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§0. Introduction

The purpose of this paper is to give a proof of Connes’ announcement on approximate-
ly inner automorphisms and centrally trivial automorphisms of an injective factor of
type III for the first time, and to provide a classification, up to cocycle conjugacy, of
actions of a discrete abelian or finite group on the unique injective factor of type III,,
which completes the final step of classification of actions of such groups on injective
factors.

The study of automorphism groups has been a powerful method for understanding
the structure of von Neumann algebras. Connes magnificently developed this approach
in [4, 6, 7, 8]. Jones [15] and Ocneanu [18] followed the line of Connes [4, 6] and
completed the classification of discrete amenable group actions on the unique approxi-
mately finite dimensional (AFD) factor of type II,. Their work also provides useful
tools for the case of type III. Sutherland-Takesaki [20] gave a classification of discrete
amenable group actions on AFD factors of type III;, 0<A<I1. Through their and
Ocneanu’s work, importance of two special classes of automorphisms became clear.
The classes are the approximately inner automorphisms Int(.#) and the centrally trivial
automorphisms Cnt(./#{) of a factor .#. Connes [5] announced a characterization of these
classes for AFD factors of type III, but the proof has been unavailable for more than
ten years since then, though this result was used in Lemma 2(a) of Connes [8], which
together with Haagerup [13] established the uniqueness of AFD factors of type III;, and
also in the above-mentioned paper [20]. The characterization, announced in Connes [35,
section 3.8] without proof, is as follows. (See [11] and [4] for notations.)
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THEOREM 1. For AFD factors M of type 111, we have:

(i) Ker(mod)=Int(.#);

(i) An automorphism o. of M is centrally trivial if and only if a is of the form
a=Ad(u) &7, where 6%, is an extended modular automorphism for a dominant weight ¢
on M, c is a 6-cocycle on UWE,), and u€ UM).

We give a complete proof of this characterization in §3. The centrally trivial
automorphisms are also related to pointwise inner automorphism of Haagerup—Stgrmer
[14].

In the classification of discrete amenable group actions on AFD factors of type 111
in [20], the case of type III; was left open. Here we now classify actions of discrete
abelian groups and finite groups on the AFD factor of type 1II,. Thus the classification
of actions of discrete abelian or finite groups is complete, and this will be enough to
accomplish classification of compact abelian group actions on AFD factors in Kawahi-
gashi-Takesaki [17] along the lines of Jones-Takesaki [16] and Sutherland-Takesaki
[20].

For the proof of Connes’ announcement, we make use of the discrete decomposi-
tion and stability of the automorphism 8 in it for the IlI, and III, (0<A<1) cases. For the
type III, case, we will show that the algebra of strongly central sequences at a free
ultrafilter is a factor, and will use Araki’s property L] [1]. For the cases of type 111, and
I1I,, we need several preparatory lemmas, so we spend the first two sections § 1 and §2
for these, respectively. The main idea for the type III, (0<i<1) case is reducing the
problem to the type II. case by using a discrete decomposition after an appropriate
inner perturbation of a given automorphism. For the type III; case, we split out an
automorphism of an AFD factor of type III; (0<A<1) after inner perturbation. In §3,
we complete the proof of Theorem 1. The proof is divided into three cases: type 111,
III; (0<i<1), and I11;. In § 4, we give a classification result for discrete abelian groups.
The invariants in the case of type III; are exactly the same as in Sutherland-Takesaki
[20], and, are complete. After applying Theorem 1, we can reduce the problem to a
theorem of Ocneanu, [18].

The basic references are Connes [5], Connes—Takesaki [11], and Sutherland-Take-
saki [20]. We use notations and results from these freely.

This work was started when the first and third named authors stayed at the Mittag-
Leffler Institute, continued while they stayed at Institut des Hautes Etudes Scienti-
fiques and all the three stayed at the Mittag-Leffler Institute, and completed when the
third named author visited Japan. We are grateful to these institutes for their hospital-
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Added in proof. We are thankful to Professor Y. Katayama for pointing out an
error in the proof of Lemma 18 in the original version of this paper.

§1. Preliminaries on automorphisms of AFD factors of type III,

Here we prepare technical lemmas for AFD factors of type III,. In the Lemmas 2, 3, 4,
5, and 6, we will show some inner perturbation of a given automorphism of an AFD
factor of type III, has a special property, which makes our later task easier.

LemMA 2. If an automorphism o of an AFD factor M of type 111, belongs to
Ker(mod) then there exists a faithful lacunary weight ¥ with infinite multiplicity on M
and a unitary u € UM) with the following properties:

(1) In the discrete decomposition M=M,XeZ, we have Ad(u)-al%w=id;

@ Yl Adw)-a=yl;

(3) Ad(w)-a(U)=U, where U is the unitary implementing 0 in the decomposi-
tion (1).

Proof. By [11, p. 555], we can achieve (1) and (2). We replace a by Ad(u)-a. Now
for any x€ €, we get

a(U)U*x = a(U) 07 (x) U* = a(UO™ ' (x)) U* = a(xU) U* = xa(U) U*,

thus by the relative commutant theorem [11, Corollary 1.2.10], a(U)U*€ M,,. By
stability of 8, [11, p. 544), there exists a unitary v€ My, with a(U)U*=v*0(v)=v*UvU*.
Now Ad(v)-a satisfies the desired properties. Q.E.D.

LEMMA 3. Let M, 0 be as in Lemma 2, and set N=M,, and choose a free ultrafilter
w on N. Then for any n€EN, and any countable subset (x)ien of No, there exists a
partition of unity (Fp),_, ., in N, such that each F; commutes with all x; and such that
0 F)=F,,,, k=1,...,n, where F, ,=F,.

Proof. Because 6 on €, is ergodic, we can apply the proof of Lemma 2.1.4 in
Connes [4] by using the usual Rohlin Lemma instead of Theorem 1.2.5 in [4]. Because
(€,)°=H(N,), we are done. Q.E.D.
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Lemma 4. Let M, N, 0, w be as in Lemma 3. Then for any unitary u€ X, there is a
unitary v€ N, such that 0,(v)=uv.

Proof. The proof of Theorem 2.1.3 in [4] works with our Lemma 3 instead of
Lemma 2.1.4 in [4]. Q.E.D.

For the proof of Theorem 1(ii) for the AFD factors of type III,, we would like to
perturb a given automorphism a by a unitary so that the centralizer is globally fixed
by a.

