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Introduction 

The purpose of  this paper  is to obtain optimal volume estimates for Riemannian 

manifolds curved from below, and to prove corresponding topological as well as metric 

stability theorems. 

This program is in part  inspired by a classical area problem for convex surfaces in 

R 3 raised by A. D. Aleksandrov in [A]: Is the area of  such a surface less than twice the 

area of a disc DZcR 2 with the same intrinsic diameter? There are obviously convex 

bodies containing D 2 with surface area arbitrarily close to this. 

It is likely that Aleksandrov 's  problem has an affirmative solution even in the more 

abstract context  of  Riemannian metrics on the 2-sphere S 2 with nonnegative curvature 

(cf. [CC], [S], [Sh] and Section 4). However,  if in this framework one does not restrict 

the topological type of  the surface, it is clearly wrong. For  example,  the real projective 

plane of constant curvature 1 has diameter  =:r/2 and area =2zt, exceeding the corre- 

sponding "Aleksandrov es t imate" ,  2.er(~r/4)~=~/8. 

For  arbitrary k E R and integers n~>2, we consider closed, connected Riemannian 

n-manifolds, M whose sectional curvatures satisfy sec M>~k. The complete 1-connected 

n-dimensional space form of  constant  curvature k will be denoted by S~, and v~(r) will 

be the volume of  an r-ball in S~. Standard volume comparison then yields, 
n vol D ( p ,  r)-~vk(r), where D ( p ,  r) is the closed r-ball in M centered at p E M. With this in 

mind we consider the radius of  M defined by 

rad M = min max dist(p, q),  
p q 
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i.e. radM is the smallest r>0 so that M=D(p,  r) for some p EM. This invariant was 

introduced in [SY] where it was denoted by diam(M). Obviously, radius and diameter 

are related by 

r a d M ~  < diam M ~ < 2 radM, 

where the last inequality is strict for Riemannian manifolds. From the discussion above 

(*) vol M <~ v'k(r), 

for any Riemannian n-manifold, M with secM~>k and radM~<r. It is not difficult to 

show that equality in (*) occurs only in the two cases k>O and r>~z/X/--ff, r=z/2V'-k- 

corresponding to the sphere S~, and real projective space RPT, of constant curvature k. 

We prove that (*) is optimal, except when k>O and r>z/2V~-k -, and determine 

correspondingly the possible topological types of manifolds with large volume. 

THEOREM A. Fix a real number k, a positive r (~<~/2V'--k- i f  k>O), and an integer 

n>~2. Then: 

(i) There is an e=e(k, r, n)>0 such that any Riemannian n-manifold M with 

secM~>k, radM~<r and vol >~ n M~.vk(r)-e  is topologically either S ~ or RP ~. Moreover: 

(ii) For every e>0 there are Riemannian metrics on M = S  ~, RP ~ with secM~>k, 
n radM~<r and vol M~-vk(r)-e. 

In this theorem topological equivalence refers to homeomorphism type, except 

possibly in the case of M = S  3, where our proof gives homotopy type only (cf. 2.8, 

however). 

For manifolds M not covered by Theorem A, i.e., sec M>-k>O and rad M>~/2V'-k-, 

we prove in 3.1 that (*) can be improved to 

(**) vol M <~ ~ v~(z/~/-ff ) = : w~(r), 
./x/T 

whenever z/2V~--<rad M<~r<~z/V'k-. This on the other hand is optimal. 

THEOREM B. Fix an integer n>-2, a positive k and z/2VT<r<~z~/V'--k. Then: 

(i) Any Riemannian n-manifold M with sec M>-k and rad M>~/2V~k - is topologi- 

cally S ~. Moreover: 

(ii) For every e>0 there is a Riemannian metric on M = S  ~, with sec M>.k, rad M<~r 

and vol M>~w~(r)-e. 

Here the first claim is of course an immediate consequence of the diameter sphere 
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theorem [GS], since diam M~>rad M>:r/2~Ck -. As in Theorem A our main concern here 

are manifolds M with large volume. This is addressed in Theorem C below. 

Although the volume estimates (*) and (**) are virtually always strict for Riemann- 

ian manifolds, we exhibit now three important singular manifolds with the same basic 

geometric properties where equality holds. 

Example I (curvture k crosscaps). For  real k, and positive r (~<~/2v'-k-- if k>0) let 

Dk(r) be the closed r-ball in S k. Let  " " " " A: Dk(r)---~Dk(r) be the reflection in the center. The 

real projective space C"k,r=D~(r)[u--A(u), u E aD~(r), has Toponogov curvature >~k (cf. 

[GP3] and 1.11), radius =r ,  and volume =v~(r). Note that ~.~g'nk,,,,r/zV, k-----Renk when k>0. 

Example II (curvature k purses). Let  k and r be as in Example I. Let  

R: D~(r)---~D~(r) be a reflection in a totally geodesic hyperplane H through the center. 
n _ n ' n The sphere, Pk, r-Dk(r)/v-R(v), v EODk(r) , has Toponogov curvature ~>k, radius =r ,  

and volume =vT,(r) (see Figure 1). 

