
Acta Math., 188 (2002), 41-86 
(~) 2002 by Institut Mittag-Leffler. All rights reserved 

Anderson localization for SchrSdinger operators 
on Z 2 with quasi-periodic potential 

JEAN BOURGAIN 

Institute for Advanced Study 
Princeton, N J, U.S.A. 

b y  

MICHAEL GOLDSTEIN 

Institute for Advanced Study 
Princeton, N J, U.S.A. 

and WILHELM SCHLAG 

Princeton University 
Princeton, N J, U.S.A. 

1. I n t r o d u c t i o n  

The study of spectral properties of the SchrSdinger operator on /2 (zd)  

H = - A + V ,  (1.1) 

where A is the discrete Laplacian on Z d and V a potential, plays a central role in quan- 

turn mechanics. Starting with the seminal paper by P. Anderson [2], many works have 

been devoted to the study of families of operators with some kind of random potential. 

The best developed part of the theory deals with potentials given by identically dis- 

tributed, independent random variables at different lattice sites. It is not our intention 

to present the long and rich history of this area. Rather, we merely would like to mention 

the fundamental work by Fr5hlich and Spencer [17], which lead to a proof of localiza- 

tion in [16] in all dimensions for large disorder, see also Delyon-L~vy-Souillard [12] and 

Simon-Taylor Wolff [24]. More recently, a simple proof of the FrShlich-Spencer theo- 

rem was found by Aizenman and Molchanov [1], again for the case of i.i.d, potentials. 

A central open problem in the random case is to show that  localization occurs for any 

disorder in two dimensions, whereas in three and higher dimensions it is believed that  

there is a.c. spectrum for small disorders. Basic references in this field that  cover the 

history roughly up to 1991 are Figotin-Pastur  [15] and Carmona-Lacroix [11]. Some 

of the more recent literature is cited in [19]. Another case that  has at t racted consider- 

able attention are quasi-periodic potentials. In the one-dimensional case Sinai [25] and 

PrShl ic~Spencer-Wit twer  [18] have shown that  one has pure point spectrum and expo- 

nentially decaying eigenfunctions for large disorder provided the potential is cosine-like 
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and the frequency is Diophantine. In this paper  we show tha t  for potentials V of the 

form 

V(/ t l ,  ?7,2) =/~v(O 1 -[-//lO21,02 -[-n2cd2) , (1.2) 

where v is a real-analytic function on T 2 which is nonconstant on any horizontal or 

vertical line, and A is large, Anderson localization takes place for every (01 ,02)cT 2 

provided the frequency vector _w is restricted suitably. More precisely, for every e>0 ,  

any A~>A0(r and any _0ET 2 there exists 3reCT 2 depending on 0 and A so that  

mes(T2\Sr~) <e  and such tha t  for any ~ESc~ the operator  with potential  (1.2) has pure 

point spectrum and exponentially decaying eigenfunctions, see Theorem 6.2 below. At 

a lecture at the Inst i tute for Advanced Study, H. Eliasson [14] has announced that  this 

result can be obtained by means of a per turbat ive technique similar to [13]. In this paper  

we show that  one can use basically nonperturbat ive methods similar in spirit to those in 

Bourgain Goldstein [7] and Bourgain-Goldstein Schlag [8]. The requirement of large A 

is needed to insure that  a certain inductive assumption holds. As in the aforementioned 

works, semi-algebraic sets also play a crucial role in this paper. In fact, we apply various 

recent results from the theory of those sets which are collected in w Another aspect 

of our work is the use of subharmonic functions. This basically replaces the Weierstrass 

preparat ion theorem which usually appears  in per turbat ive proofs. 

Finally, we would like to mention Bourgaln-J i tomirskaya [9], where the case of a 

strip in Z 2 with quasi-periodic potentials on each horizontal line is treated. The methods 

there, however, do not directly apply here. 

We now proceed to give a brief overview of the proof. Suppose tha t  there is a basis 

{ J}j=l of/2-normalized,  exponentially decaying eigenfunctions of H_~(_0) for some _w. 

More precisely, suppose that  for all large squares A c Z  2 centered at the origin of side 

length N there is a basis {r of eigenfunctions of/-/_~ (_0)[A with Dirichlet boundary 

conditions on 0A so that  for every j there is nj so that  

Ig)j(n)l <~Cexp(-q,[n-njl ) for all n E Z  2. 

Here ~/>0 is some fixed constant. Then the Green's  function 

G i (rt, m ) : =  [(H_w (0) - [ i ] -  1(7/, rft) = (n) Cj (m) 
- J E j - E  

satisfies 

IGA(O_,E)(n, r n ) l _  ~< C e x p ( - - ~ T l n - r n l )  for every n, rnEA, I n - m l  ~l~N,  
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provided IIG~(Q, E)[ I<e Nb where b < l  and N large. This suggests the following termi- 

nology: We call a Green's function GA(~, E) good if 

N b 
IIc~(_0, E)II ~< e , 

1 IG~(O,E)(n,m)[ <~ Cexp(-�88 for every n, mEA, fn-m] >1 -~N, 

and bad otherwise. w167 2, 3, 4 below are devoted to establishing large deviation theorems 
for the Green's functions. This means that  we show that  for a fixed energy E and suitably 

restricted _~ a given Green's function GA(0, E)  satisfies 

mes[0 �9 T2: GA(o, E) is bad] < e - (d iam A)~ (1.3) 

for some constant or>0. This large deviation estimate is the first crucial ingredient in the 

proof, the second being the method of energy elimination via semi-algebraic sets, which 

is presented in w It is easy to see that  for a fixed side length No of A the estimate (1.3) 

holds provided A~>$0(No) (~ is as in (1.2)). This is precisely the origin of our assumption 

of large A, and nowhere else does one need large ~ in the proof. For larger scales N>>-No, 
(1.3) is proved inductively. Thus assume that  (1.3) is known for N and we want to prove 

it for N1 =N c, where C is some large constant (it turns out that  this is precisely the way 

in which the scales increase). Parti t ion a square A of side length N1 into smaller squares 

{Aj} of length N, and mark each such small square as either good or bad, depending on 
A5 whether or not G~ (_0, E)  is good or bad. Since shifts by integer vectors (n~, n2) on Z 2 

correspond to shifts by (nlwl, n2w2) on T 2, it follows that the number of bad cubes is 

bounded by 

• { ( n l , / / ' 2 )  �9 [ -N1,  N112: (nlC01, n2r �9 J~N,_w ( E )  }, (1.4) 

where BN,~_(E):={OeT2: GA~ E) is bad}, A0 being a square centered at zero of side 

length N. The entire proof hinges on nontrivial estimates for the cardinality in (1.4). 

More precisely, one needs to prove that  there is some 8>0 so that  (1.4) < N1 a-a for most w. 

This is relevant for several reasons. One being that  the usual "multi-scale analysis", i.e., 

repeated applications of the resolvent identity, fails if there is a chain of bad squares 

connecting two points in A. Clearly, such a chain might exist if (1.4)~N1. On the other 

hand, the entire w is devoted to showing that  a sublinear bound N~ -~ is sufficient in 

order to obtain the desired off-diagonal decay of the Green's function on scale N1 provided 

the energy E is separated from the spectra of all submatrices of intermediate sizes, see 

Lemma 2.4 and in particular (2.8) for a precise statement. Another, perhaps more crucial 

reason is of an analytical nature as can be seen from Lemma 4.4. That  lemma is the 

central analytical result in this paper. It shows how to use bounds for subharmonic 

functions in order to treat  the typical "resonance" problems that  appear when one tries 
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to invert large matrices. This is in contrast to the usual KAM-type  approach that  is 

based on the Weierstrass preparat ion theorem. More precisely, one splits the Nl-square  

A into 

A = A ,  uA~., 

where A . = U j  Aj, the union being over all bad squares. If (1 .4)<N~ -~, then LA, I~< 
NI-~ hT 2 <* M 1 - 5 / 2  1 ~' "~ '1  provided C was chosen large enough (recall NI=NC). This relatively 

small size of A. allows one to t reat  the "resonant sites" as a "black box". In fact, it 

translates into a sublinear bound (in N1) for the Riesz mass of the subharmonic function 

log Idet A(O_)I that  controls the invertibility of (H_~(_0)-E) FA, see (4.19) and Lemma 4.8. 

All of w is devoted to establishing a sublinear bound on (1.4). This section is 

entirely arithmetic, being devoted to finding a large set of ~ E T  2 tha t  have the desired 

property. It  turns out that  this set can be characterized as being those _~=(col,w2) for 

which the lattice 

{(nlwl,n2w2) (mod Z2): Inll, In~l-< N1} (1.5) 

does not contain too many small nontrivial triangles of too small area. This is carried 

out in Lemma 3.1. Lemma 3.3 is the central result of w It  states that  the set of w 

that  was singled out in Lemma 3.1 has the property that  no algebraic curve of relatively 

small degree has more than N~ -~ many points from (1.5) coming too close to it. It  is 

essential to realize that  the set of _w that  needs to be excluded for this purpose does not 

depend on the algebraic curve under consideration, but is defined a priori. The logic of 

the proof of Lemma 3.3 is that  too many points close to the curve would force that  curve 

to oscillate more than it can, given its small degree. The oscillations are due to the fact 

that  the curve would need to pass close to the vertices of triangles with comparat ively 

large areas. 

Returning to the actual proof of localization, recall that  by the Shnol-Simon the- 

orem, [22] and [23], the spectrum of //_~(0)=-A+AV(nla~l,n2co2) is characterized as 

those numbers E for which a nonzero, polynomially bounded solution exists, i.e., there 

is a nonzero function ~ on Z 2 satisfying 

( H _ ~ ( 0 ) - E ) ~ = 0  and I ~ ( x ) i 5 1 + l x l  ~~ for all x E Z  2, 

where c0>0 is some constant. The goal is to show tha t  ~ decays exponentially. The 

key to doing so is to show that  "double resonances" occur with small probability. More 

precisely, given two disjoint squares Ao and A1 of sizes No and N1 respectively, one says 

that  a "double resonance" occurs if both  

IIGA~ E)[[ > e  N~ and GAI(O,E) is bad. (1.6) 
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Here No will be much larger than  N1 (some power of it), and c is a small constant. The 

proof of localization easily reduces to showing that  (this is the approach from [7]) such 

double resonances do not occur for any such A0 centered at the origin and any A1 tha t  

is at a distance between N and 2N from A0. Here N is very large compared to No. 

To achieve this property one needs to remove a certain bad set of w E T  2 whose size is 

ul t imately seen to be very small as a result of the large deviation est imate (1.3). However, 

this reduction to (1.3) is nontrivial, and requires the "elimination of the energy" which is 

accomplished as a result of complexity bounds on semi-algebraic sets. The main result in 

that  direction is Proposition 5.1 in w whose meaning should become clear when compared 

to the goal of preventing (1.6) (recall tha t  shifts in Z 2 correspond to shifts on T2). The 

set ~K is precisely the set of bad _w that  needs to be removed, whereas conditions (5.1) 

are guaranteed by the large deviation estimates. The details of this reduction can be 

found in w Finally, we would like to mention that  results on semi-algebraic sets are 

collected in w 

2. Exponential  decay of  the Green's function via the resolvent identity 

In this section, we consider a general operator 

H = - A + V  onl2(Z2) ,  

where V is an arbi trary potential  indexed by lattice points (nl,  n2)E Z 2. For any subset 

A c Z  2 the restriction operator on A will be denoted throughout this paper  by RA, and 

HA := RAHRA 

is the restriction of H to A. If  A is a square, for example, then HA is the same as H 

on A with Dirichlet boundary conditions. The main purpose of this section is to establish 

exponential off-diagonal decay of the Green's  function 

G A ( E )  : =  ( H A - E )  - 1  

for certain regions A that  do not contain too many bad subregions of a smaller scale. 