LeMMA 5. If ¢ is a lacunary weight with infinite multiplicity on M and a is an
automorphism of M, then there exists a projection e € €, and a partial isometry u such
that

(1) u*u=a(e) and uu*=e;

(2) ual My, yu*=My,,.

Proof. Let 6>0 be such that
[-4, 8]1nSp(a¥) = {0}.
Let y=y-a" '@y on MRM,(C). Choose a non-zero element
x=x®e, € My[c—0/3,c+6/3],
the Arveson spectral subspace for My, for some c ER. For every a € M;, we have
xax*Qe,, = HaDe,,) ¥* € J“w‘a_‘[“‘26/3, 26/3]1®e,,.
By the choise of ¢, we have
Mw.a_l[—26/3, 26/3] = ““w.a-'

so that

xM,x* < Mw-a-‘;

x*/ﬂw_a_lx c M,

Let x=uh be the polar decomposition. Then we have h € M, u*u=f€ M, and uu*=
g€ Atw_a_l, and that

uau*€M__,, a€M,.
ya v
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Since we may replace x by x®1 and y by y®Tr on MR AP), we may assume that f
(resp. g) is properly infinite in /4, (resp. Mw'a_.). Let f(resp. 2) be the central support of
fin A, (resp. g in /uw.a_[). Then f~fin A, and g~¢ in ./I/lw,a-,. Therefore, there exists a
partial isometry v € .4, (resp. w€ ““¢~a-1) such that

w*=f and v*v=Ff;
w*w=g and ww*=4g.

Let U=wuv. Then we have U*U=f, UU*=g and U(““w,f)U*=““¢.a—l,g' Since Atw,a_l=
a(M,), g is of the form g=af(e), e € Proj(¢,). We now want to compare e and fin €,
under the Hopf equivalence given by the ergodic automorphism 6 on 6,,, where 0 is the
automorphism of ., such that

Let p=q denote the Hopf equivalence of p, g €Proj(¢,). Decompose e=e,+e,+...+
e, te,,, in such a way that

e;=f and e, ,=f <f f €Proj(6,).
Since M, is properly infinite, there exists a partition:
f=A+h+ 4

such that f~f, 1<i<n, and f,,,~f" in M,. The Hopf equivalence e=~f implies the
existence of partial isometries v; such that vtv=e; and v,v}=f and v, M, v} M,
Putting these things together, we get a partial isometry V such that

V*V=e, VV*=f, VM V*=UM,
Thus, we come to the situation that
UV, V*U*= oM, )= '/“w-a",g" Q.E.D.

LEMMA 6. In the context of Lemma 5, there exists a lacunary weight ¥ with
infinite multiplicity and a unitary U€ M such that Ad(U)-a(M¢)=./tt@.

Proof. By Lemma 35, there exists a partial isometry « such that
uu* = e€Proj(€,), u*u=afle),

uo(My, ) u* =My, ..
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Let v be an isometry of 4 with e=vuv*. Set

P(x) =yP(vxv*), x€EM

U = v*ua(v) € UM).
Then we have Ad(U)- a(M ;)= M. Q.E.D.

We must deal with strongly central sequences for the study of centrally trivial
automorphisms. The next lemma reduces the study for factors of type III;, i1, to
semifinite algebras.

LEMMA 7. Let Ml=NXgZ be the discrete decomposition of a factor M of type 111,
0<A<1. Every strongly central sequence {x,} in M is equivalent to a strongly central
sequence {y,} in N with 0(y,)—y,—0 *-strongly.

Proof. Let y be a faithful normal state on / and {x,} a strongly central sequence
of M. Define a one-parameter automorphism group f§, by §,(x)=x for x€4 and
BU)=e*"U for the implementing unitary U in the discrete decomposition. Then each
B, is centrally trivial, and the conditional expectation &, of ./ onto N is given by

1
%o(x)=f B, (x)dt, x€EAM.
0

The Lebesgue dominated convergence theorem ensures that ||%§o(x,,)—x,,||‘;—>0, so that
{xs}~{%&(x)}. Since [x,, U]—0, *-strongly, we get {6(&,(x,)}~{&x,)}.

Conversely, suppose that {y,} is a strongly central sequence in & such that
||0(y,,)—y,,||’,j,—>0. We want to prove that ||[y,, ¢]||—0 for every ¢ € #,,. Since the maps:
@[y, @] are uniformly bounded, it suffices to prove that ||[y,, ¢]||—0 for a dense
subset of @ in M. Let E(x)=&xU U, kEZ. Then {¢- €| kEZ, € M,} is total in
M. Thus, we will show that [y, @ &l||—0 as n—w. Fix x€AM and kEZ. Set
%=%(xU ") € N. We then have

K, [V @ & = [(x3,=y, %, - €1))|
= 2 U"y,~,2, U )]
<0 )~ 2y ) U @)+ K 2 y,~y, 20 U'p)|
<@ )=y IV @l llzdi+ 1 [3n Ue]lly N1zl
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which converges to 0 uniformly in x with ||x||<1. Therefore, {y,} is strongly central
in . Q.E.D.

We would like to further reduce the problem to semifinite factors by representing
the automorphism by a field of automorphisms of fibres in the central decomposition of
the centralizer. To this end, we need a[(gw=id.

LemMma 8. If an automorphism a of an AFD factor M of type Il is in Cnt(M), then
there exists a lacunary weight y with infinite multiplicity on M and a unitary u € M such
that Ad(w)-a is trivial on €,, Ad(u)- a(M,)=M,, and Adu)-a(U)=U, where U is the
implementing unitary in the discrete decomposition of M.

Proof. By Lemma 6, there is y such that a(#,)=41,. If {x,} is a bounded sequence
in €, such that 6(x,)—x,—0, *-strongly as n—w for some fixed free ultrafilter  on N,
then this {x,} is strongly w-central by Lemma 7, so we get a(x,)—x,—0, *-strongly, as
n—w. This means (a|<€w)w=id on (€,),. Because a is an automorphism of ./, we know
a|% € N[G[%w], the normalizer of t9|%. These imply a|<gw € [Olgw] by Lemma 2.4 in [9]. (See
section 2 of [9] for notations.) Thus there exists a unitary u« in . such that
Ad(u)~a|%=id and we still have Ad(w)-a(A,)=A4,. Now we can fix U by the same
method as in the proof of Lemma 2. Q.E.D.

The next lemma shows that the field of automorphisms in the central decomposi-
tion of the centralizer may be chosen to be constant.

LEMMA 9. In the context of Lemma 8, we can take a of the form ay®id on
Jﬂwzgim@L“(X ), where Ry 1 is the AFD factor of type 11, after inner perturbation.