Example III (curvature k lemons). Fix k>0 and a totally geodesic S"k-2CS~. Let  
C n n W~k,0 S k be the region between two totally geodesic (n-1)-discs in S k with common 

boundary $7, -2 making an angle 0 E (0, 2:r] (see Figure 2). 
~. ~ n . . . ~ c n  n �9 Let . . . .  k ~'k be the reflection in the totally geodesic ~k"-I c ~k"" mapping ~WT, ' 0 into 

itself. The sphere, L'~,o=W~k,o/w~R(w), wEaW'~k,o, has Toponogov curvature >~k, volume 

=(O/2zOvolS"k=w~(O/2VT), and radius = max{z~/2V'--k-, 0/2V'-k-}. Note that L~,2~=S ~ 
and L~,==P~:/2 ~ .  
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Fig. 2 

D~, 0 + 

Each of these examples can be viewed also as the result of a doubling construc- 

tion: In the first example extend the action of A: aD"k(r)-+aD~(r) to the obvious 

antipodal map of the double D"k(r)UDT,(r), and identify antipodal points. The two last 

examples are obtained by doubling one side, e.g., D + (see Figures 1 and 2), of the 

hyperplane defining the reflection R. 

Based on this description it is now easy to exhibit smooth perturbations of 

Examples I, II, and III, thus proving part (ii) of Theorems A and B: Simply embed 

isometrically D,(r), n + n + Dk(r) , and Dk, o into a totally geodesic o kr162 and consider 

boundaries of smooth, symmetric (locally) convex neighborhoods. This suffices for the 

last two examples. In the first, one must in addition identify antipodal points. 

The proof of Theorem A, part (i) is based on the following metric stability theorem 

for manifolds with nearly optimal volume. 

THEOREM C. Fix n~>2, kER,  r>0 and let {Mi} be a sequence o f  closed Riemann- 

ian n-manifolds with secMi>~k and radMi<-r. 

(a) Suppose {volMi} converges to v~(r), where r<.az/2X/-k i f  k>0. Then a subse- 

quence o f  {Mi} converges to either the curvature k crosscap, C~k. �9 or the purse, P~. r in 

the Gromov-Hausdorff  topology. 

(b) For k>0 and : t /2X/ -k<r<Jt /V~ ,  suppose {volMi} converges to w~(r). Then 

(Mi} converges to the curvature k lemon L~,2r in the Gromov-Hausdorff  topology. 
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As an immediate consequence of the above theorems we also get the following 

solution to a generalized analogue of Aleksandrov's problem. 

COROLLARY D. Let  S be a closed locally convex codimension I submanifold o f  

sn+l with radS=r.  Then k 

(i) vol S<.o~(r), where r<<-n/2V~-k - i f  k>O and 

(ii) vol S<.w~(r), i f  k>0 and :r/2~/--k-<~r<<.n/V~-k -. 

Moreover, these inequalities are optimal and strict except for  the case k>0 and 
~__~n~  ~?n+l r=er/k corresponding to •,-o k o k . 

This result provides in particular a solution to Problem 61 as worded in [Y]. 

We conclude by pointing out that, dual to the problem considered here, a lower 

bound for curvature and radius does not in general give a lower bound on volume (cf. 

e.g. the lemons, L~, o, 0 small). For an interesting exceptional case see 4.3. 

The proofs of our main results A, B and C above utilizes many of the tools 

developed in [G1], [GPI,2,3], and [GPW]. In Section 1 we briefly summarize what we 

need from these papers and fix non standard conventions important to the exposition. 

The general case represented by Theorem A and C(a) is treated in Section 2. Although 

the topology of manifolds represented in Theorem B and C(b) is well understood and 

simple, the metric properties are more delicate. This is discussed in Section 3. 

We thank A. Treibergs for bringing Aleksandrov's problem to our attention in 

connection with [GP3]. 

1. Basic tools and conventions 

Throughout the paper we let M denote a closed, connected Riemannian n-manifold, 

n~>2, with sectional curvature, secM~k for some real k. Following Rinow [R], S~ will 

be the complete, simply connected n-dimensional space form of constant curvature k. 

The distance function on M, S~, or any other metric space will be denoted by d. To 

distinguish points in S~ from points in other metric spaces we use the notation 

p, c], a . . . . .  etc., rather than p, q, u . . . . .  etc. 

For each p E M and r>0, let B(p, r), respectively, D(p, r) denote the open, respec- 

tively, closed r-ball in M centered at p. Let expp: TpM---~M be the exponential map atp,  

and Seg(p)~TpM the star shaped region bounded by the tangent cut locus. We will 

refer to Seg(p) as the segment domain at p. 

Now for each p E M replace the euclidean metric on B(Op, r)= Tp M by a constant 

curvature k metric via a radial conformal change (r<~:r/X/-k- if k>0). Viewed this way, 
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in D(p, R) c M 

in D(p, R) n Seg(p) ~ S~ 

Fig. 1.2 

Seg(p) is a proper closed subset of S~, for every p E M, except when k>0 and M is 

isometric to $7,. In the latter case we interpret Seg(p) as $7,. 

With the interpretaton given above we will throughout view the domain of expp, 

p EM to be the closed subset Seg(p)cS~,. When giving Seg(p) the metric induced from 

S~, the exponential map, expp: Seg(p)~M is distance nonincreasing by standard dis- 

tance comparison. 

In the context of manifolds with positive curvature an interesting volume estimate 

for the complement of a ball was observed in [D]. A straightforward but rather 

powerful extension was presented in [GP3; 1.I]. Here we need only two special 

versions of it. In the swiss cheese version, one estimates the volume of a ball from 

which a family of balls have been removed (see Figure 1.2): 

Let Q~M and r: Q---~R+ a function. Define the swiss cheese, K relative to D(p, R) 
and (Q, r) as 

K((Q, r); (p, R)) = D(p, R) -  tJ B(q, r(q)). 
qEQ 

When D(p,R)=M we may choose to omit (p,R), i.e., 

K(Q, r) = M -  UB(q, r(q)). 

