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1. I n t r o d u c t i o n  

This paper is a contribution to the project [9], [8], [1], [13] of explaining why no satis- 

factory system of complete invariants has yet been found for the torsion-free abelian 

groups of finite rank n~>2. Recall that,  up to isomorphism, the torsion-free abelian 

groups of rank n are exactly the additive subgroups of the n-dimensional vector space Qn 

which contain n linearly independent elements. Thus the collection of torsion-free abelian 

groups of rank 1 <~r<~n can be naturally identified with the set S(Q n) of all non-trivial 

additive subgroups of Qn. In 1937, Baer [3] solved the classification problem for the class 

S(Q) of rank-one groups as follows. 

Let P be the set of primes. If G is a torsion-free abelian group and Or then 

the p-height of x is defined to be 

h~;(p) = sup{nE N I there exists yE G such that  p"y = x} E NU{c~}; 

and the characteristic X(x) of x is defined to be the function 

( hx(p) l pe  P) e (NU{oc}) p. 

Two functions X1,)~2 E (NU{oc}) p are said to be similar or to belong to the same type, 

written ~(1-X2, if and only if 

(a) Xl(p)=x2(p)  for almost all primes p; and 

(b) if XI(P)r then both Xa(P) and X2(P) are finite. 

Clearly -- is an equivalence relation on (NU{oo}) p. If G is a torsion-free abelian group 

and 0 r  then the type r(x) of x is defined to be the --equivalence class containing 

the characteristic X(x). 
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Now suppose that  G E S ( Q )  is a rank-one group. Then it is easily checked that  

~-(x) =T(y)  for all 0 ~ x ,  yEG. Hence we can define the type ~-(G) of G to be ~-(x), where 

x is any non-zero element of G. In [3], Baer proved that  T(G) is a complete invariant for 

the isomorphism problem for S(Q).  

THEOREM 1.1 (Baer [3]). If G, HES(Q), then G~-H if and only if ~-(G)=T(H) .  

However, the situation is much less satisfactory in the case of the torsion-free abelian 

groups of rank n~>2. In the late 1930s, Kurosh [15] and Malcev [16] found complete in- 

variants for these groups consisting of equivalence classes of infinite sequences (Mp I PEP) 
of matrices, where each MpEGLn(Qp). However, as Fuchs [7, Section 93] remarks, the 

associated equivalence relation is so complicated that  the problem of deciding whether 

two sequences are equivalent is as difficult as that  of deciding whether the correspond- 

ing groups are isomorphic. It  is natural  to ask whether the classification problem for 

S(Q n) is genuinely more difficult when n~>2; or whether, on the contrary, there exists 

an "explicit" map f :  S(Qn)-+S(Q) which reduces the classification problem for S (Q  n) 

to that  for S(Q);  i.e. which has the property that  A~-B if and only if f(A)~-f(B). To 

give a precise formulation of this question, we need to make use of the notion of Borel 

reducibility. 

Let X be a s tandard Borel space; i.e. a Polish space equipped with its Borel structure. 

Then a Borel equivalence relation on X is an equivalence relation E C  X 2 which is a Borel 

subset of X 2. If E,  F are Borel equivalence relations on the s tandard Borel spaces X, Y 

respectively, then we say that  E is Borel reducible to F and write E~<B F if there exists a 

Borel function f :  X--+ Y such that  x E y if and only if f (x)Ff(y) .  We say that  E and F are 

Borel bireducible and write E ~ B  F if both E <~ • F and F ~< B E. Finally we write E < B F if 

both E~<~ F and F ~ s  E. Most of the Borel equivalence relations that  we shall consider 

in this paper arise from group actions as follows. Let G be a locally compact  second 

countable group. Then a standard Borel G-space is a s tandard Borel space X equipped 

with a Borel action (g,x)~-+g.x of G oi1 X. The corresponding G-orbit  equivalence 

relation on X, which we shall denote by E x ,  is a Borel equivalence relation. In fact, by 

Kechris [11], E X is Borel bireducible with a countable Borel equivalence relation; i.e. a 

Borel equivalence relation E such that  every E-equivalence class is countable. Conversely, 

by Feldman-Moore [6], if E is an arbi t rary countable Borel equivalence relation on the 

standard Borel space X,  then there exists a countable group G and a Borel action of G 

on X such that  E = E  x. 

To see how the classification problem for torsion-free abelian groups fits into this con- 

text, note that  S ( Q  n) is a Borel subset of the Polish space p ( Q n )  of all subsets of Qn, and 

so S(Q ~) is a s tandard Borel space. (Here we are identifying :p(Qn) with the space 2 Q~ 
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of all functions h: Q~--+ {0, I} equipped with the product topology.) Furthermore, S(Q '~) 

is a standard Borel GLn(Q)-space under the action induced from the natural action of 

GL~(Q) on the vector space Qn; and it is easily checked that  if A, BES(Qn), then 

A~-B if and only if there exists an element ~EGLn(Q)  such that  ~[A]=B. Thus the 

isomorphism relation on S(Q n) is a countable Borel equivalence relation. 

Notation 1.2. ~n  denotes the isomorphism relation on S(Q") .  

It is clear that (---n)~<B (------~+1) for all n~> 1; and our earlier question on the complex- 

ity of the classification problem for S(Q ~) can be rephrased as the question of whether 

( ~ I ) < B  ( ~ )  when n~>2. In order to explain the solution of this problem and to be able 

to formulate the main open problems in this area, it is first necessary to give a brief ac- 

count of some of the general theory of countable Borel equivalence relations. (A detailed 

development of the theory can be found in Jackson-Kechris-Louveau [10].) 

