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1. I n t r o d u c t i o n  

Let II " I[z denote the supremum norm on the set E. Two of the most used inequalities 

for the derivatives of polynomials are the Bernstein inequality 

Tt 
lx/T-_-~_ x2 I[ Pn [[ [_ 1,1] , xE [-1 ,  11, IP'(x)l - -  

and the Markoff inequality 

[IP;~[[[-1,1] ~ n 2 IlPn[[[_l,1], 

valid for polynomials Pn of degree at most n. In this paper  we are primarily interested 

in what form these inequalities take on several intervals. We shall see that  the extension 

to general sets involves the equilibrium measure of these sets. We shall give the precise 

form of the Bernstein inequality for arbi trary compacts,  and an asymptotical ly best form 

of the Markoff inequality for sets consisting of finitely many  intervals. Actually, in this 

case we shall prove different Markoff inequalities one-one-associated with each one of the 

endpoints of the system of intervals. 

The proofs will heavily use sets that  are obtained as the inverse images of inter- 

vals under (special) polynomial mappings. We shall see that  the original Bernstein and 

This research was supported in part by the National Science Fundation, DMS-9801435, and by 
the Hungarian National Science Foundation for Research, T/022983. 



140 v. TOTIK 

Markoff inequalities instantly transfer to such polynomial inverse images (at least for 

some special polynomials). From here we shall get the extension to more general sets 

and more general polynomials by approximation. The approximation is based on the 

density of polynomial inverse images in the family of compact sets, and we shall also 

verify this density property. 

We shall s tart  with the just mentioned density property in the next section. Then 

in w we shall consider the extension of the Bernstein inequality. Finally, the extension 

of the Markoff inequality will be done in the last section. 

2. Po lynomia l  inverse images of  intervals 

Let T be a polynomial of degree N/> 2 with real and simple zeros Xx < X2 <... < XN.  Let 

YI<Y2<.. .<YN-1 be the zeros of T' .  and assume that  [T(Yj)[~>I, j = l ,  . . . , N - 1  (note 

tha t  T(Yj) are the local ex t rema of T).  Then it is elementary (see [6, Lemma 1]) that  

there exists a unique sequence of closed intervals El ,  ..., En such that  for all l<~i<~N 

we have T ( E J = [ - 1 ,  1], X~EE~ and for l<~i<~N-1 the set E~nE~+I contains at most 

one point. We call any such polynomial admissible, and we are interested in the inverse 

image T - l ( [ - 1 ,  1])=[.JN_IEi. We denote by Ti -1 that  branch of T -1 that  maps [ -1 ,  1] 

into Ei, and if v is a measure on [ -1 ,  1], we set 

T-~(L,)(A):=~,(T(A)) f o r A C E , ,  i = 1  .... ,N.  

Polynomial inverse images of intervals, i.e. sets of the form T - 1 ( [ - 1 ,  1]) with admis- 

sible T, have many interesting properties. They are the sets that  support  weights for 

which the recurrence coefficients of the associated orthogonal polynomials are periodic, 

E or they are the sets = [-Ji=l [ai, bi] for which the Pell equation 

p2 (z) - Q(z) S 2 (z) = 1 
l 

with Q(x) = I I ( x - a i ) ( x - b i ) ,  
i = 1  

that  goes back to N.H.  Abel, has polynomial solutions P and Q. They are also con- 

nected with continued fractions and Toda lattices. For all these and many  more inter- 

esting results connected with polynomial inverse images see the papers [8]-[11], [13] by 

F. Peherstorfer and the references there (see also [14]). However, the question if these 

sets are dense among all sets consisting of finitely many intervals has been open. In this 

section we prove this density, and in the subsequent sections we shall apply this result 

to polynomial inequalities on several intervals. 
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THEOaEM 2.1. Given a system E={[ai ,  bi]}{= 1 of disjoint closed intervals and an 
s>0 ,  there is another system ' , , I I J 1 [a' b~]=r - l ( [ -1 ,1 ] )  for E ={[a~,b~]}~= 1 such that vai=lL ~, 

some admissible polynomial T,  and for each l <<.i<<.t we have 

la,-a~l<<.e, Ib~-b~l<<.e. 

The theorem immediately implies its strengthened form when we also prescribe if a 

given a~ (or b~) is smaller or bigger than ai (or bi). In particular, it is possible to require 

e.g. that  ECE ' .  The proof also shows that  in the theorem we can select a'i=ai for all i, 

and even b~ =bl. Alternatively we can fix any other br 

N.I. Akhiezer [1] described polynomial inverse images of [-1, 1] consisting of two 

intervals via elliptic functions. From here the validity of Theorem 2.1 follows when 

l=2.  However, if we use the characterization of polynomial inverse images given in 

Lemma 2.2, then one can see that  the two-interval case ( l=2 in Theorem 2.1) can be 

obtained by simply changing continuously one endpoint of one of the intervals. When 

l>2  the situation is more complex. 

After having learned of Theorem 2.1, F. Peherstorfer [12] has also given a proof 

using a completely different approach. 

We shall need the following known characterization of polynomial inverse images of 

intervals (see [2] and also [10]). Since the terminology is somewhat different from those 

in the papers [2] or [10], for completeness we present a short proof. 

l LEMMA 2.2. Let E=[.Ji=l[ai,bi] be the disjoint union of l intervals. Then E =  

T-1([ -1 ,  1]) for  some admissible polynomial T if  and only if  each of the numbers 

#2([a~, b~]) is rational, where Pz denotes the equilibrium measure of the set E. 

For the concept of the equilibrium measure and of the logarithmic capacity of a 

compact set see any text on logarithmic potentials, e.g. [20], [15] or [16]; but actually we 

shall only use the defining properties (2.1) (2.2) below. 

