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The deformation theorem of Federer and Fleming [FF] is a fundamental tool in geometric 

measure theory. The theorem gives a way of approximating (in the so-called flat norm) 

a very general k-dimensional surface (flat chain) A in R g by a polyhedral surface P 

consisting of k-cubes from a cubical lattice in R g.  Unfortunately, the theorem requires 

the original surface to have finite mass and finite boundary mass. In this paper, we 

remove these finiteness restrictions. That  is, we show (in Theorem 1.1, Corollaries 1.2 

and 1.3) that  the Federer-Fleming deformation procedure gives good approximations to 

an arbitrary flat chain A. Also, the approximating polyhedral surface depends only on 

the way in which typical translates of A intersect the (N-k) - ske le ton  of the dual lattice. 

This lets us answer several open questions about flat chains: 

(1) For an arbitrary coefficient group, a nonzero flat k-chain cannot be supported 

in a set of k-dimensional measure 0. 

(2) For an arbitrary coefficient group, a flat chain of finite mass and finite size must 

be rectifiable. In particular, for any discrete group, finite mass implies rectifiability. 

(3) Let G be a normed group with sup{[g[:gcG}=A<oo. Then for any fiat chain 

with coefficients in G, M(A)~< AT-/k (spt A). 

(Special cases of (1) and (2) are mentioned as open questions in [F1], and the special 

case G=Zp of (3) is mentioned as an open question in [Fell. Federer and Fleming [FF] 

proved (1) for real fiat chains (and therefore also for integral flat chains). Almgren [A] 

introduced the notion of size and proved (2) for real fiat chains; Federer [Fe2] then gave 

a much shorter proof.) 

Furthermore, in another paper [W3] we use the deformation theorem proved here 

to give a simple necessary and sufficient condition on a coefficient group G in order for 

every finite-mass flat chain to be rectifiable. 

The author was partially funded by NSF Grants DMS-95-04456 and DMS-98-03493. 
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The proof is in the context of flat chains over an arbitrary abelian group G together 

with a norm that  makes G into a complete metric space. These were introduced by 

Fleming in [F1]. The reader is referred to the first half (through w of Fleming's paper 

for definitions and the properties of fiat chains needed here. The main distinguishing 

feature of Fleming's approach (versus the approach via differential forms in [FF], [Fell, 

[S], and [Mo]) is that  Fleming defines the space of fiat chains to be the metric space 

completion (with respect to the flat metric) of the space of polyhedral chains, and he 

defines mass (for fiat chains) to be the largest lower semicontinuous functional that  

extends the obvious notion of mass for polyhedral chains. Thus, by definition, every flat 

chain can be approximated by a polyhedral chain of nearly the same mass. This allows 

one to prove many theorems (such as those in this paper) for flat chains by proving them 

for polyhedral chains, and then concluding by continuity that  they hold for arbitrary 

flat chains. For that  reason, the proof of the strengthened deformation theorem here 

is simpler than the proof of the deformation theorem in [FF], [Fell, and [S]. In case 

the group is Z or R (with the standard norm), Fleming proves that  his flat chains are 

equivalent to the integral fiat chains or real flat chains, respectively, as usually defined 

via differential forms. 

Until recently, most research on flat chains dealt with the coefficient groups Z and R 

with the standard norm. However, fiat chains over other normed groups are also quite 

interesting and arise naturally in various contexts. For example, using the integers mod 2 

allows one to find least-area surfaces among all surfaces, possibly non-orientable, with a 

given boundary. (Integral currents are all oriented.) Other coefficient groups are ideally 

suited to modelling least-energy immiscible fluid configurations, as well as soap films and 

soap-bubble clusters [Wl]. They are also useful in proving that  certain surfaces (such 

as the cone over the 1-skeleton of a regular tetrahedron) minimize area [ML]. And flat 

chains mod p have been used as a tool to prove theorems about integral flat chains [W4]. 

