entirely a literature
of special cases. Klein and Sommerfeld in their huge work: »Theorie des
Kreisels» 1910, p. 391, have suggested the possibility of interpolating between

the two movements. Thus if we can find enough special cases we may yet hope

to know something of the motion of the unsymmetric top.