Proof. If E = T - I ( [ - 1 ,  1]) and N is the degree of T, then (see [6, Theorem 11], [15]) 

# e = T - l ( # [ _ l , l l ) / N .  Therefore if [ai,bi] consists of li subintervals T71([-1,  1]), then 

p~([ai, bi])=li /N,  and this proves the necessity of the condition. 

Suppose now that  each p~ ([ai, bi]) is rational, say #p. ([ai, b,]) = l i / N  for some positive 

integers N and li, i=1,  ..., N. Consider the function 

H(z)  = e x p ( N  f l og ( z - t )  d # E ( t ) - N l o g c a p ( E ) )  

on the Riemann sphere C cut along E, where cap(E) denotes the logarithmic capacity 

of E. 
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We need the following properties of equilibrium measures (see e.g. [15], [20, Theo- 

rem III.12] or [16, Theorem 1.1.3 and Corollary II.3.4]): 

flog [z-tl d~s(t) = log cap(E), z E (2.1) 

f l o g  (t) > log cap(N), ~ Z, (2.2) d#~ Z 

and the left-hand side is a continuous function on the whole plane. 

Using these and the form of #E([ai, bid we can infer that  H(z) is a single-valued 

analytic function on C \ N  with modulus 1 on the cut Z. Thus, it easily follows that  

1 1 

is real-valued on both sides of the cut, and G(2)=G(z) is satisfied, hence the reflection 

principle shows that  this fimction can be continued analytically through each (ai,bi). 
Furthermore, H is bounded away from zero and infinity on compact subsets of the com- 

plex plane, so G has a removable singularity at every ai and bi. Finally, H(z) has a 
pole of order N at infinity, therefore the same is true of G(z). In summary, G(z) is 

an entire function with a pole of order N at infinity, hence G(z) is a polynomial of de- 

gree N. Clearly, G(z) is real if z E R ,  and since we have IH(x)l=l on 2, and ] H ( x ) [ > l  

and H(x) is real for all other x E R ,  it follows that  - l~<G(x)~<l  for xEZ ,  and IG(x ) ]> l  

for x c R \ 2 .  Thus, E = G - I ( [ - 1 ,  1]), and all we have to show is that  G is an admissible 

polynomial. From the construction it is clear that  for x C Z 

G(x)=cos(argN/ log(x-t)dp~(t)) =cos(NTr f~d#~(t)), 

from which it is clear that  G has N zeros in E, and from the same formula the admissibility 

of G also easily follows. [] 

Next we discuss the properties of the mapping 

{al ,  bl, ..., al, bl} --+ {pE ([al, bl]), ..., # r  ([at, bt])}, 

where E=UI1[ai,bi], and this is a disjoint union. This is a mapping of a subset of 

R 2t to R l, so it is singular. It  is singular even if we fix, say, the left endpoints (to 

obtain a mapping from R l to R z), namely the image set is on a hyperplane, for the 

sum of the coordinates in the image set is 1. Now we show that  if we also fix hi, thereby 

obtaining a mapping from R z-1 into the hyperplane mentioned before, then this mapping 

is nonsingular. 



POLYNOMIAL INVERSE IMAGES AND POLYNOMIAL INEQUALITIES 143 

Thus, let 

Y](Xl, ..., Xl-1 ) ~- [al, 51 + Xl] [J [a2, 52 -I-x2] U.. .  [.J [al_l, bl_ 1 -+-Xl_l ] U [al, bl] , 

and we consider this set for (xl, ..., x l - 1 )  lying in a neighborhood U of the origin in R I-1 

which is so small that  in that  neighborhood we have aj <bj +xj <aj+l for all l~<j <l.  Let 

M(Xl , . . . ,X l -1) - - - - (~ tE(  . . . . . . . .  z 1)([ a l , b l q - x l ] ) , ' ' ' , ~ t E ( x  , ...... z_~) ( [a l_ l ,b l_ l -~ -Xl_ l ] ) ) .  (2.3) 

Then M: U--+R t - l ,  and we are going to show that  M is a nonsingt~lar C'C-mapping,  

hence in particular it is an open mapping. Thus, we can find arbitrarily close to the 

origin points xl ,  ..., xl-1 so that  all the numbers 

#~(~1 ..... ~z-1)([aj,bj+xj]), l <~j<l,  

are rational. Then, however, 

~tE(x 1 ..... X,_l)([al, bl]) 

is also rational, for it complements the sum of the preceding numbers to 1. These facts 

together with Lemma 2.2 prove Theorem 2.1. 

We shall actually show that  the Jacobian of M(Xl,  ..., xz-1) is diagonally d o m i n a n t - -  

this is enough to conclude the nonsingularity of M. It  is known (see e.g. [17, Leinma 4.4.1], 

cf. also [21]) that  #z  is of the form 

dpz( t )  _ 
dt 

1--1 l-L=1 It- jl 
l [1/2 ~r V[j=I [ ( t - a j ) ( t - b j )  

(2.4) 

log I x - t  I du(t) = log I x - a  I+ const, x E E, (2.5) 

(for the existence and properties see e.g. [16, w or [7]). Since the balayage of (fo~ onto 

E is #z ,  and since a fractional linear t ransformation preserves the balayage measure (see 

below), these two questions are basically the same. We set R = R U { o c } ,  and identify 

- o c  with oc. 

for tEE ,  where the numbers Tj lie in the intervals (bj, a j+l) .  We shall need more precise 

information on where these numbers lie, therefore we derive again this formula in a way 

that  also supplies this additional information. Actually, we need the same form and 

information on the balayage measure of a Dirac mass (fa, a E R \ E ,  onto E. This measure 

is defined as the unique measure ~, on E that  has total  mass 1 and for which 
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LEMMA 2.3. Let Z=U~=l [a i  , b~], (bt, a l+i )=(bl ,  oc]U(--cx), a l ) ,  and for a E R \ E  let 

i(a) be that index l <. i<.l for which aE(b~,ai+l). The density of the balayage measure ~a 

of the Dirac delta mass 6a onto E is given by 

1 [IZl I ( a -a j ) (a -b j ) l  1/2 IPt_l(t)l 1 t E E ,  (2.6) 