The terminology and notation here differ slightly from Fleming's. In particular, we 

use $- instead of 142 for the flat norm, and At_S instead of AAS for the portion of A in 

the set S. Also, the term "flat chain" here refers to what would be called "flat chain 

with compact support" in Fleming's paper. 

1. T h e  d e f o r m a t i o n  t h e o r e m  

For ~>0, let X(e) be the standard partit ion of R N into cubes of size e. In particular, the 

vertices of X(e)  are the points in R N each of whose coordinates is an integer multiple 

of e. A k-dimensional cube of side length e whose vertices are vertices of X(e) will be 

called a "k-cube of X(e)". Let Xk(e) denote the k-skeleton of X(e), that  is, the union of 
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all the k-cubes of X(c). Let Y(z) be the dual partition of R N, formed by translating each 
1 cube of X(~) by (~z, ..., �89 Thus the vertices of Y(~) are the centers of the N-cubes 

of X(s), and vice versa. 

Let :Pk and 9~k denote the spaces of k-dimensional polyhedral chains and flat chains, 

respectively, in R y. 

DEFORMATION THEOREM 1.1. For every ~>0, there are operators 

P = Pe : jCk --~ pk , 

H = He: Jz k -+ irk+ 1 

such that for all fiat k-chains A and B, the following properties hold for almost every 
yElrtN: 

(1) 

H(Ty(A+ B) ) = H(TyA)+ H(~-yB), 

P(Ty(A+ B) ) = P(TyA)+ P(TyB), 

OP(TyA) = P(OTyA). 

(2) P( yA) i8 a sum (with a-coel cients) of k-cubes of 
(3) ~-yA=P(TyA)+OH(TyA)+H(OTyA). 

(4) P(TyA) and H(-ryA) are supported in a v/Nz-neighborhood of spt TyA. 
(5) If A is a k-chain disjoint from the (N-k)-skeleton of the dual partition Y(s), 

then PC(A)=0. 

(6) 

fyc[O,1]NM( He(TeyA ) ) dy < c~M(A), 

s [o,1] NM( Pe(TeyA) ) dy <~ cM(A), 

frye [0,l] NT-/k (spt Pe(TeyA)) dy < CT-/k(spt A). 

(7) If A is polyhedral, then H(TyA) is polyhedral. 

Here and throughout the paper we write X, Y, P, and H instead of X(~), Y(~), pc, 

and H e, except when we want to emphasize the dependence on ~. The expression TyA 

denotes the chain obtained by translating A by y. Constants (such as c above) may 

depend on N, but not on other quantities. 
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Conclusions (1) and (3) of Theorem 1.1 can also be stated in the language of homo- 

logical algebra as follows. Let C be the chain complex generated by any finite or countable 

collection of flat chains in R N. Then for almost every yER N, the map 

PoTy: C. -*~-. 

is a chain homomorphism, and HoTy: C.--*~-.+l is a chain homotopy between Ty: C. ~ .  

and PoTy: C.--+ f .. 
In the following corollary, we write P(y, A) and H(y, A) for P('ryA) and H('%A), 

respectively, and we let Av=Av e denote average over [0, ~]N: 

COROLLARY 1.2. For all k-chains A and B, we have 
(1) Av.T(P(y, A)) <.c.T(A), 
(2) Av .T(A- P (y, A)) <<. cr 
(3) Av .T(A- P(y, A)) <~ c.T(A- B) + ceY(B), 
(4) lim~_~0 A v . T ( A - P ( y ,  A))=0, 

where N(A) =M(A) +M(0A). 

Proof. Let A=B+OC. Then P(y, A)=P(y, B)+OP(y, C), so 

.T(P(y, A)) <~ M(P(y, B))+M(P(y, C)) 

and 

Av ~'(P(y,  A)) ~< Av M(P(y,  B)) +Av M(P(y, C)) 

<~ c(M(B)+M(C)) 

by (6) of the deformation theorem. Taking the infimum over all such B and C gives (1). 