Here bad simply means that  the Green's function on the smaller region does not ex- 

hibit exponential decay. The precise meaning of "too many" and "region" is given in 

Definition 2.1 and Lemma 2.4 below. 

Definition 2.1. The distance between the points x = (xl,  x2) C Z 2 and y = (Yl, Y2) E Z 2 

is defined as 

Ix-_yl  = m a x ( f x l  - y l  I, - I). 
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Fig .  1. S o m e  e x a m p l e s  of e x h a u s t i o n s  of  e l e m e n t a r y  reg ions .  

The M-square centered at the point x =  (xl,  x2)EZ 2 is the set 

QM (_x) := {_y E Z 2 : xl - M ~< Yl ~ xl + M ,  x 2 -  M ~ Y2 ~< x2 + M }  

= {_yc z 2 : I x - y l  M} .  
(2.1) 

An elementary region is defined to be a set A of the form 

A : = R \ ( R + z ) ,  

where ._z E Z 2 is arbi t rary and R is a rectangle 

R =  { y E Z  2 : x l - M 1  ~ y l  ~ x l + M 1 ,  x 2 - M 2  ~<y2 ~ x 2 + M 2 } .  

The size of A, denoted by a(A),  is simply its diameter. The  set of all elementary regions 

of size M will be denoted by C ~ ( M ) .  Elements of ST~(M) are also referred to as M-  

regions. 

The class of elementary regions consists of rectangles, L-shaped regions, and hori- 

zontal or vertical line segments. In what follows, we shall repeatedly apply the resolvent 

identity to the Green's  functions (Hho - E ) -  1 and (HA1 - E ) -  1 where AI C A0 are elemen- 

ta ry  regions. In fact, in the proof of the following lemma we shall establish exponential 

decay of the Green's  function in some large region Ao, given suitable bounds on the 

Green's  functions on smaller scales. This will require surrounding a given point in A0 
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by a sequence of increasing regions inside A0. More precisely, we consider exhaustions 

{Sj(x)}~= o of Ao of width 2M centered at x_ defined inductively as follows: 

So(x) :=QM(x)nAo, 

Sj(x_) := (_J Q2M(y)nA0 
y~sj_l(x) 

for l <~j <~ l, (2.2) 

where l is maximal such that  Sl (x)#A0. Two examples of such exhaustions are given 

in Figure 1. It is clear that  the sets Sj form an increasing sequence of elementary 

regions. Of particular importance to us are the "annuli" Aj ( x )=S j  (x_)\Sj-i (x), where 

S_ 1 := Z. With the possible exception of a single annulus, any Aj (_x) has the property that  

QM (Y_)N Aj (x) is an elementary region for all _y E Ay (_x). We have indicated this by means 

of the small dotted squares in Figure 1. Notice that  in the left-hand region the square 

marked by an arrow does not lead to an elementary region. Thus, the aforementioned 

exceptional annulus is the one that  contains the unique corner of A0 that lies in the 

interior of the convex hull of A0. See the annuli that  are marked with arrows in Figure 1. 

Finally, we shall also need the fact that squares QM(Yl) and QM(_Y2) with centers in 

nonadjacent annuli are disjoint (recall that  the width of the annuli is 2M). 

The following lemma is a standard fact that  will be used repeatedly. 

LEMMA 2.2. Suppose that A c Z  2 is an arbitrary set with the following property: for 

every xEZ  2 there is a subset W ( x ) c A  with xEW(x) ,  d i a m ( W ( x ) ) ~ N ,  and such that 

the Green's function Gw(~)(E) satisfies for certain t, N, A>O 

[IGw(~)(E)H < A, 
IGw(~)(E)(x_,y)l < e -tN for all y~O.W(x). 

(2.3) 
(2.4) 

Here O.W(x_) is the interior boundary of W(x_) relative to A given by 

c9.W(x_) := { y e W ( x ) :  there exists z e A \ W ( x )  with [ z - y  I = 1}. (2.5) 

Then 

IIGA(E)II < 2N2A 

provided 4N2 c--tN ~ 1 

Proof. Let E>0 be arbitrary. By the resolvent identity 

GA(E+i~)(z, y) = GW(x_)(E+i~)(x_, y_) + ~ Gw(~)(E+i~)(x, z_) CA (E+i~)(_~',_y). 
z~W(x) 

_z'EA\W(_~) 
kz--_z'l=l 



48 J. B O U R G A I N ,  M. G O L D S T E I N  AND W. SCHLAG 

Summing over y C A yields 

sup y)l < sup Ilaw( )( +i )ll 
xC~_yCA - _xEA y C W ( x )  

+sup  E IGw(~-) (E+iz)(x'z-)l sup. E IGi(E+ie)(w-'Y)l" 
_xEA _zEW(_x) --wEA_yEA - 

_z'eA\W(_x) 
Lz-z'l=l 

In view of (2.3) and (2.4) one obtains 

sup ~ IGh(E+iO)(x_, y)] ~< N2A+4N2e -tN sup E 1ai(E+iO)(w--' Y)I. (2.6) 
_ X e A y ~  - w_EA y e A  - 

By self-adjointness, the left-hand side of (2.6) is an upper bound on GA(E). Hence the 

lemma follows from Schur's lemma. [] 

The following lemma is the main result of this section. First we introduce some 

useful notation. 

Definition 2.3. For any positive numbers a, b the notation a<b means Ca~b for 

some constant C>0.  By a<<b we mean that  the constant C is very large. If both a~b 

and a>~b, then we write a~b. The various constants will be defined by the context in 

which they arise. Finally, N ~- means N ~-~ with some small e>0 (the precise meaning 

of "small" can again be derived from the context). 

LEMMA 2.4. Suppose that M, N are positive integers such that for some 0 < 7 <  1 

N ~ ~< M ~< 2N ~. (2.7) 

Let AoCC~(N) be an elementary region of size N with the property that for all AcAo,  

AECT~(L) with M<.L<<.N, the Green's function GA(E):=(HA-E)  -1 of A at energy E 

satisfies 

IIGA(E)II < e Lb (2.8) 

for some fixed 0 < b < l .  We say that ACg ~ ( L) ,  ACAo is good, if in addition to (2.8) 

the Green's function exhibits the off-diagonal decay 

IGi(E)(x,_Y)l ~<e-N-~-Y [ for all x,_yeA, Ix-_yl > �88 (2.9) 

where "~ >0 is fixed. Otherwise A is called bad. Assume that for any family jr of pairwise 
disjoint bad M'-regions in Ao with M + I <~ M' <. 2M + I, 

# j z  <~ N b. (2.10) 
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Under these assumptions one has 

1 (2.11) IGAo(E)(x,y)I ~<c-~ '-~--Y' for all _x, yeA0,  Ix-y[  > ~N, 

where V ' = 7 - N  -6 and 5=6(b, r )>0 ,  provided N is sufficiently large, i.e., N )  No(b, r, 7). 

Proof. Choose a constant c> 1 so that both 

cb<l and cr~<l.  (2.12) 

Define inductively scales Mj+I=[M~], Mo=M. Fix an elementary region A1cA0 of 

size M1. For any xeA1 consider the exhaustion {Sj (_x)}~= 0 of A1 of width 2M, see (2.2). 

We say that  the annulus Aj =Sj (x)\ Sj-1 (_x) is good, if for any y E Aj both the elementary 

regions 

QM(y)nAj and QM(_y)AA1 (2.13) 

satisfy (2.9). Otherwise the annulus is called bad. Recall that  there is at most one annulus 

Ajo for which QM(y)NAjo is not an elementary region. In that case Ajo is counted 

among the bad annuli. Moreover, it is clear that  the size of QM(y_)AAj is between 

M + I  and 2M+1.  Fix some small x = 7 - 1 N  -2a which will be determined below. An 

elementary region AICA0 of size M1 is called bad provided for some x EA1 the number 

of bad annuli {Aj} exceeds 
M1 

BI := x M " (2.14) 

M will be assumed large enough so that  B1 ~> 10, say. Let ~1 be an arbitrary family of 

pairwise disjoint bad Ml-regions contained in A0. If A1 E 5vl, then by construction there 

are at least �89 many pairwise disjoint bad M-regions contained in A1 (squares QM 
with centers in nonadjacent annuli are disjoint). Consequently, there are at least 

1BI.#& 

many pairwise disjoint bad M-regions in Ao. By assumption (2.10), this implies that  

2N b 
~ ' 1  ~ (2.15) xM1/M 

for any such family 9el. 

Suppose that  A1 C A0 is a good Ml-region and fix any pair _x, _Y E A1 with I x - y  I> gMl.1 

Consider the exhaustion {Sj(_x)} of A1 of width 2M centered at _x as in (2.2). By 

assumption, there are no more than B1 bad annuli in this exhaustion. Let Aj (y), Aj+I (_x), 

..., Aj+,(x_) be adjacent good annuli and define 

j+s  
U= [..J Ai(x_). 

i=j  
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Fig. 2. Applying the resolvent identity to adjacent good annuli. 

First ,  we est imate [[Gu(E)[[. Since U is in general not  an e lementary  region, one 

cannot  invoke (2.8). Instead,  one uses t ha t  for each yEU 

w(_y):= QM (y) n U (2.16) 

satisfies (2.9). This follows from the  definition of good annuli, see (2.13), since if y EAj 
either 

W(y_)=QM(y_)nAj or W ( y ) = Q M ( _ y ) n A 1 .  

By  L e m m a  2.2 with N = 2 M + I ,  t =  1 A=e(2M+l)b, ~ ,  

IIGu(E) II ~ 2 ( 2 M +  1)2e (2M+l)b (2.17) 

for large M.  Next  we tu rn  to exponential  off-diagonal decay of Gu(E). More precisely, 

choose two points y_IEO, Sj_I(X) and y_2EO, Sj+~(x), see Figure 2. Here 0,S_l(_X):={_x} 

and 

0. Sj ( X ) : :  {_y E Sj (X): there exists z E A 1\ Sj (x) with ] y -  z[ = 1 } 



ANDERSON LOCALIZATION FOR SCHRODINGER OPERATORS ON Z 2 51 

m m  

v 

Sni 

Sni+l  

U~+~ 

Z 

Fig. 3. Passing from Sni to Sni+l. 

for j~>0. In Figure 3 the interior boundaries O.Sj are given by the thin A-shaped curves 

inside A1. By construction, 

lyl-y_21 >1 2M(s+l). 