The least complex countable Borel equivalence relations are those which are smooth; 
i.e. those countable Borel equivalence relations E on a standard Borel space X for which 

there exists a Borel function f :  X--+Y into a standard Borel space Y such that  xEy  
if and only if f(x)=f(y).  Next in complexity come those countable Borel equivalence 

relations E such that E is Borel bireducible with the Vitali equivalence relation Eo 
defined on 2 N by xEoy if and only if x(n)=y(n) for almost all n. By Dougherty-  

Jackson-Kechris [5], if E is a countable Borel equivalence relation on a standard Borel 

space X, then the following three properties are equivalent: 

(1) E<~BEo. 
(2) E is hyperfinite; i.e. there exists an increasing sequence 

FoC_Fl C_... C_F,, C_... 

of finite Borel equivalence relations on X such that E - -  UnEN Fn" (Here an equivalence 

relation F is said to be finite if and only if every F-equivalence class is finite.) 

(3) There exists a Borel action of Z on X such that E=E x. 
It is easily checked that  the similarity relation - on the space (NU{oo}) P of char- 

acteristics is Borel bireducible with E0. Thus we obtain the following characterisation of 

the complexity of the isomorphism problem for S(Q).  

THEOREM 1.3 (Folklore). (~I)~BEo. 

It turns out that  there is also a most complex countable Borel equivalence rela- 

tion E ~ ,  which is universal in the sense that  F<.BE~ for every countable Borel equiva- 

lence relation F,  and that  Eo <B E ~ .  (Clearly this universality property uniquely deter- 

mines E ~  up to Borel bireducibility.) Eor has a number of natural realisations in many 
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areas of mathematics ,  including algebra, topology and recursion theory. (See Jackson 

Kechris-Louveau [10].) For example, E ~  is Borel bireducible to both the isomorphism 

relation for finitely generated groups [22] and the isomorphism relation for fields of finite 

transcendence degree [23]. 

In [9], Hjorth-Kechris  conjectured that  ( ~ ) ~ B E ~  for all n~>2. Of course, if true, 

this would explain the failure to find a satisfactory system of complete invariants for 

the torsion-free abelian groups of rank n~>2, since nobody expects such a system to 

exist for the class of finitely generated groups. In [8], Hjorth provided some evidence for 

this conjecture by proving that  E 0 < B ( ~ n )  for all n~>2. (For n~>3, Hjorth proved the 

stronger result that  ~ n  is not treeable. More recently, Kechris [13] has shown that  ---2 is 

also not treeable. See [9] or [10] for a discussion of the notion of treeability.) Later in [1], 

Adams-Kechris  used Zimmer 's  superrigidity theorem for cocycles [25, Theorem 5.2.5] to 

prove the intriguing result that  

( ~ )  < .  ( ~ )  <B ... < ~  (~,*,) < ~  ..., 

where (-~,*) is the restriction of the isomorphism relation to the class of rigid torsion- 

free abelian groups AES(Qn) .  Here an abelian group A is said to be rigid if its only 

automorphism are the obvious ones: a~--~a and a~-+-a. In particular, none of the relations 

~-* is a universal countable Borel equivalence relation. It  was not clear whether or not - - n  

the Adams-Kechris  result provided further evidence for the Hjorth Kechris conjecture, 

since very little was known concerning the relationship between ~,*, and ~-,n for n, m~> 1. 

~-~* ~-< ~-~ ~ for all n~>l; and using Theorem 1.1, it is easily Of course, it is clear that  ~--,).~B ~--,~) 

seen that  (~ ) ' -~BE0 ,  and so (~ ' ) , -~B(~ l ) .  But, apar t  from these easy observations, 

essentially nothing else was known. The main result of this paper  says that  (~:~)~B (~2). 

Thus ~2 is not a universal countable Borel equivalence relation, and so the Hjor th-  

Kechris conjecture is false. 

THEOREM 1.4. (~:~)~B(~2) .  

As an immediate  consequence, we obtain that  the classification problem for S (Q  3) 

is strictly more complex than that  for S(Q2). 

COROLLARY 1.5. (=2)  U(=:~). 

Theorem 1.4 is an easy consequence of Theorem 1.6. But before we can state Theo- 

rem 1.6, we need to recall some notions from ergodic theory and group theory. Let G 

be a locally compact  second countable group and let X be a s tandard Borel G-space. 

Throughout  this paper, a probabili ty measure on X will always mean a Borel probabili ty 

measure; i.e. a measure which is defined on the collection of Borel subsets of X. The 
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probability measure p on X is said to be non-atomic if # ({ x } )=0  for all xEX;  and p 

is said to be G-invariant if and only if #(g[A])=p(A) for every gEG and Borel subset 

A C X .  The G-invariant probability measure p is ergodic if and only if for every G- 

invariant Borel subset AC_X, either p ( A ) = 0  or p ( A ) = I .  It is well-known that  the 

following two properties are equivalent: 

(i) # is ergodic. 

(ii) If Y is a standard Borel space and f :  X - + Y  is a G-invariant Borel function, 

then there exists a G-invariant Borel subset M C X  with # ( M ) = I  such that  r i M  is a 

constant function. 

Let G be a locally compact second countable group and let ~: G-+U(7-I) be a unitary 

representation of G on the separable Hilbert space 7-/. Then 7r almost admits invariant 

vectors if for every s > 0  and every compact subset KC_G, there exists a unit vector vET-/ 

such that  I]Tr(g).v-v]l<s for all gEK. We say that  G is a Kazhdan group if for every 

unitary representation 7r of G, if ~ almost admits invariant vectors, then 7r has a non-zero 

invariant vector. If G is a connected semisimple R-group, each of whose almost R-simple 

factors has R-rank at least two, and F is a lattice in G, then F is a Kazhdan group. (For 

example, see Margulis [17] or  Zimmer [25].) In particular, SL3(Z) is a Kazhdan group. 