To prove (2), note that  TyA-P(y, A)=OH(y, A)+H(y, cgA) (by (3) of the deforma- 

tion theorem), so 

.T'(TyA-P(y, A)) <~ M(H(y,  A))+M(H(y, Oil)). 

Averaging over y and using (6) of the deformation theorem gives 

Av .T'(TyA - -  P(y, A)) <. cE M(A) +c~ M(0A) = cEN(A). (.) 

If we translate A to TyA, it sweeps out a (k+l)-dimensional polyhedral chain S whose 

boundary is A-TyA together with the k-chain T swept out by OA. Thus if lyI<E, 

JZ(d- TyA) <~ M(S) +M(T)  ~< e M(A) +e  M(0A) = cN(A). 
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Combining this with (*) gives (2). 

To prove (3), observe that 

~ ( A - P ( y ,  A)) <~ ~ ( A - B ) + ~ ( B - P ( y ,  B))+~(P(y,  B ) - P ( y ,  A)) 

= ~ ( A -  B) +~(B  - P(y, B)) +~(P(y,  B -  A)). 

Now averaging and using (1) and (2), we get 

Av ~ ( A -  P(y, A)) <~ ~ ( A -  B) + ce i (B )  + c:g(A- B), 

which is (3). 

To prove (4), note that by (3) we have 

259 

pe'( i ) r ,, (r~,(i)yn) ~ A 

for almost every yE [0, 1] N. 

Proof. By Corollary 1.2 (4), 

lira / ~(A-pr 
i gye[O,1]N 

Thus we can find a subsequence er(i) such that 

~i ~Ye[O,1] N~(A-Pe'(i)(Te'(i)yA)) dy < co. 

Hence 

fycf0,1]N ~ "T( A -  pd(i)(%'(')uA ) ) dy < co. 
i 

Thus for almost every y, the integrand is finite, which implies that 

~(  A -  p~'(i)(T~,(O Y A ) ) --* O. [] 

limsup Av.T(A-P~(y,A)  ) <~ (I +c) .T(A-B) 
~--~0 

for every k-chain 13 with N(B)<oc. In particular, this holds for every polyhedral chain B. 

But by definition, the polyhedral chains are dense in the fiat chains, so we can choose 

polyhedral chains B making .T (A-B)  arbitrarily small. [] 

COROLLARY 1.3. Let A be a fiat chain, and r a sequence of positive numbers 
converging to O. Then there is a subsequence r such that 
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2. P r o o f  o f  t h e  d e f o r m a t i o n  t h e o r e m  

We first define retraction maps 

~)k: R N \ y  N-k-1 ~ Xk. 

These retractions will have the property that  

dist(Okz, Y J) ~ dist (x, Y J) (1) 

for all k and j .  In particular, if x~YJ,  then r  j. 
We define the retractions inductively as follows. First, 

~/JN : RN ~ RN 

is the identity map. Now given ~bk, we define r  as follows. Let x c R N \ Y  N-k. Then 

by (1), ~kx~Y N-k. That  is, 

~bkx E X k \  Y N-k. 

Thus r  will lie in, but not at the center of, some k-cube Q of the grid X. Let Ok- ix  

be the point in OQ such that  r  is in the line segment joining the center of Q to Ok-ix.  

Now define a map (I)(t, x) on a subset (to be specified below) of [0, N] x R g as follows. 

We let 

r x) = Cjx (j = O, 1, ..., N) 

and we let r be linear in t on each interval j<~t<.j§ (for j=O, 1, . . . , N - l ) .  Note 

that  for each j = l ,  2, ..., N the map (I) is well-defined and continuous on 

[j, N] x ( R N \ Y  N- j - l )  

and is in fact a deformation retraction from R N \ y  N-j-1 o n t o  XJ. Note also that  if 

x ~ Y  j, then r  (for all t such that  ~(t,x) is defined). 

