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1. Introduction and results

A continuous function w: [0, +oc)—R with w(0)=0 will be called a majorant if w(t) is
increasing and w(t)/t is nonincreasing for ¢>0. If, in addition, there is a constant C(w)>0

such that s -
/ g(—t—)dt-}-éf (f—)(t—)dtSC(w)~w(6)
o t s t°
whenever 0<d<1, then we say that w is a regular majorant. Given a majorant w and
a compact set ECC, the (Lipschitz-type) space A, (F) consists, by definition, of the
functions f: E—C satisfying

def {|f(21)~f(22)|

= : 21, E, < 00.
Il flla.cE) = sup ) 21,722 € zlyézz} 00

Now let D denote the unit disk {|2|<1}, T its boundary and DY DUT. Further,
let A stand for the algebra of holomorphic functions on D that are continuous up to T.
We shall be concerned with the space

A, ¥ AnA, (D),

which in fact coincides with ANA,,(T) (for regular majorants, this last statement follows
from Lemma 4 below; for the general case, see [T}]).

The purpose of this paper is to characterize the functions of class A, in terms of
their moduli (the w’s involved are assumed to be regular majorants). To this end, we
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introduce several equivalent norms on A, each of them depending only on the modulus
of the function in question.

In order to state the results, we require some more notation. With each point z€D
we associate the Poisson kernel

def 1 — 12: |2
P, =1 _2 C € T’
O jeap
and the harmonic measure dy, dzesz dm; here and throughout, dm is the normalized arc
length measure on T. The Poisson integral of a function f€C(T) is defined, as usual,
by

P(z) % /T Q) dus(¢), z€D,

and by
PAOE F(Q), CeT.

In case f lives on a larger set containing T, Pf will stand for P(f|t). Finally, given two
nonnegative (possibly infinite) quantities X and Y, we write X <Y to mean that there
exists a constant C'>0 such that

ClXLKYLCX;

the constants in this paper are allowed to depend only on w. We begin with the following
simple result.

THEOREM 1. If f€ A and if both w and w? are regular majorants, then
1
By =< sup ——{P(|f13)(z)—=|f(2)|*} /2. 1.1)
17 lia. B) zegw(l—IZI){ () -1 ()"} (

The norm appearing on the right-hand side of (1.1) can be viewed as an analogue of
the so-called Garsia norm on the space BMO (see [G, Chapter VI] or [K, Chapter X]).
The proof of Theorem 1 is fairly elementary (see §3 below), but the point is that the
assumptions imposed on w are somewhat too restrictive. For example, among the majo-
rants of the form w{t}=¢*, only those with 0<a<-,1; satisfy the hypotheses of the theorem.
Moreover, letting f(z)=2z and w(t)=t* with $ <a<1, one observes that f€A,,, whereas
the right-hand side of (1.1) is infinite. Thus Theorem 1 becomes false if one drops the
assumption on w?.

This apparent defect is dispensed with in the next theorem, which applies to an
arbitrary regular majorant w (and, in particular, to w(t)=t* with 0<a<1). We find
it quite spectacular that dealing with higher degrees of smoothness makes it so much
harder (see §3) to introduce the sought-after modulus-dependent norms.
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THEOREM 2. Let fe A, and set

def =
¢(2) = 1f(2)l, zeD.
Given a majorant w, consider the quantities

. Po(z)—p(z)
N d=f MRS ST
1(/f) ||<P||AM(T)+f‘e‘g w(1=l2])

def
N2 (£) = llollagcm +Hellw, rad,

where
lellw,raa = S\lp{l-(e(i)(ltp—))l :CeT,0<r< 1},
and
N3(f)  llella, -
If w is regular, then
1flla, @) =< N1(f) = N2(f) < Ns(f), (1.2)

the constants involved being either numerical or dependent only on w.

In particular, taking the endpoints of (1.2), one obtains

£l A, @y < 112 D>

which looks tantalizingly (and perhaps deceptively) simple. However, the author knows
no simple proof of this fact.