For later use, recall that  a countable (discrete) group G is amenable if there exists a 

finitely additive G-invariant probability measure u: P(G)--+ [0, 1] defined on every subset 

of G. During the proof of Theorem 1.6, we shall make use of the fact that  if the countable 

group G is either soluble or abelian-by-finite, then G is amenable. (For example, see 

Wagon [24, Theorem 10.4].) 

In the first three sections of this paper, we shall only discuss countable groups 

equipped with the discrete topology. In w we shall also need to consider various linear 

algebraic groups G(K)<. GLn(K),  where K is either R or a finite extension of the field 

Qp of p-adic numbers for some prime p. In this case, G(K)  is a locally compact second 

countable group with respect to the Hausdorff topology; i.e. the topology obtained by 

restricting the natural topology on K "2 to G(K).  Any topological notions concerning 

the group G(K)  will always refer to the Hausdorff topology. 

THEOREM 1.6. Let F be a countable Kazhdan group and let X be a standard Borel 

F-space with an invariant ergodic probability measure #. If f: X-->S(Q 2) is a Borel 

function such that xEXy  implies f (x ) '~2f (y) ,  then there exists a F-invariant Borel 

subset M with # ( M ) = I  such that f maps M into a single ~-2-class. 

Proof of Theorem 1.4. Let S(Q 3, Z 3) be the Borel set consisting of those GES(Q :~) 

such that  Z3~<G. Then S(Q :*, Z 3) is invariant under the action of the subgroup SL:t(Z) 

of GL3(Q); and building upon earlier work of Hjorth [8], Adams-Kechris [1, Section 6] 
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have shown that there exists an SL3(Z)-invariant Borel subset X of S(Q 3, Z 3) with the 

following properties. 

(i) Each GEX is rigid. 

(ii) There exists an SL3(Z)-invariant ergodic non-atomic probability measure p 

on X. 

Suppose that  (-----~)~<B(~2). Then there exists a Borel function f :  X--+S(Q 2) such 

that  G~-~H if and only if f(G)~2f(H). If G is E~CL~(z)-equivalent to H,  then G ~ H  
and so f(G)~-2f(H). Since SL3(Z) is a Kazhdan group, Theorem 1.6 implies that  there 

exists an SL3(Z)-invariant Borel subset M with #(M)=I such that f maps M into a 

single ---2-class C. But clearly f-l[C] consists of only countably many E x  (z)-classes, 

which contradicts the fact that  # is non-atomic. Hence ( ~ ) ~ B  (~2)" [] 

This paper is organised as follows. In w we shall discuss the notion of a cocycle of 

a group action and state the two cocycle reduction results which are needed in tile proof 

of Theorem 1.6. In w we shall prove Theorem 1.6; and in w we shall prove our main 

cocycle reduction result. 

Finally we shall say a few words about some very recent work [21] in which it is shown 

that  (~n)<B(~n+l) for all n~>l. Hjorth's result that (~1) <B (-------2) depends essentially 

upon the fact that  SL2(Z) is non-amenable, while GLI(Q)=Q* is amenable. In this 

paper, the proof that ( ~ 2 ) < u ( ~ 3 )  is based upon the fact that  SL:~(Z) is a Kazhdan 

group, while GL2(Q) does not contain any infinite Kazhdan subgroups. However, we 

could also have based our proof upon Zimmer's superrigidity theorem for cocycles [25, 

Theorem 5.2.5], which can be used to distinguish between SL,,(Z)-spaces and SL,,+I (Z)- 

spaces for all n~> 2. In fact, the main obstruction to an understanding of the complexity of 

the isomorphism relation (-~,) for n ~> 3 lies in the field of abelian group theory. The proof 

of Theorem 1.6 makes heavy use of Krdl's analysis [14] of the automorphism groups and 

endomorphism rings of the torsion-free abelian groups of rank two; and no such analysis 

exists for the groups of rank n~>3. In [21], we were able to get around this difficulty by 

initially replacing the isomorphism relation on S ( Q ' )  by the coarser relation of quasi- 

isomorphism. However, we should point out that  the shift from isomorphism to quasi- 

isomorphism comes at a cost. In this paper, the proof yields an explicit decomposition of 

~2 as a direct sum of amenable relations and orbit relations induced by free actions of 

homomorphic images of GL2(Q); but it does not seem possible to extract an analogous 

decomposition of ~n  for n~>3 from the proof in [21]. 
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2. Cocycles 

In this section, we shall discuss the notion of a cocycle of a group action and state the 

two cocycle reduction results which are needed in the proof of Theorem 1.6. (Clear 

accounts of the theory of cocycles can be found in Zimmer [25] and Adams-Kechr is  [1]. 

In particular, Adams-Kechris  [1, Section 2] provides a convenient introduction to the 

basic techniques and results in this area, writ ten for the non-expert  in the ergodic theory 

of groups.) Let F be a countable group and let X be a s tandard Borel F-space with an 

invariant probabili ty measure #. 

Definition 2.1. If H is a locally compact  second countable group, then a Borel 

function c~:F• is called a cocycle if for all g, hEF and xEX, 

. ( h g ,  x) = x). 

(Since we shall only be considering the case when F is a countable group, we can 

work with strict cocycles throughout this paper. For example, see the discussion on p. 67 

of Zimmer [25].) 