We say that  a polyhedral k-chain A is in good position (with respect to Y) provided 

sp tA is disjoint from y N - k - 1  and sptOA is disjoint from yN-k. We say that  A is in 

very good position if it can be expressed as ~ g~[ai] where each gr is in good position. 

Let A be any polyhedral chain. Note that  for almost every y c R  N, the translate TyA will 

be in very good position (and therefore also in good position). 

Now let A be a polyhedral k-chain in good position. We let H(A) be the polyhedral 

(k+  1)-chain swept out by A under the deformation retraction from R g \yN--k--1 t o  xk: 

H(A) = r  ([k, N] xA).  

We also define 

P(A) = A -  OH(A) - H(OA). 
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LEMMA 2.1. 

(1) 
Let A and B be polyhedral k-chains in good position. Then: 

H(A+B) =H(A)+H(B),  

P(A+B) =P(A)+P(B),  

OP(A) = P(OA). 

(2) P(A) is a combination of k-cubes of the grid X.  
(3) A=P(A)+OH(A)+H(OA). 
(4) P(A) and H(A) are supported in a x/~e-neighborhood of spt A. 

If sptA is disjoint from yN-k ,  then P(A)=0 .  (5) 
(6) 

r 
M(H~(A)) E ca k+l J (d i s t (x ,  yN--k--1))--k d#AX. 

Proof. Assertion (1) follows immediately from the definitions of H and P. 

that  by the homotopy formula IF1, 6.3] we have 

Hence 

OH(A) = (r  (r ([k, N] • 0.4) 

= A- (r  N] • 

Note 

P(A) = A -  OH(A) - H(OA) 

= ( r  (I)# ([k, N] x OA) - (~# ( [k-  1, N] x 0.4) (,) 

= ( r  k] xOA). 

Of course Ck takes values in X k, as does (I)(t,.) for t<k. Thus from (*) we see that  P(A) 
is supported in X k. Likewise OP(A)=P(OA) is supported in X k-1. It follows that  A is 

a combination of k-cubes of the grid X, which is assertion (2). 

Assertion (3) is just the definition of P(A). Assertion (4) is obvious. 

Now suppose that  the support of A is disjoint from yY-k.  Recall that  if x ~ Y  N-k, 

then ~kX~Y N-k and (~(t,x)~Y N-k for k - l ~ t ~ N .  Consequently, according to (*), 

spt P(A) is disjoint from y g - k .  This means (by assertion (2)) that  P(A) is a combination 

of k-cubes of the grid X, but does not touch the centers of those cubes. Of course that  

means P(A)=0,  which is assertion (5). 

Finally, assertion (6) is a straightforward calculation. [] 

The following proposition gives another characterization of P(A). For each k-cube 

Q of the grid X, note that  there is a unique (N-k) -cube  Q* of Y such that  Q and Q* 

intersect at their common center. Give Q an orientation, and then orient Q* so that  

Q•Q* induces the standard orientation on R g.  
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Let a and T be oriented polyhedra of dimensions k and N-k ,  respectively. We 

define an intersection number I(cr, ~-) as follows. 

(1) If  a and ~- are disjoint, then I(a, T)=0.  

(2) If  the intersection of a and T is a single point tha t  is not in the boundary of 

either a or T, then I(a, ~-) is 1 or - 1 ,  according to whether the orientation on R g induced 

by a| is the s tandard one or not. 

(3) Otherwise, I(a, T) is undefined. 

PROPOSITION 2.2. Let A=~-~gi[ai] 
Then 

be a polyhedral k-chain in very good position. 

P( A) = E E gJ(a~'Q*)[Ql' 
Q 

where the first summation is over all k-cubes in the grid X. 

Proof. We will show in fact tha t  for each i, 

P(g~[a,]) = ~ giI(a, Q*)[Q]. (*) 
Q 

By subdividing, we may assume tha t  each ai gets mapped  by Ck into a single k-cube 

of X.  If ai is disjoint from yN-k, then both  sides of (*) are 0 (by (5) of the lemma). 