Proof. By Lemma 8, we may assume a and 6 define a Z*-action on AM,. Then by
Theorems 1.2 and 3.1 in [19], we can take a of the desired form. Q.E.D.

The following is a slight modification of the standard Rohlin lemma. This will be
used for construction of some central sequence.

LemMa 10. Let T be a non-singular ergodic transformation on a probability space
(X, u). For any n€N, there exists a subset E of X such that

(1) E,T7'E,...,T™"E are mutually disjoint;

Q) WU TYE)=1-1/n;

Q) WEY<1/n, W(T"EY<2/n.
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Proof. Choose a measurable subset Aq of X such that u(T 7A¢)<1/(2n? for all
J=0,1,...,2(n—1). Then set

A, = {xEX|T"(x)EA,, T'x A, 0<j<m—1)}.

We have X=U,,_,A,,, and set F=U;_, A,,. As in the usual proof of the Rohlin lemma,
we can see F, T™'F, ..., T™™ VF are mutually orthogonal and

U TYFo XUl T7A,.

=0

Then there exists jp, 0<jy<n—1, such that u(T °F)<1/n. We set E=T F. By the same
proof as usual, we can see E, T"'E, ..., T~ VE are mutually orthogonal. Note that
(@) T""FcFUA(U...UA,_;;
(b) T"FcFUA,.
By (b), we get

EUT™'EU..uT " VYT "A,u...uT "4
=EUT'EU..uT " " EUT"FuA)U...uT " (Fua,
STHFy...uT " YFUFu..uT™"'F.

Thus we get

n—1 n—1
el G (1)
2n i=0 =0 2n

which implies property (2). By (a), we get
u(T~"E) = (T °T~"F)
< UT O F)+ (T A)+..+u(T ™A, )

n <2 Q.E.D.

The following is an easy corollary of Connes’ splitting of a model action.

LeMMA 11. Let M be a separable strongly stable factor. If a is an automorphism
of M and a. ¢ Cnt(M), then for any free ultrafilter w, there exist yEC,|y|=1, y=*1, and
u € U(M,) such that a,(u)y=yu.
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Proof. Because pg(a)*+1, a is cocycle conjugate to a®s, for some p>1, in
M=MOR, where R denotes the AFD factor of type II;, by [4, Theorem 1]. (Here s,
denotes the free action of Z/pZ on R. See Theorem 5.1 in [6].) Thus we may assume
that o is of the form a®s,. Then, we can construct a central sequence {u,} of unitaries
in R such that s,(u,)=yu,, y=exp(2zi/p). The sequence {1®u,} in ML R=.M is strongly
central, and we can set this sequence to be u. Q.E.D.

With Lemmas 11 and 12, we show that each automorphism of a fibre of the central
decomposition of the centralizer is centrally trivial if the original one is also.

LEMMA 12. In the context of Lemma 9, ag€Cnt(Ry 1).

Proof. Since 0 on €, is ergodic, we can apply Lemma 10 to get a projection e, € €,
such that

(1) e, 0(e,),...,0"'(e,) are mutually orthogonal;

@) u(E) 6%e)=1-1/n;

3) uB(e))<2n, ule)<1/n.
Suppose ay ¢ Cnt(%, ;), and choose a strongly central sequence {u,,} of unitaries in %,
such that ay(u,)—yu,—0, *-strongly as m— o, for some y€C, |y|=1, y+1, by Lemma
11. Choose a normal state ¢ on %, and a dense sequence {@,} in (Ro,1®OL*(X)),. For
each n, the sequence {u,®e,}, _, is strongly central in .#,. Thus there exists an integer
m=m(n) such that

(@) ||(a0(um)—yum)®en||f¢®ﬂ).0jSl/nz, for all j=0,...,n—1;

®) [[un®e,, - 07]||<1/n?, for all j=0,...,n—1, k=1,...,n.
Set x,=%'2) 0°(u,,,,®e,). We show {x,} is strongly central in .. First note ||x,||=1.
Next we have, for ¢ and n>k,

n—1
E j 1
“[x"’ (pk]“ < “[ej(um(n)®en)a (pk]“ < 7 - 0,
Jj=0

as n—>, by (b). We also have

”0(xn)_xn”:;®u = Hen(um(n)®en)_um(n) en”ﬁ)@ﬂ

slu(en(en))l/Z_'_‘u(en)l/Z
2 12

< 2<——) —0.
n

8-928285 Acta Mathematica 169. Imprimé le 20 aolt 1992
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Thus by Lemma 7, {x,} is strongly central in /. But we have

#

(e, ®id)(x,)—x, |}, =

o®u

n—1
2 Bj((ao(um(n))—um(ﬂ))®e")
j=0

oQu

# #

n—1
Z g j((ao(u m(,,)) —yu m(n)) ® en)

J=0

Z(1-y|

n—1
> 64u,,,®e,)
j=0

oQu o®u

1\2 = .
211=71(1=7) "= 2 Wt~ Bl

172
= |1—y|<1—%) -%—> [1-y[>0,

as n— by (a). This contradicts a €ECnt(4). Q.E.D.

§2. Preliminaries on automorphisms of the AFD factors of type III,;

For the AFD factor of type III,, we do not have the discrete decomposition, and the
continuous decomposition is rather difficult to handle. Thus we will make a different
approach based on the infinite tensor product expression. First, we show that the
ultraproduct algebra is a factor.

ProrositioN 13. In an AFD factor M of type 1L, all strongly hypercentral
sequences are equivalent to trivial ones. Therefore, for any free ultrafilter w on N, M, is
a factor of type 11,.

Proof. By the uniqueness of AFD factors of type III;, [8] and [13], 4 can be
identified with an infinite tensor product of matrix algebras. Thus, # admits an
increasing sequence {M,} of finite factors of type I and a faithful normal state ¢ such
that #(=(UM,)" and each M,, is globally invariant under {¢?}. Each M, is generated by
two unitaries u(n) and v(n) such that u(m)¥?=v(n)¥™=1 and u(n)v(n)=e"""""u(n)u(n),
where M, is isomorphic to the N(n)x N(n)-matrix algebra. So with a; ,=Ad(u(n)" v(n)),
we get an action of Z,,, XZ,,,, on / such that

N(n)-1

€,(x)= a,,(x), x€ M,

N(ny k,1=0
is a projection of norm one from /£ onto M, such that

[lx~ %n(x)”z; = S’:IIP lx—ay (x)||:;.
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Therefore, if {x;} is strongly central, then there exists a subsequence {x, } such that
Il — %’n(xkn)n’;—)O.