7r 1-Ill l ( t_a j ) ( t_b j ) l l /2  IPt_l(a)l I t - a l '  

where the polynomial 

P / - l ( t ) =  I ]  (t-mi) 

ir 

satisfies for all l <<.i<~l, i~ i (a )  the condition 

L a~+I lit1 i (a_aj ) (a_bj ) l l /2  Pt- l ( t )  1 
I-Ill t ( t - a j ) ( t - b j ) l l / 2  Pt- l (a)  It-a~] dt=O. (2.7) 

This system of equations uniquely determines each "ri, i # i( a), and we have "tic (bi, ai+l)- 

In particular, for  a--+ec we get that the equilibrium measure #r~ is of the form (2.4) 

with ~-1, ..., r l - t  satisfying for all l <~ i<<.l-1 

L 
ai+l  r-[l-l(t 

' ~  -~ )  dt=O. (2.8) 
I-Ill I ( t - a j ) ( t - b j ) l U  2 

Note that  the first numerator  and second denominator in (2.7) are constant, so they 

could be omit ted from the formulae. However, it may well happen that  TZ equals oo, in 

which case the factor (t--7-1)li(a--~-l) should be omit ted from all formulae. This difficulty 

can be overcome by applying a fractional linear t ransformation as will be done in the 

proof. The same remark applies if we want to speak of the balayage of 5oo, in which case 

all the terms that  contain a should be dropped. 

(2.7) gives a linear ( ( l -  1)x  ( l -  1))-system for the l - 1  free coefficients of Pz-1- This 

system has a nonsingular matr ix  (see below), and therefore the solution is unique. It  

is clear from (2.7) that  Pl-1 must have at least one zero on each (bi ,ai+l) ,  l ~ i ~ l ,  

i~ i (a) ,  and then it cannot have more than  one, so it has exactly one zero in each of 

these intervals. It  also follows that  the coefficients of Pl-1 are C~~ of the 

endpoints aj, bj, which, in view of the fact that  the zeros of Pl-1 are separated, implies 

tha t  the zeros 7-i are also C~-funct ions  of the endpoints aj,bj  (Coo at co should be 

understood in a proper sense, but we can always speak of normal C ~ after applying a 

fractional linear t ransformation as is done below). Thus, altogether, the density of #E is 

a C~176 of the endpoints aj, bj. By making the substi tution t = a i + ( b i - a i ) u  we 

can see that  then each integral 

L b'd#~(t) = #~([ai,  b~]) 
i 
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is also a Coo-function of the variables aj, bj, and this verifies that  the mapping M from 

(2.3) is a C~176 on U. 

Proof of Lemma 2.3. Consider the set E* obtained from E via a mapping x * =  

1/(x-c~) ,  and for a measure u defined on E let u* be the image of u under the same 

mapping x*=l/(x-(~), i.e. if E* is the image of a set E,  then we set S ( E * ) = u ( E ) .  

Since the balayage measure 5a of 5a onto E is characterized by the facts (see [16, w 

and Theorem II.4.6]) that  it is supported on E, it has total  mass 1 and its logarithmic 

potential  

f log [z-tl 5a(t) 

equals a constant plus log Iz-al on E, it is easy to see that  u is the balayage of 5~ 

onto E if and only if u* is the balayage of 5a* onto E*, where a*=l/(a-a). It  is 

also straightforward to see that  this same transformation also preserves the validity of 

Lemma 2.3, i.e. the lemma is true for E and a if and only if it is true for E* and a*. 

However, by an appropriate  choice of a we can achieve tha t  a* is bigger than any of the 

endpoints of E*, hence we may assume from the outset that  a>bl. In this case i(a)=l. 
Consider a polynomial 

Pl-l(X) = x l - l  ~-Cl-2xl-2-~-...-~-Co 

and the system of equations 

/b a~+l dt=O, (2.9) 
Pz-l( t )  ! 

I]Zl I(t_aj)(t_bj)ll/2 t - a  

1<.i~1-1. Since the leading coefficient of Pz-1 is fixed to be 1, this is a system of linear 

equations with matr ix  

(fai+~ tj-i 1 ) 1 dt 
\Jb~ [I~i I(t_aj)(t_bj)[1/2 t -a  ~i,j<~l-1 

If this matr ix  was singular, then by taking an appropriate  linear combination of the rows 

we would obtain a nonzero polynomial of degree at most I - 2  tha t  was orthogonal to the 

denominator in the previous formula on every interval (bi ,ai+l) ,  1<~i<~1-1. However, 

this would mean that  this polynomial has at least one zero on each of these intervals, 

which is not possible. Thus, the above matr ix  is nonsingular, and the system (2.9) has 

a unique solution. Clearly, the solution polynomial Pz-1 has one and only one zero on 

every interval (bi, ai+l),  1~< i ~< l -  1, and hence we can write with some Ti E (bi, ai+l) 

1 - 1  

Pl- l (X)= H(X--Ti  ). 
i=] 
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Consider the function 

l 
H(z) = ~/1-[J=l(a-aj)(a-b3). Pl-l(Z) 

~/H~=l(z_aj)(z_bj) P / - l ( a )  

on the Riemann sphere cut along E, where we take that  branch of the square root which 

is positive for positive z. Let c~./3e [ai, bi]. There is a branch of l o g ( ( z - / 3 ) / ( z - o 0 )  that  

is analytic outside [ai, bi]. Thus. 

