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1. Introduction

A function ¢ defined on a domain UCC™ with values in [—00, +00) is called plurisub-
harmonic in U if ¢ is upper semicontinuous and its restriction to the components of the
intersection of a complex line with U is subharmonic.

A set ECC™ is called pluripolar if there is a neighbourhood U of E and a plurisub-
harmonic function ¢ on U such that EC{p=-00}. By a result of B. Josefson [J], the
function ¢ in this definition can be chosen to be plurisubharmonic in the whole of C”
(i.e. U=C™).

In 1963 T. Nishino raised the following question in connection with his paper [N1]:

Let A be the unit disk in C, and let f: A—C,, be a continuous function such that
its graph U'(f) is o pluripolar subset of Cg’w. Does it follow that f is holomorphic?

The main result of this paper gives a positive answer to Nishino’s question and can
be formulated as follows:

THEOREM. Let Q be a domain in C" and let f:Q2—C be a continuous function.
The graph T(f) of the function f is a pluripolar subset of C™*1 if and only if f is
holomorphic.

As a consequence of this theorem one can easily obtain the following more general
statement:

COROLLARY. Let Q be a domain in C} and let E be a closed subset of 2xC,, C
Cr1} such that the fibers E(z)={weCy: (z,w)€E} of E are finite and depend continu-
ously on 2€Q in the Hausdorff metric. Assume that the number #E(z) of points in the
fiber E(z) is bounded from above in . Then E is a pluripolar subset of ngul if and
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only if it has the form
E={(2,w)€QXCy:w™+a;(2)w™  +..4an(z) =0}, (1)

where the functions a1(z),a2(2),...,am(2) are holomorphic in Q.

Note that the proof of the theorem cannot be directly applied to the set E de-
scribed in the corollary. Namely, the topological argument used in the proof of Lemma 3
and based on the fact that the first homology group H;(Q2xC,\I'(f),Z) is nontrivial
does not work in this case. In the last section of the paper we construct an example of
a compact subset E of AxC, CC2 , (A={z:|z|<1}) with finite fibers E(z) depend-
ing continuously on z€A in the Hausdorff metric such that H;(AxC,\E,Z)=0. In
particular, there is a neighbourhood U(FE) of E which does not contain any subset of
A xC,, defined by a Weierstrass pseudopolynomial (i.e. defined by the equation (1) with

a1(z), az(2), ..., am(2) being continuous functions in 2).

Remark. In the special case when the function f is assumed to be C'-smooth and
its graph T'(f) is assumed to be completely pluripolar (i.e. I'(f)={p=—o0} for some
function ¢, plurisubharmenic in a neighbourhood of T'( f)), a positive answer to Nishino’s
question was given by Ohsawa [O] using LZ2-estimates for 8. In this case one can also
apply Pinchuk’s method adapted to C!-surfaces in [CH, pp. 59-62] and construct, to get
a contradiction, a one-parameter family of holomorphic disks { D, } attached to a totally
real piece of I'(f) by an arc on the boundary. Restricting the plurisubharmonic function ¢
such that I'(f) C{y=—00} to each of these disks, we get that ¢=—00 on D, and, hence,
U,, Do C{=—00}, which gives the desired contradiction, since the set |J, Do has real
dimension 3. Note that neither of the methods mentioned here can be applied to prove

our theorem.

Acknowledgement. Part of this work was done while the author was a visitor at the
Max Planck Institute of Mathematics (Bonn). It is my pleasure to thank this institution
for its hospitality and excellent working conditions. I would like to thank E. M. Chirka
who communicated to me the problem stated above, T. Ohsawa for informing me that
the problem was first raised in 1963 by T. Nishino, and E. L. Stout for pointing out to
me the reference for the paper [A].

2. Preliminaries

For bounded nonempty sets E; and E, in C,,, the Hausdorff distance is defined as

d(El, Eg) = sup inf |w1 —w2| + sup inf |w1 —w2|.
waEE, W1€EL wo€F W1€E2
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A family of compact sets E(z) in C,, parametrized by 2€Q2CC?7 is said to be continuously
dependent on z in the Hausdorff metric if, for each sequence {z,}32; of points in
converging to a point 2€§}, one has d(E(z,}, F(z))—0 as n—oo. In particular, if 2
is a domain in C} and F is a nonempty closed subset of xC,, with bounded fibers
E(z)={weCy:(z,w)€E} depending continuously on z€f2 in the Hausdorff metric, then
each fiber E(z), €€, is nonempty.