Further, Theorem 2 enables us to derive exhaustive information on the canonical
(inner-outer) factorization of A, -functions. Let us recall that, given a nonnegative func-
tion ¢ on T with log o€ L1 (T, dm), the corresponding outer function is defined by

def

0,0(2) % exp ( / 22 108 0(0) dm(()) 2€D.

If p€C(T), then O,€ H® and lim,_,;- |Oy(r¢)|=p(¢) everywhere on T (cf. [G, Chap-
ter II]). Recall also that a function §€ H* is called inner if lim,_,,- |§(r{)|=1 for m-
almost all (€T.

‘We proceed by pointing out two corollaries of Theorem 2. One of these characterizes
the outer functions lying in A, in terms of their moduli on the boundary, while the other
one describes the interaction between inner and outer factors.
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COROLLARY 1. Let w be a regular majorant. Suppose that €A, (T), ¢>0, and
log p€ L1(T,dm). Consider the extension of ¢ into D given by

go(z)d=efexp</rlog<p((;)duz(()>, zeD.

The following are equivalent.
(i) O, €A, .
(if) Pp(2)—p(2)=0(w(1-|z])), 2€D.
(iii) p({)—@(r¢)=0(w(1-r)) as r—1~, uniformly for all (€T.
(iv) e, (D).

To prove Corollary 1, one merely notices that O,€ A4, |O,|=¢ on D, and applies
Theorem 2 to f=0,,. Writing out the conditions N;(0,)<oo with j=1,2,3, one arrives
at (ii), (iii) and (iv), respectively.

The next consequence of Theorem 2 will be stated now and derived in §3 below.

COROLLARY 2. Let w be a regular majorant. Suppose that F€A and 0 is an inner
function. The following are equivalent.

(i) FOeA,.

(ii) FeA, and

w(l-|z])
(iii) FeA, and
. w(l-r)
F<<>=0(oé‘;f<1mﬂ)’ (et (14)

In connection with Corollaries 1 and 2, we would like to mention some previous
results on the canonical factorization of A,-functions. In the special case where w(t)=t,
0<a<1 (let us denote the corresponding spaces A, and A, by A® and A®), Corollary 1
was recently obtained by the author [D3]. On the other hand, in [D1] and {D2] the author
established the A®-version of Corollary 2, part (i) < (ii); a simpler proof was suggested
later by E. M. Dyn’kin [Dyn]. In fact, the present paper reflects the author’s attempt to
develop a unified approach to his earlier results and to reveal the underlying mechanism
(now it seems to be described by the new-born Theorem 2). Our current techniques
are different from those of [D1] and [D2]; they are largely inspired by [Dyn], the main
ingredient being the so-called pseudoanalytic extension.

An alternative study of the inner-outer factorization of A,-functions is due to
N. A. Shirokov (see [Shl] and [Sh2]). We cite some of his results as Theorems A and B
below, so that the reader might compare them with our Corollaries 1 and 2, respectively.
The w involved is assumed to be a regular majorant.
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THEOREM A. Suppose p€A,(T) is a nonnegative function with [logpdm>—co.
For z€D, put
def
M (2) = max{p(¢): C€ T, |(—2| <2(1-[2])}

and consider the set

Q¥ (zeD: M(z) >w(1-|z|)}.

In order that O,€A,,, it is necessary and sufficient that

sup/
zEQ

THEOREM B. Suppose that F€A and 0 is an inner function. Denote by o the
singular support of 6 (i.e. the smaliest closed subset E of T such that 0 is analytic
across T\E). In order that FO€A,, it is necessary and sufficient that F€A,, F|,=0
and

M(z)
log W’ dp.({) < 0.

F(O=0w(0'QI™"), ¢e€T\o

The A®-version of Theorem A is contained in [Sh2, Chapter II}; for generic regu-
lar w’s, the proof is essentially the same. Theorem B can be found in [Shl], along with
an earlier (and more cumbersome) version of Theorem A. When suitably modified, The-
orems A and B remain valid for higher orders of smoothness, e.g. for A®-spaces with
a>1 (see [Sh2]).

We remark that both results and techniques of [Sh1], [Sh2] seem to be quite different
from ours.