Suppose that {x;} is strongly central and not equivalent to a trivial sequence. With
{k.} as above, set Y»=,(x; ),nEN. If we have chosen {x«} so that

liminf [|x,— (x|l = a>0,

which is possible by passing to a subsequence because {x;} is not equivalent to a trivial
one, we get liminf|| yn—<p(yn)||ﬁ,>a>0. Replacing y, by y,—@(y,), we have a strongly
sequence {y,} such that ¢(y,)=0, lim,_, y,#0, and y, € M’. Since M, is an AFD factor
of type III;, there exists a unitary u, € M; such that

1
I3ty 621 =2
1
11 <

because 0 is in the o-week convex closure of {uy,u*| u€ UMM, ||[u, ¢| M§]|f<1/4"} by
Haagerup [13, 1.4(c)]. Since ‘p:‘pM,,@‘lef, by assumption, we have ||[u,, ¢]||<1/4".
If &, is the implementing vector in the natural cone of a standard form, we have
N, &,— &, u,li<||[u, @]|["*<1/2". We claim that {u,} is strongly central. Since {u,}
commutes with @ asymptotically, we have only to show that {u«,} is central. Given ¢>0,
and a € A, choose ag€ M; such that |la—ay||?<e and ||ao||<[|al|. Then we have

Ila, u,] &l < lI[a—ao, ] &,lI+I[ag, u,] &l
<|[(a=ay) &, u,||+[l(a=ay) [u,, &]|
+lu(a—ag) &,/ +|I[ag, ua] &,
<2lla—ayllg+2llall[|[4,, &Il +I[20, 4] &,
<2e+||af|/2"!
for n=k. Hence lim||(a, u,] &,||=0. Similarly we have lim {|[a, u,]* §,||=0. Thus {u,} is

central. On the other hand, {«,} does not commute with {y,} asymptotically. Hence
{y.} is not hypercentral. Q.E.D.

We will study how an automorphism of the AFD factor of type III; acts on its

tensor product factor of type III;, (0<A<1). To this end, we need the following Lemma
14 and Corollary 15.
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LemMA 14. Fix 0<A<1. If {e; ; (k)| 1=i, j<2} and { f; ;(k)| 1<i,j<2} are respectively
mutually commuting sequences of 2X2-matrix units in a separable factor M such that

lim llye; ;(K)—A"e, (k) || = 0;
Jim N, ; ) —AF, ; (k) wl| =0,
then there exists 0 € Int(M) and an increasing sequence {k,| n€N} in N such that

ofe,; (k) =f,;(k), nEN, ij=1,2.

Proof. Let {y;} be a dense sequence in the space of normal states on .. Passing to
subsequences, we assume that

Dy e, (0—Aie, ;) || < +;
k=1

AW, S, =2, (k) )| < +o
k=1

for i,j=1,2 and vEN, so that the subfactor # (resp. 2) generated by {e; ;(k)| KEN,
i,j=1,2} (resp. {f;;(k)}) decomposes ./ into a tensor product: M=PRP° (resp.
M=2Q2°) by [1, Theorem 1.3]. Let w be a fixed free ultrafilter on N. Since every
strongly central sequence of 2 (resp. 2) is strongly central in #, ?, and 2, are both
von Neumann subalgebras of .#,,. Since 2, (resp. 2,) is a factor, all tracial states on
take the same values on ?, (resp. 2,). This means that to prove the equivalence of the
projection E and F represented respectively by {e;;(k)} and {f;,(k)} we need only to
show that E and F take the same trace value. Let ¢ be a faithful normal states on /.
Then we have

1 (E)= Pm ple (k) = ,l(im @leyy(k) €,(k))
= lim A’lqy(en(k) elz(k))

k—a

so that 7,(E)=1/(1+4). Similarly, 7,(F)=1/(1+4). Hence E and F are equivalent in /,,.
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By induction, we construct sequences {k,} =N and {u,}<=%(A) such that
(a) [umf;',j(kv)]=0’ 'V=1, 29 -'-9n_1;
(b) with v,=u,u,_,...u;, v,e ;(ki=f, ; k), v=1,2,....n;

©) |y, Ad(,)—y,-Ad,_)||<27", |lv,- Ad@H -y, Ad@wE lI<2™", v=1,2,...,n.
Suppose that {k,} and {«,} have been constructed for v=1,2,...,n—1. Let

N={f, k) v=1,2,...,n=1, i j=1,2}".

Since v,_; ¢, (k) vr_=f, ;(k,), I<svsn—1, we have v,_, e, ;(k)v}_; € Nfor k>k,_;. Let E
and F be the projections of ¥, considered above, corresponding to

{Un—l ell(k) v:zk—ll k>kn—1} and {\fll(k)| k>kn—1}'

Then E~F in &,. Hence there exists a strongly central sequence {w;}, passing to a
subsequence if necessary, such that

wiw,=v,_e (v ,, k>k,;

n

wwi = f,(k).

Put

2
Xy = zfj D w, v, € (kyvy_y.

j=1

Then {x,} cU(N') is strongly central. If k is sufficiently large, then u,=x, satisfies the
above (a), (b) and ().

By (c), {Ad(v,)} is a Cauchy sequence in Aut(#). With o=lim,_ Ad(v,) € Int(#),
we have ~

ole; ; (k) =1, ; (k). Q.E.D.

CoRroLLARY 15. Let M be a separable factor. Let P and 2 and 2 be AFD
subfactors of type 11I;, O0<A<1. If M=PV P and M=2V I are both tensor product
factorizations such that P°=9°=M, then there exists 0 € Int(#) such that o (P)=2.

Proof. The proof is similar to the first part of the proof of [4, Proposition 2.2.3].
Q.E.D.

Next, we consider a centrally trivial automorphism of the AFD factor of type III;.
We show that the automorphism splits on a tensor product factorization.
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LEMMA 16. Fix 0<A<1. Let M be an AFD factor of type I11;. For each a € Cnt(M),
there exists a unitary a € M and a tensor product factorization M=P,Q P, such that

(@) Ad(a)-a=a,®a, relative to P,®P,;

(b) P, is an AFD factor of type 111;; a, is of the form Ad(u)~a‘;: with u € WPy,
T,€R and ¢, a faithful normal state on Py;

(c) Po=M.