For a compact set K in C", the polynomial hull K of K is defined as

K ={2eC":|P(2)| < sup |P(w)| for all holomorphic polynomials P in C"}.
weK

The set K is called polynomially convex if K=K.

The first simple lemma is classical and follows, for example, from Theorem 4.3.4
in [H].

LEMMA 1. A compact set K in C" is polynomially convex if and only if for any
point QEC™\ K there is o function ¢, plurisubharmonic in C™, such that

sup w(2) <p(Q). (2)

LEMMA 2. Let K be a polynomially convex compact set in C™ and let E be a pluri-
polar compact set in C™. Then the set m\K is pluripolar.

Proof. From pluripolarity of the set E it follows that there is a function ¢ g, plurisub-
harmonic in C", such that EC{yg=—00}. To prove Lemma 2, we shall prove that
KUE\KC{pp=—oc}.

Assume, by contradiction, that there is a point QEI?U\E \ K such that ¢g(Q)>—o0.
Since Q¢ K, and since the set K is polynomially convex, it follows from Lemma 1 that
there is a function g, plurisubharmonic in C", such that

sup vk (z) <k (Q)-
zEK
Then, for ¢ positive and small enough, one also has that

sup (P (2)+eve(2)) < vr (Q)+epe(Q).

Since pg(z)=—0c for z€ E, it follows that

ZGSEBE(QOK(z)erE(Z)) <k (Q)tepe(Q).

By Lemma 1 applied to the function ¢x+epg, we get that Qgél?U\E This gives the
desired contradiction. O

The next statement was first proved by H. Alexander (see Corollary 1 in [A]). For
the reader’s convenience we include its proof.
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LEMMA 3. Let U be a bounded domain in C.xR,CC2, (w=u+iv) and let
g:bU—=R,, be a continuous function. Then UCn(I'(g)), where I'(g) is the graph of g
and m: C? ,—C, xR, is the projection.

Zw

Proof. Consider an approximation of the domain U by an increasing sequence
{Un}52, of domains with smooth boundary. Further, consider a sequence of smooth
functions {g,}5°;, gn:bU,—R,, which approximate the function g, i.e. I'(gn)—T(g)
in the Hausdorff metric. Then it follows from the definition of polynomial hull that
limsup,,_, I’/(gn\)CI‘/(;), where convergence is understood to be in the Hausdorff met-
ric. Hence, it is enough to prove the statement of Lemma 3 in the case where the domain
U has a smooth boundary and the function g is smooth.

Now we argue by contradiction and suppose that there is a point Q€U \ﬂ(I“/(;))
Without loss of generality, we may assume that Q is the origin O in C, xR,,. We know by
Browder [B] that H? (F/(;) C)=0 (here H 2(I’/(;), C) is the second Cech cohomology group
with complex coefficients). Then, by Alexander duality (see, for example [Sp, p. 296)),
we get

H,(C2,\T(9),C) = H*(I'(9),C) =0

(here H,(C2 \I'(g),C) is the first singular homology group with complex coefficients).
On the other hand, since OeU \@), it follows that the curve g consisting of the
segment {(z,u+iv):2=0,u=0, —R<v< R} and the half-circle {(z,’w):z:O,szeie,
—3m<O<im} does not intersect the set F/@ for R big enough. Moreover, the link-

ing number of I'(g) and g is not equal to zero. Therefore, H;(C2 \I'(g),C)#0. This
is a contradiction, and the lemma follows. O

LEMMA 4. Let U be a simply-connected domain in C, and let f(z)=u(z)+iv(z):

U—C,, be a function such that both u(z) and v(z) are harmonic in U. If the graph T'(f)
2

zZaw?

of the function f is a pluripolar subset of C then f is holomorphic.