As a final application of Theorem 2, we use it to give a new proof of the follow-
ing (essentially known) result, sometimes called the Havin—-Shamoyan—Carleson—Jacobs
embedding theorem.

THEOREM 3. Let w be a majorant such that w(t)dgw(\/f) is a regular majorant.
Suppose that p€A,(T), ¢>0, and log o€ L' (T,dm). Then O,€Ay and

104 a5, < const-gllaz) (1+ /T log '[j(“g dm(o), (L5)

where ||<p||ood=efmax-r ¢ and const depends only on w.

This theorem was proved, in a somewhat more general setting, by V.P. Havin [H];
the estimate (1.5) was not, however, stated explicitly. It was also shown in [H] that,
under the hypotheses of the theorem, the conclusion O,€ Ay, could not, in general, be
improved. The A*-version of Theorem 3, with 0<a<1, had been obtained earlier by
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Havin and Shamoyan [HS] and, independently, by Carleson and Jacobs (unpublished).
Alternative proofs of Theorem 3 (except possibly for the estimate (1.5)) and of its A®-
version with a>1 can be found in [Sh1] and [Sh2, Chapter II].

Our proof of Theorem 3, based on an application of the norm N; from Theorem 2,
is shorter than the original one; in addition, it yields (1.5). It is actually intended to
demonstrate the strength of our current approach.

Besides, it is interesting to compare Theorems 2 and 3. While Theorem 3 tells us
that, given an outer function f, the inclusion

|fl € Au(T) (1.6)

implies merely that feAd, with w(t):w(\/f) (and, in fact, nothing more can be ex-
pected), Theorem 2 provides the “correct” point of view, where one replaces (1.6) with
the condition |f|€A,,(D) and arrives at the (seemingly) natural conclusion that f€A,.

This said, the author believes that the current results might also lead to further
progress in some other directions. For instance, they might prove useful in connection
with the peak sets for the algebra A,; a complete characterization of such sets (even in
the A®-case) seems to be a long-standing open problem.

The rest of the paper is organized as follows. In §2, we collect a number of auxiliary
(and mostly elementary) facts about majorants and A, -spaces, to be employed later on.
In §3, we prove Theorems 1, 2 and Corollary 2. Finally, §4 contains the deduction of the
Havin—Shamoyan—Carleson—Jacobs embedding theorem.

Throughout, we use the following notation. For z€C\ {0}, we set Zdzefz/ lz| and
%0 /Z; in case z=0, it is understood that 2=1 and z*=o0. Further, we put

02 d=efdist(z, T)=||2|-1], ze€C.

The region C\D is denoted by D_. By C we denote any absolute positive constant, and
by C(w) any positive constant depending on w. The values of these constants may vary
with each occurrence (even within a single calculation).

2. Preliminaries

Our first lemma is essentially borrowed from [H]. For the reader’s convenience, we include
a short proof.

LEMMA 1. Let w be a majorant. Then wi, defined by

&
def 1

wi(6) = 5/, w(t)dt, 6>0, (2.1)
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is a majorant of class C* satisfying

3w(6) Swi(8) <w(6) (2.2)
and
0<w,(6) < “’1(55) (2.3)

If w is regular, then wy is also regular.

Proof. Clearly, w; €C*. Using directly the definition (2.1) and noting that

-w—%§—)t<w(t)<w(6) for 0 <t <4,

one arrives at (2.2). Further, differentiating (2.1) gives

W} (6) = 5((8) - (8)).

In conjunction with (2.2), this leads to (2.3). Since

(Y =1 (w0-22),

(2.3) just means that w; is increasing and w;(6)/6 is decreasing; thus w; is indeed

a majorant. Finally, the last statement of the lemma is an immediate consequence
of (2.2). g

LEMMA 2. If w is a reqular majorant and z€D, then

w(¢—3) w(es)
/|< o dm(Q) < Cw) 222

(see §1 for the meaning of the symbols z and g,).
Proof. Once (€T is fixed, let t€(—m, 7] be defined by e®*=(/z. Observing that
|C—2|<t| and |(—z|?=<t*+¢?