Proof. By assumption, there exists a mutually commuting sequences {e; ;(k)} of
2X2-matrix units such that

lim lpe, ; (k)—Ae, ; (k) p|| =0,

for a normal state y on /(. Passing to a subsequence, we may assume that {e; ;(k)}
generates an AFD subfactor ?; of type III; such that #=P &P and P{=M. Since
a€Cnt(M), and {e) (k)} and {es(k)} are both strongly central, we have

,{im lote; (k) —e; (Bl =0, i=1,2.

We want to show that there exists y €C, |y|=1, such that limk_ml|a(e12(k))—ye12(k)||;',=0.
First, observe that {a(ey(k))e,(k)} is strongly central. Fix a free ultrafilter w on N, and
set

E=n,{e,;(k)}), U=um,{ale,k)e,;(k)}),

where 7, is the canonical map from the C*-algebra of strongly w-central sequences
onto . By Proposition 13, we know that ./, is a factor. To prove that U=yE for some
7€C, ly|=1, we show that U is in the center of #,, ¢. Let X be an element of /#,, £, and
represent X by a sequence {x(k)} such that x(k)=e; (k) x(k)e; (k). Set y(k)=ez x(k)e2(k).
Then {y(k)} is strongly w-central. Now, we see that u and X commute as follows:
XU = z,({x(k)ale 1K) e (K))

=z, ({a(x(k)e(k)e, (K)}), since a €Cnt(M),

= x,({ale,(k)y(k)) ey (k)})

=z ({ale (k)y(k)) ey (k)})

= ﬂw({a(e12(k))32](k)x(k)}) =UX.
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Therefore U=yE for some y€C, |y|=1. This means that we have a subsequence
{ei j(k,)} such that

lim |ja(e (k) —ve lZ(kn)“i =0.

n—ow
Passing to a subsequence, we obtain a sequence {e; ;(k)} of mutually commuting 2X2-
matrix units such that

lim [[ye, ;(K)—A"e, () yl| = 0;
lim [la(e (k) —ve ), = 0;
lim [latex (k) —7ex (), = 0;
lim Jlate, ; () —e; (Rl =0, i=1,2.

We now adopt the arguments of Lemma 14, In the construction of the sequences
{k.} and {u,}, we require

@) [un, e; ;(k)]=0, 1sv<n—1;

(b) with v,=u,u,_,...u,, v,ale, ; (k) vi=y' e, ;(k,), 1<v<n;

© lu,~ 112"

Condition (c) guarantees the convergence v=Ilim
Ad(v)- ale; ; (k) =y'""e; ; (ky).

Now, Ad(v)-a leaves the von Neumann algebra &, generated by {e; ;(k,)|n EN}
globally invariant. If we choose further a subsequence from {e;;(k,)} denoted by
{ei;(k,)} again, then %, factorizes # and Pi=AM, and also ?; is an AFD factor of
type III;. We know that Ad(v):a is of the form a;®a, relative to the factorization
M= 97’1® 1. Furthermore, if ¢, is the periodic state on #,, then ¢ is given by oq'}; where
y=a""T Q.E.D.

v, €EUM) and we have

n-->% “n

We will make the above splitting twice. The next lemma shows a relation between
the two centrally trivial automorphisms obtained by tensor product factorizations.

LEMMA 17. Suppose P and 2 are AFD factors of type 111, and 111, respectively,
0<A,u<1, and that logi/logu € Q. Let ¢ and y be respectively faithful normal states on
P and 2. Then (a) 05®id ¢ Cnt(PR ) unless logu=Q2nnlog)/(TlogA+2xm) for some
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m,n€Z; (b) if 0¥QidECnt(PX2), then 02®id~0%.®0¥., where T'=T+2xmflogA (m
as in (a)).

Proof. We assume TlogA & 27Z, otherwise o%€Int(P). If
logu=Q2nnlogA)/(Tlogi+27mm) for some m,n€Z,

then we set

, _ 2nn _ TloghA+2mm
T = = .
logu logA

It then follows that o%.=0% mod(Int(?)) and o¥% €Int(2). We now assume that
logu+Q2nnlog1)/(TlogA+2am) for any m, n€Z. We will derive a contradiction.
Setting T=R/(27Z), we define a subgroup:

A= {(an log ,leogA) ~ ke z}
logu

of the Cartesian product T?. Let B=A. First we show that there exists x €T, x+0, such
that (0, x) € B. Suppose that (0, x) € B implies x=0. Since the projection of A to the first
coordinate is a dense subgroup of T by the irrationality of logi/logu, the projection of
B to the first coordinate covers the entire T. Hence the assumption that (0,x) ¢ B for
any x+0 means that B is the graph of a continuous homomorphism of T into T, so that
there exists n€Z such that B={(a, na)| a €T}. In particular, we have

TlogA=2nn log 4 —27m
logu

for some m€Z, which means precisely that logu=(27nlogi)/(TlogA+2nm), the case
we have excluded. Thus, there exists a non-zero x €T such that (0, x) € B. We choose
and fix such an xET. Since B=A, there exist two sequences k(n), i(n) of integers such
that

2rk(n) 1282 _ 2 7im)—>0 in R;
logu

k(n)TlogA—x inT.

We may take both k(n) and I(n) in N. Note that the above two convergences mean that
A1 and AT et %1. Let P, and 2o be AFD factors of type III; and III,
respectively. Choose faithful normal states @y on %, and y, on 2 such that their
modular automorphism groups ¢*° and ¢*° have respectively the period ~2nflogA and



STRUCTURE OF THE AUTOMORPHISM GROUP OF AN INJECTIVE FACTOR 121

—2nflogu. It then follows that the centralizers %, % and 2, Yo have both trivial relative
commutants. Suppose k, [ EN are given. Then there exist isometries u; € %y and v; € 2,
such that

— 1k $r — e .
Qo= Au, @y, uju, =1, ulul—-eleg’o,%,

_ Kyy * .
Yo = WU, ViU =1, 0101‘fl€g’0,w0’

In the above procedure, the projections ¢, € %, , and f,€ 2, , can be arbitrary subject
to the condition: @g(e;)=A* and yw(f)=4'. Considering the reduced algebras, P, I—e, and
90,1-e1 and repeating the same process inductively, we obtain sequences of partial
isometries {u,} =%, and {v,}=2, such that with e,=u,u} and f,=v, v},
(1) {e.} and {f,} are both orthogonal sequences in %, o, and 2o, respectively;
@ @ou,=A'u, @y, upu,=1-L72[ e, Yov,=u'v, vy, v3v,=1-Z1'f;

Set w=2;_ u,®v}€ P,®9,. Then we have
(@o®yg) w = 2'u"w(p,®yy),
(0P®id)(w) = 1w,

Since @,(e,)=A"(1-4%""1 and y,(f,)=#'(1—)*"!, we have

(”w”io®w0)2 = _;—(¢0®w0) (2 (u:un®vnv:+unu:®v>:vn))
n=1

Nlt—k

Z ((l—ﬂ.k)”—l,ul(l—/,t')"_l+/1k(1 —}.k)n—l(l _'ul)n—-l)
n=1

My 1

>_".