Applying the resolvent identity t=2 ( s+ l )  times therefore yields (with Gg(E)=Gu for 

simplicity) 

GU(Yl'Y2): E E "'" E a w ( _  yl)(-yl'-Z1) 
_zxEW(yl) _z2cW(_z~) _ztEW(_zt 1) 

_~'~cu\w(yl) _~'~eu\w(~'~) _z'teu\w(_z~-l) 

XGw(z~)(_z~,_z2) _ _ ' ' _ �9 .... C w (z ;  1) (_zt_ 1, _zt) a v  (_zt, y2), 

(2.1s)  

where it is understood that I_z~-_z~[=l. A possible chain of regions W(yl), W(z~),... 

starting at Yl is shown in Figure 2. Consequently, (2.18), (2.9) and (2.17) imply that 

IGu(E)(yl,y2)I <~ 2(2M+ I)2(16MI)2(s+I)e(2M+I)be-'~IY-I-Y21 

<~ (40M1)2(s+2)e(2M+l)be-~lYl-Y-21. 
(2.19) 

Our next goal is to obtain exponential off-diagonal decay of GAI(E) from (2.19). 

Recall that there is the exhaustion 

So (x) ~ Sl  (x) ~ . . .  ~ sk  (z)  ~ A~. 
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Here k is chosen so that  y@S~(x), but y6Sk+~(x). Let 

no  = - 1  ~ < m l  < n a  < m 2  < n 2  < ... <rag <ng <~ 

be such that  all annuli between S,~ and S,~ are good, whereas all annuli between Sn~ 

and Sm,+l are bad. Moreover, g is maximal with this property. If ng< k, we set too+ 1 = k. 

Define 

Ui=Sn~\Sm~ for l <<. i<~ 9. 

Using the resolvent identity, we shall now inductively obtain estimates of the form 

]Gs.~(E)(x,z_)[ <~B~e -~[~--~-I for all z._eO.Sni , (2.20) 

with certain constants Hi. Consider the case i=1.  If m l = 0 ,  then Snl=U1,  and thus 

< (2.21) 

by (2.19). If ~1 >0, then by (2.8) and (2.19) 

IGs=,(E)(x,__z)l ~< ~ IGs=,(S)(x,w)] lau~(E)(wff, z)l (2.22) 
w_6S~I\UI 
w_'6U1 

l~_-~_'i:l 

<~ 16Ma(40Mj2(~-m~+l)eM~e(2M+l)%2"dm~+l)Me -~l~--z-I . (2.23) 

In view of (2.21) and (2.22), the estimate stated in (2.20) for i = l  therefore holds with 

B1 = 16M1 (40M1) 2(n~ -ml +1)e2M~ +2~(m~ -no)M. (2.24) 

To pass from S~ to Sn~+~ one argues as follows. Fix any z__EO, Sni+l. 

z)i 

w'6 Ui+1 

w-ES~{+I\U{+I vES,~{+lkS~ ~ 
w'EU{+l v_'ESn{ 

<<" E E Bie-~Ix--~-'leM~e-~[w-'-z-l(4OM1)2(n{+'-m{+~+1)e(2M+1)b 
~_es.,+~ku{+l ~eS~,+,\Sn~ (2.25) 

w'6 Ui+1 v_'6Sn~ 

<~ Bi(16M1)2(4OMl)2(n{+~-m'+~+1)e2M~+2MT(m{+~-n{)e-~]x--z-], (2.26) 
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where it is again understood that  ]w-w_q=I_v-_v']=l. To pass from (2.25) to (2.26) one 

uses that  

Ix_--z_[ <~ ]x-v_'l+[w_'- zl+ 2M(rni+l--ni), 

see Figure 3. By means of (2.26) and (2.24) one obtains the following expression for By: 

g-1 
Bg :.~-(16M1)2g-1(aOM1) 2 ~ (nl--rni+l)exp ( 2 g i b  ~_ 2M~ E ( m i + l - h i ) ) .  

i=0 
(2.27) 

By definition, 

g-- i  g M1 
E(rni+i-ni)<~Bz and 2g<<.E(ni-rni+l)<~--- ~-  
i=0 i=1 

Recalling (2.14), this shows that  (2.27) reduces to 

log By < vxMI +MIM cb-1 (2.2s) 

provided N (and thus M) is large. Inserting this into (2.26) one obtains 

IGsn9 (E)(X, _Z)l ~ exp[--9'l_x--zl (i-Cx-C"/-lMcb-1)] (2.29) 

for all _zEO.Sng(X_). By maximality of g, one has I_x-_z[>~[x-y[-2BiM for all such _z. 

Hence a final application of the resolvent identity allows one to deduce the desired bound 

for GAI(E) from (2.29), i.e., 

IGAI(E)(x,_Y)I ~ e-~ll-~--Yl, (2.30) 

where 
~/I =?(I-Cx-C~[ -i Mcb-i) (2.31) 

with some absolute constant C. 

This process can be repeated to pass from scale M] to scale/I//2, and so on. More 

precisely, we call an M2-region A1 C Ao bad if there is some exhaustion of Aa by annuli 

of thickness 2M1 for which the number of bad annuli exceeds 

B2 :-- x M2 (2.32) 
M1 ' 

with the same x as above. An annulus A is called bad if it contains some point y for 

which one of the two Mi-regions 

QMI(y)nA and QM~(_y)nA1 
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does not satisfy (2.30), cf. (2.13). For the same reason as before, any family ~'2 of palrwise 

disjoint bad M2-regions satisfies 

#.Y2 <~ M2/M'  (2.33) 

cf. (2.15). Moreover, if A1cA0 is a good M2-region, then the same arguments involving 

the resolvent identity that  lead to (2.30) show that  one has the off-diagonal decay 

1 [GAI(Z,y)I ~<exp(--72[_x--y[) for any _x,y~A1, [_x-y I > -~M2, 

where 

~2 : :  ~ (1  -Cx-C~-lMbc-1)(1 --Cx--C",/1-1MbC-1). 

Continuing inductively, the lemma follows provided one reaches a scale Ms ~< N for which 

there are no bad Ms-regions. In analogy to (2.33), (2.15), any family ~-s of pairwise 

disjoint bad Ms-regions satisfies 

4/:.Ts <~ Ms/M" 

Ignoring the difference between Ms and M C (which is justified for large N), one therefore 

needs to ensure the existence of a positive integer s for which 

Mc~_-------- ~ < 1 and MC~< N. 

Since M ~ N  ~ and x = 7 - 1 N  -25, this can be done for any N>~No(b, T, 7) provided 

1 and c ( b + 2 1 ~  ) < 1 
\ loge ] 

In view of (2.12) this holds for small (~>0, as claimed. Thus (2.11) has been established 

with 
s--1 

= 7 I I  
j = 0  

where 70=7. Since x = 7 - 1 N  -26 and s<~log(1/7)/logc, for sufficiently large N and 

small ~ > 0 one has 

7' ~> 7 ( 1 - N - 5 ) ,  

and the lemma follows. [] 
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3. A n  a r i t h m e t i c  c o n d i t i o n  on  t h e  f r e q u e n c y  vec to r  

This section deals exclusively with the two-dimensional dynamics given by the frequency 

vector w=(wl ,w2)ET 2. The main result here is Lemma 3.3, which states that  for an 

algebraic curve F c T  2 of degree B, the number of points (nlwl,  n2w2) (mod Z 2) with 

1,.<]n1[, [n2[~<N, falling into an ~-neighborhood F v of F, is no larger than N 1-~~ This 

requires a relation between the numbers % B, N, and, most importantly, a suitable condi- 

tion on _w. That condition turns out to be of the form _wEgtN, where mes(T2\f~N) < N  -e, 

c>0  a small positive constant. It is essential that  the set fiN is determined by purely 

arithmetic considerations that  do not depend on the curve F, see Lemma 3.1 below. In 

order to understand the conclusion of the following lemma, it might be helpful to recall 

the following simple fact: Let n, m be positive integers, and suppose 1>5>0.  Then 

mes[0cT : II0mll < 5, II0nll < ~] • 52~ 6gcd(m, n) 
m + n  ' 

where [[. [] denotes the distance to the nearest integer. This implies that  the fractional 

parts of Om and On, considered as random variables, are strongly dependent if and only 

if gcd(m, n) is large relative to m + n .  

LEMMA 3.1. Let N be a positive integer. There exists a set ~tNC[0, 1] 2 sO that 

rues([0, 1 1 2 \ ~ N )  < N O. 

and such that any _w = (021, a J2) C ~ N  has the following property: 
! ! 

Let ql, ql, q2, q2 

that the numbers 

satisfy 

be nonzero integers bounded in absolute value by N,  and suppose 

01-=qlwl (rood 1), 

0[ q~czl (mod 1), 

02 q2~2 (rood 1), 

0~ q~w2 (mod 1) 

IOil,[O~[<N -1+~, i = 1 , 2 ,  

and 

01 0~ I <N-3+~' 
- N - 3 + ~ 2 <  02 0 I .  

with 51,52>0 sufficiently small. Then 

(3.3) 

(3.4) 

ged(ql, q~) > N 1-11& , 

ged(q2, q~) > N 1-11& . 
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Pro@ Parti t ion T 2 into squares I of size 1/N 2, and restrict _w = (o )1 ,0 J2 )  to one such 

square I.  From (3.3), 

Iqiwi-mil < N  -1+~ and Iq~wi-m'i[ < N  -1+~ 

for some mi, m{ E Z. We may clearly assume (by suitable restriction of wi) that  

[qil, Iq~l > N1-6~-" (3.6) 

Thus 

m~i <N-20 -a~ )+  and wi-m@ < N -20-al)+.  (3.7) 
$ 

02 i - -  
q~  q~ I 

Since wi is restricted to an interval of size 1 /N  2, the number of pairs (q, m) bounded by 

N so that  Iwi -m/q l<N -2(1-al)+ for some wi in that  interval is at most N 2a~+. Fix then 

qi, q~, mi, m~ and consider the relative measure of _wEI such that  (3.4) holds, i.e., 

-N-3+62 <[ q l w l - m l  q2c~ (3.8) 
qllcd 1 * * cO m* - -  7 r ~ l  q2 2-- 2 

Writing coi=cO~,o+x~ with I x ~ l < l / N  2, (3.8) is of the form 

[(qlq;-q~q2)xlX2+Celgl+a2x2+j31 < N -3+a2. (3.9) 

Assume 
t , N 1 + 6 2 + 1 O 6 1  [ql q2--ql q2[ >~ 

Then (3.9) defines a (Xl, g2)-set of measure at most 

N-3+52+ 
N -4-1061+ . 

Iqlq'2--qlq2] 

The relative measure in I is therefore less than N -1~ and summing over all possible 

choices of qi, mi, q~, m~, i=1,  2, gives the bound N - l~ N sel+ < N  - ~  . It thus remains to 

consider the case where 

' ' N 1+62+10~1. (3.12) Iqlq2--qlq21 < 

We need to estimate the measure of those co=(COl,CO2)ET 2 for which there are qi,q~E 
Z N [ - N ,  N] such that  Hqiwill < g  -1+~,  IIq~wi[I < g  -1+~,  (3.12) holds and 

Write 

min Igcd(qi, q~)[ < R. 
i=1 ,2  

gcd(qi,q~)=ri, qi=riQi, q~=riQ~, for i = l , 2 .  