(the constants involved being numerical), we get

[hmose [ dhamc([+[) s

Estimating the two integrals by using the mequahtles

w(t w
t2—|(-2)2< (ng) (0<t<pg,) and t*+g2>1t%
z

we see that the right-hand side of (2.4) is bounded by
C Tw(t C
—(w(gz)+9z/ iz)dt) < ﬂW(Qz)- 0
0z 0. t 4

2 z
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LEMMA 3. If w is a regular majorant, f€AL(T) and 2€D, then
IP£(2)~ £(2)] < CW) | fllaum w(es).
Proof. We have
P1G)= @)= [0~ 1) du0)
<fllaucmy [ wlle=2)di(€) < CWI A myles):

where the last inequality relies on Lemma 2. O

LEMMA 4. If w is a regular majorant and f€A,(T), then PfeA, (D); moreover,

IPflla.®) SC@flla,cx)- (2.5)

In particular, for f€ A one has
I flla, ) < CW flla, (Ty- (2.6)

Proof. In order to verify (2.5), we let 21, z2€D and look at the quantity
R(z1,7) = Pf(21) ~Pf(22).

Let us distinguish two cases.

Case 1: max(|z1],]22])<3. It is not hard to see that, for (€T,
2C
[Pz (Q) = Pop (O < Clza —22f < ;—@)—w(lzl—zﬂ) (2.7)

(the last inequality holds because w(t)/t is nonincreasing). From (2.7) it easily follows
that

|R(z1, 22)] S C|| flla, Ty wll21 — 221)- (2.8)

Case 2: max(|z1],|z2|)>3. For j=1,2 write z;=r;(;, where r;=|z;| and {;€T.
Assume that r;>7, (and hence r,>1). Further, for a fixed r€(0,1) set

gr(2) C!—gf’Pf(rz), zeD.

Of course, g, is harmonic on D and continuous up to T. Also, it is easily shown that
grlT €A, (T) and
lgrlla.cmy S Hfllaucm)- (2.9)
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We have
R(21,22) = {gr, (C1) = 9r, (C2)} +{9r (C2) — 92 (C2)} &' Ry + Ro.
In view of (2.9),
|Ra| < flla, (myw(IG—C2l)- (2.10)

On the other hand, since
—a (T2 )= T2
9r2(G2) = gr, (7'1 C2) =P(gr,IT) (7"1 42)7
Lemma 3 tells us, in combination with (2.9), that
To T2
< —= -— 1. .
Bal < Ol mye (1-22) <C@) Il (1-77) (2.11)

Since r1> %, it follows that

T

[G1—C2| <4|z1—22] and 1- r_2 < 2|21 — 23]
1

Using these inequalities to estimate the right-hand sides of (2.10) and (2.11), we eventu-
ally obtain

|R(21,22)| < C(w) | flla, (myw (|21 —22])- (2.12)
A juxtaposition of (2.8) and (2.12) now yields (2.5), which in turn reduces to (2.6) in
case feA. a

Remark. In connection with (2.6), see also [T].

Before stating the next lemma, recall that the Cauchy-Riemann operator 0 is de-
fined by

528@1(6 .0

5% 3 %-Ha—y)’ z=1x+1y.

LEMMA 5. If w is a regular majorant, f€A,(T) and z€D_, then

BPIE < CI lauim 2L

(recall that z*=1/Z and note that g, now stands for |z|—1).

Proof. We have

API) = [ 10 55Pe(€) dmlc)

. CZ*Z B N Cz*2 -
=~ [ 10 gz dm(O) = [ (1)~ 1(0) 7 aml©)
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whence

3 * IC Zl)
BPIEN < nmlz P [ T am(©).
Applying Lemma 2, with z replaced by 2*, and noting that

0
0= |”| <02,

we obtain

52 amo) < ot 222,

¢ Z*|2 Qz
Substituting (2.14) into (2.13) yields the result.

Remark. Lemma. 5 remains valid if J is replaced by 8=38/9z.