In this paper,  cocycles will usually arise in the following fashion. Suppose that  H is 

also a countable group and that  Y is a s tandard Borel H-space.  Let f :  X-+Y be a Borel 

function such that  xEXy implies f (x)EYf(y) .  If g acts freely on Y, then we can define 

a Borel cocycle a:  F• by letting (~(g, x) be the unique element of H such that  

~(g,x).f(x) =f(g.x). 

Suppose now that  B:X-~H is a Borel fimction and that  f ':X--~Y is defined by 

f'(x) =B(x).f(x). Then xEXy also implies f '(x)E~f'(y); and tim corresponding cocycle 

cx': F x X -+ H satisfies 

c~'(g, x) = B(g.x)a(g, x)B(x) -1 

for all gEF  and xEX. This observation motivates the following definition. 

Definition 2.2. Let H be a locally compact  second countable group. Then tile 

cocycles c~, ~: F•  X--+H are equivalent, written c ~ f l ,  if and only if there exists a Borel 

function B: X--+H such that  for all gEF,  

~(g,x)=B(g.x)a(g,x)B(x) -1 #-a.e. 

A cocycle reduction result says that  under suitable hypotheses, every cocycle 

c~:F• is equivalent to a cocycle ~ such that  ~ [ F •  is contained in a "small" 

subgroup of H.  To see why this might be useful, we shall continue our discussion of the 

example which was introduced just before Definition 2.2. Suppose now that  c~'[F x X] is 
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the identity subgroup of H.  Then the associated Borel function f~: X - +  Y is F-invariant. 

Hence if p is an ergodic measure on X,  then there exists a F-invariant Borel subset M 

with p ( M ) = I  such that  f t [ M  is a constant function; and this implies that  f maps M 

into a single EHY-class. With  a little more effort, we can reach the same conclusion if we 

only assume that  a I[F • X] is contained in a finite subgroup of H.  

The proof of Theorem 1.6 will be based on the following cocycle reduction result, 

which is a straightforward consequence of results of Zimmer [26] and Adams-Spatz ier  [2]. 

We shall prove Theorem 2.3 in w 

THEOP~EM 2.3. Let F be a countable Kazhdan group and let X be a standard Borel 

F-space with an invariant ergodic probability measure #. Then for every Borel cocycle 

(~: FxX--+PGL2(  Q), there exists an equivalent cocycle 7 such that 7 [ F x X ]  is contained 

in a finite subgroup of PGL2(Q).  

At this point, we can explain the s trategy of the proof of Theorem 1.6. So suppose 

that  F is a countable Kazhdan group and that  X is a s tandard Borel F-space with an 

invariant ergodic probabili ty measure #. Let f :  X--+S(Q 2) be a Borel function such that  

x E X y  implies f (x )~-2 f (y ) .  Because GL2(Q) does not act freely on S(Q2), initially we 

are unable to define a corresponding cocycle a : F x X - + G L 2 ( Q ) .  Instead we a t tempt  

to reduce to the case when there exists a F-invariant Borel subset Xo with # ( X o ) = l  

such that  Au t ( f (x ) )  is a fixed subgroup L of GL2(Q) for all xEXo .  Suppose that  we 

succeed and let Z = { G E S ( Q 2 ) I A u t ( G ) = L } .  Then f[Xo]C_Z and ~ 2 [ Z  is induced by a 

free action of the quotient group 

H = NCL2(Q)(L)/L. 

Hence we can define a corresponding cocycle cx: F x X o - + H ;  and then this case can be 

dealt with using Ttmorem 2.3. (At first glance, it might appear  that  we require a whole 

series of cocycle reduction results, one for each of the possible groups L. But fortunately 

we can get by with Theorem 2.3.) On the other hand, in those cases where we fail, it 

turns out that  we can reduce to the case when there exists a F-invariant Borel subset Xo 

with # ( X 0 ) = l  and a Borel subset Zc_S(Q 2) such that  f[Xo]C_Z and ~ 2 I Z  is induced 

by an action of a countable amenable group H.  Then the following result deals with this 

case. 

THEOREM 2.4. Let F be a countable Kazhdan group and let X be a standard Borel 

F-space with an invariant ergodic probability measure #. Suppose that H is a countable 

amenable group and that Y is a standard Borel H-space. I f  f:  X--~ Y is a Borel function 

such that x E X y  implies f ( x ) E Y  f ( y ) ,  then there exists a F-invariant Borel subset M 

with # ( M ) = I  such that f maps M into a single EY-eIass. 
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Proof. By Connes-Feldman-Weiss [4], if H is a countable amenable group and Y 

is a standard Borel H-space, then for every probability measure v on Y, there exists an 

H-invariant Borel subset BCY with v(B)--1  such that  EY[B is hyperfinite. (In [4], the 

result is only stated for the case when v is H-quasi-invariant; i.e. when H.N is v-null 

for every v-null Borel subset NCY. However, as Kechris points out in [12], the result is 

easily seen to hold for an arbitrary probability measure v. To see this, let H =  {hn I n~ 1} 

and consider the probability measure v* on Y defined by 

v(hn.A) 
v * ( A ) = E  2 n 

n = l  

Then v* is an H-quasi-invariant probability measure which agrees with v on every H- 

invariant Borel set.) In particular, let v - - f #  be the probability measure defined on Y 

by v(A)=p(f-l(A)) for each Borel subset AC_Y; and let B be an H-invariant eorel  

subset B with v ( B ) = l  such that  EY[B is hyperfinite. Let Xo=f-l(B). Then X0 is a 

F-invariant subset of X with p ( X o ) = l .  Consider the Borel function ( f iX0):  Xo-+B. By 