(3.13) 
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Fixing rl and r2, (3.12) becomes 

1 N1+~2+1o6~ (3.15) IQ~Q'2-QIQ21 < ~ 

Estimate the measure of wi so that 

Ilqi~ill <N -1+~, [[q~will < N-I+a~, 

for given qi, q~, gcd(qi, q,l)=ri. From (3.7), for some mi, m~ E Z, 

qi q~ I < N-2( t -~ ' )+ '  

Im q --4q l < N (3.17) 

ImiO~-m'~Qil < 1 N 2 ~ +  

Since gcd(Qi, Q~)=I,  the number of possible (rni, m~) in (3.17) is at most 

1+ 1 N261+" ~ j Iril <~ I r i l+N 2~1+. 

Since [ w i - m i / q i l < N  -2(1-5~)+, the wi-measure estimate is 

([ri[+N2a~+)N -2+2h <~ N -2+45z+ Iri I. (3.18) 

Distinguish the cases 

[rlr2[ < N 1+52+10~ , (3.19) 

[rlr2[ >~ N t+62+105t . (3.20) 

Assume Irxl~lr21. Observe that 

N l - 5 1  - N 

by (3.6). If (3.19) holds, then the number of Q~, Qr satisfying (3.15) is at most 

N - - <  
N3+52+1261 

(3.22) 

N3+62+1251 

rl ,r2 
Irl r21< N l +52+1~ 

N -4+s51 [rlr2] < N -1+~+2~ 

In view of (3.18) and (3.22) the corresponding _w-contribution is of measure less than 
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For the contribution of (3.20) we obtain (recalling (3.13)) 

E (N) 251+{rll-4+sa1771 N [--~2~N Irlr2l< N -2+1~ E 1 < R N - I + I ~  ( 3 . 2 4 ) .  
7"1 ~ r 2  r l , r  2 

{mIAI~K<I~2I<R Ir=i<R 

T a k i n g / ~ = N  1-1151, the measure contribution by (3.24) is less than N -al. Thus, under 

previous restrictions of _w, necessarily (qi, q~ ) > N1-1 la l  proving Lemma 3.1. [] 

Remark 3.2. It is clear that  the set ~N is basically stable under perturbations of 

order N -4. More precisely, one can replace ~N with the set 

5N := U (3.25) 
i:Qin~N~s 

where the union runs over a partit ion of T 2 of cubes of side length N -4. This point is 

not an essential one, but will be useful in w below. 

Throughout  this paper semi-algebraic sets play a crucial role. We refer the reader 

to w for the definitions as well as some basic properties of semi-algebraic sets. 

The idea behind Lemma 3.3 is as follows: If too many points (nlwl, n2w2) fall very 

close to an algebraic curve F, then there would have to be many small triangles with 

vertices close to F. Here "small" means both small sides and small area. This, however, 

is excluded by Lemma 3.1. 

LEMMA 3.3. Let AC[O, 1] 2 be a semi-algebraic set of degree at most B, see Defini- 

tion 7.1. Assume further that 

mes(Ao~) <rh  mes(Ao2) <rh for all (01,02)ET 2, (3.26) 

where Ao~ denotes a section of A. Let 

1 
log B << log N << log - .  (3.27) 

rl 

Then, for W_C~N introduced in Lemma 3.1 with 

rues(J0,112\12N) < N ~ 

one has that 

#{ (n l ,  n2) C Z 2 : InllV In2] < N, (nlcol, n2w2) e A (mod Z2)} < N l-a~ 

with some absolute constant (~o>0. 
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Proof. In view of Definition 7.1 there are polynomials { p i } S = l  with deg(P~)~<d so 

that  

0 A C  0 {[0,112: Pi =0}.  
i=1 

Let P i={[0 ,1]2 :Pi=0}.  Unless the algebraic curve Fi contains the vertical segment 

01=const, it can intersect it in at most deg(Pi)<<.d many points. Therefore, the sec- 

tions Ao~, Ao2 are unions of at most sd=B many intervals of total measure less than r/, 

see (3.26). By (3.27) we may assume that  each of these intervals contains at most one 

element ncoi (rood 1). Hence 

sup # { n l e  Z:  In11 < N, nlW 1E .A0 2 (mod 1)} ~< B, 
02 

sup #{n2 C Z : In2[ < N, n2co2 E .A01 (mod 1)} ~< B. 
01 

Since mes(A)<r  b one has dist((01,02), OA)<@/2 for each (01, 02)CA. 
P = F i  from above and assume that  

(3.29) 

(a.a0) 

Fix one of the 

#{(nlcol,n2co2)~A' (mod Z~): In1] < N, ]n2I<N}>N 1-~, (3.31) 

where 

A ' -AN{_~ E [0, 1]z: dist(_~, F) < ~i/2}. 

Since Pi has at most B irreducible factors, for at least one of them (3.31) remains 

true (with Jr' being defined in terms of the respective factor, and with N 1-~- instead 

of N1-Q). In what follows we can therefore assume that  Pi is irreducible. Thus, by 

Bezout's theorem, 

#[P~ =0 ,  IOolM[ = t0o2MI] < 2B 2 

(if 0ol P~4-002 Pi vanishes identically, then F is a line). One can therefore restrict A' to 

a piece of F where ]OolPi] < [002 Pi ], say, so that  (3.31) remains true (again with N 1-~ ). 

Observe that  we have reduced ourselves to the case where A' is a v~-s t r ip  around the 

graph of an analytic function 

02 = 0 ( 0 1 )  satisfying IO'l ~< 1. (3.33) 

Moreover, the function O is defined over an interval of size greater than N - ~  Now 

let z l : = N  - l+m with some 01>0 to be specified. Clearly, A' is covered by <e~-I many 

El-disks Da. Furthermore, for any disk D~ one has 

#{(nlwl,  n2w2) C A'nD~ (mod Z 2) : Inll < N, In2I < N} < NI+~ 1 ~ N ~ 
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/ 

"",, ~1 

Fig. 4. The triangle ~o,_~l,_~]- 

Thus there are at least (elNe+) -1 many disks D~ so that  

N I - ~  
#{(nlwl,n2w2)eX'ND,~ (m o dZ2) :  Inll<N, In21<N}>~ s  # l - e - .  (3.35) 

Cl 1 

Finally, we claim that  the majori ty of the disks D~ have the property tha t  for any choice 

of distinct points ~0,~1,{~ in {(nlwl,n2~2)e.A'ND~ (mod Z2): I n l l < g ,  In21<g}, one 

has 

angle([~0, (1], [~0, (4]) ~< B2c1 We, (3.36) 

see Figure 4. Suppose that  this fails. Then there are at least M>e~IN -Q many disks 

D~ which contain triples ~o, ~a, ~] as above so that  (3.36) is violated. I t  is not hard to see 

that  on any such disk D~ the unit vector ~7Pi/IVPil covers an interval on S 1 of size at 

least cp~.B2elN ~, cf. [7, w Consequently, there exists some ~ES 1 so that  VPi/IVP~I 
attains ( at least M ~  many times. Equivalently, 

# { P i  = 0 ,  ~• =0}  ~> LM~J. 

By Bezout 's  theorem, the left-hand side is no larger than  B 2, and the claim follows 

(~• VPi cannot vanish identically, as then VPi/IVPil would be constant). Alternatively, 

one can use Theorem 7.4 to write F as the graph of no more than B C many piecewise 

analytic functions with a second derivative bound of the form BeN 2Q, which immediately 

leads to (3.36) with a bound BCE1N 2e. 
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Now choose any Da such that (3.35) and (3.36) hold. By means of (3.29) (or (3.30)), 

one may fix 

such that 

~0, ~1 E {(ruled1, ?n2cd2) E A'nD~ (mod Z2): Iml I < N, Ira21 < N} 

J~C1 (3.37) [~0--~11 ~ Nm-o- 

and ~0-~1 is not parallel to either one of the coordinate axes. Let 

_~ E {(rtla)l, n2a)2) E A'ND~ (mod Z2): [rt I [ < N, In2[ < N} 

so that  _~0-_~ is also not parallel to a coordinate axis. This can be rewritten in the form 

~1 --~0 = (01,02) ~ (ql0J1, q2w2) (mod 1), 

( ~ - ( o  = (0~, 0;) ~ (q~wl, qt2w2) (mod 1), 

with, see (3.37), 

Br 
1011+1021 < Xo~-o-----=- 

Moreover, in view of (3.36), 

Area triangle(~o, ~1, ~ )  ~ abs I 0101 

Apply Lemma 3.1 with 51=L)1, 52=201+20. 

WEYtN, it follows that 

gcd(ql,q~) > N 1-11m and 

< N -1+~ and ' ' = . 101 I-I-1021 < El N -1+~ (3.38) 

02 Or2 ~ elN-l+c~ NO ~ N -3+201+20+. 

By construction, qi,q~=Z\{O}. 

gcd(q2, q~) > N 1-1101 �9 

Write 
! ql=rlQ, q~=rlQ , with Q > N  1-11m, g c d ( r l , r ~ ) - l .  

Since 

and therefore, by (3.38), 

N - l + ~  > 1011 ~--Ilqtwll] = Irll ]lQWlll, 

N-I+p+ 
IIQwlll < [rl----~ • N- l+~  (3.40) 

Q > N 1-0-. 

(3.39) 

Hence, Irll+lr'~l<N 11~1. Take kl ,k~EZ, Ikll, Ik~l<N 11~1 so that rlkl+r~k~=l.  Hence 

IIQ~lll < Ikll [[qlwlll+lk~t [[q~w~l[ < 2N 11~ = 2N-1+12~ 
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Fixing ~0, ~1 aS above and considering a variable point 

~i �9 {(TtlCdl, ?9'2032) �9 .A'f~lna (mod Z2): In11 < N, In21 < N}, 

(3.39), (3.40) imply that  q~=r'~Q, where Q>N ~-o- is a divisor of ql- Since ql has at 

most N o+ divisors and Ir~l<N~ this limits the number of q~'s to N ~ Therefore, 

recalling (3.35), 

N m-e < 7~:{(nlWl, n2w2)@ A'AD~ (mod Z2): In1] < N, In21 < N} < N 2~+. 

Letting 01=40, D small enough, a contradiction follows. This finally leads to the bounds 

#{(n,wl,n2w2)e.A': Inll < N, In21 < N} <~N 1-~ 

#{(nlwl,n2~z2)EA: In1[ < N, In21 < N} <~BCN 1-~ 

for some 0>0, and the lemma follows. [] 

Remark 3.4. It is natural to ask to what extent the previous lemma depends on the 

fact that  A is semi-algebraic. Does it hold, for example, if ,4 is the diffeomorphic image of 

a semi-algebraic set? It is easy to see that  the answer is affirmative for diffeomorphisms 

that  act in each variable separately, i.e., (I)(01,02)=(f1(01), f2(02)) so that  C - 1 <  [f~[ < C  

and If['l<C. Indeed, the only properties that  directly depend on F are (3.29), (3.30), 

(3.33) and (3.36), which are preserved under such diffeomorphisms. In the applications 

below one deals with sets .4 defined by trigonometric polynomials on T 2 rather than 

polynomials. Covering the torus T 2 by coordinate charts, one obtains diffeomorphisms 

of the form (I)(0i, 02) = (sin 01, sin 02), say, with 01,02 small. Hence Lemma 3.3 still applies 

to this case. 