1 f z  H(z) log z-__~ dz = H(a)log a - / 3  = log a - / 3 .  
27ri z - a  z - a  a-c~ a-c~ 

Take here real parts.  Since H(z)=~lH(x) l i  for z=x+iO, xCE, we get 

1 ~ IH(x)I log lx-/3l  l a - ~ l  
~r x - a  ~ dx = log la_c----~, 

and thus the function 

1 f IH(x)l 
V((~) = -  log [ a - a  I + ]~  log Ix-~l dx 

is constant on each interval [ai, bi]. Similarly, if (~ = bi,/3 = ai+l, then by cutting the sphere 

along E�9 ai+l] we get as before 

1 f~ H(z) log Z - 2  dz = H(a) log - -  
27ri U[b~.a~+l] z--a z--a 

a-/3 a-/3 
= log - - .  a - a  a - a  

Take again real parts,  and notice that  on (b~, a~+l) the function H(z) is real, and for 

z=x• xE(bi, ai+l) we have 

log - -  

From these we obtain 

z - / 3  = log Ix-/31 z - ~  ~ - ~  4- iTr. 

1 /~ IH(x)[, Ix-~31 la-/3[+ f a'+lH(x) dx=O. 
[ x - a l  L o g ~ d x - l o g ~  Jb~ x--a 

Here the last te rm is zero by the choice of the polynomial Pz-1, and we can conclude 

that  V(a)  is constant on all of E. Furthermore,  

1 /~ H(z) dz=H(a) = 1, 
27ri z - a  
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so by taking real parts  we obtain 

1 ~ IH(x)l 
-~ " - ~  dx= 1. 

Thus, the measure given by the density function 

1 IH(x)l 

Ix-af 

is the balayage measure ~a, and the lemma is verified. [] 

When we form the balayage onto E of an arbi trary measure u with support  on R 

and with u (E)=0 ,  then the density is obtained by integrating the density in (2.6) with 

respect to &,(a). 
It  follows from the lemma that  as a"..~bk, the numbers Ti=~-.i(a), iCk, converge to 

some ~-~' that  supply the solution of (2.7) for a=bk, and again ~:[E(b~, ag+l). In this case 

lit1 I(a-aj)(a-bj)ll/2 = (l +o(1))Ck ax/~--bk (2.10) 
[Pl-l(a)l  

with some positive Ck, where o(1) denotes a quanti ty tha t  tends to zero as a'Nbk. 
Using these facts we can calculate the Jacobian of the mapping 

M(Xl,..., Xl-1). 

Since each of the sets E(xl ,  ..., xl-1)  is just like E, it is enough to do that  at the origin. 

First let l<~k<~l-1, l<<.i<~l including i=l, but first let iCk, and we calculate the partial  

derivative 
0P~,(xl ...... ~-1) ( [a ,  b~ + x d )  (0, ..., 0) 

Oxk 
(we set xz=0).  Since iCk, this is the limit of the quotient 

P~(o ..... o,xk,o ..... o)([a i ,b iD-P~([ai ,biD 

Xk 

as xk tends to 0 through positive values. For positive xk we have 

E C E(0, ..., 0, xk, 0, ..., 0), 

so p~ is the balayage of#~(o ..... o,xk,o ..... 0) onto E (see [16, Theorem IV.1.6 (e)]). Therefore, 

the numerator  of the preceding ratio is nothing else than the measure of [ai, bi] with 

respect to the measure that  we obtain by taking the balayage of 

# ~ ( 0  .. . . .  O,xk,O .. . . .  O) I(bk,bk-Fxk) 
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onto E. Thus, in view of formula (2.6) and (2.10) the preceding ratio equals 

( l + o (1 ) )  ~k [ b ~ [  bk+xk ax/~-L~-bk I]l<~j<~'ir l 
Jai Jbk T r a i l 1 1 ( t - a j ) ( t - b j ) l  1/~ i t_a  I d#r.(o ..... o,~k,o ..... o)(a)dt. 

Here for bk<a<bk+xk  we have by (2.4) 

dp~(o ..... 0,xk,0 ..... o ) ( a ) = ( 1 + o ( 1 ) )  
Dk 

x/bk + xk--a  
da 

with some positive constant Dk. Therefore, the previous double integral can be writ ten 

with some positive constant Ek.~ as 

f bk+xk av/~_bk 
( l+o(1) )Ek, i  

Jbk v/bk +xk - a  
/01  da=zk ( l+o(1 ) )Ek , i  u du 

=xk( l+o(1) )Ek , i  1 .~Tr. 

Thus, for k r  

O#~(z 1 ...... t_~) ([ai, bi+xi])  

Oxk 
(0, O) : 1 ..., ~TrEk,i. 

However, 

E #E(xl ...... z_~)([a~,bi+xi]) = 1, 
l<~i<~l 

and therefore for the case k=i  we obtain 

cgp2(x~ ..... x,_l)([ak, bk+xk]) 
(0, 0) ~---- E 1 ..., -~ Tr Ek,i. 

Oxk iCk 

This already proves that  the Jacobian of V(x 1, ..., xt_ 1 ) is diagonally dominant,  since 

the preceding sum is the kth diagonal element, but the sum of the kth  row without this 

diagonal element is 

_ } - ~  1 -~TrEk,i, 
l<~i<~l-1 

i~s 

which is smaller in absolute value than the absolute value of the kth  diagonal element 
by 1 ~TrEk,l, and this is a positive number. [] 



POLYNOMIAL INVERSE IMAGES AND POLYNOMIAL INEQUALITIES 149 

3. T h e  B e r n s t e i n  inequa l i ty  o n  severa l  intervals  

Let II" lIE denote the supremum norm on the set E. The Bernstein inequality 

n 
]Y,n/(X)] < ~ ]]PnI][-1,1], xG[-1 ,1] ,  (3.1) 

and the Markoff inequality 

IIP'II[-,,1] n 2 IIPnlI[-1,1] (3.2) 

for polynomials Pn of degree at most n play a fundamental role in several branches of 

mathematics (see e.g. [19] and [5]). 