Proof. If f is not holomorphic, we argue by contradiction and suppose that the
set T'(f) is pluripolar. Then there is a function ¢, plurisubharmonic in Cﬁ,w, such that
I'(f)c{ep=—00}. Let © be the harmonic conjugate function to » in the domain U such
that ©(z¢)=v(zp) for some fixed point zg€U. Then the set {z€U:9(z)+e=v(z)} is
nonempty and consists of real-analytic curves for all £ small enough. Therefore, each of

the holomorphic curves
I.={(z,w): ze U, w=u(z)+i(v(z)+¢)}

intersects the set I'(f) C{¢w=—00} in real-analytic curves. Since a real-analytic curve is
not polar (see, e.g., [T, Theorem I1.26, p. 50]), it follows that I'. C{¢x=—o00} for all €
small enough. This implies that ¢=—oc in Ciw and gives the desired contradiction. [J
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3. Proof of the theorem and the corollary

Proof of the theorem. If the function f is holomorphic, then the same argument as in the
proof of Lemma 4 shows that T'(f) is pluripolar. Namely, the function

021, oy Znt1) = 10g |21 — f (21, ey 20|

is plurisubharmonic in 2x C and T'(f)={p=-0cc}. Therefore, the set I'(f) is pluripolar
in C"T1,

Suppose now that the graph T'(f) of f is pluripolar. To prove that f is holomorphic
we consider two cases.

(1) The special case n=1. In this case Q is a domain in C,, and f(z)=u(z)+iv(z):
Q—C,, is a continuous function such that its graph is pluripolar. Since holomorphicity
is a local property, we can restrict ourselves to the case when 2 is a disk in C,; moreover,
to simplify our notation, we can assume without loss of generality that Q=A={z:|z|<1}
is the unit disk and that the function f is continuous on its closure A. It follows from
Lemma 4 that either the function f is holomorphic or at least one of the functions u
and v is not harmonic. Since both cases can be treated in the same way, we can, to get
a contradiction, assume that the function u is not harmonic. Denote by @ the solution
of the Dirichlet problem on A with boundary data w. Since u is not harmonic, one has

that @4£wu in A. Without loss of generality we can assume that

u(zo) < @{z0) (3)

for some zg€A. Let

C =max{sup [u(z)|, sup [v(z)|}.
zEA zEA

Consider the set
K={(z,w)eAxC,:i(z) <u<3C, |v|<C}.

LEMMA 5. The set K is polynomially conver.

Proof. To prove polynomial convexity of K we use Lemma 1. Consider an arbitrary
point (z*,w*)eC2 ,\K. If the point (z*,w*) belongs to the set

A ={(z,w)€CZ,:|2[>10r u>3C or |v| >C},
then inequality (2) will be satisfied for the point Q@=(z*,w*) and the function

v1{z, w)=max{|z|]-1,u—3C, |v|-C}
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. . - 2
plurisubharmonic in C; .

If the point (z* w*), w*=u*+14v*, belongs to the set
A ={(z,w) EAXCy:u<u(z)},

then u*<@(z*). Let e=34(@(2*)—u*) and consider a function @. harmonic on the whole
of C, such that max,¢ 4 |i(z)— 1 (2)|<e. Since for (z,w)€ K one has u>1i(z) 2 U (2) —¢,
and since u*=1(z*)~3e<é.(2*)—2¢, it follows that inequality (2) will be satisfied for
the point Q=(2* w*) and the function

p2(2, w) = e (2) —u

plurisubharmonic in C2 ,,.
Since ngw\K =A;UA,, we conclude from Lemma 1 that the set K is polynomially
convex. This completes the proof of Lemma 5. 0

Consider now the domain
U={(z,u)€ AxR,: u(z) <u<u(z)+2C}

in C, xR, and the real-valued function g(z,u)=v(z) on bU. Since sup,cx |u(z)|<C, one
has sup, ¢ |4(2)|<C and hence @(z)<u(z)+2C<3C. It then follows from the definitions
of U and g that the graph I'(g) of the function g is contained in the set I'(f)UK.

—

Therefore, we get I'(g)CT'(f)UK. Since, by Lemma 3, w(I'(g)) DU, we conclude that

*(C(f)UK) D U. (4)
Consider the following open subset of U:

U={(z,u) EAxRy :u(z) <u<i(z)}.