LEMMA 6. Let w be a majorant, and let f€A. Consider the quantities

Mo(f) = Sup ') —— )

() sup / £ = F2)] du= (0),

Ma(f) S sup —— (/ 10 z)|2duz<<>)1/2.

zeD W

The following assertions hold true:
(i) One always has

Mo(f) < Mi(f) < Ma(f).

(ii) If w is regular, then
(CW) ™ Mi(f) < fllaucm < Cw)Mo(f).

(iii) If w? is a reqular majorant, then
Ma(f) SCW)Ifllaucxy-

Proof. (i) For ze€D, we have

el @ =|5 [U©O-16)

which implies the first inequality in (2.15). The second one is obvious.

d<| < (1101 du-(0),

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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(ii) First let us prove the right-hand inequality in (2.16). Given (,(2€T, put
hd=ef—21—](1 —¢2] and let I be the shorter subarc of T connecting (; and (o. Set

n € r¢irell-h,1]},
def

Y2 = (l_h)CCEI}7

Y3 dzef{rcz :r€[l—h,1}},
and fydzef'yl Uvy2Uys. When endowed with the appropriate orientation, v becomes a path
going from (; to (. We have

[ £
7
w(

(1< Molf) -—j—)

1F(G)—f(G)l=

<> [ e (2.18)

j=1v"7i

Using the estimate

and the assumption

5

t

/ # dt < C{w)-w(é)
0

(this should be used when dealing with the integrals along -; and v3), one deduces from

(2.18) that

|£(61) = F($2)| < Cw) Mo (f)w(h).

Hence || flla, (1) SC(w)Mo(f).

To prove the rest of (2.16), we fix (€T, 26D and write

1) - F RN <IFO-F @I+ (B) - f(2)]
<l myw(IC=2D)+C W) 1 flla, (rywle:)

(we have invoked Lemma 3 to estimate the second term). Integrating (2.19) against
dy(C), while taking Lemma 2 into account, yields M;(f)<C(w)| flla,(T)-

(iii) Noting that the regularity of w? implies the conclusion of Lemma 3, we still

(2.19)

have (2.19) at our disposal. Rewriting it in the form

IF(O=F )2 < CWIFIR, e {w? (¢ 2D +w?(e:)} (2.20)
then integrating (2.20) against du.({), and finally using Lemma 2 (with w replaced
by w?), we arrive at (2.17). O

Remark. Of course, for w(t)=t* (0<a<1), the equivalence of Myp(f) and || f|la, (1)
is a well-known fact, due to Hardy and Littlewood.

The next lemma is a version of the remarkable E. M. Dyn’kin theorem on pseudo-
analytic extensions (see [Dyn] for the A*-case). Because of its crucial role in what follows,
we include a complete proof of the version required.
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LEMMA 7. Let w be a regular majorant and f€A. In order that feA,, it is neces-
sary and sufficient that there exist a bounded function FeC*(D_) such that

lim F(z)=f(C), (€T, (2.21)
2D
and
|OF ()| < const - (QZ) zeD_. (2.22)
Moreover,

):z€eD_ } ,
where F ranges over the bounded functions of class C*(D_) satisfying (2.21) and (2.22).
Proof. Given fe A, set

_. 0 a
Iflla. () Alfblf Sup{w(gz)

F(z)=f(z"), zeD._.

Clearly, F is bounded, smooth and satisfies (2.21). Further, using the estimate Mo(f)<
C(w)Iflla, () (see Lemma 6, parts (i) and (ii)), one gets

BF()] =1 £/ (") 12" <c<w)nf||Aw<T)%j‘)|z*|2 <C@)Iflauem

and so F' satisfies (2.22) with const<C(w) || fla,(T)-
Conversely, let FeC(D_)NL>*(D_) be a function with the properties (2.21) and
(2.22), so that

w(@z)
P

BY sup 2= |0F(z)| < 0.
zeD_ w(e-)

Fix zeD and R>1. The Cauchy—Green formula, applied to the function that equals f
on D and F on D_, gives
f(z)= 2_71rz ?(CZ) / / (BCF )ZC) d¢ dn (2.23)
KI=R I<[¢I<R
(it is understood that (=£+1n). Differentiating (2.23) and noting that the arising contour
integral is O(1 /R) as R— o0, one obtains