In the second part of the paper we are going to deal with the analogues of the 

aforementioned classical inequalities for sets E consisting of several intervals. First we 

show that  the Bernstein inequality (actually, the sharper Szeg5 inequality) holds with 

replacing n / ~  by zr times the equilibrium measure of the set E,  namely we prove 

the following generalization of (3.1). 

THEOREM 3.1. Let E be a set consisting of a finite number of intervals, and let WE 

be the density of the equilibrium measure of E.  Then for any n and any polynomial Pn 

of degree at most n we have 

(IPrn(x)l +n2P2n(X) ~n211Pnll2E, xEE. (3.3) 

As a corollary we obtain 

IP'~(x)l <~ Tr~E(x)nllPnHE , x e E ,  (3.4) 

which is the extension of (3.1) to several intervals. 

If E = [ - 1 ,  1], then (3.3) becomes 

( l ~ X 2  ]pn/(x ) ])2+ n2pn2 (x) < n2 ]]Pn ]]~-1,1], x E [-1, 1], 

which is a well-known generalization of the Bernstein inequality due to Szeg5 [18]. 

For possible later reference let us state here the following corollary, which is the 

same theorem but for general compact sets. 

THEOREM 3.2. Let E c R  be a compact set with nonempty interior, and let wE be 

the density of the equilibrium measure of E on that interior. Then for any n and any 

polynomial pn of degree at most n we have 

~'~(x)l)2+n2p2(x)<~n2 P x E Int (E) .  2 n E~ (3.5) 
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This immediately follows from Theorem 3.1. In fact, we can approximate any com- 

pact  set by sets E* consisting of finitely many intervals in such a manner  that  in the 

interior of E the densities wE.(x) converge to WE(X). Since Theorem 3.1 holds with uni- 

versal constant independent of the sets E*, its validity will be preserved from the sets E* 

to the set E. We shall not give more details, for they are fairly standard. Of course, the 

equilibrium measure PE is absolutely continuous in the interior of E, so WE is meaningful 

there. 

As an immediate corollary we obtain (3.4) for an arbi t rary compact set E and for 

x E I n t ( E ) .  Next we show that  (3.4) is sharp for any compact  E:  

THEOREM 3.3. Let s:>0. For each x lying in the interior of E, and for every 

large n, there is a polynomial P ,~O of degree at most n such that 

[Ply(x)[ >1 (1--S)~WE(X)n[IPn[]E. (3.6) 

Furtheremore, if E is the polynomial inverse image of an interval, then the equality sign 

holds in (3.4) for some appropriate polynomials for infinitely many degrees and for a set 

of points that becomes dense as the degree tends to infinity. 

Proof of Theorem 3.1. The outline of the proof is the following: First we show the 

validity of (3.4) for a special class of sets and for a special class of polynomials. Then, by 

approximation, we obtain (3.4) with an additional ( l+o(1) ) - fae tor  on the right, where 

o(1) may depend on x and the degree n, but tends to zero as n tends to infinity. Finally, 

from here we obtain the full (3.3) by a transformation. 

First we prove (3.4) for a family of polynomials on sets that  are polynomial inverse 

images of intervals. As in the first part  of this paper  let TN be a polynomial of degree 

N ~> 2 with real and simple zeros X] < X2 <...  < XN, let Y1 < Y2 <--- < YN- 1 be the zeros 

of T~,  and assume that  [TN(Yj)[~I ,  j = I , . . . , N - 1 .  We denote by E1,...,EN those 

closed intervals for which TN(Ei)=[-1, 1], XiEEi  and for l~ i<~N-1  the set E~AE~+I 

contains at most one point. In the first part  of the proof we assume that  

N 

E = U Ei = TNI([--1, 1]), 
i = l  

i.e. E is the polynomial inverse image of [ -1 ,  1] via TN. Note tha t  here Ei are not 

necessarily the intervals that  E consists of, because several Ei may combine to form the 

subintervals of E.  

T -1 that  branch of TN 1 that  maps [ -1 ,  1] into Ei, and if v0 is a We denote by N# 

measure on [--1, 1], we set 

, (A)  := luo(TN(A))  for ACE~. (3.7) 
/ y  
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It is known that  if u0 is the equilibrium measure of [ -1 ,  1], then the measure u obtained 

this way is the equilibrium measure for E, see [6, Theorem 11]. Thus, in the present 

c a s e ,  

~E(X) = IT;v(x)I x e E .  (3.8) 

Suppose now that  Pn(x) is of the form Rm(TN(X)) with some polynomial Rm of 

degree m. Then n=mN, and by applying the Bernstein inequality to Rm, we obtain 

Ir~' (x)[ = IR'~(TN(X))I'ITfv(X)I <. m I[Rmll[-1,1] [T~(x)[, 
V / 1 - T ~ ( z )  

which, in view of (3.8) and IIRmll[_l,1]=llPnllE, is (3.4). 

Next let E be an arbi trary set consisting of a finite number of intervals. We show 

that  for any x0 lying in the interior of E we have 

]P'~(xo)l ~< ( l+o( l ) )~E(xo)n t fP~ l lE ,  (3.9) 

where o(1) denotes a te rm that  is independent of Pn, and tends to zero as n-+oo.  