Inequality (3) obviously implies that the set U is nonempty. Since, by the definition of
the sets K and (7, w(K)ﬂﬁ:@, it follows from (4) that

*(C(H\UK\K)>U. 5)

Since, by our assumption, the graph I'(f) of f is pluripolar, we conclude from Lemma 2
and Lemma 5 that the set I'(f/)UK\ K is pluripolar, i.e.

PR,

I(f)UK\K C{p=—oo} (6)

for some plurisubharmonic function ¢.
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From (3) one has that there is a neighbourhood V of the point 2y in C, such that

u(z) <u(z) (7)

for all zeV. For each a€C consider the complex line I, ={(2,w)€C?:z=a} and the set

—

E,=([(f)UK\K)Nla.

It follows from (5) and (7) that for a€V the projection of E, on the real line [,N{v=0}
contains an open segment. Since a polar set in C has Hausdorff dimension zero (see, e.g.,
[T, Theorem II1.19, p. 65}), it cannot be projected on an open segment in R. Therefore,
the set E, is not polar. It then follows from (6) that ¢=—oc on {,. Since this argument
holds true for all a€V, we conclude that p=—o00 on C2 . This contradiction proves the
theorem in the case n=1.

(2) The general case. Let k€{1,2,...,n}. For each a={a1,as,...,a,)€S) consider
the function

fi(z) = f(a1, ..., ap—1, 2k, Gkt 1, ---, Gn)

defined on the domain
a
k:Qﬁ{zlzal,...,zk_lzak_l,zk+1:ak+1,...,zn:an}CCzk.

Since, by our assumptions, the set I'(f) is pluripolar, there is a function ¢, plurisubhar-
monic in C**!, such that T'(f)C{p=—o00}. For all points a except for a pluripolar set
in C™ one obviously has that the function

@z(zkn Zn+1) = Qo(ah ey Qg —1, 2k Q415 -+ Qns Zn+1)

is not identically equal to —oo in thz” ,,- For all such points a we can use the ar-
gument from case (1) and conclude from the continuity of the function f2:QF—C. .,
and from the inclusion I'(f2)C{p2=—oc} that the function f2 is holomorphic. Since
the complement of a pluripolar set is everywhere dense, it follows from continuity of f
that the functions f2 are holomorphic for all aeQ. This argument holds true for any
k=1,2,...,n, so we conclude from the classical Hartogs theorem on separate analyticity

that the function f is holomorphic. The proof of the theorem is now completed. g

Proof of the corollary. Since, by our assumption, the number #E(z) of points in
the fiber of E is bounded from above in 2, we can consider m=max,cq #FE(z) and then
the open subset U={z€Q: #FE(z)=m} of Q. Let 2z be a point of U and let h;(z), i=
1,2, ...,m, be the functions defining single-valued branches of E(z) in a neighbourhood U
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of zp. Since, by our assumption, F(z) depends continuously on z€£ in the Hausdorff
metric, we conclude from the theorem that the functions h;(z) are holomorphic in U.
Hence, F(z)=]],,;(hi(2)~h;(2)) is a well-defined holomorphic function in ¢/ such that
for each 2’€bU/NQ one has F(z)—0 as z— 2/, z€U. Then the function

~ F(z) forzel,
F(z) =
0 for zeQ\U,

is continuous in €2 and holomorphic in UY=0\{z: F(z)=0}. Therefore, by Radé’s theorem
(see, e.g. [C, p. 302]), F is holomorphic in Q. In particular, the set {zeQ:ﬁ(z)=0} is
an analytic hypersurface.

Consider now the function

H(w——hi(z)):wm+a1(z)wm“1+...+am(z).

i=1
Since a1(2),az2(2), ..., am(2) are symmetric functions of hy(z), ha(z), ..., hm(2), they are
well defined and holomorphic in #. Moreover, since F(z) depends continuously on
z€§) in the Hausdorff metric, these functions are locally bounded near the set Q\U=
{z: F(2)=0}. It follows then from removability of analytic singularities that the functions
a1(z), az(2), ..., am(2) are holomorphic in the whole of 2. Since, by our construction,

E={(z,w)€QxCy:w™+a1(2)w™ ' +..4+an(z) =0},

the corollary follows. a

Remark. The statement of the corollary was first proved in [Sh] for sets represented
by Weierstrass pseudopolynomials by a different (and more complicated) method. It was
later observed independently by the author and by A. Edigarian [E] that the methods of
Chapter 4 in [N2] give a simpler proof for these sets.