If  a~ intersects some Q, we leave it to the reader to check (.) .  [] 

Proof of the deformation theorem. Assume first tha t  A and B are polyhedral k- 

chains. Then ~-yA and TyB are in very good position for almost every ycR N, and thus 

we can apply the results of this section to them. In particular, from Lemma 2.1, we see 

tha t  assertions (1)-(5) of the deformation theorem hold when A and B are polyhedral. 

Furthermore,  by (6) of the lemma, we have 

~ye[o,1]NM(H(T~YA))dY<~ ~ve[O,llNEk+l ~ c(dist(x'yN-k-1))-k dtt~Axdy 

= ~ ~k+~ ~zc(dist(x+~Y, YN-k-1))-k dttAxdy 
e[0,1]~ 

=ek+l ~ ~e[o,1]Nc(dist(x+ey, yN-k-1))-k dyd#AX 

~ f C t d~A X 
$ 
' J X  

~< c'~ M(A), 

which is the first inequality in assertion (6) of the deformation theorem. 
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The other two inequalities of (6) follow immediately from Proposition 2.2 by ele- 

mentary integral geometry. 

Hence we have proved all of the deformation theorem in the case of polyhedral 

chains. It follows that Corollary 1.2 also holds for polyhedral chains. 

Now let A be an arbitrary flat k-chain. Choose a sequence of polyhedral chains Ai 

that converge rapidly to A, i.e., such that 

Of course it follows that 

~-(Ai- A) < co. 

J:(Ai-A~+I) < oc. 

Now by Corollary 1.2 (1), 

Av ~ .T(Pe(TyAi)-Pe(TyAi+l))  
i 

---- ~ Av.T'(P(TyAi -7-yA,+l)) 
i 

<~ ~ c.~(Ai-Ai+I) 
i 

<cx) .  

Consequently, for almost every y, the chains P~(TyAi) converge to a limit. We define 

P~(7-yA) to be this limit. Note that if A~ is any other sequence converging rapidly to A, 

then the sequence A1, At, A2, A~, ... also converges rapidly to A, so (for almost every y) 

the sequence 

P~(TyA1), Pe(TyA'I), Pz(TyA2), Pe(TyA'2), ... 

converges. Hence (for almost every y) the chains P~(TyA~) also converge to the same 

limit P~(TvA ). 
An exactly analogous argument shows that for almost every y the chains H~(TyAi) 

converge to a limit, which we define to be H~(TyA). Likewise (for almost every y) the 

chains H~(TyA~) converge to the same limit H~(TyA). 
Now assertions (1)-(3) of the deformation theorem (for arbitrary flat chains A and B) 

follow immediately from the same assertions for the polyhedral chains Ai and Bi (where 

the Bi converge rapidly to B), which we already know to hold. 

By definition of support, we can choose polyhedral chains A~ converging rapidly to 

A with spt A~-~spt A. Assertions (4) and (5) now follow immediately from the same 

assertions for the A~. 

Similarly, we can choose polyhedral chains A~' converging rapidly to A with 

M(A~')-oM(A). The first two inequalities of assertion (6) now follow immediately from 

the corresponding inequalities for the A~'. 
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Assertion (7) is trivially true. 

This completes the proof of all of the deformation theorem except for the last in- 

equality in (6), which will not be used except in w We postpone proof of the inequality 

until that  section. [] 

3. C o n c e n t r a t i o n  

It is important to know that  flat chains cannot be concentrated in small sets. This is 

crucial, for example, in establishing rectifiability of integral currents. Most accounts of 

flat chains ([FF], [Fel], [Mo], [S]) prove this when the group is Z or R using differential 

forms. That  proof does not work for other coefficient groups since integration of differen- 

tial forms over such groups does not make sense. Fleming [F1] gave a different proof that  

works precisely for finite groups. Here we give a proof that  works for any group. Recti- 

fiability theorems (w below) then follow immediately from Federer's structure theorem, 

exactly as in [FF]. 