Let c > 0  be arbitrary. Then by Theorem 2.1 there are polynomial inverse image 

sets E* consisting of the same number of intervals as E such that  the corresponding 

endpoints of the subintervals of E and E* are as close as we wish. Therefore, we can 

choose E*CInt(E) so that  

~E*(Xo) <~ (l+e)a~E(X0) (3.10) 

is satisfied. Let, as before, E*(x)=TNI([-1, 1]), and let E * = T ~ l i ( [ - 1 ,  1]), i=1 ,  ..., N,  be 

the N inverse image intervals of [ -1 ,  1] under the N branches of TN 1. Since any translate 

of E* is the polynomial inverse image of [ -1 ,  1] via a translate of TN, we may assume 

without loss of generality, that  x0 is not an endpoint of any of the intervals E~', i.e. x0 is 

lying in the interior of E* for some i0. ~0 

Let P~ be an arbi t rary polynomial of degree n, and consider the polynomial 

P; (x) = ( 1 - ~ ( X -  Xo)2)[~d] Pn(x), (3.11) 

where c~>0 is fixed so that  1 - c ~ ( x - x 0 ) 2 > 0  on E. Clearly, P* has degree at most 

n + 2 v ~ ,  IIPnllE<~llPnHE, P*(Xo)=P~(Xo), (P~)'(Xo)=P~(xo), and there is a 0 < Z < I  

such that  

IP*(z)l~</3'/~llP~llE, I(P~)'(x)l<~/3'/~llPnllE (3.12) 

uniformly for xCE\Eio. In fact, for the last relations just observe that  the factor 

1 - a ( x - x 0 )  2 is nonnegative and stricly less than one on E\Eio. For xfE* consider 

the sum 
N 

S(x) = E Pn(TN~ (TN(x)))" (3.13) 
i = 1  
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We claim that  this is a polynomial of degree at most (n+2v~) /N  of TN(X), i.e. S ( x ) =  

Sn(TN(X)) for some polynomial S, of degree at most (n+2x/n)/N. To this end let 

x~=TNI, i(TN(X)), i=1 ,  ..., N.  Then 

N 

S ( x )  = S ( X l ,  . . .  , XN) -~- E Pt:(zi) 
i = 1  

is a symmetric  polynomial of the variables xl, ..., XN, and hence it is a polynomial of the 

elementary symmetric  polynomials 

Sj(Xl'""XN)= E XklXk2...Xkj, I<<.j<~N. 
l<~kt<k2<...<kj<~N 

However, xl, x2, ..., XN are the zeros in t of the polynomial equation TN(t)=TN(X), and 

so if TN(X)=dgxN+...+do, then it follows tha t  

dN-j 
Sj(Xl '""xk)=(-1)J dN 

if I<~j<N, while 

SN(Xl, ...,Xk) = (--1) N dO-TN(x) 
dN 

from which the claim that  S is a polynomial of TN (x) follows. On comparing the degree 

of the homogeneous parts  of these polynomials, we can see that  the degree of 

Sn(u) := S(rNlio(u) ) 

is at most  deg(P~)/N< ( n + 2 v ~ ) / N  in u. 

From the properties (3.12) and (3.13) it is also clear that  

IISIIE- ~< ( I + N/~'/~ ) {{PnIIE, {S'(xo)- P;~(xo){ <<. N~'/~ IIPn{IE. 

Now S is already of the type for which we have verified (3.4) above, so if we apply to 

S the inequality (3.4) at x=xo, and if we use (3.10) and the preceding estimates,  we 

obtain (3.9): 

{P'(x0)l ~< IS'(xo)I+N~ "/-~ IIP~IIE 

<<. ( n + 2 ~ ) ~ E . ( X o ) I I S l I E . + N ~  IlPnlIE 

<~ (n+ 2v~ )(l +e)TrwE(xo)(1 +N/~ v'~) IIPnlIE+ N~ v~ IlPn lIE 

= (l+o(1))nTrwE(Xo)llPnllE, 
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since c > 0 was arbitrary. 

Finally, we verify (3.3). Let P~ be any polynomial, and x0 be any point in the 

interior of E.  Without  loss of generality we may assume that  IIPnllE=l. Let Tin(z)= 

cos(marccosz)  be the classical Chebyshev polynomials, and for some 0<c~m<l  and 

0 ~ g m <  j- - -  OLm consider the polynomials 

l~mn(X) ='-]~m(O~rnPn(x)§ 

where c~m<l and O~Cm<l--ol  m a r e  chosen so tha t  c~mP~(xo)+Cm is one of the zeros 

of ~ .  Since the distance of neighbouring zeros of Tm is smaller than  10/m, we can do 

this with OLm--1-10/m and with some 0~<sm<10/m,  and then O~m-+l and cm-+0 as 

m--+oc. Now apply (3.9) to Rmn. It  follows that  

IlI~lrnn(XO)l ~ (l § 

where the t e rm o(1) tends to zero as m--+c~. Here, on the right, IIRmnllE<~l, and on the 

left we have 

IR'n(X0)] = IT,~(c~mPn(xo)§ IP'n(XO)]am. 

Since at the zeros z of Tm we have T ~ m ( Z ) = m / ~ ,  it follows that  

m 
IP'(x0)l~m ~< (l+o(1))lrwE(xo)mn, 

Jl--( mPn(xo)+ m) 2 

where the te rm o(1) tends to zero as m--+oc. On dividing here by m and letting m tend 

to infinity we obtain 
IP'(x0)l ~ ( x o ) n ,  

v/1-p (xo) 
and this is the inequality (3.3) at the point x0 because in our c a s e  HPnHE-=I. [] 

Proof of Theorem 3.3. If  E = T N I ( [ - 1 ,  1]) is the polynomial inverse image of [ -1 ,  1], 

then, in view of (3.8), we have equality in (3.4) for PN=TN at those points x for which 

TN(X)=O. We can repeat  this argument  with each Tm(TN) instead of TN, where Tm 

are the classical Chebyshev polynomials, for obviously Tm(TN) also have the proper- 

ties set forth in the preceding proof, namely that  E=(Tm(TN))-I([-1, 1]) (cf. [10, Re- 

mark  2.2 (c)]), and as m--+oc, the zeros of T,~(TN) become denser in E.  This proves the 

last s ta tement  in Theorem 3.3. 