The desired volume estimate is 
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(1.1) vot K((Q, r); (p, R)) ~ vol K((eXpp I Q, ro expp); (p, R)), 

where p=exppl(p)  E Seg(p)cS~. 

Clearly, the way to think of, and use (1.1) is that the volumes of swiss cheeses 

K c M  are smaller, the more geodesics come together at Q. Another complementary appli- 

cation of [GP3; 1.1] is to estimate the volume of the union D(Q, r)= Llqe Q D(q, r(q)): 

(1.3) voiD(Q, r) <~ volD(I(Q), ro I- l) ,  

provided I: Q ~ I ( Q ) c S "  k is an isometry. This is particularly useful when Q consists of 2 

or 3 points since any such set can be isometrically embedded in S~. 

Finally, we need to be able to compare volumes of special swiss cheeses in S~. To 
- C  ?1 describe these suppose Q S k has the properties (i) d(p, 0)=c for all 0E Q, and (ii) any 

direction at p makes an angle ~<:r/2 to some segment ~--~, 0 E Q. Then for any constant 

r>0 we have 

(1.4) vot K((0, r); (,0, R)) ~< vol K({01, q:}, r); (p, R)), 

where the segments Pql, Pq2 have length c and makes an angle :r at p. Moreover, 

equality holds in (1.4) only if 6={01,02} up to an isometry fixing p. This follows from 

[GP1; appendix] and plays a central role here when k>0 and radM>er/2V'--k-- (cf. 

Section 3). 

The remaining part of this section is devoted to a brief discussion of the Gromov- 

Hausdorff topology suited for our purposes (cf. [G1]). 

Let X, Y,Z,  Xi, i--1,2,3 .... be compact metric spaces. If X, Y are isometrically 

embedded in Z, the classical Hausdorff distance d z satisfies 

(1.5) dz(X, Y ) < e  if and only if Y c B ( X , e ) ,  X c B ( Y , e ) ,  

where B(X, e) = { z E Z I d(z, X)<e}. The Gromov-Hausdorff  distance drH satisfies 

(1.6) 
d ~ X ,  Y) < e if and only ifdz(X, Y) < e for some 

metric on Z = XLI Y extending the ones on X, Y. 

Similarly, Gromov-Hausdorff convergence is characterized as 

(1.7) 
X =  limXi if and only if the metrics on X, Xi 

extend to a metric on Z =  XII iX  i and dz(X, Xi)--->O. 

10-928285 AcZa MathemaZica 169. Imprim~. le 20 aoQt 1992 
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Moreover: 

A class M of compact metric spaces is precompact if and only if 

(1.8) there is a function N(e) so that for every e > 0 ,  any XEM 

can be covered by less than N(e) (closed) balls of radius e. 

In the context of Riemannian manifolds this yields: 

For fixed k E R and D > 0 the class of closed Riemannian 

(1.9) n-manifolds M, n/> 2, with Ricci curvature Ric M 1> (n -  1)k 

and diam M ~< D is precompact. 

In this paper we are interested in the subclass ~tkDv(n) of (1.9) where in addition 

sec M>~k and vol M ~  >v. If X=lim Mi, M i E Mk~ we will always equip Z=X HiMi with 

a metric as in (1.6). Then for any pEX,  p=limp i, piEMi and expp:Seg(pi)-->M i is 

distance nonincreasing on Seg(p;)cST,. By [GP3] we can assume: 

For any p EX, p E S~ there is a compact subset p E Seg(p)cST, 

and a distance nonincreasing map e x p / S e g ( p ) ~ X .  

(1.10) Moreover, expp maps segments from p E Seg(p) c S~, to 

segments in X from p, and any segment from p is the 

image of a segment from p. 

Here by possibly passing to a subsequence Seg(p)=lim Seg(p3 and eXpp=lim expp i, i.e., 

expp(a)=lim expp,(a;), when t~=lim/~i. 

X has Toponogov curvature, s e c X ~  > k, i.e., standard distance 
(1.11) 

comparison holds for geodesic triangles in X (cf. [GP3]). 

The topological properties of X=lim Mi needed in this paper can be summarized: 

For every e > 0 there is an i0 so that X and 3'/,- are 
(1.12) 

e-homotopy equivalent for i/> i0 (cf. [GP1], [P] and [GPW]). 

For further metric and topological properties of limit spaces X, the reader may 

want to consult [BGP], [GP3,4] and [GPW]. 

2. Metric polarity: the crosscap and purse case 

In this section we prove the general volume pinching theorem formulated as A, and 

C(a) in the introduction. 
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Thus we fix k E R ,  r>0  (~:r/2X/-k- if k>0) and an integer n>~2, and consider the 

Gromov-Hausdor f f  precompact  class of  closed Riemannian n-manifolds M having 

secM>~k and radM~<r (cf. (1.9)). 

Fix a Gromov-Hausdor f f  convergent sequence (Mi} of closed Riemannian n- 

manifolds M~, where 

(2.1) secMi~k ,  radMi<~r and voIMi--->vnk(r). 

To prove part (a) of  Theorem C we must show that 

(2.2) X = lira M i is isometric to either C~,,r or P~,r, 

which we now proceed to do. 

In each Mi choose a point Pi realizing the radius of Mi, i.e., D(pi, rad Mi) =Mi. Then 
v o l  _< n n Mi~vk(rad M~)<.vk(r) by standard volume comparison and hence r=l im rad Mi=radX 

by (2.1) and (1.7). In view of (1.7) and (1.10) we can assume that 

(2.3) {Pi} converges to p E X and D(p, r) = X. 