1 A
) mk_i_ut_/lkﬂl/ 7
With 2 =%,,2, =9, 9,=@,, and ¥,=v,, we regard
=r® = ®
@.or=11 (2.0, (2v}=]] (2,v.)
n=1 n=1

For the sequences k(n) and /(n) obtained in the first part of the proof, we apply the
above construction to get w(n) in the nth factor 2,892, ?®9. Because

(@®y) w(n) = Ay~ Py(n)e®y),
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) ™1, win) € 2,89,, and ||w(n)||$®w> 1/V 2, we get a non-zero strongly central
sequence {w(n)} in PR 2. But (¢Z®id)(w(n))=1""Tw(n) and 1*?7—¢*+1, contradict-

ing the assumption 0%®id € Cnt(2&® 9). Q.E.D.

§ 3. Proof of Theorem 1

We know Int(#)cKer(mod) by [11] and Ad(u)- 3% ECnt(A) by [3]. Thus we need only
prove the other implications.
We handle three cases of type IIl,, ITI; (0<Ai<1), and III;, separately.

Proof of Theorem 1 for AFD factors of type IIl,. (i) If a is in Ker(mod), then we
may assume the three properties in Lemma 2. Because i on A is a semifinite a-
invariant trace and  is isomorphic to L*(X)® %, ;, where Ry ; is the AFD factor of
type I1.., we know a|,€ Int(X) by Corollary 6 in [4]. Thus there exists a sequence {u,}
of unitaries in A such that af,=lim,_, Ad(«,). Since fa=a8, {u,0(u,)*} is in N, so
there exists a sequence {v,}<W, such that x ({u,0(u,)*})==,{v,0,)*}) in N, by
Lemma 4, where 7, is as in the proof of Lemma 16. Replacing {u,} by {v}u,} and
choosing a subsequence, we may assume a|,=lim,_,,Ad(«,), u,—6(u,) approaches
zero *-strongly, and u,€ U(N). We prove a=lim,  , Ad(x,) in Aut(#). It suffices to
prove that ||@-a—uf¢u,||—0 and ||p-a™'—u, pu}||—0 for a dense subset of ¢ in M,.
Let & be the normal conditional expectation of # onto N. We also define
EX)=&,xU U, kEZ. Then {¢- €| 9 € M,, kEZ} is total in M, Fix x€ M and kEZ.
Setting z;=&(xU %) E ¥, we have

n—

[x, @ 8- a—ut(e- EJu,)| = [(a()~u,xul, @ €,)|
= Kalz) U'~u,z, Uz, 9)|
= [{(alz)—u,z,ufu, 0w U, @)|
< [(alz) — upzuy U+ (a2, (u,84u) — ) Utg)|
< ||U*gly- (a—Ad(,)|| - lzl|+ |, 8G) = DU gl ||z,
which converges to zero uniformly in x with ||x||<1. The other convergence follows
similarly. This completes the proof.

(i) By Lemma 5 in [4] and Lemma 12, we know that a| “, is inner. So by inner
perturbation, we get a| Mw=id. Thus a must be an extended modular automorphism, up
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to inner perturbation, by Theorem 3.1 and Theorem 5.5 in Haagerup-Stgrmer [14].
Q.E.D.

Next we consider AFD factors of type I1I; (0<A1<1). We need a lemma.

LEMMA 18. Let Ry,1 be the AFD factor of type 1l... If B is an action of a discrete
countable abelian group G such that B~Y(Cnt(M))=H, then for any free ultrafilter w on
N and any character p€ (G/I'I)A=HL, there exists x€(Ry1)o, x+0 such that
B;)=(g,p)x, g€G.

Proof. By Theorem 2.9 in [18], an appropriate product type action of G/H on the
AFD factor of type II; splits from § as a tensor product factor. Q.E.D.

Proof of Theorem 1 for AFD factors of type III; (0<i<1). (i) By [11, p. 554], we
know that Int(.#)cKer(mod). Suppose mod(a)=1, a € Aut(4). Then for a lacunary
weight ¢, we have ¢-a-Ad(u)=¢ for some u€ U(M). Replacing a by a-Ad(u), we
assume ¢-a=@, which implies that a and {0¥} commute. Hence a(¥)=A/ in the
discrete decomposition M=NXeZ, N =R, ,, and a(U) U*=v € N for the implementing
unitary U. By the stability of @ again, there exists w € U(N) with v=w*0(w), which
means that Ad(w)-a leaves U fixed. Replace a again by Ad(w)-a, so that ¢-a=¢ and
a(U)=U. Since ¢|,=7, mod(a|,)=1 so that a;=a|, € Int(¥) by Corollary 6 in [4]. Let
{u,} be a sequence in UU(N) such that gy=lim, , Ad(u,) in Aut(¥). Since 8 and ay
commute, we have also ay=lim,_,.. Ad(6(u,)). Hence {u;0(u,)} is strongly central in V.
By Theorem 2.1.3 in [4], there exists a strongly central sequence {v,} such that
{u30(u,)}~{v}6(v,)}. Hence we have the *-strong convergence of {u,v}—0(u,v¥)} to
zero, and

n—>%

lim Ad(u,v}) = lim Ad(u,) Ad(v}) = ay.

n—w n—o

By an argument similar to the type IIl, case, we get lim, ,, Ad(u,v})=a in Aut(#).
(ii) We know the inclusion: ¢?(R) - Int(#)=Cnt(#) by [3, Proposition 2.3]. Suppose
a€Cnt(M). Let =7 for a trace T on N. We first prove that mod(a)=1. Suppose
that mod(a)*1. Then we have ¢-a~ug for some A<u<l, i.e., F ~log #=mod(a). Thus
¢-a-Ad(w)=up for some u€ UM). Replacing o by a-Ad(u), we may assume
@ a=up, A<u<1. It then follows that a and {0¥} commute, so that v=a(U)U*EN. As
seen in the proof of (1), v=w*f(w) for some wE€ U(N) and Ad(w)-a leaves U fixed.