4, Example
We first prove the following simple lemma:

LEMMA 6. Let f and g be holomorphic functions, defined in a neighbourhood U
of a point a€C;, such that f(a)=g(a) and f'(a)#g'(a). Let r be a positive number
such that A,(a)={2€C,:|z—a|<r}CU and f(z)#g(z) for z€A.(a)\{a}. Then for all
sufficiently small £>0 the complex curve ECA,(a)xC,, defined by the equation

def

G(z,w) = (w—f(2))(w-g(z))—e=0 (8)
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is a branched covering over the disk A,(a) with two branches and two branching points

27

i—a —_———
Ty

Ve +0(e). (9)

Proof. Equation (8) is quadratic with respect to w, and hence ¥ is a branched
covering over A,(a) with two branches. A point b is a branching point of X if for
some wy such that (b, wy)€X one has 0=G., (b, wy)=2wp,— f(b)—g(b). Therefore, wy=
3(f(b)+g(b)), and then (8) implies that —1(f(b)—g(b))?—e=0, i.e.

f(b)—g(b) = £2iVe. (10)

Hence, in view of our choice of r, b—a as e—0. Then, using Taylor expansions of
f and g at the point a, we conclude from (10) and the assumption f(a)=g(a) that
(f'(a)—g'(a))(b—a)+O(|b—a|?)==%2i\/c. Finally, the assumption f’(a)#g’(a) implies
that

21 2
-g'(a) f'(a)—g'(a)

Construction of the set E. Let ¢ be a smooth real-valued function defined on the
segment [0, 1] such that

Ve+O(b—al?) == Ve+O(e). 0

1 for 0<t< 3,
o(t)={ decreasing for $ <t< 3,
0 for 2<t< 1.

Consider the set
Ei={(z,w)EAXCy:w?= o(]zN) 2},

where, as above, A={2€C,:|z|<1} is the unit disk. This set has two branches over
the disk Aj/3(0) with one branching point at z=0. The branches are glued to each
other along the circle A={(z,w):|2|=2,w=0} and become one branch {(z,w):w=0}
for 2<|z|<1. Consider some points A;=(a;,0) and Az3=(as,+/a3) of E; and a point
As=(ay,C) with aj, az, as and C real and positive such that %<a1<1, 0<a3<% and
az <az<a;. Further, consider the complex line £’ passing through the points A and Aj,
and the complex line £ passing through the points A; and As. Let ay, as and ag be
already chosen and consider C' so big that the line £” intersects E, in two points As
and A5=(a},—+/a}), with a} real such that 0<aj<as, and the line £’ intersects E,
only at the point A;. The set E will be constructed as a small deformation of the set
Eiu((L'uL"YN{AxC,)) near the points Ay, k=1,2,3, that creates, as in Lemma 6,
two branching points instead of each self-intersection point.
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Let 7>0 be so small that the disks A;=A(a1), Ap=A,(az) and Az=A,(a3) neither
intersect each other nor the circle {|z|:§} and, moreover, do not contain the point aj.
Denote by £ the set (E;UL' YN (A;x C,,), by & the set (L'UL")N(A2xC,,) and by &3
the connected component of the set (E;UL"”)N(A3xC,) containing the point Az. Then
each of the sets £, k=1,2, 3, is the union of the graphs of two holomorphic functions f,z,
j=1,2, having the same value and different derivatives, both of them real (which is easy
to check by direct calculation) at the center of the respective disk Ay. Therefore, we
can apply Lemma 6 to each of these sets and, if ¢ is small enough, we will get branched
coverings X1, Xy and X3 over the disks Ay, Ay and Ajg, respectively, with two branches
and two branching points contained in the smaller disks A]=A, /3(a1), Ay=A,/3(az) and
A3=A,3(as3). Moreover, since for each k=1,2,3 the derivatives at the centers of the
disks Ay of the functions f,z, j=1,2, are real, we conclude from (9) that one of the two
branching points contained in A} is contained in the half-disk {z€ A} :Im 2>0}, while
the other is contained in the half-disk {z€ A} :Im 2<0}. Since both branching points of
each set 3;, are contained in the respective disk A}, the set TN ((Ar\A}) xCy) will
be the union of the graphs of two holomorphic functions fg , 7=1,2, defined on Ag\A}
and, moreover, if £ is small enough, then each function fi will be close enough to the

corresponding function f,{. Define the functions

He=o( 2 R+ (1-o( 5 o)) e,

for ze A\AL, k=1,2,3, j=1,2. Let ¥+ be the union of the graphs of f,i and f,f Now
we can define the set E as