4. A la rge  d e v i a t i o n  t h e o r e m  for  t h e  G r e e n ' s  f u n c t i o n s  

In this section we consider Hamiltonians of the form 

H(O) = -A+AV(O), (4.1) 

where V(O_)(n~, n2)=v(01 +nlaJ1,02+n2w2) and A~> 1 is a large parameter. In order to 

emphasize the dependence of H on _w, we sometimes write H~. The real-analytic function 

v: T 2 - + a  is assumed to be nondegenerate in the sense that  

01 ~ V(Ol, 02) and 02 ~-> v(01,02) (4.2) 
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are nonconstant functions for any choice of the other variable. It is a well-known fact 

that  this implies that for all 5>0  

sup mes[01E T :  [v(O1,02) - E l  < 5] <~ C5 a, 
02ET, E 

sup  mes[02 c T : Iv(O~, 02)-El  < ~] <~ C5 a, 
01CT, E 

(4.a) 

where C,a>O are constants depending only on v. See, for example, the last section 

of [19]. For any 7 > 0  and 0 < b < l  let 

~'~'b(A, E) := {0 E T2: ][GA(0, E)jj < A- le  ~r(A)b, laA(0, E)(X, _y)[ "~ e -')'l-x--y[ 

for all x , y  E A, Ix -y l  > ~a(A)}, (4.4) 

B'~'b(A, E) := T2\G%b(A, E), (4.5) 

A being an elementary region. The main purpose of this section is to show that the 

measure of 13~'b(A, E) is sub-exponentially small in a(A), provided _w C ~, where 

:= lim inf ~N, (4.6) 
N dyadic 

f~N being the set from the previous section. Notice that mes(T2\f~)=0.  This will be 

done inductively, with the first step being given by the following lemma. 

_ 1 log A, LEMMA 4.1. Let v be as above and fix any 0 < b < l .  Then with 7 - ~  

sup mes(B~b(A, E ) )  ~ C e x p ( - e a ( A )  b) for i = 1, 2 ,  
Oi,E 

for any AE$T~(N) provided A~Ao(N,b,v), N>~No(b,v). 

pending only on v, and )~o grows sub-exponentially in N. 

Proof. By definition (4.1), 

Here c, C are constants de- 

( H A - - / ~ )  -1  = ( ) t V A - E -  AA)  -1  = ( I - - ( / ~ V A - E ) - I / X A ) - I ( ~ V A - - E )  -1. (4.7) 

It suffices to consider the case where 02 is the fixed variable. Since 

]] (VA - - E / / ~ )  -1  ]I ~'= m a x  ]v(01 -~-x 1021,02 --t- x2 (M2) - E / / ~  1 - 1  
_xcA 

it follows that outside the set 

{01E T :  rain Iv(01 +xlwl 02+x2~z2)-E/AI <. 5} (4.8) 
_xEA 
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one has the bounds 

I(HA(-0)-E)-I(x'-Y)I ~ E ()~-1(~-1)/+14/ ~" (1-4)~-l(~-l)-l(4)~-l(~-l)l-x-yl+l '  

]I(HA(O)-E)-lll <~ 25-1A -1. 

The factor 4 t arises as upper bound on the number of nearest neighbor walks joining x 

to y. Since the measure of the set in (4.8) is controlled by (4.3), the lemma follows by 

choosing 5=2 exp(-a(A)  b) and A~5 -4. [] 

For the meaning of semi-algebraic in the following lemma, see Definition 7.1. 

D LEMMA 4.2. Let V(Ol,O2)=~k,l=_D akde(k01+lO2) be a real-valued trigonometric 

polynomial of degree D on T 2. There is some absolute constant Co so that for any 

choice of A c Z  2 the set B~,b(A, E)C[0, 1] 2 is semi-algebraic of degree no more than B= 

CoDa(A) a. 

Proof. The conditions in the definition of the sets (4.4) and (4.5) can be rewritten 

in terms of determinants by means of Cramer's rule as in [7]. This shows that  there exist 

polynomials Pj(xl ,  Yl, x2, y2), l<~j~<s=a(A) 4, so that  

Gn'D(A, E) = N {_0 E T2: Pj (sin 01,cos 01, sin 02,cos 02) > 0} (4.9) 
j=l  

and such that  maxj deg(Pj)<Da(A) 2. By Definition 7.1, B~'b(A, E)=T2\G~'D(A, E) is 

a closed semi-algebraic set of degree at most <~ Da(A) 6. One now views T 2 as a subset 

of R 4 given by 

2 2 x~+y~ = 1. x l + y l = l  and 

In order to pass to the square [0, 1] :, one covers T 2 by finitely many coordinate charts 

(16 suffice). More precisely, suppose that  yl>1/x/2  and - 1 / v ~  < x l < l / x / ~ .  Then one 

can write Yl = ~ .  Inserting this into an inequality of the form P(Xl, Yl, Xu, y2)>i-0 
one obtains that  

1 1 
Q l ( x l , x 2 , y 2 ) + ~ Q 2 ( x l , x 2 , y 2 ) ) O  and 

where Q1 and Q2 are polynomials. Denote this set by S. Suppressing x2, Y2 for simplicity, 

one has 

S =  Qt(xl)>~O, Q 2 ( x l ) > ~ o , - - ~ < x l <  

{ , 1} 
N QI(Xl) < 0, Q2(z1) ) o, (1-x21)Q2(xl) ~ Q21(xi) , - ~  < x 1 < - ~  

A Ql(Xl)>/O, Q 2 ( x l ) < o , ( 1 - x 2 ) Q ~ ( x l ) < Q ' ~ ( x l ) ,  - ~ < x l < - ~  . 
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Repeating this procedure in the variables x2, Y2 one clearly obtains semi-algebraic sets 

in Xl and x2, say, and the degree has increased at most by some fixed factor. [] 

Remark 4.3. (1) Observe that  in the previous proof B~'b(A, E) was shown to be semi- 

algebraic in the variables sin 01 and sin 02, say. In view of Remark 3.4 this distinction is 

irrelevant for our purposes. 

(2) Since we choose v to be a real-analytic function, Lemma 4.2 does not apply di- 

rectly. This, however, can be circumvented systematically by truncation. More precisely, 

given M, there is a trigonometric polynomial PM=PM(O_) of degree < M so that  

Ilv-rM[[~ < e -M. 

This follows from the fact that  the Fourier coefficients of v decay exponentially. Hence, 

if 

II(-A+~v(o) -E)21 II < A -I~M~, 

as in the definition of (4.4), then also 

II(--zX + APM(O)-- E)X 1 [[ < 2A-l e Mb 

provided M=cr(A) is large enough. A similar statement holds for the exponential decay. 

Strictly speaking, one should therefore replace v by PM in the definitions (4.4) and (4.5) 

with a ( A ) = M .  In view of Lemma 4.2 these new sets are semi-algebraic of degree at 

most C0a(A) 7. For the sake of simplicity, however, we do not distinguish between v 

and PM. 

In this section, it is convenient for us to work with squares 

QM(z_):={y_EZ2:xl-M<~yl<Xl+M, x 2 - M < . y 2 < x 2 + M }  (4.10) 

rather than those defined in (2.1). This is relevant in connection with Figure 6, as will 

be explained in the following proof. 

LEMMA 4.4. Let 5o >0 be as in Lemma 3.3 and suppose that b, O, "~ are fixed positive 

numbers so that 

0<b ,  0 < l  and b+50>1+3~). (4.11) 

Let No <~N1 be positive integers satisfying 

No(7, b, 0) ~ 100No ~< N o 

with some large constant No depending only on 7, b and O. Assume that for any No <<. 

M<.N1 and any ACCT'(M), 

supmes(B~;b(A, E)) < exp(-cr(A) ~ for i = 1, 2. (4.12) 
Oi,E 
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Fig. 5. E x a m p l e s  of par t i t ions  of Ao and  regions W(_x). 

Assume moreover that 

NCI<N<N~ C1 
N dyad, c 

where f~g is as in Lemma 3.1 and Cl (b, 6)>>1/9 is a large constant depending only on b 

and 0. Then for all AECT~(N), 

sup rues[02 6 T : IIGA(0, E)[[ > e Nb ] < e - N ~ ,  
OI,E 

provided N C1 ~ N ~ N~ C1, and similarly with 01 and 02 interchanged. 

Proof. Choose M0 with No<~Mo<~N1, and let N be given by -M0= [N~~ where z0>0 

is a small number that  will be specified below (C1 will be chosen to be ~ol). Parti t ion 

Z 2 into squares {Q~} where each Qm is of the form QMo(X) and x belongs to the sub- 

lattice 2MoZ 2. Let 

Ao = U Am, where each Am = QmNA0, 
m 

be the resulting partit ion of A0. The union here runs only over all nonempty Am. For 

each such a, with the possible exception of at most five values of a, one has that  Am E 
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// 
Fig. 6. Two good regions Aa and AZ meeting at one point. 

gT~(M ~) where Mo<~M'<~2Mo. These exceptional a are given by the corners of A0, see 

Figure 5 where they are marked with arrows (observe that  there Aa might have very 

small diameter). Let 

.,4:= U U 
.Mo~M<.2Mo AC s 

A c [ -M,M]  2 

By Lemma 4.2, .4 is the semi-algebraic sets of degree at most CoM 14 (see Remark 4.3), 

and by hypothesis (4.12), 

max sup mes(Ao, ) ~< MJ exp(-Mg). 
i=1,2 0~ 

Fix some 0 ~ T  2. By Lemma 3.3, and our choice of _~, 

(4.13) 

#{(nl,n2)e[-N,N]2:(Ol+ntwl,02+n2w2)E,A (mod Z2)} < N 1-*~ (4.14) 

Here e0 needs to be chosen small enough, and then 7V0 large enough, such that  condi- 

tion (3.27) is fulfilled with B = M  14 and r/equal to the right-hand side of (4.13). We say 

that  As is good if 

(01-~-n1Cdl,02-l-n2022)~4 (mod Z 2) for all (n l ,n2)cA~.  

Define the bad set A. C Ao as 

In view of (4.14), 

h.:= U (4.15) 
bad 

# A ,  <~ M2N 1-~~ (4.16) 

In addition, the at most six regions intersecting the corners are counted among the bad 

set. An example of a possible bad set is given in the lower region in Figure 5 (the shaded 

regions are supposed to be the good ones). Now consider the good set A,~:=A0\A, 
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and fix any _zEAscA~.. It will follow from Lemma 2.2 that  the norm of the Green's 

function GAl.(E) is not too large. In order to define the regions W(x) appearing in 

that  lemma, one needs to distinguish several cases. Evidently, QMo(X) intersects no 

more than three other AZ, f l # a .  In case these regions are as in Figure 6, one lets 

W(x):=QMo(Z_)nAs. Otherwise, set W(x):=QMo(_z)AA~.. A selection of such W(x) 

is shown in the right-hand region of Figure 5. It is easy to see that  each W(_x) is an 

elementary region with Mo <~ a(W(x_)) <~ 2M0 satisfying dist(_x, 0. W(x)) >/M0 - 1 (here 0. 

stands for the interior boundary relative to A~., el. (2.5)). We want to call the reader's 

attention to an important detail in connection with the situation shown in Figure 6. Since 

we are working with squares defined by (4.10), the point x0 at which the two regions 

As and A n meet belongs to at most one of them (in the left-hand situation of Figure 6 

this point does not belong to either, in the right-hand situation it belongs to the upper 

shaded square). Moreover, if it belongs to As, then it has no immediate neighbors in A~. 