8F(() ‘ w(r—l) /2" dt
5 d rdr —_
a1 €22 %4 r=1 )y Tt
<2B/ _wr=l) :23/ wt) g
(r=1)(r—[2]) o t(t+ez)
The regularity assumption on w implies that the last integral is <C(w)-w(p;}/@,- Thus
Mo(f) ¥ sup 5 |f(2)| < Cw)B

and hence (in view of Lemma 6, part (11)) I flla, () SC(w)B. a
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LEMMA 8. Let f€ A and 6 be an inner function. If f0€ A, where w is o regular
magorant, then fEA, and

1 law ) SCW)|1f8llA, (T)-
Proof. By Lemma 7, there exists a bounded function G€C'(D_) such that
lim G(:)=£(0)8(0), (€T,

zeD_
and

06 <CWIBlam ™, zeD..
It then follows that the function ’
F(z)¥G(2)8(z"), 2eD_,
is bounded, smooth and satisfies (2.21), while
|OF(z)| = |0 2*) 0G( (2)| <10G(z)|.

Another application of Lemma 7 completes the proof. g

Remark. Another proof of Lemma 8 can be found in [Sh1].

Finally, we require some modified versions of Lemmas 2 and 3 above.

LEMMA 9. Let w be @ majorant. Given 0< (<1, there erists a constant C1(5)>0
such that
5 / dt < C1(8)-w(6°), (2.24)
whenever 0<6<1.

]
Proof. The integral on the left can be written as |, 55 + /. 613 . Using the inequalities
w(t) <w(6P) (0<t<8P),
w(t) _w(”)
A LAP Qi M4 t> 5/3
: 55 )
to estimate the two integrals, one eventually arrives at (2.24). O
LeEMMA 10. Let w be a majorant. Given 0<B<1, there is a constant C1(8)>0
making the following statements true for any zeD and feA,(T):

@ [ a0, .

(b) [Pf(2)~FERIKCLB) I fllay(myw(e?)-
Proof. To verify (a), one recalls the relation (2.4) from the proof of Lemma 2. The
term [* is handled as before, while f;rz is now estimated with the help of (2.24). To

derive (b), one reproduces the proof of Lemma 3 (except for the very last step) and
employs part (a). O
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3. Proofs of Theorems 1, 2 and Corollary 2

Proof of Theorem 1. Under the hypotheses of the theorem, Lemmas 4 and 6 tell us that

I flla, @) = 1 flla, () =< Ma(f),

where Mz(f) is the quantity appearing in Lemma 6. It remains to notice that the right-
hand side of (1.1) coincides with M(f). (W

Proof of Theorem 2. First let us remark that, in view of Lemma 1, there is no loss
of generality in assuming that weC1(0, 00) and

w’(t)gﬁ, 0<t<oo. (3.1)

Otherwise, one should work with w; instead of w, where w, is defined by (2.1). (In fact,
once we assume that w is smooth, (3.1) is just a restatement of the hypothesis that w(t)/t
is nonincreasing.)

This said, we proceed by estimating the norms involved. Clearly,

N3(f) <1 flla.Dy- (3.2)
It is also obvious that
max(||¢la, (1)s |¥llw,raa) < Na(f),

whence
Na(f) < 2N3(f). (3.3)

Further, for z€D, one has

Po(z)—p(z) _ |Po(2)—@(2)] | |e(Z)—¢(z)|
o) S we T e

<CW)llella, cxy+l¢llw,rads
where we have used Lemma 3 to estimate the first term. It follows that
Ni(f) < C(w)Na2(f)- (3.4)
Now that (3.2), (3.3) and (3.4) are established, it remains to prove that
1flla,B) < CW)N1(f)- (3.5)

def
Set K = ||¢||a, () and
M sup Po(z)—p(2)
zeD Q/’(Q;)
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so that N1(f)=K+M. Let f=g0 be the canonical factorization of f (here g is outer and

6 is inner), and let

h% ro = go2.