Ez((E1U((£/U£II) AXC \ng) @ EkU Ekﬂ(AkXC )))

Define also the set E™¢ as E with the circle A, the point Aj of the transversal self-
intersection of E and all the branching points of E being removed. Then, by our
construction, E™ is a smooth connected 2-dimensional surface transversal to the w-
direction.

Note that each fiber E(z) of the set E has at most four points and that the fibers
E(z) depend continuously on z€ A in the Hausdorff metric.

CraM 1. Hi{AxC\E,Z)=0.
Proof. Let a be a real positive number such that a3<a<%. Consider the point
A=(a,—+/a)€eE and a disk D;={(z,w):z=a, [w++/a|<s} so small that it intersects

the set E only at the point A. We first prove that the circle C;=5bD; is homological to
zero in AxC,\E.
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Consider the curve z(t) in C, defined as

a(l1-t)+(ar1+7)t for 0<t <1,
a1 +ret=1) for 1<t<2,
2(t) =< (a1—7)(3—t)+(as+r)(t—2) for 2<¢<3,
az+re™t=3) for 3<t<4,
(az—7)(5—t)+2(t—4) for 4 <t <5.

If 7,: C2 ,—C, is the projection, then the curve z(t) admits a uniquely defined lifting
by 7! to the piecewise smooth curve v in E with the initial point A.

The curve # is transversal to the w-direction and has one point of self-intersection,
namely, the endpoint (%, 0), where two smooth curves on the side {|z|< %} meet each
other.

The geometric description of the curve v looks as follows. We start from the point
A=(a,—+/a), and then, over the segment {z:agRe z<%, Im z:O}, the curve + is con-
tained in the “lower” branch of the set F;, while over the segment {z: %gRezéal—r,
Im2=0}, v is contained in the only branch {(z,w):w=0} of E; for |z|>%. Since
both branching points of ¥, are contained in A;={z:|z—a:1|<r}, and since only one
of them is contained in the half-disk {z€A;:Im z>0}, we conclude that over the seg-
ment {z:a1 —r<Rez<a;+r, Imz=0} the curve vy will “change from the branch E, to
the branch £'”. Then, over the half-circle {z:|z—a;|=7r,Im2>0} and the segment
{z:a24+r<Rez<ay —r,Im 2=0}, ~ is contained in £’. After that, applying the same ar-
gument as we used for the segment {z:a1 —r<Rez<a1+r, Im2=0}, we conclude that,
over the segment {z:a2—r<Rez<az+r,Im2=0}, the curve v will “change from the
branch £’ to the branch £””. Then, over the segment {z:a3+r<Rez<az—r, Im2z=0}
and the half-circle {z:|z—a3z|=r,Im2>0}, v is contained in £”. After that, the same
argument as above shows that, over the segment {z:a3—r<Rez<az+r, Imz=0}, the
curve v will “change from the branch £” to the branch E;”. And finally, over the segment
{z:ag +7r gRezgg, Im z:O}, the curve  is contained in the “upper” branch of E; up
to the endpoint (Z,0), where we meet the first part of the curve v which is (for |z[<2)
contained in the “lower” branch of Ej.

For each zp€m,(7y) and each s>0, consider the sets

Ly(20) ={(20,w): min |w—w'|=s}
(z0,w" )€Y
and

Qs(20) = {(20,w): min |Jw—w'|<s}.
(zo,w’)e'y
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Then, for s small enough, each set (2g) is the union of finitely many (at most three)
disks in {2y} x C,,, which are disjoint if 2 is far enough from the circle {|z|=2}, and
is the union of two connected components, one of which is a disk and the other one is
the union of two disks having nonempty intersection, if |Zo|<§ and z; is close enough
to the circle {|z|=2}. As |z|—2 from the side {|z|<%}, the centers of the two disks
constituting the second connected component of Q(z9) become closer to each other,
and for [z0|2% this component becomes just one disk. Each set Q;(2z9) has a natural
orientation induced from C,, and, hence, I';(zp)=5b2;(z0) has also a natural orientation.
Consider the set

TSZ U FS(Z()).