(2.4) (Seg(pi)} converges to Seg(p) = S~ and {expp) converges to expp: Seg(p)--+ X. 

The claim (2.2) is now a straightforward consequence of  the next three lemmas. 

LEMMA 2.5. The exponential map in (2.4) satisfies: 

(i) Seg(p)=D(p, r)=S~. 

(ii) expp: B(I~, r)--+X is injective. 

(iii) expe: D(a, e)-->X is an isometry whenever D(a, 2e)cD(p ,  r). 

(iv) expp: OD(p, r)---~X is two to one, i.e., exp~-1(q) is one or two points for all q E X  

with d(p, q)=r. 

Proof. For every i 

vol M i ~ vol Seg(pi) ~ vol D(p ,  r) = v~(r) 

by standard volume comparison. In particular 

vol Seg(p3 ~ vol D(/5, r) 

by (2.1). Since Seg(pi)cD(15 , r)cS~ converges to Seg(p)cD(/5,  r), (cf. (2.4)), we con- 

clude that D(p,  r ) -Seg (p )  has no interior points and hence is empty.  This proves (i). 

To prove (ii) assume ~4:0EB(p,r) and expda)=expp(O). Choose e>0  so that 
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D(f i ,e ) ,D(O,e)cB(p ,r )  are disjoint. If fi=limtii, O=limOi with t~i, 0~ESeg(pi ) then 

limexpp~(t~i)=lim exppi(0i) by (2.4). Moreover,  using 

M i = K((expp, a i, expp~ Oi}, e) O D({expp, tii, expp, U i }  , e) 

together with (1.1) and (1.3) gives 

lim vol " " " " M i <~ (ok(r)- 2vk(e)) + ok(e) 

contradicting (2. I). Hence expp(a)4:expp(0). 

Now let tL 0 EB(,0, r), d(fi, 0 )=2c>0 and suppose B(tL c), B(O, c)cB(/~, r). We then 

claim that d(expp(a), expp(0))=d(tL 0) from which (iii) follows. If indeed 

d(expp(a), expp(O)) = d(a, 0 ) - 6  

for some 6>0  (cf. (1.10)), we argue as follows. Pick fti, OiESeg(pi) with a=limtii,  

0=lim Oi and expp ti =lim expp i t~ i, expp 0=lim exppl 0 i. Write Mi as above with e replaced 

by c. Again using (1.1) and (1.3) we get 

lim vol Mi ~< (v~(r)-2v~(c))+vol D({O 1, q2}, c), 

for s o m e  ql,~2~.Snk with d(Ol,dt2)=2c-6. This clearly contradicts (2.1) and proves 

our claim. Also (iv) is proved by contradiction. Thus assume q E X - B ( p , r )  and 

a, 0, tb E eXpp~(q)caD(,0, r) are distinct points. Let D(tL e), D(O, e), D(t0, e) be disjoint 

balls and {t~i}, {Oi}, {tbi} be sequences as above. From Mi=K(q,  e) UD(q, e) and (1.1) we 
deduce 

lim vol M i <~ (v~(r)- 3 - 0~(e))+ V~k(e), 

where 0~(e)=vol D(p,  r)flD(~, e), ~ E OD(p, r). Since k, r and n are fixed this inequality 

contradicts (2.1) when e is chosen sufficiently small. [] 

Using (iv) of  2.5 we define a relation R in aD(p,  r) by ~RO if and only if expp(t~)= 

expp(0). 

LEblMA 2.6. Give the (n-1) -sphere  OD(p,r) the constant curvature Riemannian 
- C n metric induced f rom D(p ,  r) S k. 

(i) The relation R defines an isometric involution on OD(I~, r). 

(ii) expp:D(l~,r)--->X induces an isometry between the inner metric spaces 

D(p , r)/R and X.  
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Proof. First observe that any path in D(p, r) can be uniformly approximated by 

paths in B(p, r). In particular expp: D(p, r)--.X preserves lengths of paths. In view of 

2.5(ii) it therefore remains to prove (i) only. 

For this, define R(a)=fi, if  exp~q(expp(t~))= {ti}, and R(•)=O*a, if  expp(t~)=expp(0). 

It follows from (1.11) that R: aD(p, r)~aD(p,  r) is continuous, since a point of disconti- 

nuity would lead to the existence of bifurcating geodesics (cf. [GP3; w 2]). Then clearly 

R is an involution that preserves lengths of paths. In particular R is distance non- 

increasing and hence an isometry since R2=id. [] 

In view of 2.6 we consider now the unit disc D"=Dg(1)cSg=R" in euclidean n- 

space. For each m=0, 1 . . . . .  n we write Rn=Rrn(~R n-m and let Rm: R"---~R n be the linear 

involution determined by RmlRm=id and RmtR n-m=-id. 

LEMMA 2.7. The identification space Snm=Dn/u~Rmu, uESn-I=aD n is homeo- 

morphic to the m-th suspension ~,mRen-m. In particular, X" m has the homology o f  a 

manifold if  and only if  m=O or n - l ,  corresponding to RP" and S". 

Proof. The first claim is obvious if one exhibits D ~ as YmD"-m with aDn=Y~maD n-m 

and correspondingly Rm as •m(-id[aDn-m). 

Since Xg0~RP" , X~n_1------S" and X~-~D ~ it remains only to show that X~m does not have 

the homology of a manifold when l<.m<~n-2. In these cases 

H.(X"m) ~ n._m(R p"-m). 

In particular, Xnm does not satisfy Poincar6 duality with Z2-coefficients. [] 

According to 2.6, 2.7 and (1.12), X=limM; is isometric to either C~, r o r  enk, r. By 

(1.9) this completes the proof of part (a), Theorem C. 