For this reason the interior boundary of W(x0) belongs entirely to As. Hence Lemma 2.2 

with N=2M0,  A=A-le (2M~ and t =  �89 yields 

~--1  jI /f2o(2Mo) b 
[IGA:(0, E)i[ ~ ,  . . . .  o'- , (4.17) 

if Mge-'~M~ This bound is basically preserved inside a polydisk B(_0, e - M ~  2. 

Indeed, by the standard Neumann series argument and (4.17), 

[[GA~.(_0', E)[[ ~ [[[I-A(g_0-g_0,)Gn~.(_0, E)]-lll  I[GA• (_0, E)II ~ 2[[GA~.(_0, E)[[, (4.18) 

provided ]O_'-Ol< e -Mo. Define a matrix-valued analytic function A( O_ t) on B( O, e -M~ 
a s  

A(O_') =RA.H(O')RA.-RA H(O')RA~.GA~(O',E)RA~.H(O_')RA.. (4.19) 

In view of (4.18), 

log ]det d(0')] < M0#A.  <~ M3N 1-~~ (4.20) 

Furthermore, Lemma 4.8 and (4.18) imply that  

]IA(O_') -1 [[ < [[Gho (_0', E)I[ < e2M~ [[A(-0') -11[. (4.21) 

Fix the variable 0~=01 and let 102-0~[ <e  -M~ Introduce a new scale M1 so that  M ~ =  

[10Mo]. For each _zEA0 define an elementary region W(x):=QMI(X)NA0. Applying 

(4.12) at scale M1 yields a set O c T  of measure 

mes(O) 5 N2e-M~ 5 e-M~ (4.22) 
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and so that for any y c T \ O  the Green's function GV/(~)(01, y, E) satisfies the conditions 

of Lemma 2.2 for all xEA0. Lemma 2.2 with N=2M1, A=e (2M1)b and t= l~ / the re fo re  

implies that 

]]GAo(Ol,y)]l<e M' for all y e T \ O .  (4.23) 

By our choice of M1 there is some Yo for which (4.23) holds and so that 1y0-021 < ~e  -M~ 
In view of (4.21) this implies that  

IIA(O1, ~o) -1 II <~ e ~1, 
]det A(01, Y0)l > e-MllA*I, (4.24) 

log ]det A(01, Y0)[ > - M 1  [A. ] ~> -M11VI3N 1-5~ 

see (4.15). Recalling (4.20), there is the universal upper bound 

_< 1 e-Mo (4.25) logldetA(Ol,z)l<MgN l-a~ forall  z - y o - ~  �9 

Define the function 

A(Ol,yo+~e w) whereIw[~<2. (4.26) F(w) := det 1 -Mo 

Since A is analytic, log IFI is a subharmonic function on the disk D2 := [Iwl ~<2] satisfying 

log IF(w)[ < M03N l-a~ log IF(0)l > -M1M2o Nl-5~ 

For any 0 < r < 2  the submean value property of log IF] implies that 

1 f 2 .  
]o log ]F(reir de >~ - M1M(~ N 1-5~ 

which in turn leads to the LLbounds  

/ I loglF(reir162162162 r < M1M~N 1-5~ (4.27) 

~.  iloglF(reir I 2 x-6o rdrdr < MiM~N . (4.28) 
<2] 

As a snbharmonic function, log lF I has a unique Riesz representation on D =  [Iwl< 1], see 

Levin [21, w 

log IF(w) l = ]D log Iw-w'  I dp(w') + h(w). (4.29) 

~=(1/2~)/ ' ,1og IFI>~0 is a measure on D of mass bounded by, see (4.28), 

2 r (D)=/DAlONIFI< floglflA  <IlloglFIIIL~(D=)<M~M~N 1-~~ (4.30) 
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where ~>0 is a smooth bump function, supp(~)cD2, 3=1 on D. Furthermore, the 
harmonic function h on D is given by 

l f o 2 ~  1-r2 /D h(re ~r = ~ l_2reos(r 2 log IF(e~~ dO- log Ii-w~'l d#(w'). 

In particular, 

sup Ih(w)l<flloglF(e~~176 (4.31) 
Iwl<~l/2 

Combining the bounds on t~ and h with (4.29) yields 

II log IF(t)l IIBMO[ 1/2,1/2] < M1M2gl-~~ 

( N" ) (4.32) 
mes[t e [-�89 �89 Ilog IF(t)l-<log/Fl>l > N 1-&+~'] < exp - c  M-----1-1~ 

for any T>0, where (log Igl> denotes the mean on [-�89 �89 The constant c is an ab- 
solute one provided by the John-Nirenberg inequality. Estimates (4.30), (4.31) and the 
representation (4.29) imply 

I<log IFl>l < MIM 2Nl-6~ 

Recalling the definition (4.26) of F, (4.32) therefore implies the bound 

mes [y E I :  log I det A(O1, y)] ~ -M1Mo2N 1-6~ ~< e -M~ exp - c  

_ _  1 - -  M o  1 - h l o  where I - - (02-~e  ,02+ ~e ) (this estimate could also have been obtained via Car- 
tan's theorem, see [21, w If y is not in the set on the left-hand side, then 

IIA(01, y)- i  II < eC'A" ]eCM1MgN'-6~ 

Combining this with (4.21) and covering T by intervals I of size e -M~ yields 

< 2M0 CMxMgN 1-~~ (4.33) l l a A o ( O l , 0 2 , E ) l l  ~ e e 

for all yET\Sol  where 
g'l" 

Since M o ~ N  c~ and M I ~ N  ~~ this proves the lemma provided 

N b > N1-~o+3~o/0+~, N30< Nr-3~o/o. 

(4.34) 
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Choosing ~-=30+3Co/p+, there exists Co>0 so small that  

6Co 
b> 1 - 5 o + 3 0 + - - ,  

P 

see (4.11). Letting C I = C 0  -1,  t h i s  finishes the proof. [] 

The following corollary combines the previous lemma with Lemma 2.4 in order to 

obtain exponential off-diagonal decay. 

COROLLARY 4.5. Suppose that all the assumptions of Lemma 4.4 are valid. Further- 
more, let NI= [N C1] where C1 is the constant from Lemma 4.4. Then for all A E g ~ ( N ) ,  

sup mes(B~['b(A, E)) < e x p ( - N  ~ 
0i, E 

for any NI <<. N <<. N~, where ~/ '=~- N -~, d=d(b,~)>0.  

Pro@ Recall that  Ct>>l /0  , so that  it is possible to satisfy IOONo<<.N~<<.Ng C~, as 

required. Fix some NE IN1, N~I and AoEgT~(N). Let M o = N [  and define 

.4:= U U B","(1,E). 
Mo+I<~L<~2Mo+I AlE ET"4(L) 

~-~ ~ / r 1 4 _  ~rl4e By Lemma 4.2 and Remark 4.3, .4 is semi-algebraic of degree at most ~01vl o -1 '1  �9 

Choose e small enough so that  conditions (3.27) hold with B•  4. On the other hand, 

we also require that  Mo)No so that  (4.12) is satisfied at scale Mo. This can be done 

provided C1 is chosen large enough (in fact, inspection of the proof of Lemma 4.4 shows 

that  there e0=Ci -1 was chosen sufficiently small to verify (3.27), so that  one may set 

e=e0). Hence, for No large, we may apply Lemma 3.3 to conclude that  for any choice of 
0@W 2 

#{(nl ,n2)E[--N,N]2:(Ol+nlwt,02+n2w2)EA (mod Z2)}< N 1-~~ (4.35) 

Now suppose that  AIEg~(M' )  has the following property, where Nl+1<~M'<<.2Nl+1: 

for every xEA1 the Green's function Gw(~)(O,E) of the elementary region W(x) :=  

Q M o (__.X) N A1 satisfies 

E)(_x,y)l ~< e -~l-~--~l for every y_EO.W(x_). (4.36) 

Here the interior boundary 0. is defined relative to A1, see (2.5). A standard application 

of the resolvent identity then shows that  

1 ! IGA1 (0_, E)(x,  y_)] ~ e -3~lx-x-y-i+cM~ fo r  every _x, y E A1, Ix -y l  > ~ M .  
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On the other hand, suppose that  ~'1 is a family of pairwise disjoint elementary regions A~ 

gT~(M') with M' as above, so that  for each A1 there is at least one xEA1 violating (4.36). 

In view of (4.35), this implies that 

#~-1 < NI-~~ (4.37) 

Now fix 01. By Lemma 4.4, the 02-set where some A1cA0 with A1Eg~(L) ,  NI~L<.N~, 

violates 

IIGA~(0~, 0~, E) II < e L~ (4.38) 

is no larger than N8e-N~Q~e-N~. For ~2 Off this set Lemma 2.4 with M=N1, T>~ 1, 

implies that, see (4.37) and (4.38), 

[Gho(O_,E)(x,y)l_ < e  -~'I-~-y'- for every _x, yE A I , _  I_x-yl_ >~N,1 

with 7 ' = 7 - N  -a, as claimed. [] 

The following proposition is the main result of this section. It follows from Lemma 4.1 

and Corollary 4.5 by means of induction. 

PROPOSITION 4.6. Let v be a real-analytic function satisfying (4.2). Let _wEn, 

see (4.6). 

mate 
Then for sufficiently large )~>~)~o(v,_w) and all N>~No(v,_w) there is the esti- 

(4.39) sup mes(B~(b(A, E)) ~ e x p ( - a ( h )  e) for i = 1, 2, 
0i, E 

for any AE gT~(N) with 7= �88 log A and some constants 0<b, p< 1. 

Proof. Fix positive numbers b, p satisfying (4.11). Choose No sufficiently large so 

that both Lemma 4.1 holds and _wE Ng~go Qg. Let C1 be the constant from Lemma 4.4 

and let A0 be so large that Lemma 4.1 holds in the whole range [No, N C1] with 7=7o:= 

�89 log A. In view of Lemma 4.4 and Corollary 4.5, the bound (4.39) holds for all NE 

IN1, N 2] with 7=71 : = 7 o - N {  -*. One can now continue inductively applying Lemma 4.4 

and Corollary 4.5 to cover the interval [N2, N~] where N2=N~ and 7 = 7 2 : = 7 1 - N ~  -~, 

etc. It is evident that always 7 >  �89 if No is large enough. [] 

Remark 4.7. It is clear that for (4.39) to hold up to scale N and A~>Ao(No) where 

A0 is some sufficiently large number, it suffices to assume that 

-we N ~M. 
NorMaN 
N dyadic 
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Furthermore, for any c>0 one can choose No such that  

rues(T2\  N ~-~M) <~" 
NorM 

M dyadic 

These properties will be relevant for the proof of localization in w 

The following lemma is a standard fact that  was used above. The simple proof is 

included for the reader's convenience. 

LEMMA 4.8. Let M be the matrix 

M =  
U t , 

where B is an invertible (n x n)-matriz,  U is an (n x k)-matrix,  and C is a (k x k)-matrix.  