Note that |h|=|g9]=¢ on T. In view of Lemmas 4 and 8, we have
I flla, @) < Cr(@) I flla, (1) < Co(w) [|Al|A, (T)-
Thus, to verify (3.5) it would be sufficient to show that
[1Plla, () < C(W) (K +M).

By Lemma 7, this last task will be accomplished if we construct an appropriate “pseudo-
analytic extension” for h, i.e. a bounded function He€C!(D_) satisfying

;er} H(z)=h((), (€T, (3.6)
zeED_
and
|0H (2)| <C(w)(K+M)w(QZ), 2€D_. (3.7)

z
We begin with some preparations. Recalling the definition of M and using the
obvious inequalities

9(2)|-16(2)| < 5l9()(1+0(2)|*) < §Po(2)+519(2)I-10(2)]?, z€D,
we obtain

Mw(e:) > Pp(2) - ¢(2) = Pe(z) —9(2)|-16(2)]

>
> 5Pp(2) - 3l9(2)||6(2)]* = 4{Pp(2) - |h(2)|}, 2€D.

Thus
Po(z)—|h(2)| <2Mw(o,), z€D. (3.8)

Further, let h1d§f0\/§ (here ,/g is the outer function with modulus /¢ on T) and note
that the left-hand side of (3.8) equals

Plha ()~ (2) 2 = / Ih1(¢)—ha ()2 dp(C).

This enables us to rewrite (3.8) in the form

/ |11 (¢)—ha ()2 disa (O) < 2Muw(o), z€D,
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and hence to conclude, by virtue of Lemma 6, part (i) (where we currently replace f by
hi and w by /w), that

|h;(z)|<\/m—‘/“§""), 2eD. (3.9)

Throughout the rest of the proof, z will denote a point in D_. Consider the sets
Ey ¥ {z€D_: |a(z")| < Me(e:)},

B, ¥ {zeD_: |h(2")| > 2Mw(o:)}

and the functions H; 5 defined on D_ by

=9
-

Hi(z2) €h(z) (=h3(z")),
Ha(z) €92 (2) / Rz,

where w(z)dzefpgo(z*). (Strictly speaking, Hp lives on {z:h(z*)#0}, but that does not
really matter.)

Claim 1. For z€ Eq,

|0H, (2)] < 2%/ 2MM. (3.10)

z
Indeed, we have

|0H, (2)] =2hy(2*) Oha (") = 2[ha (") - [P (7)) 2" . (3.11)

Recalling the definition of E7, we get

lh1(z")| < vV Mw(e.), z€En, (3.12)
while (3.9) gives
|h;(z*)|<\/m_——“sz’f)<\/m V“;("Z) lz|, zeD_. (3.13)

Substituting (3.12) and (3.13) into (3.11) yields (3.10).

Claim 2. For z€ Es,
|6H(2)| < C(w)K ?. (3.14)

z

Indeed, since the function z—1 / h(z*) is holomorphic on E;, one has

¥(2)
h(z*)

OHy(2) =2 (2). (3.15)
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Further,
(@) | _ ()~ Ih()]
h(z*) |h(2*)|

+1. (3.16)

Since
¥(z)—|h(z")| =Pp(z") — |h(z")| < 2Mw (0.~ ) < 2Mw(e)

(here we have employed (3.8)) and
|h(z%)| 2 2Mw(p,) for z€ Es,

(3.16) shows that

m(;)) <2, z€BE,. (3.17)
Besides, Lemma 5 tells us that
1B(2)] < Clw) K 2022). (3.18)

0z
Now a juxtaposition of (3.15), (3.17) and (3.18) yields (3.14).

The two claims having been verified, we also observe that

lim Hi(z)=h(¢), ¢€TnNclosE, (3.19)
i,

(this is obvious) and
limc Hy(z)=h(¢), (€TnclosE,. (3.20)
z2€E,

(If h(¢)#0, then (3.20) just follows from the fact that i|r=|h|; in case h({)=0, one
should also make use of (3.17).)