Hjorth-Kechris [9, Theorem 10.5], since F is a Kazhdan group and EH Y [B is hyperfinite, 

there exists a F-invariant Borel subset MC_Xo with p ( M ) = I  such that  f maps M into 

a single EY-class. [] 

3. Tors ion - f ree  abe l i an  g r o u p s  o f  rank t w o  

In this section, we shall prove Theorem 1.6. For each l = l ,  2, let Sz(Q 2) be the GL2(Q)- 

invariant Borel subset consisting of the groups G E S ( Q  2) of rank I. In the proof of 

Theorem 1.6, we shall quickly reduce to the case when f :  X-+S2(Q2).  Following KrS1 [14], 

our analysis of the groups GES2(Q 2) will split into various cases depending on the 

structure of certain invariants T(G) and C(G), which we shall now describe. So let 

GES2(Q 2) be a torsion-free abelian group of rank two. Then 

T(G) = {a I there exists O~aEG such that  T(a) = a} 

denotes the set of types which are realised in G. If Or then the pure subgroup of 
G generated by a consists of those elements cEG such that  there exist k, IEZ with k ~ 0  

such that kc=la. Now let a, bEG be a basis of G and let A, B be the pure subgroups 

of G generated by a, b respectively. Then G/(A+B) is a torsion group. In fact, by KrS1 

[14, 2.23], 

G/(A+B) TM ~ C(tp) 
pEP 

for some tpENU{o~}, where 
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(a) if tp<oc, then C(tp) is a cyclic group of order ptp; and 

(b) if tp=OC, then C(tp) is a PriKer p-group; i.e. an infinite locally cyclic p-group. 

The characteristic X of G/(A+ B) is defined to be the function X E ( N  U {o c}) p such 

that  X(p)=tp; and we say that  the basis a, b of G realises the triple 

{a, b, )~), 

where a=v(a) and b=T(b). We define C(G) to be the set of all such triples which are 

realised by some basis of G. 

LEMMA 3.1. Suppose that GES2(Q 2) and that a, bET(G) are two fixed (not neces- 

sarily distinct) types. If X1, X2 are characteristics such that {a, b, X1}, (a, b, X2) EC( G), 

then X1 and X2 belong to the same type. 

Proof. This is an immediate consequence of Theorems 2.25, 2.27 and 2.28 of 

Kr61 [14]. [] 

LEMMA 3.2. Let a, b be two fixed (not necessarily distinct) types. Then there only 

exist countably many groups GES2(Q  2) such that (a,b,x}cC(G) for some character- 

istic X belonging to the zero-type. (Here the zero-type is the type which contains the 
characteristic vge(NU{(x~}) P such that ~)(p)=0 for all p e P . )  

Proof. Let A, B be torsion-free abelian groups of rank one such that  T(A)----a and 

T(B)=b. Then each such group G can be realised up to isomorphism as an extension 

O--+ A |  F ~ O  

of AOB by a suitably chosen finite abelian group F. Fix a finite abelian group F and let 

F = ( ~ : =  1Ci be a decomposition of F into a direct stun of cyclic groups Ci of  order mi. 

Then by Theorems 7.14 and 7.17 [19], 

k k 

Extz (F ,  A@B) ~- H Extz  (C~, AOB) ~- l ' I  ( A /mi A )| B /mi  B). 
i = 1  i = 1  

Thus Extz (F ,  A| is a finite group; and the result follows easily. [] 

If a, b are types, then we write a ~ b  if and only if there exist characteristics x E a  

and ~)Eb such that  X(p)<.O(p) for all p E P .  The types a and b are said to be comparable 

if either a<~b or b<~a. Otherwise, a and b are incomparable. If a, b are types, then aAb 

is the type containing the characteristic 

(min{ X(p), v~(p)} I p e P }, 
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where X, ~) are arbitrary elements of a, b respectively. 

We are now ready to begin the proof of Theorem 1.6. So let X be a standard 

Borel F-space with an invariant ergodic probability measure #, and let f :  X--+S(Q 2) be 

a Borel function such that  xEXy implies f(x)~2f(y). Let E=E x and for each xEX, let 

Gx = f(x)E S(Q2). Since # is ergodic, there exists a F-invariant subset 3/o with #(Xo)= 1 
such that  one of the following two cases occurs. 

(A) G~ESI(Q 2) for all xEXo. 
(B) G~ES2(Q 2) for all xEXo. 

To simplify notation, we shall assume that  Xo=X. (We shall make this simplifying as- 

sumption each time that we appeal to the ergodicity of #.) First suppose that  G~E SI(Q 2) 

for all xEX. By Theorem 1.3, ~2[$1(Q 2) is hyperfinite; and so ~2[$1(Q 2) is equal to 

Ez  sl(Q2) for some Borel action of Z on SI(Q~). By Theorem 2.4, there exists a F-invariant 

Borel subset M with It(M)= 1 such that  f maps M into a single ~2-class. Hence we can 

suppose that  f :  X--+S2(Q2). Appealing to the ergodicity of It once again, we can now 

suppose that  one of the following three cases occurs. 

(I) IT(Gx)I>2 for all xEX. 
(II) IT(G~)I=2 for all xEX. 
( I I I ) ) T ( a x ) [ = l  for all xEX. 

Case (I). Suppose that IT(G )I>2 for all xEX. By Kr61 [14, 2.5], since each 

[T(Gx)[>2, it follows that  each T(Gx) contains at least one pair of incomparable types. 