Let A = C - U t B - 1 U ,  Then M is invertible i f  and only i f  A is invertible, and 

[[A-I[[ ~ IIM-Xll ~ (l+l[B-~ll)2(l+llA-all), 

where the constants only depend on I[Ull. 

Proof. This follows from the identity 

[] 

5. T h e  e l i m i n a t i o n  o f  t h e  e n e r g y  and  s emi -a lgebra i c  se t s  in T a 

The final step to get localization is to establish the following key result on semi-algebraic 

sets needed in the energy elimination argument. The significance of Proposition 5.1 in 

connection with the elimination of the energy will become clear in the proof of localization 

given in the following section. 

PROPOSITION 5.1. Let , A c T  4 be a semi-algebraic set of elements 

(~_, e) = (~1, ~2, el, 02) 

so that 

and 

deg A < B 

mesT(.4~l,~2,el ) <~], mesT(A~l,~2,e2 ) <7] for  all sections. (5.1) 
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Let 
1 

log B << log K << log - .  

Then there exists a set ~K of measure 

(5.2) 

rues ~K < K -1/1~176 (5.3) 

and such that for any W _ = ( W l , W 2 ) ~ K C T  2 We may ensure that 

{(_w, n l~ l ,n2w2)  (mod Z4): In~lvln21 ~ - K } N A =  e .  (5.4) 

The one-dimensional version of this result, which is given in the following lemma, 

was established by Bourgain and Goldstein [7]. 

LEMMA 5.2. Let A 1 C T  2 be semi-algebraic, d e g A l < B ,  m e s A l < ~  so that (5.2) 

holds. Then 

T BCI E X A l ( ~ ' n w ) d w  < ~ +K c~ mesA1. (5.5) 
D'C'b r$~.K 

Here TD.C.b refers to those points satisfying a Diophantine condition with parameter b. 

The constant C2 depends on b. 

For the detailed proof we refer the reader to [7], see Lemma 6.1. The origin of the 

two terms on the right-hand side of (5.5) is easy to explain. In fact, observe tha t  any 

horizontal line can intersect .A1 in at most B C many intervals. This follows from the 

fact that  any such section Ao 2 is again semi-algebraic of degree at most B, and therefore 

consists of no more than B C intervals, see Definition 7.1. The first te rm in (5.5) arises if 

the set ,42 consists of very thin neighborhoods of lines of slope ~ K.  Since no horizontal 

line can intersect A1 in more than  B C many intervals, there can be no more than  B C 

of these neighborhoods. Since each of them projects onto the w-axis as an interval of 

size •  one obtains a contribution of the form BC/K .  This is sketched in Figure 7 

by means of the steep lines on the left-hand side. On the other hand, if A1 contains a 

horizontal strip of width ~? (see Figure 7), then the contribution to the sum in (5.5) is 

equal to K~/. Observe that  the first t e rm in (5.5), which is usually the larger one since 

mes,41 is very small, derives from the "almost vertical" pieces of .A1. This intuition 

also applies to the two-dimensional version stated in Proposit ion 5.1. More precisely, 

let us suppose that  fl, is contained in a small neighborhood of a zero-set [P=0] where 

P (wl , a2 ,  01,02) is a polynomial of degree B. Then we need to control the number of 

times the hypersurface [P=0] is close to being vertical, i.e., where ]V_eP[~<5[V_~P] on 

[P=0] with some small 5>0.  Lemma 5.3 is the required tool for this purpose. 
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Fig. 7. The geometry of Lemma 5.2. 
1 w 

LEMMA 5.3. Let P(wl,w2,01,02) be a polynomial of degree B and 5>0 .  Define 

~[J:= {(_w, 0 ) E T 4  : m a x  IOo+PI <. 5 m a x  IO~+PI}N[P=O]. 
- i = 1 , 2  i = 1 , 2  

Then 
mesT 2 (Proj_~(~J)) < B C& 

Pro@ Let ~ = ~ J 1 U ~ 2  where  

~j = { (w,O) eT4: maxlOo+PI <~ 51&o~Pl}n[P=O] 
- i = 1 , 2  

(this set is still semi-algebraic  of degree < B ) .  Take  j = l  and consider the  section 

f~Jl,w2 C T 3. Fix  w2 and write 

~<B C 

with ~J~,w2 connected. We need to estimate the measure of the intervals 

-- r " o: I~=[ac~,bal-e oJ~l(~1,w2) C T.  

There  is a piecewise analyt ic  curve 3'(s) = (wl (s), 01 (s), 02 (s)), s E [0, 1], such t ha t  

~(~) e ~,~,~, 

r : ac~, ~1(1) = b,~, 

I@(*)1 < B C. (5.6) 
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The existence of such a curve with a power-like bound (5.6) in the degree follows from 

Yomdin's quantitative triangulation Theorem 7.4 in w Since 

P(w, (s), w2,01 (8), 02(8)) = 0 

it follows that 

O~P(~(s)).~l(s)+OolP.dl(s)+Oo~P.d2(s) = o, 
{ ,Oo~Pl+lOo~PI } 

Icbl(S)l < n~ax IO~o~P[ [101l+lb2[] < BC& 

from (5.6) and the definition of ~31. Thus 

/o II~l = b ~ - a ~  = a~l(1)-Wl(0) <~ I~ll < Bc~.  

Hence 

m e s T  [Proj r (~l,w2)1 < BC(~, 

(Proj_~ (~31)) = J/T mesT [Proj~l (~Jl,w2)] d~2 < Bcs, mesw2 

and the lemma follows. [] 

Proof of Proposition 5.1. Lemma 5.2 allows us to control the contribution to (5.4) 

by those pairs (nl, n2) E Z2+ satisfying min (n 1, n2) < K 1/2. In fact, 

/ E XA (Odl' a)2, n l ~  n2od2) dw2 
O<nl<K 1/2 

n 2 ~ K  

by (5.5) 

< E O<nl<K1/2 
< BCK-1/2 + K C+1/2 sup (mes.4~l,~2,01) 

by ~. 1)BCK_ 1/2 + Kc+1/2 ~ < K -  1/3. 

B C 
/dWl [-~-+Kc f xA(Wl,W2,nlWl,O2)daJ2d021 

We may therefore assume that min(nl,n2)>K 1/2. Since mesA<~? and since logB<< 

log K, it suffices to consider the case where .4 is contained in an 7/U2-neighborhood of a 

zero-set [P=0], P(wl, w2, 01,02) being a polynomial of degree less than B C. Take 

6 = K  -1/1~ (5.7) 
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Let ~ be as in Lemma 5.3. Thus ~ ' = P r o j ~ ( ~ )  is a semi-algebraic set in T 2 of degree 

bounded by B C, see Theorem 7.2. Since mes~'<BC(~,  ~ '  lies within a 51=Bc(~ t/2- 
neighborhood of 0 ~  ~ and may therefore be covered by Bc6I  1 disks of radius 61. The 

total measure in w-space of the union of those ~l-disks is thus at most 

]~C (~ 1 < B C K  -1/20. (5.8)  

Restrict next _~ to a 61-disk Q outside QY. Fix K 1/2 <nl, n2 <K. We estimate (everything 

being understood rood Z 2) 

mes [w E Q: ((01,022, rtl (01, n2 w2) E .4] ~< mes [w E Q: dist ((w l, w2, n l u91, n2 w2), [P = 0]) < ?]]. 

Since QngJ'=o, 
max~ [Oo~P[ > 6miax. [O~P] (5.9) 

in each point of [P=0]n (QxT2) .  Let 

[P = 0 ]n(Q x T 2) ---- ~ l U ~ 2 ,  

G1 = [P = 0] rq (Q x T 2) r~ [100, PI/> IOo~rl], (5.10) 

~2 = [P = Oln( Q x T2)n  [ lOo, Pl < IOo~PI]. 

It suffices to estimate 

mes[_w E Q: dist ((_w, n1(01, n2(02), | < Vl/~], (5.11) 

where ni(0i is understood rood 1. Restrict (01 to an interval of size 1/ni, say [0, 1~hi] 
(by translation). Consider the segment 

S = [((0,, (02,o, nl(01,02,o): co, E [0, 1/nl]]C T 4, (5.12) 

and denote by F the intersection of | with a v~- tube  around S, see Figure 8. Then 

one has 

r=Gln [d i s t ( (_w,0 ) ,S )<? ]V2]=  U F~, 
~<B c 

where Fa are the connected components. Thus 

mes[(01E [0, l /h i ]  : dist(((01, (02,0, 71"1(01,02,0), ~ 1 )  < ?]1/2] 

= mes[(01E [0, 1/nil  : dist(((0i, W2,o, nl(0i, 02,0), F) < ~1/2] 

<<~-]mes[(0i~[O, 1/nl]:dist(((0~,(0mo,n~(0i,02,o),I'~)<?] ~/2] (5.13) 
(2 

~< ~ [[ Proj ~ (F~)I + 2?] 1/2]. 
c~ 



78 J.  B O U R G A I N ,  M. G O L D S T E I N  A N D  W .  S C H L A G  

.-C' j r u - '  

Fig. 8. The components of F in a v~-neighb~176176 of S. 

Fix o~ and denote 

I = Proj~ol(r~), (5.14) 

which is an interval. Let F be an ql/2-neighborhood of I. Thus if (w,_0)EF~, then 

dist ((_w, _0), SN [021 �9 I ']) < r/1/2 

and, from the definition of S, 

r~ c I'•  [l~2-w~,ol < ,~/2] • n1I' • [IOu-o2,0l < vl/2]. (5.15) 

Denote 

Q = ]I'1 > ?]1/2. (5 .16)  

The right-hand side of (5.15) is a (O• that  may be rescaled to 

the unit cube by a (1/6 • 1/~71/2 x 1/nl  g x 1/ql/2)_dilation. Since F~ is semi-algebraic of 

degree less than B C, for given points P0, P 1 EF , ,  we may again by means of Theorem 7.4 

obtain a curve 7(s)=(Wl(S), w2(s), 01(s), 02(s)) in F~ such that  

7(0) =Po ,  7(1) =P1 ,  

Since 7(s) E | [P--O], 

1~21, I~11+ 1051 g c.  l~xl +-i7~t -U~< 
0 nlco 

o~lP('~(8)).~l(s)+o~P.~:+&P.ol+oo~P.02 =0.  (5.17) 
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From (5.9) and (5.10), 

[(OelP)(~(*))l > d[lO~o,Pl§ (5.18) 

and hence from (5.17) and (5.18), 

10 1< IO~P[+IO~PI IOo~Pl,b , ~(~+x/~)BC+v~BC<~ , 
IOo, PI (Id~ll+ldJ2l)Ti0~0~p~ 2 < ~  

O BC [01(1)-01(0)[ ~< ~ . 