The passage from Theorem C(a) to Theorem A(i) is provided by (1.12). From this 

we know that any closed Riemannian n-manifold M with secM~>k, radM~<r (~<~r/2V'--k- 

if k>0) and vol M sufficiently close to v~(r) is controlled homotopy equivalent to either 

Cnk, r~-RP n or e~,r=S n. The homeomorphism claim follows from this in all dimensions 

n~>4 by appealing to the controlled h-cobordism theorem [Q 1,2] and in [GPW]; see also 

[CF] and IF]. 

In the case were  Mi--ocnk.r=RP n, we can also apply more direct geometric argu- 

ments as in [GP2] based on understanding critical, or nearly critical points for the 

distance functions d(pi, "). Using this one exhibits Mi, i large, as the union of a disc and 

a homotopy Mrbius band. In the 3-dimensional case this proves that Mi is homeomor- 

phic to R e  3 (cf. also [L]). 
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Remark 2.8. In the case where Mi---,P~.r=S ", the geometric arguments alluded to 

above become considerably more complicated. It seems plausible, however, that one 

can develop such arguments and as a consequence exhibit M;, i large, as a (simply 

connected) union of two trivial bundles S"-2• 2 and D"-lxs  ~. This would yield 

homeomorphism also in the 3-dimensional case. We will not elaborate further on this 

here. Another approach is suggested by the developments announced in [BGP]. 

We conclude this section by pointing out that, knowing the possible limit spaces 

C~. r and P~, r explicitly opens up the possibility of understanding the Gromov-Hausdorff  

convergence better. For example in the unique nonsingular example C"k,,~/v-~=RP"k, 
k>0, we know from [OSY] that the convergence is Lipschitz and in particular any M" 

with sec M>-k close to RP~, is diffeomorphic to R P  ", (cf. also [Y1,2]). 

3. Metric uniqueness: the lemon case 

The object of this section is to prove part (b) of the metric stability Theorem C. We 

therefore consider Riemannian n-manifolds M, n~>2, with secM~>k>0 and r adM> 

:r/2V'-k--, or equivalently (after scaling) sec M ~  > 1 and rad M>:,r/2. 
For any p E M standard distance comparison implies that K(p, :r/2)=M-B(p, zr/2) 

is :r-convex, i.e., any geodesic of length <zr joining points in K(p, zr/2) remains in 

K(p, :r/2), and there is a unique point q=A(p)E K(p, ~r/2) at maximal distance from p 

(cf. [GS]). The decomposition M=D(p, r K(p, zr/2) will play a key role throughout 

this section. First we shall use it to prove the volume estimate (**) in the introduction 

(in a slightly different context compare also with [W] and [GP3]. 

PROPOSITION 3.1. Let M be a closed Riemannian n-manifold, n>~2, with secM>~l 

and radM>:r/2. Then for any p EM, 
(i) voiD(p, :r/2)~<(1/2) vol ST, and 
(ii) volK(p, :r/2)<<.(r/:r- 1/2)vol ST, r=d(p, a(p)). 

In particular, vol M~<(rad M]:r)vol S~ = w~(rad M). 

Proof. (i) is obvious by standard volume comparison. To prove (ii) note that 

q=A(p) is a critical point for p, i.e., any direction at q makes an angle ~<:r]2 with a 

segment Op for some p E eXpq~(p). It is now immediate from (1.1) and (1.4) that 

vol K(p, :r/2) ~< vol K({pj, P2}, at/2), 
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r-zrlL 
q 

F i g .  3 . 2  

for some P:,Pz E S~ (=Seg(q)) with d(p~,p2)=2:z-2r. Since 

K( { P l,/52 }, st/2) = S~'-B(p~, zr/2) U B(p 2, :r/2) 

is a wedge of  angle 2 r - : r  in S~ (see Figure 3.2), the proof  of (ii) and hence 3.1 is 

complete. [] 

As a subset of  S~ the boundary aK of the convex set K({p~,p2},zr/2) decomposes  

into Dn-l(101,0)=aK f] 3D(pl, re/2) and Dn-l(p2, q)=aKN aD(p2, zr/2) hinged at sn-Z(q)= 

Dn-l(15], q) flDn-l(p2, O)=3D(Pl,  :r/2) n aD(p2, zr/2) (see Figure 3.2). 
n - I  Intrinsically, however, OK is isometric to S] . Moreover,  the constant curvature 1 

lemon L~,2r of Example III can be viewed as D(p,:z/2)OK({pI,lJ2},:r/2) with the 

obvious identification of boundaries.  

This observation plays an important role in our proof  of  Theorem C, part (b), 

which we now proceed to give. 
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Fix r>~r/2 and a Gromov-Hausdorff convergent sequence {Mi} of closed Rie- 

mannian n-manifolds M;, where 

(3.3) secMi~>l, radMi<.r<~r and volMi---~w~(r). 

In order to prove part (b) of Theorem C we must show that 

(3.4) X = lim Mg is isometric to L~. 2r" 

The case r=~r follows directly from our treatment of the general case r<er, and is 

covered also by [OSY]. 

In each Mi pick a point Pi, realizing the radius of Mi, and let q~=A(pg) E g(pi, 7t/2) be 
n ~ n , the point at maximal distance from pi. Since volMi-~wl(radMi)-~wl(r) by 3.1 we 

conclude radX=limradMi=r using (3.3). Moreover, using (1.7), (1.10) and (1.11) we 

may assume that 

(3.5) {Pi}, {qi} converges to p, q EX and d(p, q) = r. 