If E and ~>0  are arbi trary and x 0 E I n t E ,  then select a polynomial inverse image 

set E * = T N I ( [ - 1 ,  1]) such tha t  ECE* and WE*(X)>~ (1--lC)WE(X) are satisfied. Consider 

the polynomials 

RmN(X) = Tm(amTN(X)§162 
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where a, ,~<l  and 0 ~ < e m < l - a , ~  are chosen so that  e~mTN(Xo)+e,~ is one of the zeros 

of T,~. As in the previous proof we can assume that  ct,,,-+1, am-+0 as rn--+oc, and then 

f r o m  

I R ~ N ( X O ) ]  = V]'~lm(CtmTN(XO)-t-cm)l . ITIN(XO)IO~m, 

from (3.8) and from the fact that  at the zeros z of T,, we have T ~ ( z ) = m / ~ ,  it 

follows tha t  

IR:nN(xo)l = m I r ' N ( x o ) l c ' m  ) (1--o(1))TrwE.(xo)mN, 

where the term o(1) tends to zero as m-+oc .  Now taking into account WE*(X)>~ 
(1--2/e)WE(X) and the inequality IIRmNIIE<~ IIRmNIIE �9 ~1,  we can conclude the validity 

of (3.6). [] 

4. T h e  M a r k o f f  i n e q u a l i t y  on  s e v e r a l  i n t e r v a l s  

Next we consider the extension of the Markoff inequality (3.2) to sets consisting of several 

intervals. If we apply the original form of the Markoff inequality on each subinterval of E,  

then we obtain that  

IIP/~IIE ~< Cn I liP, liE (4.1) 

with some constant C, but this produces only a rough estimate on the best possible con- 

stant.  Our aim is to determine the asymptotical ly best constant in the inequality (4.1). 

Actually, we shall be interested in several Markoff inequalities, one-one around each 

endpoint of E. In fact, by Theorem 3.1 we have 

IP~(x)l ECKnflP, IIE, x c K ,  (4.2) 

uniformly on compact  subsets K of the interior of E, and this shows that  inside E the 

Bernstein-Markoff  factor is O(n). However, around the endpoints of E this factor is of 

the order O(n2), and the best constant may depend on which endpoint we are considering. 

We shall prove tha t  the analogue of (3.2) around any endpoint of the set holds with 

an asymptotically best constant tha t  depends on the endpoint in question. We shall 

determine these best constants, and it turns out that  they are also connected with the 

equilibrium measure #E of the set E. 
l Thus, let E = U ~ = I  [a2i-1, a2i], where the intervals [a2i-1, a2i] are disjoint. Let aj be 

an endpoint of E,  and let E j be that  part  of E that  lies closer to ar than to any other 

endpoint, i.e. we set 

E j = { x e E :  Ix-ajl  < Ix-ail, iT~j}. 
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In this situation we shall be interested in the best possible constant My such that  the 

inequality 

IIP:~IIE~ ~< (l+o(1))Myn 2 [[PnlIE (4.3) 

holds for all polynomials Pn of degree at most n, where o(1) denotes a term that  tends to 

zero as n--+ec. Then asymptotically the best Markoff factor in (4.1) is just the maximum 

of these Mj. Thus, in this respect we are speaking about 21 Markoff constants, one is 

related to each endpoint. 

By (2.4) (2.8) the equilibrium density WE is of the form 

II ~-' Ix-~ l  WE(X) = 4=1 x E E, (4.4) 

/~2~ Iz-a~l' V l l i = l  

where the ri are the unique numbers satisfying 

l--1 
fo2~+~ 1-L=,(x-~d d x = O  

V l l i = l  

for j = l , . . . , l - 1 .  We also know that  we have exactly one 7=i (say Ty) in each of the 

contiguous intervals (a2y, a2y+l), j = l ,  ..., l - 1 .  

THEOREM 4.1. With the above notations and with 

I--1 2 
YIi=I  (ay -~:i) (4.5) 

Mj =_ i]i#-----j-laj_a---~ 

we have for each 1<<.j <~21 

p !  II nllEJ ~ (l+o(1))Mj n211PnlIE, (4.6) 

I[P;t[[[_b+(b_a)/2_a]U[a,a+(b_a)/2] ~ (1+o(1 ) )  a 2 b~--~j n IIP nllE. 

and 

and this is asymptotically the best possible, for there is a sequence {Pn} of polynomials 
of corresponding degree at most n=l ,  2, ... such that 

IP~(aj)l >~ (l +o(1) )Mjn211pnllE . (4.7) 

Before giving the proof we consider an example. Let E = [-b, - a ]  U [a, b] with 0 < a < b. 

In this case l=2 and (by symmetry) 71=0, and we have Mj=b/(b2-a  2) if aj=+b, and 

Mj=a/ (b2-a  2) if aj=• Thus, we have the inequalities 

p' II n]l[--b,-b+(b--a)/2]U[a+(b--a)/2,b] <~ (1+O(1)) b n2 JIPnJJE 
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Furthermore, the constants on the right cannot be replaced by any smaller one. Com- 

bining these two inequalities we obtain 

IIP 'll (l+o(1)) T n211PnllE, E b - a  

which is a result of P. Borwein [4]. 

Theorem 4.1 implies 

IIP ' (l+o(1))(   2yj)  llPnllE. (4.8) 

Here the maximum cannot be attained for j = 2  or j = 2 / - 1  (because, as elementary con- 

sideration shows, M2 < M1 and M21-1 < M2t), but otherwise (depending on the structure 

of the l intervals [a2j-1, a2j]) the maximum can occur at any other j .  One can also show 

(see [3]) that  in (4.8) the factor 1+o(1) cannot be dropped. 