Replacing a by Ad(w)-a, we can assume that a is the canonical extension of ay=al,
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i.e., a(U)=U. Since ¢-a=ugp, v-ag=ut. Furthermore, aoand 6=6_,,,; commute. Since
mod(a,) € (log) Z, a, , is not trivial on the fixed point subalgebra (N,)? of N, for a free
ultrafilter @ on N by Lemma 18. But this means by Lemma 7 that a does not belong to
Cnt(A). Therefore we have proved mod(a)=1.

After all, we come to the situation that ¢-a=¢ and a(U)=U. We claim that
0o is inner. Suppose that ao ¢ Int(X). Let 8, ,=ag 6™, (n,m)€ Z*. By the assumption,
Zx{0}¢p"'(Int(¥))=H. By Lemma 18, a, ., cannot be trivial on (W,)%, which means
a ¢ Cnt(#). Thus ag=Ad(x) for some u € U(N). Since 6 and a, commute, 8(u)=A"u for
some s €R, so that Ad(u) U=1""U. Hence Ad(u*)-a is trivial on # and Ad(u*)-a(U)=
A®U. Therefore we conclude that Ad(u*)-a=0?. Hence a=Ad(x)-o?. Q.E.D.

We finally turn to the III, case. We use splitting factors of type III;, 0<A<I.

Proof of Theorem 1 for the AFD factors of type 111,. (i) Let a € Aut(#) and ./ be
an AFD factor of type III,. Fix 4, 0<A<1. Since / is strongly A-stable, it contains a
sequence {e; ; (k)| 1<i,j<2, kEN} of mutually commuting 2X2-matrix units such that

lim [|ye;, (k)—Ae; ; () y|| =0,

for every normal state i on # by [1, Theorem 1.3]. Apply Lemma 14 to {e; ;(k)} and
{fi;(k)} with f; ;(k)=a(e; ;(k)) to find o€ Int(#) and a sequence {k,}<N such that
ole;(k,))=ale; (k). To prove a € Int(#), we may replace a by o™ 'a since Int(#) is a
subgroup. Then we come to the situation a(e; ;(k,)=e; (k,). Considering further a
subsequence, we may assume that {e; ;(k,)} generates a subfactor 2 of type III, which
factorizes . tensorially in such a way that #(=%°. With the decomposition /(=2P& P°,
a is of the form: a=id,®aq| po- Repeating the same arguments for {#?°, al,.} with
0<u<1 such that log1/logu ¢ Q, and obtain a decomposition of an Int(# )-perturbation
of a:

M=PRIVN, N=UM;
a= 1d9®9®a|‘a.

We know, however, that P®2=4(. Therefore, a is, modulo Int(.#), of the form:
M= MBI M, a~a,®id. Let M, be the replica of M and write

a=T1° (4,9},
n=1
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where @,=g is a fixed faithful normal state on ., for ech n, and choose an approxi-
mately inner automorphism o¢,, which exchanges .; and ./, and leaves the other
components fixed (see {12, Lemma 2.1]). We assume that a is of the form a,®id, where
a; € Aut(A) and id acts on H®;’,°=2 M,. Since Int(#) is a normal subgroup of Aut(.#),
ao,a”'0;" belongs to Int(#). But ag,a o' is of the form:

ao,a” o' = 0,®id®a; '®id,

where a;' appears on the nth component. Therefore, it remains only to prove that for
any a,; € Aut(/#,) and a decomposition

a=TT1° st 0,)
n=1

such that M,=AM=M and ¢@,=¢@, there exists a sequence {u,}cU(M;) such that
lim,_,, o, ((Ad(x,) a)®id)- o, '=id in Aut(.#(), because this will show

0,®id = lim(a,®id)- 0, (a; ' ®id) - 07 ' 0, (Ad(u*) ®id) - o}, ! € Int(M).

n—x

By the density of the orbit of ¢ under Int(.#;) by [10, Theorem 4], there exists a
sequence {u,}<U(M,;) such that |jg- Ad(u,)- a;—¢||<1/2". In the space of normal states
on A, the set of states of the form: y®I®>_, ., @, with ¥ a normal state on I1®;_, 4, is
dense. Then we have for n>N,

¥® H® @y~ <zp® ]_[® (pk> -0,(Ad(,) @) ®id) - ;"

k=N+1 k=N+1

= |lp—@-Ad(x,)-a| <% —0.

This shows that lim,_, 0, (Ad(x,)* @,) ®id)- o, ' =id.

(ii) Let 4 be an AFD factor of type III; and a ECnt(4#). By Lemma 16, there
exists an AFD subfactor 2, of type III; such that #M(=P,QPS, P(=M and a~a,®a’
where ‘‘~"’ means congruence modulo Int(#). Since a;®a’ is in Cnt(A#), we have
a; €Cnt(%) and a’ €Cnt(#P]). Applying the same arguments to a’, we obtain a factor-

ization of {P{,a'}:

P=P,02, =M o ~a,®,
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where %, is an AFD subfactor of type 1II, with logAi/logu€ Q. Thus we obtain a
factorization:

M=PRPR2, a~a®a,®p.
Since a; €Cnt(%,) and a, € Cnt(%,), we have
a,~o7 and a,~07,

where @, and ¢, are respectively normal states on ?; and %,. Sincea,®a, € Cnt(%@?/’z),
a‘ﬁ@oﬁj must belong to Cnt(#&®%,). Since a‘f'12®0f272=0f‘$% is an element of
Cnt(P, Py, U%I—T2®id must belong to Cnt(P,®%,), which means that we may assume
T,=T, by Lemma 17. Hence we get the decomposition: a~a}' ®07®p. Since M=P,OP,,
with p=¢;®¢, we come to the situation that M=P®2,a~c?®p, and M=P=2. Now, let
o be the flip of P& after identifying 2 and 2 i.e., o(x®y)=y®x. Since o €Int(.#), and

Cnt(4) and Int(.#) commute modulo Int(.#), we have
0%-B7'®B 0% 1 = (05®P) 0 (6§®P) ™" 0 EInt( M),
which means that o§~p3. Thus, we finally conclude
a~ 04®p ~ o¥®ad = o%%?.
This completes the proof. Q.E.D.

Remark 19. Haagerup-Stgrmer proved in Theorem 5.5 of [14] that an automor-
phism a of a general separable factor  of type III,, 0<A<1, is pointwise inner if and
only if there is a unitary u € # and an extended modular automorphism ¢¥ such that
a=Ad(u)-6¥. Together with Theorem 1(ii) here, thus we know that an automorphism
an AFD factor of type III;, 0<<A<1, is centrally trivial if and only if it is pointwise inner.