THEOREM 3.1. Let A be a fiat k-chain in R g with ~k(sptA)----0. Then A=O. 

More generally, if the projection of spt A on each coordinate k-plane has k-dimensional 

measure O, then A--0. 

Proof. By Corollary 1.2 (4), 

lim Av ~ ( A - P ~ ( y ,  A)) = O. (*) 
r 

The hypothesis about projections of spt A is equivalent to saying that  ~-y spt A = s p t  TyA 

is disjoint from the (N-k) - ske le ton  of Y(s) for almost every y. Hence by (5) of the 

deformation theorem, P(y, A)--0 for almost every y. Thus (*) becomes 

lim Av.T(A) -- 0 
r 

or 9~(A)=O. Thus A=O. [] 

4. Rectifiability 

A finite-mass flat k-chain A in R N is said to be rectifiable if there is a countable collection 

M1, M2, ... of k-dimensional CLsubmanifolds of R N such that  

#A(RN\U,  Mi) =0 

(or, equivalently, such that  A = A L  Ui Mi). The Hausdorffsize of a finite-mass flat k-chain 

A is the infimum of 7-/k (S) among Borel sets S such that/Z A (R  N \ S ) = 0  (or, equivalently, 

such that  A=ALS) .  Note that  there is an S that  attains the infimum. 

The following holds for any group: 
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THEOREM 4.1. Let A be a fiat k-chain of finite mass and finite Hausdorff size. 

Then A is rectifiable. 

COROLLARY. Suppose that G is a discrete group (i.e., the norms of nonzero ele- 

ments of G are bounded away from 0). Then every finite-mass fiat chain is rectifiable. 

Proof of the corollary. By IF1, 8.3], the hypothesis on G implies that  finite-mass 

chains also have finite size. [] 

Proof of Theorem 4.1. Suppose that  A were a counterexample to the theorem, and 

let S be a Borel set with A = A L S  and T/k(S)<oc. Then the purely unrectifiable part 

of S would contain a compact set K of positive #A-measure, and A I = A L K  would be 

a nonzero flat k-chain supported in a purely unrectifiable compact set K of finite 7-/k- 

measure. 

Thus the theorem follows from 

THEOREM 4.2. Let K c R  N be a purely unrectifiable compact set of finite TI k- 

measure. Let A be a fiat k-chain supported in K .  Then A=0. 

Proof. By Federer's structure theorem (see Ire1, 3.3.15], [Ma, w or the simplified 

proof in [W3]), there is a rotation 0: R N - ~ R  N such that  the projection of 

0(K) 

onto each of the coordinate k-planes has measure 0. By Theorem 3.1, 0#A=0.  Hence 

A=0. [] 

5. G r o u p s  w i t h  b o u n d e d  n o r m s  

THEOREM 5.1. Suppose supgeG Igl=)~<c~. Let A be a fiat k-chain in R N with coeffi- 

cients in G. Then 

M(A) ~< C/~7-/k(spt A). (*) 

Remark. Suppose ~k(spt  A)< co. Once we know that  M(A) is finite, it follows from 

the rectifiability theorem, Theorem 4.1, that  (,) is actually true with c = l .  (See w 

Proof. By Corollary 1.3 to the deformation theorem, there is a sequence e(i)--~0 

such that  

PC(i)(T~(i)yA ) --~ A 

for almost every y e  [0, 1] N. Therefore 

M(A) ~< lim inf M(p~(i)(TE(i)yA)) 

~< lim inf AT-/k(spt P~(~)(%(~)yA)) 
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since (,) is clearly true (with c= l )  for polyhedral chains. If we integrate this inequality 

over yE[0, 1] N and use Fatou's lemma and Theorem 1.1 (6), we get 

/ ,  

M(A) ~< lim inf ] ) ~ k  (spt P(ys(i), A)) dy 
Jy e[0,1]  N 

~< lim inf AcT-/k(spt A) 

= cAT-/k (spt A). [] 