(3.6) K(p, ~r/2) is convex and {K(pi, n/2)} converges to it. 

(3.7) 

{Seg(pi) }, {Seg(qi)} converges to Seg(p), Seg(q) c S~' and 

{eXppi }, {eXpq) converges to expp: Seg(p)---~ X, eXpq: Seg(q)--~ X. 

The points/5, 0 E Seg(p), Seg(q) c S~ corresponding to p, q 

are chosen so that 0=A(p) = - p  as in Figure 3.2. 

(3.8) {exp~l(pi)} converges and lim exp~l(pi) c eXpq'(p). 

(3.9) {exp~(K(pi, er/2))} converges and lira exp~(K(p;, Jr/2)) c eXpql(K(p, z~/2)). 

The proof of (3.4) is divided into four lemmas: 

LEMMA 3.10. With Mi=D(pi, er/2)t3 K(pi, ~r/2) as above we have 
(i) volD(pi, zt/2)---->volD(/5, ~/2), 

(ii) volK(pi, ~r/2)---~volK({151,p2}, ~t/2), where 1~1,152 E S~ satisfy d(,rl,p2)=2zt-2r 
(and d(pl, 0)=d(pz, 0)=r as in Figure 3.2). 

Proof. This is clear from (3.3) since volMi=volD(pi, z~/2)+volK(pi, zt/2) and 

volD(pi, Jr/2)~<vol D(/5, re/2), vol K(pi, Jt/2)~<vol K({/~I,p2}, ~/2) according to 3. l(i), (ii). 
[] 
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LEMMA 3.1 1. The exponential maps of (3.7) satisfy: 
(i) D(/~, Jr/2)cSeg(p)~S~, expp(D(p, Jr/2)) =D(p, er/2) and expp(B(p, ~r/2))=B(p, Jr/2). 

(ii) expql(p)={pl,P2}cSeg(q)cS~, where d(/~,pE)=2Jt-2r  and d((l,pO=d((1,1~2)=r. 
(iii) K({pl,/~2}, ~r/2)~Seg(O), eXpq(K({/~ 1,pz}, zl/2))=K(p, ~r/2) and 

eXpq(int K({/~,, Pz}, :r/2)) = X-D(p ,  :r/2). 

Proof. (i) Once D(p, zl/2)cSeg(p) has been established the rest follows from (1.10). 

Now for every i, volD(pi, er/2)<.volD(Pi, zr/2)N Seg(pi)<.volD(p,Jr/2) by standard vol- 

ume comparison.  From this, 3.10(i) and lim D(/Si, zc/2) fl Seg(pi)=D(iO, 7t/2) n Seg(p) we 

conclude that D(p, 7r/2)-Seg(p) has no interior points,  and therefore is empty.  

(ii) Since for each i, qi=A(pi) is a critical point for p,- we get from (1.1) and (1.4) that 

vol K(p i, :t/2) ~< vol K(exp~l(pi), :r/2) t3 Seg(qi) ~< vol K({p I ,/~2}, :t/2), 

where p~, Pz E S~ is a pair of  points with d(p 1,/~z) = 2 : t -  2r~<2:r- 2 rad M;. Clearly every 

direction at 0 makes  an angle ~<:r/2 with some segmen t  0/~, P E lim expel(p;). F rom this, 

the above volume est imate and 3.10(ii) we conclude that 

limexp~l(pi)={l~l,pz}cS'~ with d(pl,p2)=2x-2r and d(dl,Pl)=d(O,pz)=r. 

In particular, {pl ,P2}ceXpq1(p) by (3.8). 
- CZ rt Now suppose t~EeXpql(p)--{/~l,/~z}, and choose  uiESeg(qi) S 1 with t~=limai. 

Then d(ai, exp~l(pi))--->d(a, {,01,P2}) and d(expq,(~i),Pi)--->O. By (1.1), (1.3) and (1.4) 

lira vol M i <~ vol D(/~, Jr/2) + vol K({ p i,/92, t~), z~/2). 

This obviously (cf. (1.4)) contradicts  (3.3), and therefore eXpql(p) = {/~l, Pz} as claimed. 

(iii) To prove K({pl,l~z},:r/2)cSeg(q) is analogous to the proof  of D(/~,: t /2)c 

Seg(p), and is therefore left out.  For  each i, 

eXpq,(K(exp~X(pi), ~/2)) fl Seg(qi) m K(pi, zr/2) 

by standard distance comparison,  and hence the limit 

eXpq K({/5 j,/52} , z~/2) = K(p, 7r/2), 

(cf. (3.6)). On the other hand an argument  like the one given for 
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shows that 

D(p, ~r/2) ~ Seg(p) (and K({pl ,P:},  Jr/2) ~- Seg(q)) 

lim eXpql(K(Pi , Jr]2)) = K({Pl, Pz}, :r/2) 

and thus expqK({15,1~2},~r[2)cK(p,zr[2), by (3.9). From expqK({Pl,l~2},er]2)=K(p,~]2) 

and (ii) it follows via (1.10) that expu(OK)=D(p, Jr]2)-B(p, :t/2). To finish the proof we 

need to see that eXpq(int K ) c X - D ( p ,  z~/2). For this let ti E int K and consider the unique 

0 E aK so that a is on the segment 00 in KcSeg(q)cS~ .  Since expq(0), respectively q has 

distance at]2, respectively r>Jr]2 from p we get from (1.11) that expqa has distance 

>:r/2 from p. [] 

The next lemma will provide the necessary metric properties for rigidity. 

LEMMA 3.12. The exponential maps of3.11 have the following metric properties. 