Proof of Theorem 4.1. We start  the proof by computing the derivative of a polyno- 

mial at an endpoint of the associated polynomial inverse image of [-1,  1]. Thus, let us 

suppose that  E is the polynomial inverse image of [ -1 ,  1] under the mapping x-~ TN (x), 

where the polynomial TN satisfies the properties set forth in the preceding sections. It 

is known [10, Theorem 2.3] that  if we set 

2l l - -1  

H ( x ) = l - I ( x - a d ,  r(x) = 
i = 1  i = 1  

then there is a polynomial UN-I of degree N - 1  such that  

T~ (x) - H(x) U2N_, (x) = 1, 

and this UN-t satisfies the equation 

= (4.9) 

(see [10, Remark 2.6 (b), p. 194], which appears with a slight error, namely the factor N 

is missing on the right). On differentiating the first equality, setting x=aj  and making 

use of the fact that  TN(aj )=•  we obtain 

=H(aj)U _z(aj), 

while (4.9) yields 

T~(aj)=NUN_l(aj )r (a j ) .  
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If we express from here U N _  1 (%), and substitute the resulting equality into the previous 

formula, then we obtain 

vwl--1  / x2 
]T~ (aj)] = N 2. 2 IL=I  [aj - T  i) = N2Mj" (4.10) 

I-Ii#j l a j - a i l  

Next we verify (4.6) for the special case when E=TNI([-1,  1]) is the polynomial 

inverse image of [-1, 1], and Pn is of the form Pn(x)=Rm(TN(X)). 
Let e>0  be arbitrary. Because of (4.2), for every ~>0 we have 

liP" IIEJ\[aj-~,aj+wl ~< MJ n2 IIPnIIE 

for sufficiently large n, and therefore it is enough to consider the r/-neighborhood of aj. 
We can choose this ~ so small that  for x ~ [aj - rl, aj + 7/] we have I T~ (x)] ~< (1+ r (aj)l = 

( I+r  2. Then for xE[aj-rl,  aj+rl]nE we obtain from the classical Markoff in- 

equality applied to the polynomial R,~ that  

IP'~(x)t = IR'~(E~(x) )I'IT'N(x)I <~ m2NRmll[-a,ll(l +e)MjN 2 <~ (l +e)Mjn21lP~llE, 

where we used that  the norm of Rm over [-1, 1] coincides with the norm of P~ over E, 

and that n=Nm.  

Finally, let E be an arbitrary set consisting of a finite number of intervals. By 

Theorem 2.1 we can choose a polynomial inverse image set E*=  TNI([--1, 1]) consisting of 

l intervals that  lies arbitrarily close to E. Furthermore, in selecting E* we can also achieve 

that  aj is an endpoint of E*, and E * c E  (see the remarks made after Theorem 2.1). It is 

also true that the numbers 7-i are C~162 of the endpoints aj (see w hence we can 

assume that  if M] is the number Mj from (4.5) computed for E*, then M]<~(I+c)Mj, 
where e>0  is any given number. Now we can prove (4.6) for arbitrary Pn via polynomials 

like P* and S(x) from (3.11) and (3.13) from the preceding section just as was done there. 

In fact, let E*=TN,~([-1 , 1]), i=1,  . . . ,N, be the inverse images under the N branches 

of TN 1. Assume that  ajEE~o , and let rj>0 be so small that  [aj-r], aj+rI]NEcE~o and 

this set does not contain the other endpoint of E]0. There are polynomials (see [16, 

Theorem V1.3.6]) L / ~  of degree at most v ~  such that  with some constants 0</3<1 

and C we have 

O<~ I - L v ~ ( x )  <~ C/TJ~ for xE[aj-rl ,  aj+rl] , 

0 ~< Lv~ (x) ~< C~ v~ for x E [.J E*, 
l<~i<~N, iT~jo 

and otherwise 0~< Lv~ (x)~< 1 on E*. Instead of (3.11) consider the polynomial 

P~(x)=L, /~(x)P,(x) ,  (4.11) 
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which has similar properties as the P~ from (3.11), namely P,* has degree at most n + v ~  , 

IIP*I[E. <<.I]P,~IIE*, P*(x)=(I +O(~v~ ))P,~(x) for xE[aj--~,aj+~?], 

I ( < ) ' ( x ) - < ( x ) l  =O(n2/3"Za)llPnllE* for xE [aj-~,aj+~], 

and 

l<(x)l = o(m~)lIP~ll~.,  I(<)'(x)l = o (~2~) l lPnl lE .  

uniformly for x E E* \Ei*o, where we have also used the classical Markoff inequality (3.2) 

in the estimates of the derivatives. These show tha t  if we define 

N 

S(x) : Z < (T;',(T~ (z))) 
i----1 

as in (3.13), then exactly as after (3.13) we can conclude that  this is a polynomial of TN, 
and 

IISllE- ~< (I+O(~V-~))IIP,,IIE ., IS'(x)-P'(x)l <<. O(n2m'~)lIPnllE. 

for all xc=E*M[aj-rhaj+rl]. Now S is already of the type for which we have verified 

(4.6) above, so if we apply to S the inequality (4.6) and also take into account (4.2), then 

we can conclude (4.6): 

p' max(O(n)Hp,~ II nllE~ < liE*, ]lS'I[Emi~j-~,aj§ ~/~ [leslIE*)) 
<~ (l +o(1) )Mff (deg(S) ) 2 IlSllE.+O((n+n%~ )lIP. lIE-) 

~< ( l+o(1)b2Mj IlPnlb" ~ (l+o(1))(l+c)n2Mj IIPnlIE, 

where in the last step we used that  E*cE  and M~<~(I+a)M i. Since here c > 0  is 

arbitrary, (4.6) follows. 

The proof of (4.7) follows from the above considerations. In fact, as before, select a 

polynomial inverse image set E * =  T N 1([_ 1, 1]) consisting of I intervals tha t  lies arbitrarily 

close to E for which aj is an endpoint, and for which M~ is close to Mj, but now we 

select E* so that  it contains E.  If T,~ are the classical Chebyshev polynomials, then 

using that  TN(aj)=+I, and [T'~(J=l)l=m 2, we get from (4.10) for m=[n/N] 

I(Tm(TN ) )'(aj)I = m2N2M~, 

and since here n2/m:N2--+l as n---+e~, and M~ is as close to Mj as we wish, (4.7) 

follows. [] 
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