In this proof we used the last inequality in the deformation theorem. That inequality 

was not proved with the rest of the deformation theorem, so we give the proof now: 

PROPOSITION 5.2. Let A be a flat k-chain and ~>0. Then 

lye N~k (spt pe (T~yA)) dy <. cTl k (spt A). 
[0, 1] 

Proof. We assume 7-/k(spt A)<oc, as otherwise the proposition is trivially true. Note 

that for any Borel set S, we have 

~J ~ye[o,1]NT-L~ (~)NT~yS) dY= ~ /xeRjT~~ dx 

(where the summation is over orthogonal projections H from R N to the various coordinate 

j-planes) 

~< E ~J(S) (1) 
H 

(This follows, for example, from [Ma, 7.7] or [Fel, 2.10.25].) 

S=spt  A and j = k + l ,  we see that 

In particular, letting 

yN-k-I(~)Nspt(TeyA) = O  for almost all y. (2) 

Choose polyhedral chains A~ converging rapidly to A with spt A~-+spt A. If Q is a k-cube 

of Xk(c) such that Q* is disjoint from spt(TyA), then Q* is disjoint from spt(TyA~) for 

all sufficiently large i. Consequently (for large i) 

#{Q:  Q* Nspt ryA~ r o} ~< #{Q:  Q* Nspt TyA ~ 0}. 
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Note (by Proposition 2.2) that  the left-hand side of this inequality is greater t han  or 

equal to 

~ - k  7-~k (spt  P~(TyA~)) 

and (for almost every y) the right-hand side is at most 

?-/0(yN-k(e)Nspt TvA) 

by (2). Thus 
nk(sp t  P~(TyA~)) <~ ~kT-lO(yN--k(~)nspt TyA). (3) 

As i--*oc, P~(TyA~)-~P~(TyA), so (since these chains are all made up of k-cubes from 

the same grid) 

7/k (spt Pe(TyA)) <~ lim inf 7-/k (spt P~(TvA~) ). 

Thus by (3), 

~k  (spt P~(TyA) ) <~ ckTl~ TyA). 

Now integrating (and using (1) with j=k and S= spt A) proves the desired inequality. [] 

Remark. The proof actually shows that 

j~y~ [0,1]J-/k (spt P~(r~yA)) dy <~ u(spt A), 

where 

u(S) -- ~ ~ ~R kT-l~ dx' 

the summation being over orthogonal projections H from R g to coordinate k-planes. 

Consequently, Theorem 5.1 becomes 

M(A) ~< c)~u(spt A). 

Now if we apply this to O#A, where 0 is a rotation of R N, and then average over all such 

rotations, we get 

M(A) ~< c~Zk(spt A), 

where 2 -k is k-dimensional integral-geometric measure. 

As in Theorem 5.1, the best constant c is in fact 1. This is because a fiat chain 

of finite mass supported in a set of finite integral-geometric measure must be rectifiable 

[W2, 6.1t, and the inequality (with c = l )  is easy for rectifiable chains. (See [W2, w for 

related results.) 
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6. Size and o ther  weighted-area  funet ionals  

Mass is a weighted area, with densities given by the group norm of the coefficients. In 

some situations, it is useful to consider other weighted areas. Let r G---~[0, co] be any 

function such that  r  and such that  r 1 6 2  (i.e. such that  r is even). Then 

r induces a functional (which we also denote by r on the space of polyhedral chains: 

r ~ gi[cri] H ~ ~(gi) area(ai),  

where the cri are non-overlapping. For r to be lower semicontinuous with respect to flat 

convergence on the space of polyhedral chains, we also need r G--*[0, oc] to be lower 

semicontinuous and subadditive: r  ~< r +r  In fact, these conditions suffice 

for r ~k(RN; G)--*R to be ~'-lower semicontinuous: the proof is exactly the same as for 

mass lower semicontinuity IF1, 2.3]. Then r extends to a lower semicontinuous functional 

r  =k(rtN; C) [0, 

by setting 

r = inf{lim inf r A, ~ A ,  Ai �9 Pk (RN; G)}. 