(i) expp: D(,O, :r/2)---~D(p, :r/2) is injective and an isometry on balls D(tL e) where 

D( a, 2e) c D ( p  , :r/2). 

(ii) expq:intK({pl,P2},:r/2)--,X-D(p,:t/2) is injective and an isometry on balls 

D(O, e) whenever D(O, 2e)cK({/~l,/~2}, :r/2). 

Proof. The injectivity and local isometry properties of expplint D and expqJint K are 

proved along the lines of 2.5(ii) and (iii). We therefore confine our attention to 

expp: OD(p, :t/2)--->X. 

Suppose ~:l:OEaD(p,:r/2) and expp(/~)=expp(0)=x. Using 3.11(iii) we find a 

tb E aK({pl,/~z},:r/2) so that expq(W)=x. Now choose e>0 so that D(#, e), D(#, e) are 

disjoint in S~. If t~=lim fi~, 0=lim0~, and tO=lim ~b~ with fii, O~ED(Pi, re/2)fl Seg(p;), and 

~b i E K(exp~l(pi), :r/2) 0 Seg(qi) then xi=expp ' a i, yi=eXpp, 0~, zi=eXpq, ~v i converges to x by 

(3.7). Consider the decomposition 

M i = (D(pi, :r/2) U K(p i, :r/2)-B((x,,  Yi, z,}, e)) UD({x i, Yi, zi}, e) 

or  

M i = K(({x,, Yi, Zi}, E)'~ (Pi, ~/2)) U K(({x i, Yi, Zi}, g), (Pi, y[/2)) U D({x i, Yi, zi}, e). 

From this clearly 

VO1M i <~ vol K(( {xi, Yi} ' e); (Pi, n /2 ) )+vo l  g((zi, s (Pi, ~/2) )+vol  D( {xi, Yi, Zi} ' Yl~/2). 

Using (1.1) and (1.3) this yields 
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limvolMi<- (v~(er/2)-2"lvT(e))+vol(K({pl,pz),z/2)-B(W,e))+v~(e) 

= w~(r)-v~ Pz}, z/2) n B02, e)) < wT(r) 

contradicting (3.3). Thus expp: D(p, ~r/2)---~X is injective. [] 

From 3.11 and 3.12 we know that X is obtained from D(p, ~r/2) and K({/~I,P2}, er/2) 

by suitable gluing of boundaries. The precise gluing is expressed in: 

LEMMA 3.13. Here we endow c~K({/~1,/~2}, er/2) and OD(p, at/2) with inner metrics 
induced from K({iOl,/~2}, 7r]2) and D(15, ~]2) respectively. Then 

(i) exp; 1 o expq: aK-->aD=S~ is an isometry. In particular, 

(ii) eXpq: K({/~1,/~2} , ~r/2)---~K(p,~r]2) is injective, and 
(iii) exppHexpq: D(p, er/2)IIK({pl,P2}, ~]2)---~X induces an isometry between the 

inner metric spaces D(p, ~/2)IIK({Pl,I)2}, ~/2)/~ and X. Here ~ 0 ,  fi C OD(p, er/2), 

0 E aK({pl, Pz}, zr/2) if and only if expp fi =expq 0. 

Proof. (i) As in 2.6 we see from 3.12 that expp:D(p,~r/2)--->D(p,:r/2)cX and 

expq:K({IOl,l~z},Jr/2)---~K(p,Jr/2) both preserve lengths of paths. In particular, (cf. 

3.11(i), (iii) and 3.12(i)) the map exp;~oexpq:aK--->aD is a surjective map which 

preserves lengths of paths. However, a surjective distance nonincreasing map of $7 -~ is 

an isometry. To see this first observe that pairs of antipodal points must be mapped to 

pairs of antipodal points, and hence geodesics to geodesics. 

(ii) Obvious from (i). 

(iii) By definition of - it is now clear that exppllexpq induces a bijective map 

between D(p, ~r/2)llK({pl,p2}, ~r/2)/-- and X. Since it also preserves lengths of paths, it 

is an isometry. [] 

Since the isometry class of DHK/~ is independent of the isometry aK---~OD, the 

proof of (3.4) and hence Theorem C is complete. 

We conclude the section with a more intrinsic description of X=limMi. Let 

E(p, q; ~r/2)= {x E X] d(p, x)=d(x, q)=~r]2). 

From 3.12 and (1.10) eXpq(Sn-Z((l))=E(p , q; ar/2)=K(p, ~/2) n K(q, ~r/2), which is convex 

by (1.11). Moreover, using 3.12(ii) and 3.13(ii) we conclude from this that 

eXpq: S"-2((I)--,E(p, q; ~/2)cX is an isometry. Thus X contains a convex isometrically 

embedded $7 - 2 = E ( p ,  q; ~r/2). 
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In particular, d iamX=zt  which by [GP4] implies that X is isometric to the sin- 

suspension (warped product) X = ~ , E ,  where E is the convex equidistant set for two 

points at maximal distance :r in X. This argument can be repeated n - 1  times yielding 

X_Z~i._ , - i  Sl(r/zO, where Sl(r/:r) is the circle of length 2r. 

Actually S~(r/ar)cX is the convex set of points of distance :r/2 from E(p, q; :t/2). It 

consists of the two segments from p to q, which together form a closed geodesic in X 

(cf. 3.11(ii) and 3.13(i)). 

4. Concluding remarks 

So far we have allowed all manifolds in our discussion. Suppose now instead, that M is 

a fixed closed, connected smooth n-manifold, n~>2. For  given k C R and r>0 we then let 

vM(k, r) = sup(vol M I sec M I> k, rad M <~ r}. 