20€m:(7)
Since the curve v is piecewise smooth, it follows from the definition of T's(zp) that the
set T, is a piecewise smooth surface of dimension 2 in A xC,, with the boundary on
the above chosen circle ;. Moreover, since v is oriented, and since each set I's(zg) is
oriented, we can also orient the surface T,. Topologically, T is a torus with a disk
removed, Cs being the boundary of this disk. Since the curve yC F is transversal to the
w-direction, we conclude that TsC AxC,\ E for s sufficiently small. This implies that
the homology class [C4] of the circle Cs in H1(AxC,\E, Z) is trivial.
Now we observe that, for each point (z,w)€ E"8, the circle

Cs(z,w) ={(z,w): lw—w'|=s}

is homological to zero, if s>0 is small enough. Indeed, since the set E™# is connected,
there is a smooth curve 7 C E™# connecting the points A and (z, w). Then, for >0 small
enough, the set

M ={(z,w"):jlw—w'|=s, (z,w)€F}

is a smooth “cylinder” of dimension 2 which is contained in A x C,,\ E and has its bound-
ary on Cs(z,w) and C,. Therefore, the circles Cs(z,w) and C, represent the same homol-
ogy class in Hi(AxC,\E,Z). Since C; is already proved to be homological to zero in
AxCy\E, it follows that Cs(z,w) is also homological to zero in AxC,\ F.

Finally, let C be any smooth closed curve in AxC,\FE. Then, there is a 2-dimen-
sional disk D smoothly embedded into A x C,, such that C=bD. We can assume that the
disk D is in general position, in particular, that D intersects E in finitely many points
{(2p, wp)}’;:1 which are contained in E*®8. Without loss of generality, we can also assume
that D is parallel to the w-direction in a neighbourhood of each point (2,,wp). Then
the disks Dy (2p, wp)={(2p, w'): |w, —w’|<s} are contained in D for s>0 small enough.
Therefore, C=b6D is homological to U’;zl bDs(2zp, wp) in AxC,\E, the homology being
D\U';:1 Dy(2p, wp). Since each circle Cs(zp, wp)=bDs(zp,wp) is already proved to be
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homological to zero in Ax C,\E, we conclude that C is also homological to zero. The
proof of the claim is now completed. 0

As an application of Claim 1 we show the following property of the set E:

CLAM 2. There exists a neighbourhood U(E) of the set E which does not contain
any subset of AxC,, defined by a Weierstrass pseudopolynomial.

Proof. Assume, to get a contradiction, that every neighbourhood U(E) of E con-
tains a subset defined by a Weierstrass pseudopolynomial. For R big enough consider the
circle Cp={(z,w): 2=0, jw|=R} C A x C,\ E oriented counterclockwise in the w-variable.
Then, in view of Claim 1, there is a 2-chain S such that 6S=Cg and supp SCAXC,\ E.
The last inclusion implies that there exists a neighbourhood U(E) of E such that
supp SNU(E)=. By our assumption, there is a subset E of U(E) which is defined
by a Weierstrass pseudopolynomial, i.e. it has the form (1) with a1(2),a2(2), ..., am(2)
being continuous functions. Since supp SN E =, the homology class [Cr| of the circle Cr
in Hy(AxCy,\E,Z) is trivial. Consider the continuous map ®: Ax Cy,\ E—S! defined
by

w™+ay (2)w™ 4t am(2)

O(z,w) = |w™+a1(2)wm 1+ .. Aam(2)] (11)

Then, on one hand, [Cg]=0 in H;(AxC,\E,Z) and, hence, ®,([Cr])=0 in H:(S",Z).
On the other hand, the term w™ in the numerator of formula (11) will dominate for
(z,w)€CRg, if R is big enough. Therefore, the degree of the restriction of ® to Cg (it is a
map from S* to S*) is equal to m. Hence, ®,([Cr))=m[S!)#0 in H,(S',Z). This gives
the desired contradiction and proves the claim. O
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