§4. Actions of discrete abelian or finite groups

As an application of Theorem 1, we will classify actions of discrete (countable) abelian
or finite groups on the AFD factor of type 1I1,, up to cocycle conjugacy. This completes
the final step of the classification program of actions of such groups on injective factors
initiated by Ocneanu [18] and Sutherland-Takesaki [20], though the classification of
discrete amenable (non-abelian) group actions on the AFD factor of type III, is still
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open. This result will be used for the conjugacy classification of compact abelian group
actions on AFD factors in Kawahigashi-Takesaki [17].

Let G be a discrete countable group, and a be an action of G on the AFD factor
of type III,. Let N=N(a)=a"'(Cnt(.#)), then N is a normal subgroup of G and we can
define y, € A(G, N, T) and a homomorphism v,: N—R as on page 437 in [20]. (Here v is
actually a homomorphism into R because the flow of weights is now trivial.) Then we
get the following theorem, corresponding to Theorem 5.9 in [20]. (For terminology and
notations, see {16] and [20].)

THEOREM 20. Let M be the AFD factor of type 111,, and let a, 8 be actions of a
discrete countable group G on M. Then if G is either abelian or finite, a and B are
cocycle conjugate if and only if

(1) N(@)=N(B);

() (Kar V)=, vp).

We need the following lemma first.

Lemma 21. Let a be an action of a group G on a factor M of type 111, and ¢,y be
a-invariant dominant weights on M. Then for a homomorphism v:G—R, a, 0}, is

14

cocycle conjugate to ag-of(g).

Proof. Note that a,- 0%, and ag-aff’(g) are actually G-actions because the modular

automorphism groups commute with a. Since ¢ and vy are both dominant, there is a
unitary v € such that y=¢- Ad(v). We have
¢-AdW) =y =y -a;' =g AdW) o'
=9 a,'Ad(,v) = ¢ Ad(a, ),

thus va,(v*) € M,. Then

0y 0% = a,  Ad(v*) 0%, Ad(v)
= Ad(a,(v¥)- a, 0%,  Ad(v)

v(g)

= Ad(v*)- Ad(vag(v*)) ‘A, 0y Ad(v).

Here va,(v*) is an a-cocycle, but this is also an a-o®-cocycle because va,(v*) € M,.
This shows the desired cocycle conjugacy. Q.E.D.
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Proof of Theorem 20. The necessity of the two conditions follow from Proposition
5.7 in [20]. Thus we prove the other implication. We write v for v,=v; and extend this to
a homomorphism of G into R. This is possible when G is finite as v is then trivial, and
also when G is discrete abelian by divisibility of R, and we denote the extension by v
again. Choose an a-invariant dominant weight ¢ and a S-invariant dominant weight ¥ by
Lemma 5.10 in [20]. Define two new actions by a,=a, 0%, and Bg=,3g-a'fv(g). These
are actually actions by the invariance of ¢, ¥. Now we have

& '(Int(M)) = G~ (Cnt(#)) = F7'Int(M)) = B~ (Cnt(M)) = N(a) = N(B),

and y =Xoa=Xp=Xg> thus by Theorem 2.7 in [18], & and B are cocycle conjugate. Then
the second dual actions G®Ad(g,) and f®Ad(g,) are conjugate on M® L(H(G)), where
o denotes the right regular representation of G. Thus there exists an automorphism
m of MBL(P(G)) such that 7-(6,®Ade,) 7" '=p,®Adg,. For the Tr on L(X(G)),
@®Tr is (G®Adg)-invariant and y®Tr is (F®Adg)-invariant, hence (y®Tr)-x is
(@®Adg)-invariant. By Lemma 21, ¢, ®Ad¢,=(a,®Ado,) -a‘fgf’ is cocycle conjugate
to (6,®Adg,)-0¥S™ " Now

»(g)
(@,®Adp,) oYW "= 771 (f,®Ade,) m-a"-o}E" -
— 7 (B,®Adey

which shows the cocycle conjugacy of the second dual actions a®Ade and f®Ad .
Then a and B are stably conjugate, hence, cocycle conjugate because the factor . is
now infinite. Q.E.D.

ProrosiTiON 22. For any countable discrete group G, any normal subgroup N of
G, and any choice of invariants (x, v) € A(G, N, T)xHom(N, R), there exists an action
a of G on the AFD factor M of type 111, with N(a)=N, (xa, v.)=(x, V).

Proof. Choose 4, u€(0, 1) with logA/logu € Q and let 2, 2 be AFD factors of type
I11;, 1L, respectively. Viewing T and R imbedded in the obvious way in UF(P),
H'(%(P)) (and similarly for 2—see [20, p. 442 for notations]), we note that d;(x)=
0,(v)=0, where 0,,5, are as in [20, p. 421]. Thus by [20, Theorem 5.14], there are
actions B8,y of G on %?,2 with invariants (N, y,v) and (N,0,v) respectively. Thus
a=p®py is an action of G on P& 2=, with invariants (N, y, v). Q.E.D.

Remark 23. If the group G is abelian in Proposition 23, then unlike the other cases,
the existence of an action a of G on an AFD factor # of type IIl; with a prescribed
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invariant (N, x, v) is very simple, thanks to the simple structure of Aut(/), as follows.
Let ¥ be an element of A(G, N, T) and v € Hom(N, R). Extend first » to an element of
Hom(G, R), denoted by v again. Let m be an action of G on the AFD factor % of type
II, with y,=y. The action a defined by

= mg®0f(g)’ 8€G,
on R M= has precisely the invariant:
(N(@), 245 Vo) = (N, 1, v).

Remark 24. If we directly compare a,=d,- o}, and ﬁg=5g-af(g) using the Radon-
Nikodym cocycle (D(y-7): D,) in the above proof, we get a, and B, are conjugate in
Out(A), which is enough for G=Z. But for general groups, this method does not
produce a cocycle, and we have to use the second duals as above.

As an application, we have the following:

CoRroLLARY 25. For an action a of a discrete abelian or finite group on the AFD
factor of type 111, there exists a cocycle perturbation f of a such that there is a Cartan
subalgebra which is globally invariant under §.

Proof. By Theorem 5.1 in [19] and by Theorem 5.9 in [20], we consider only the
case of type III;. Because the modular automorphism of an ITPFI factor fixes a Cartan

subalgebra, we get the conclusion by Remark 23. Q.E.D.
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