Let g: X--+ Q2 be a Borel function which selects a basis g(x)= (as, b~)E Gx • G~ such that  

the types a~=T(a~) and bz=T(bz) are incomparable. Let Az, B~, be the pure subgroups 

of G~ generated by a~,b~ respectively, and let X~ be the characteristic of tile torsion 

group Gz/(Ax+B~). Suppose that  xEX and that X~ belongs to the zero-type. Then 

by Kr61 [14, 4.2], it follows that  r(G~)={ax,b~,a~Ab~}. In particular, {a~,b~} is the 

unique pair of incomparable types in T(G~). Hence Lemma 3.1 implies that if xEy, then 

X~ belongs to the zero-type if and only if Xv belongs to the zero-type. Since It is ergodic, 

we can suppose that one of the following two cases occurs. 

(a) For all xEX, X~ belongs to the zero-type. 

(b) For all xEX, X~ does not belong to the zero-type. 

First suppose that  Xx belongs to the zero-type for all xEX. Let 

Y = (Nt2{c~})P• (NU {cx~}) P 

and let h: X--+Y be the Borel function defined by h(x)=(x(a~), x(bx)). Let F be the 

countable Borel equivalence relation on Y such that  

(x(a),x(b))F(x(c),x(d)} if and only if {T(a),T(b)I={T(C),T(d)}. 
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Since the similarity relation - on (NU{cxD}) p is hyperfinite, it follows easily that  there 

exists a Borel action of the amenable group H =  (Z x Z)• Sym(2) on Y such that  F=EYH; 

and clearly if xEy ,  then h(x)Fh(y).  Hence Theorem 2.4 implies that  there exists a 

F-invariant subset X0 with # ( X 0 ) = l  and a fxed  pair of types {a, b} such that {ax, bx}= 

{a, b} for all xEXo. By Lemma 3.2, the image f[Xo] consists of only countably many 

groups GES2(Q2).  Hence there exists a Borel subset X1 with p (X1)>0  and a fixed group 

GES2(Q 2) such that  f ( x ) = G  for all xEX1. Let M=r.X1. Since # is ergodic, # ( M ) = I  

and clearly f[M] is contained in a single ~2-class. 

Hence we can suppose that  for all x E X ,  Xx does not belong to the zero-type. Let 

g: X--+P(P)  be the Borel map defined by 

g ( x ) = { p E P l p m G x = a x  for all rn>~ 1}. 

Clearly if xEy ,  then g(x)=g(y). By the ergodicity of #, we can suppose that  there exists 

a fixed set P of primes such that  g(x)=P for all x E X .  Let R be the subgroup of the 

multiplicative group Q* consisting of those rational numbers of the form 

r = -t-p1 P2 ... p•,,k 

where Pl, . . . ,pkEP and ml,  .. . ,mkEZ; and let 

(If P=rg, then we set R = { 1 , - 1 } . )  By Krdl [14, 4.3], Aut(Gz)=D for all x E X .  Let 

Y = {G e $2 (Q2) I there exists x �9 X such that  Gx ~2 G}. 

Then Y is a GL2(Q)-invariant Borel subset of $2(Q2); and the action of GL2(Q) on Y 

induces a free action of H=GL2(Q) /D on Y. Hence we can define a Borel cocyc]ce 

~: Fx  X--+H by 

fl(Tr, x) = the unique ~ � 9  H such that ~[G~] = G~.~. 

= the unique 9~�9 H such that  ~[f(x)]  = f ( ~ . x ) .  

Let Z be the center of GL2(Q) and let p:H--+PGL2(Q)=GL2(Q)/Z be the natural 

surjective homomorphism. Then we can define a Borel cocycle 

a: r x X --> PGL2(Q) 

by a=po/3. By Theorem 2.3, there exists an equivalent cocycle 

~/: F x X  --+ PGL2(Q) 
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such that  7 IF • X] is contained in a finite subgroup K of PGL2 (Q). Let B: X--~ PGL2 (Q) 

be a Borel function such that  

for all 7reF, a(~r,x)=B(Tr.x)7(Tr, x)B(x) -~ p-a.e. ( . )  

It is easily checked that  if x satisfies (*) and xEy, then y also satisfies (.) .  To simplify 

notation, we shall assume that  ( . )  holds for all xEX. Clearly there exists a Borel subset 

XlCX with # (X1)>0  and a fixed element CePGLu(Q) such that  B ( x ) = r  for all xeX1. 
Since # is ergodic, #(F. X1)=  1; and so we can also assume that  X1 intersects every F-orbit 

on X. 

Let {TrnlnEN} be a fixed enumeration of F with 7r0=l; and for each xEX, let 

Xl=ZCn.X, where n is the least integer such that  7Cn.XEX1. Notice that  for each xEX, 

~,(x) = {a( . ,  xl)I  r . x l  ~ x l }  c_ r 1 6 2  -~ 

is a finite subset of PGL2(Q). Let  L=Z/D so that  PGL2(Q):H/L; and regard a(~r, Xl) 

as a coset of L in H. Then/3(lr,  Xl)Ea(rC, Xl). It follows that 

O(x) = {L.f(Tr.Xl) l lr.xl E X1} 

is also finite of cardinality at most IKI; and it is easily checked that if xEy, then 

O(x)=O(y). By the ergodicity of #, we can suppose that  there exists an integer 1 ~<k~< IKI 

such that  IO(x)l=k for all xeX .  For each x e X  and l<~i~<k-1, let xi+l=rc,,.Xl, where 

n is the least integer such that  

(i) 7r,,.xlEX1, and 

(ii) f(Tr,,.xl)6{L.f(xj)ll<~j<~i }. 
Let ] :  X--+S2(Q2) k be the Borel function defined by 

] (x )  = ( f (x l ) ,  ..., f(xk)l. 