For rectifiable chains A, one can describe r more explicitly as follows. Recall 

that  if A is a rectifiable k-chain, then there are k-dimensional Cl-submanifolds Mi such 

that  A=At_S, where S=(.JMi. We can choose the Mi to be disjoint and oriented. One 

can then show, if G is separable, that  there is an isometry f~--~SAf from 

{f~/:I(~'/kLs; G) : f  has compact support} 

tO 
{AE f k ( R N ;  G) : M(A) < oc and A = ALS}. 

(If G is not separable, simply replace the space Z: 1 above by the closure in 1:1 of the set 

of functions each of which takes only finitely many values.) In particular, the mass of 

SAf  is t h e / : l - n o r m  of f :  

M(SAf )  = / If] dT-I k. 
Js  

Likewise 
I "  

r f) = IS r dTykx. (*) 

(To show this, one can first use the radon measure #A,r V~c~(At_V) of Theorem 6.1 

below to reduce to the case when S is a single manifold Mi. That  case is fairly straight- 

forward; see [Wl, w for the special case when S is a k-plane.) 
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One such r G--~ [0, col of particular interest is 

1 if H e 0 ,  

r 0 if g - -0 .  

By (,), r (A) is equal to the Hausdorff size (w of A if A is rectifiable. In another paper 

[W2], we will show that if M(A) and r are both finite, then A is rectifiable. This 

together with the corollary to Theorem 4.1 implies that r (A) is equal to the Hausdorff 

size of A for any A of finite mass. If A has infinite mass, the definition of Hausdorff size 

does not make sense, so we define the size of A to be r for every fiat chain A. 

THEOREM 6.1. Let r G-~[0, co] be an even lower semicontinuous subadditive func- 

tion such that r  Let r ~-k (RN; G)---* [0, co] be the corresponding functional on fiat 

chains. Then: 

(1) Av r ~<c~r 

(2) Av r162 

(3) If r  then #A,r s H e ( A t _ S )  defines a radon measure on R N. 

(4) Suppose that r is positive on the nonzero elements of G. Then r  for 

every nonzero fiat chain A. 

Proof. Assertions (1), (2), and (3) are proved exactly as for the mass functional 

(Theorem 1.1 and [F1, w To prove (4), suppose r Then by (2), we see that  

r  and hence (by the hypothesis on r that  P~('%A)=O for almost every y. 

But then A=0  (by Corollary 1.2 (4) or Corollary 1.3). [] 

This theorem lets us extend Almgren's isoperimetric inequality [A, 2.3] to such 

functionMs: 

THEOREM 6.2. Let r be as in Theorem 6.1 and let k>0.  If  T is a fiat k-cycle, 

then it is the boundary of a fiat (k+ l)-chain A such that 

r ~< cr T) 1/k (*) 

and 

size(A) < c(size T) (k+l)/k. 

In particular, this is true with r  ) = M ( .  ). 

Proof. Let 

S = S(e) = {y e [0, 1]N: P~(T~yT) = 0} 

= {ye  [0, 1]g: TuT=OHE(T~yT)}. 
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Note that  if y ~ S, then size P~(-ryT) >>. ek. Hence by Theorem 6.1 (2), 

Eks 1IN\S) ~< c size T. 

Let ~k__2C size T. Then 
1 

Consequently Theorem 6.1 (1) implies 

Avyes r <~ 2Av r 

~< 2cer  

Likewise 

Avues (size H~(7-euT)) <<. 2c~ size T. 

Hence we can pick a y 6 S with 

CH~(TeyT) <. 3c~r T = 3c(2c size T) I/k C T, 

size H~(T~vT) <<. 3c~ size T = 3c(2c size T) (k+l)/k. 

Then A=r_~yH~(T~yT) is the desired surface. [] 

Remark. Given any finite set of r there is an A that  simultaneously satisfies (*) for 

each r However, the constant c increases with the number of r 
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