It follows that  
gB C 

diam(Pr~176 < T (5.19) 

Denote by J an @/2-neighborhood of Proj01(F~ ). From (5.19), [JI<oBc/5. Clearly, if 

(wl,w2, 01,02)EFt, then wl is at distance less than @/2 from J/nl. Indeed, there is an 

element (w~, oJ2,o, nxw~, w2,0) E S at distance less than @/2 from (_w,_0). Thus 

t01-nlw~l<@/2 ~ nlw~eJ ~ w~e J- 
nl 

and [OJl-W~[<@/2. Therefore, 

lProj~ol(F~)l < I J--I+@~ 2 < 0 Bc +vl/'~ 
nl dnl 

and, recalling (5.14), (5.16), (5.7), 

5 ~o < _[_5@/2 < BC 1 K1/2_1/lo ~+5@/2, 

which implies that  0<6@/2 . In conclusion, 

IProj~l(r~)[ < c@/2, 

(5.13) < Bc~ 1/~, 

(5.11) < KBC@/2. 

Summing over K 1/2<nl,n2<K and the 51-disks disjoint from | gives the measure 

estimate 
512K2KBC~ 1/2 < BCK4@/2. (5.20) 

From (5.8), (5.20), the resulting hound on the bad w-set is 

BC(K-1/2~ + K4~ 1/2) < K-J~ 21 

from assumption (5.2). This proves Proposition 5.1. [] 
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6. T h e  p r o o f  o f  l o c a l i z a t i o n  

In this section we prove Theorem 6.2 below. The scheme of the proof is very similar to 

tha t  in [7], and we refer the reader to [7] for further motivation and some details. See 

also [10] and [8], where related arguments are used. We first prove a lemma that  shows 

tha t  double resonances occur only with small probability. Throughout  this section we 

let 13%b(A, E) be as in Proposition 4.6. Observe that  this set depends on the frequency 

vector _w, although we do not explicitly indicate this in the notation. In this section we 

shall make use of the se t s  ~N introduced in Remark 3.2, see (3.25). Observe tha t  those 

sets are semi-algebraic of degree at most 4N s (each small square is described by 4 lines, 

and there are at most N s squares in total). 

LEMMA 6.1. For any pair of positive integers N, N define the set 

- -  N 2 
~(N,  N) := {(~, 0) ~ W~:/or some E e a ,  II(H~(0)IQ. - E )  -x II > e , 

(6.1) 
and O_ C B'r'b(A, E) for some A C ST~(N)}. 

Then for any constant C2>~1, all sufficiently large integers No and N, and A>~Ao(No), 

the set 

AN:= U ~ ( N , ~ ) n  N (SM • 
N ~ N C 2  N o < M < N C ~  

M d y a d i c  

satisfies the requirements of Proposition 5.1 with K x e x p ( ( l o g N ) 2 ) ,  log B ~ l o g N  and 
log(1/~?) ~ N e. 

Proof. Suppose (_w,0)EAN. Then for some choice of N ~ N  C2, and some eigenvalue 

E~ of H~(0)rq~, 
O EB~'b(A, Ej) for some ACCT,(N) .  (6.2) 

More precisely, with E as in (6.1), Ej was chosen such that  IE-EjI<e -y2. This is 

possible because 

II (H~ (0)rq~ -E)- l l l -X = dist (E, sp(H~ (0)[Q~ )) 

by self-adjointness. Since the e-N2-per turbat ion basically preserves the conditions in 

the definition of the bad set, see (4.5), one arrives at (6.2). By the restriction on _w the 

measure of the set in (6.2) is at most exp( -NQ) ,  cf. Remark 4.7. Summing over the 

possible choices of Ej and A, one derives that  

rues.AN ~ NC2 N6e -N~ =: 7, 
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so that  log K<< log(l/r/) for large N, as claimed. To verify the semi-algebraic condition in 

Proposition 5.1, we apply the projection Theorem 7.2 below to the sets ,AN = ProjT 4 (AN), 

AN K R ~, where 

AN:= U 5(N,N)N N (~MXT2xR), 
Kr ~ NC2 No < h l  < NC2 

M dyadic 
(6.3) 

{(-w,9, •  II(H (0)IQ  -E) - l lJ  > e  N2 

and 0 E B%b(A, E) for some A E 8T~(N)}. 

It therefore suffices to show that  AN is semi-algebraic of degree at most N c. Since ~N is 

semi-algebraic of degree at most 4N 8, this will follow if ~ ( N ,  N ) C  R 5 is semi-algebraic of 

degree N C. As in [7], this is done by expressing the Green's function appearing in (6.3) 

and (4.5) in terms of determinants via Cramer's rule, and using the Hilbert Schmidt 

norm instead of the operator norm. This requires approximating the analytic function v 

by polynomials, see Remark 4.3. [] 

THEOREM 6.2. Let v be a real-analytic potential satisfying (4.2). Given O_ET 2, any 

e>0  and any A~>A0(r there is a set 5c~=grr A ) c T  ~ so that 

mes(T2 \gr~) < e 

and such that for any -WEJz~ the operator (4.1) displays Anderson localization, i.e., the 

spectrum is pure point and the eigenfunctions decay exponentially. 

Proof. Without loss of generality, we shall let _0=0. Given e>0,  choose No large 

enough so that  

m e s ( T2 \  N  N)<ie. 
No <~ N 

N dyadic 

Applying Proposition 5.1 with dyadic N>No,  ,AN as in Lemma 6.1, and K = K ( N ) ~ .  

exp((log N)2), one obtains a set ;~K- We shall prove the theorem for all 

_wE N 
No <~ N 

N dyadic 

For No large this will remove only c in measure. Now fix such an -w. By the Shnol-Simon 

theorem [22], [23] it suffices to prove that  generalized eigenfunctions decay exponentially. 

More precisely, let ~b be a nonzero function on Z 2 satisfying 

(H~(0 ) -E )~b=0  and Ir 51+1~1 c~ for all _zEZ 2, (6.4) 
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i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

K 

II . . . . . . . . . .  I 
II Ir . . . . . . .  ~ I 
I I II~ . . . . . .  I I 

I I II I I I 
I I II I I 
II II q I 
I I II I ~ I / ~  
I I II I I 

II L i I 
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i,. . . . . . . . . . . .  j I  

t .  . . . . . . . . . . . . .  I 

N 

4 K  

Fig. 9. The squares and annuli in the proof of localization. 

where E is arbi t rary and Co >0  is some constant. Pick a large integer N and set N = N  c2 , 

C2 as in Lemma 6.1. First we claim that  there is some square QM(0) centered at zero 

so that 

H(H_w(0)[QM--E)-II[ > e N2 for some M ~ / V .  (6.5) 

This follows from the fact tha t  there is an annulus A at distance ~ M around the origin 

of thickness 2N 2 (see the dashed squares in Figure 9), so that  for every _xEA one has 

(Xla) l ,  X2~O2) E ~'7'b(QN2(O), E) ( m o d  Z2). 

The existence of this annulus is proved by means of Proposition 4.6 and the same semi- 

algebraic considerations as above. More precisely, the number of x in a square QN(0) for 

which the Green's function of a square of size N 2 centered at x is bad, is at mos t /V 1-~~ by 

Lemma 3.3 and Proposition 4.6. Since N / N  2 >/V 1-~~ for large C2, there has to be some 

annulus of thickness N 2 which is free of bad points, as desired. In Figure 9 we have indi- 

cated this good annulus by means of a solid line surrounded by dashed annuli. It  follows 

from (6.4) that  for any cube Q 

(//~(0) [Q - E ) r  =~ ,  (6.6) 
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where ~(_y)=~(_y) if y c Z 2 \ Q  and there is z E Q  with ly-_zl--1. Otherwise ~=0. 

for any x c Z  2, 

r  = aON2(_ )(0, 
YEQN2 (-x) 

y'EZ~\QN2 (x) 
ly-y'l=l 

In particular, if _zEA where A is this good annulus, then 

_ N  2 
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Hence 

which implies (6.5), see (6.6) (we are assuming here, as we may, that  '7>>1). By our 

choice of _~, see (6.1), therefore 

(xlwl, x2w2) ~ B~'b(A, E)  (mod Z 2) 

for every x such that  IxllV Ix21x K and any AE gT~(N). One now checks from Lemma 2.2 

and the resolvent identity that  the Green's function of the set U:=Q2K(O)\QK(O) ex- 

hibits off-diagonal decay, i.e., 

IGu(0,E)(x,_y)l ~<exp(-Ix-yl+O(N2)) if x, yEU.  (6.7) 

In  view of (6.4) one has again 

rv - E ) r  

where ~ is supported on points in Z2 \U  at distance one from OU. Let _zcU such that  

dist(_x, OU)xK. By the polynomial growth of ~b and (6.7) one finally obtains that  

I (_x)l < e-1_ l/2 

provided N and thus K are large. [] 

7. S e m i - a l g e b r a i c  se ts  

The purpose of this section, which should be regarded as an appendix, is to introduce 

semi-algebraic sets and to present those results from the literature that  are used in this 

paper. 

Definition 7.1. A set 8 c R  n is called semi-algebraic if it is a finite union of sets 

defined by a finite number of polynomial equalities and inequalities. More precisely, let 
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P={P1,...,  P~} C R[X1, ..., Xn] be a family of real polynomials whose degrees are bounded 

by d. A (closed) semi-algebraic set S is given by an expression 

S = [_J A { R'~: Pl sjz 0}, (7.1) 
j lcs 

where s ..., s} and sjt E{>~, ~<, =} are arbitrary. We say that S has degree at most 

sd and its degree is the infimum of sd over all representations as in (7.1). 

The projection of a semi-algebraic set of R k+l onto R k is semi-algebraic. This is 

known as the Tarski-Seidenberg principle, see Bochnak, Coste and Roy [6]. The currently 

best quantitative version of this principle is due to Basu, Pollak and Roy [5], [4]. For the 

history of such effective Tarski-Seidenberg results we refer the reader to those papers. 

THEOREM 7.2. Let S c R  ~ be semi-algebraic defined in terms of s polynomials of 

degree at most d as in (7.1). Then there exists a semi-algebraic description of its pro- 

jection onto R n-1 by a formula involving at most s2'~d ~ polynomials of degree at 

most d ~ In particular, if S has degree B, then any projection of $ has degree at 

most B C, C=C(n).  

Proof. This is a special case of the main theorem in [5]. [] 

Another fundamental result on semi-algebraic sets is the following bound on the sum 

of the Betti  numbers by Milnor, Oleinik and Petrovsky, and Thom. Strictly speaking, 

their result only applies to basic semi-algebraic sets, which are given purely by inter- 

sections without unions. The general ease as in Definition 7.1 above was settled by 

Basu [3]. 

THEOREM 7.3. Let S c R  n be as in (7.1). Then the sum of all Betti numbers of $ 

is bounded by sn(O(d)) n. In particular, the number of connected components of $ does 

n o t  e x c e e d  n 

Proof. This is a special case of Theorem 1 in [3]. [] 

Another result that  we shall need is the following triangulation theorem of Yomdin 

[26], later refined by Yomdin and Gromov [20]. We basically reproduce the statement of 

that  result from [20], see p. 239. 

THEOREM 7.4. For any positive integers r,n there exists a constant C=C(n,r)  

with the following property: Any semi-algebraic set S C [0, 1 ] n c R  n can be triangulated 

into N < (deg $+ 1)c simpliees, where for every closed k-simplex A CS there exists a 

homeomorphism hA of the regular simplex A k c R  k with unit edge length onto A such 

that hA is real analytic in the interior of each face of A. Furthermore, IlDrhAll<<. l for 

all A. 
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