Let F be the countable Borel equivalence relation arising from the orbits of the natural 

action of 

W = ,  (L x. . .  • L)  :~ Sym(k) 

k co~)ies 

on $2(Q2) k. If xEy, then ep(x)=O(y), and so ](x)F](y). Clearly W is an amenable 

group; and so by Theorem 2.4, there exists a F-invariant Borel subset M with # ( M ) =  1 

such that ] maps M into a single F-class; and this implies that  f maps M into a single 

me-class. 
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Case (II). Suppose that  IT(Gx)[=2 for all xEX. By Kr61 [14, 2.6], the types as, bz~ 

T(Gx) are comparable; say, a~<bx. Furthermore, by Kr61 [14, 2.26], if bl,b2EGx satisfy 

~'(bl)=~'(bz)=b~, then bl and b2 are linearly dependent. It follows that  there exists a 

Boret function g: X-~GL2(Q) such that  

for all xEX. Let f ' :  X--~S2(Q e) be the Borel function defined by f~(x)=g(x)IGx], and 

let G~=g(x)[G~]. Let H be the subgroup consisting of the upper triangular matrices of 

GLe(Q). Then H is soluble and hence is amenable. Notice that  if ~EGLz(Q)  satisfies 
/ _ _  / ~[Gj=]-Gy, then 

 [{be 1 = = {eeG  I = %}; 

and so ~ has the form 

:) 
f _ _  / for some r, s, tEQ.  Thus "~ ~ G ~ if and only if there exists ~ E H  such that  ~[G~]-Gy. ~ : c  = 2  y 

By Theorem 2.4, there exists a F-invariant Borel subset M with # ( M ) =  1 such that  f '  
maps M into a single H-orbit  on Sz(QZ); and this implies that  f maps M into a single 

=~2-class. 

Case (III). Suppose that  IT(Gz)I=I  for all xEX; say, T(G~)={a~}. Arguing as 

in Case (I), we can suppose that  there exists a fixed type a such that  a~=a for all 

xEX. After slightly adjusting f if necessary, we can also suppose that  for all xEX, 
the standard basis elements el, e2 of Q2 are contained in Gx and that  el, e2 realise the 

same characteristic in G~. (With a little more effort, we could even reduce to the case 

when the characteristic realised by el, e2 in G~ is fixed for all xEX. However, this extra 

uniformity is not r('quired in the following argument.) Let A~, B~ be the pure subgroups 

of Gx generated by el, e2 respectively, and let )Cx be the characteristic of the torsion 

group G~/(A:~+B:~). Arguing as in Case (I), we can also suppose that  for all xEX, 
k:,: does not belong to tile zero-type. 

Since a~=a for all xEX, it follows that  there is a fixed set P of primes such that  

P =  { p E P ]  pmGx=G~ for all m~> 1} 

for all xEX. Let R be the subgroup of the multiplicative group Q* consisting of those 

rational numbers of the form 
r -I- ~r f~ l  a~ ?D'2 Tnk 

= = - t " 1  ~'2  ""Pk 
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where Pl, ...,pkEP and ml ,  . . . ,mkEZ; and let 

(Once again, if P--O,  then we set R = { 1 , - 1 } . )  Then D~Aut(G~)  for all xEX.  By the 

ergodicity of #, we can suppose that  one of the following two cases occurs. 

(a) D=Aut(G~)  for all xEX.  

(b) D is a proper subgroup of Aut(Gx) for all xEX.  

First suppose that  D=Aut(G~) for all xEX; and let 

Y = { G E $2 (Q2) I there exists x E X such that  Gx ~ 2 G }. 

Then the action of GL2(Q) on Y induces a free action of H= GL2(Q)/D on Y; and hence 

we can define a Borel cocycle 3: FxX--+H by 

t3(7r, x ) =  the unique ~ E H  such that  ~[G~] = G~.~. 

Arguing as in Case (I), we see that  there exists a F-invariant Borel subset M with 

# ( M ) = I  such that  f maps M into a single ~2-class. 

Hence we can suppose that  D is a proper subgroup of Aut(G~) for all xEX.  Fix 

some x EX and let 

qo-- d E Aut(Gx) \D.  

By Kr61 [14, 4.8], bcr and v ~ Q ,  where 

d = (a+d) 2-4(ad-bc).  

Let QE(G~) be the ring of quasi-endomorphisms of G~; i.e. QE(Gx) consists of those 

linear transformations r/EMat2(Q) such that  there exists an integer m~=0 with mr/E 

End(Gx), the endomorphism ring of Gx. By Kr61 [14, 2.29], since the characteristic X~ 

of the torsion group Gx/(A~+B~) does not belong to the zero-type, it follows that  G~ 

is not decomposable into a direct sum of rank-one subgroups. Hence by Kr61 [14, 5.10], 

QE(G~) is the ring S~ of all matrices r/EMat2(Q) such that  there exists a rational number 

qEQ and an arbitrary scalar matrix A such that  

~- -q~+A.  

Furthermore, by Kr61 [14, 5.11], S~ is isomorphic to the quadratic field extension Q(x/~) 

via the map which sends the identity matrix to 1E Q and sends ~ to v ~ .  
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In particular, there are only countably many possibilities for QE(Gx); and so there 

exists a Borel subset Xt  with # (X1)>0  and a fixed subring S of Mat2(Q) such that  

Q E ( G x ) = S  for all xEX1. By the ergodicity of p, we can suppose that  X = F . X t ;  and 

after slightly adjusting f if necessary, we can suppose that Q E ( G z ) = S  for all xEX. 
Thus if x, yEX, then G~2Gu if and only if there exists r such that 

r Hence by Theorem 2.4, it is enough to show that  N is an amenable group. 