Theorems A and B computes Vs,(k, r) (=VlU,,(k, r) unless k>0 and r>~/2X/-k-) and shows 

that vM(k,r)<Vs,(k , r) for any M which is not topologically S n or R P  n. It is unclear, 

however, whether for instance exotic spheres or real projective spaces can have 

vu(k,r)=Vs,(k,r). The results in [OSY] though, imply that at least vM(1,~r)<Vs,(1,zt) 
unless M is diffeomorphic to SL 

For general M we note that ou(k,r)-->oo as k-->-oe. To see this choose any 

Riemannian metric on M, scale it so that its radius is very small and then make 

connected sum with a sphere approximating the purse P~. r. The metric constructed on 

M this way has radM--r ,  vol M--vol P~, r=V~(r) and min sec M<~k. 
Of course this whole program can be considered with radius replaced by diameter. 

In this context a natural extension of Aleksandrov's problem may be formulated as 

follows: 

Question 4. I. For  any Riemannian metric on M=S" with sec M~k and diatoMs<D, 

is vol M<~2V~k(D/2)? 

This would follow by standard volume comparison if any sequence {M;=S"} with 

secM;>~k, diamM;~<D and volMi~sup{volMIM=S",secM>~k, diamM<.D } has a 

subsequence, where excM;--->0. Here e x c M  denotes the excess of M defined by 

exc M=min~p, q) maxx{d(p , x)+d(x, q)-d(p, q)} (cf. [GP4,5]). 

For unrestricted M as in the present paper, the diameter-volume problem was 

investigated in [GP3]. It was shown there, that sup{volMtsecM~k, diamM~D} is 

strictly smaller than v"k(D) except in the two cases where k>0 and D=:r]2X/--k or ~/V'--k- 

corresponding to RP~, and S~, respectively. 
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A natural extension of the main problem considered here is of course to replace 

the sectional curvature bound secM~>k by the weaker Ricci curvature bound 

RicM~>(n-1)k. In this generality, it is still true that vol M~<v~(rad M). Again equality is 

only obtained when M is a sphere or real projection space of constant curvature. 

Furthermore, this inequality is optimal, unless k>0 and radM>z~/2X/--k-. In the case 

RicM~>(n-1)k>0 and rad M>zt/2X/'-k-the stronger inequality 

vol M ~< w~(rad M) = rad____.__MM, v~(~/2x/--~) < v~(rad M) 
z~/2V-~- 

derived for sectional curvature does not hold in general, as demonstrated, e.g., by 

M=CP 2 with its standard Riemannian metric. 

The stability question, regarding which manifolds have almost maximal volume, is 

clearly also very difficult in this situation. It is, for instance, not even known if a 

manifold M with RicM~>n-1 and vol M~vol  Sn=v~(n) must be a sphere. 

We conclude with a brief discussion of possible lower volume bounds, in terms of 

lower bounds for curvature and radius. For general k and r (<.n/2X/--k- if k>0), however, 

(4.2) inf{vol M I sec M I> k, rad M I> r} = 0. 

For k= 1 and r=n/2 this is illustrated by, e.g., the sequence of lens spaces, S~/Z k, k>~2, 

where the action of ZkcS  1 is given by complex multiplication. For all other choices of k 

and r as above there are metrics on, e.g., M=S z with arbitrarily small volume. This is 

illustrated by the lemons L~, 0, 0 small (k>0), capped off thin cylinders (k=0), and Q- 

tips (k<0). 

The remaining class of manifolds M with sec M>-k>O and rad M>Jr/2X/--ff exhibit 

an interesting exception. 

THEOREM 4.3. There exists a v=v(n)>O such that any Riemannian n-manifold M 

with secM~>l and radM>z~/2 has volM~>v. 

This is an immediate consequence of properties of the filling radius of M (see, 

[G2;4.5.C]) and the following estimate for the criticality radius, critM, of M. Here 

critM is the smallest critical value for any of the distance functions d(p, .), p EM. 

Since any ball of radius r<crit M is contractible, this is also sometimes being referred to 

as the contractibility radius. 

L ~ M A  4.4. IfsecM>~l and radM>zc/2, then cr i tM=radM. 

Proof. Obviously critM-~<radM. Now let p , x E M  and suppose d(p,x)<radM. 
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To show that x is a regular point for p assume that p=A(q) is the unique point at 

maximal distance from some q fi M. In particular, d(p, q)>max(d(x,p) ,  d(x, q)) and d(p, q)>- 

r a d M > ~ / 2 .  By standard distance compar ison  it then follows that the angle be tween 

any segments  f rom x to p and x to q is larger than Jr/2. Thus x is a regular point for p as 

well as for q. 

It  remains to show that the map A: M---,M is surjective. Since obviously p--~radp= 

maxx d(p, x) is continuous,  and there is only one point, A(p) at maximal  distance radp 

f rom p,  it follows that  A is continuous.  I f  now A: M ~ M ,  M=S", were not surjective, it 

would have a fixed point according to the Brouwer  fixed point theorem.  [] 

Remark 4.5. When  M is as in 4.4, an additional convexity argument  due to Fred  

Wilhelm implies that for every p 6 M only A(p) 6 M is critical for dist(p, �9 ). 

In view of 4.4 we p ropose  the following 

Conjecture 4.6. I f  M is a Riemannian n-manifold with sec M>~ 1 and rad M>~r>Jr/2 

then vol M~v~/, 2(r) ( ) �9 

From [SY] it follows that  if secM~>l and radM~>r--Jz, then at least vol M-v~(x) ,  
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