To see this, let S ~ Q ( x / d ) ,  where v /d~Q.  Since A u t ( S ) ~ - A u t ( Q ( v ~ ) )  is cyclic of 

order two, it follows that  the centraliser C=CN(S) satisfies [N:C]~<2. By the Double 

Centraliser Theorem for finite-dimensional central simple algebras, 

d imo S. dimQ CMat2(Q ) (S)  : dimQ Mat2(q) .  

(For example, see [18, Section 12.7].) It follows that  CMat2(Q)(S):S, and hence C is 

the multiplicative group of the field S. Consequently N is abelian-by-finite, and so N is 

amenable. 

This completes the proof of Theorem 1.6. 

4. A cocyc le  reduct ion  result  

In this section, we shall prove Theorem 2.3. But first we need to recall some notions 

from valuation theory. (A clear account of this material can be found in Margulis [17, 

Chapter I].) Let F be an algebraic number field; i.e. a finite extension of the field Q of 

rational numbers. Let T~ be the set of all non-equivalent valuations of F,  and let T ~ c T ~  

be the set of archimedean valuations. For each uET~, let F .  be the completion of F 

relative to u. If u E T ~ ,  then F,=R or F , = C ;  and if u E T ~ \ 7 ~ ,  then F ,  is a totally 

disconnected local field; i.e. a finite extension of the field Qp of p-adic numbers for some 

prime p. 

Let SC_~ be a set of valuations of F.  Then an element xEF is said to be S-integral 
if and only if ]x]u ~< 1 for each non-archimedean valuation u~tS. The set of all S-integral 

elements is a subring of F,  which will be denoted by F(S). Furthermore, F is the union 

of the subrings F(S), where S ranges over the finite sets of valuations of the field F. For 

any S C ~ ,  we define 

GL,,(F(S)) = {~EGL,,(F) Ithe entries of ~ and ~ - '  belong to F(S)};  

and for each F-subgroup H(F) of GL,~(F), we define H(F(S))=H(F)MGLn(F(S)). 
Theorem 2.3 is a straightforward consequence of the following theorem, which col- 

lects together results of Zimmer [26] and Adams-Spatzier [2]. 
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THEOREM 4.1. Let F be a countable Kazhdan group and let X be a standard Borel 

F-space with an invariant ergodic probability measure #. Suppose that a: F• X--+ PSL2(K) 

is a Borel cocycle, where either K = R  or K is a totally disconnected local field. Then 

there exists an equivalent cocycle ~/ such that 7 [ F •  is contained in a compact subgroup 

of PSL2(K). 

Proof. First suppose that  K = R .  By Zimmer [26, Theorem 10], c~ is equivalent to a 

cocycle ~ such that 

~ [F•  C U <~ PSL2(R), 

where H is an algebraic subgroup of PSL2(R) such that  H is a Kazhdan group; and 

[26, Corollary 19] implies that  every Kazhdan subgroup of PSL2(R) is compact. 

Now suppose that K is a totally disconnected local field. By Serre [20], there is an 

action of PSL2(K) as a group of automorphisms of a countable simplicial tree T such that  

the stabilizer of each point of T is compact; and by Adams-Spatzier [2, Theorem 1.1], 

a is equivalent to a cocycle ~ such that  ~/[FxX] is contained in the stabilizer of some 

point of T. [] 

We are now ready to begin the proof of Theorem 2.3. So let F be a countable Kazh- 

dan group and let X be a standard Borel F-space with an invariant ergodic probability 

measure #. Suppose that a:FxX---~PGL2(Q) is a Borel cocycle. After passing to a 

finite ergodic extension of X if necessary, we can suppose that  a [ F x  X] C_ PGL.~(Q), the 

subgroup of PGL2(Q) of index two corresponding to the matrices ~EGL2(Q)  such that  

de t (~)>0.  (For example, see [1, Propositions 2.5 and 2.6].) Since F is a Kazhdan group, 

[27, Lemma 2.2] implies that  a is equivalent to a cocycle 3 taking values in a finitely 

generated subgroup A of PGL.~(Q). So there exists a finite set {Pl, ..., Pn} of primes and 

a finite set S of valuations of the algebraic number field F=Q[v/-~, ..., v~--~ ] such that  

A~PSL2(F(S)) .  Clearly we can suppose that  S contains the set T ~  of archimedean 

valuations of F.  It follows that if PSL2(F(S)) is identified with its image under the 

diagonal embedding into 

Gs : n PSL2(F~), 
yES 

then PSL2(E(S)) is a discrete subgroup of Gs.  (For example, see [17, Section 1.3.2].) Of 

course, F .  is a totally disconnected local field for each v E S \ ~ ;  and since F is a totally 

real field, it follows that F , = R  for all v E T ~ .  For each yES, let p~: Gs-+PSL2(F,) be 

the canonical projection; and, viewing/3 as a cocycle into Gs, l e t / ~ :  FxX-+PSL2(F~) 

be the Borel cocycle defined b y / ~ = p , o ~ .  By Theorem 4 .1 , /~  is equivalent to a cocycle 

taking values in a compact subgroup H ,  of PSL:(F,). It follows that/~ is equivalent to a 

cocycle taking values in the compact subgroup H =  r ives  H .  of Gs.  By Adams-Kechris 
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[1, Propos i t ion  2.4], there  exists  g E G s  and a cocycle -~: F •  such t h a t  / ~  and 

~/ takes  values in the finite subgroup  ANg H g  -1 of PGL2(Q).  This  comple tes  the  proof  

of  T h e o r e m  2.3. 
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