Finally, we are going to construct the sought-after pseudoanalytic extension H(z),
satisfying (3.6) and (3.7), by welding the two “partial extensions” H; and H> together.
To this end, we pick a nondecreasing function y€C*[0, 00) such that

0 for0<t«1,
x(t) =
1 for 2t < 00,

and set, for z€D_,

o mon (B e
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Clearly, H|g, =H, and H|g,=H,. Consider the region

Es¥D_\(E\UE,).

In view of Claims 1 and 2, accompanied with relations (3.19) and (3.20), it now suffices
to show that H is bounded on D_ and satisfies

lim H(z)=h((), ¢€TnNcloskEs, (3.22)
and
o "‘)(Qz)
|0H(2)| < C(w)(K+M)—=—=, z€E;. (3.23)
For z€ E3, we have
Mw(e:) < |h(z")] <2Mw(ez), (3.24)

which enables us to repeat (with some very minor modifications, affecting only the nu-
merical constants involved) all the estimates appearing in the proofs of Claims 1 and 2
above. In particular, we get

<3, z€kEs, (3.25)

‘ ¥(z)
h(z*)
which is established in the same way as (3.17).

Since H; is bounded on D_ and H, is bounded on E;UFE3 (the latter follows from
(3.17) and (3.25)), we conclude that H is bounded on D_. Further, for z€ E5 one has

|H1(2)| 2Mw(e.), |Hz(2)| <CMuw(e:) (3:26)
and
|0H;(2)| < CM%"’—), |0Ho(2)| < C(w)K%. (3.27)

(The inequalities for |Ha(z)| and |0H2(2)| rely on (3.25).)
From (3.24) it follows that h(¢)=0 whenever (€ TNclos E3, while (3.26) yields
liIIé H(z)=0;
zzeEs

this proves (3.22).
Next, differentiating (3.21), we obtain

o =0y {1x (o)

+()-m @) (o) o).

(3.28)
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For z€ Ej3, the first two terms on the right are bounded in modulus by

C(w)(K +M) (Q")

as is clear from (3.27). In order to estimate the third term in (3.28), we note that

|H2(z)—H1(2)| K CMw(g,), z€E3 (3.29)
(see (3.26)), while
IX®)I<C, 0<t<oo. (3.30)
Finally, )|
={ |h(z* 1 . 1
8(w(gz)>=w(g ) O(h1(z"Yh1(z*)) +|h(z )l(’)( @ ))
2 , " ( ) (3.31)

= )L

Recalling (3.1), (3.13) and the right-hand inequality in (3.24) (also used in the form
|h1(2*)|</2Mw(p,) ) we conclude from (3.31) that

Ié(MN < CM, 2 € E3. (3.32)

w(gz) 0z

Combining (3.29), (3.30) and (3.32), we see that the last term in (3.28) is bounded in
modulus by CMw(g,)/e. whenever z€ E5. Eventually, we arrive at (3.23), and the proof
is complete. O

Proof of Corollary 2. Assuming that the hypotheses of Corollary 2 are tulfilled, set
f X Fg. For z€D, one has the identity

PIfI(2)=1f (2)| = {PIF|(2) - | F () [}+{IF (2)| (1-16(2)])}- (3.33)

Dividing (3.33) by w(g,) and noting that both terms { } are nonnegative, one concludes
that

M) = Na(F)sup [F(2)] S22 (3:34)

In view of Theorem 2, (3.34) proves the equivalence of conditions (i) and (ii) (see the
statement of Corollary 2).
Further, set

S(F,8) % su {ur(g)] (| (C))‘ CeT, 0<r<1}



162 K.M. DYAKONOV

The identity
IFOI=1£ (Ol = (IFQ)I=1F(rO)D 8O +IF(ONA-6(rO))),
where (€T and 0<r<1, implies
No(f) < No(F)+S(F, ) (3.35)

and
S(F,0) < Na(f)+Na(F). (3.36)

From (3.34) and from the equivalence relation Ny (- )=<N3(-), it follows that
No(F) < C(w)N2(F) (3.37)
Taken together, (3.35), (3.36) and (3.37) yield
No(f) < No(F)+S(F,0). (3.38)

Finally, in virtue of Theorem 2, (3.38) proves the equivalence of conditions (i) and (iii). O

4. Deduction of the Havin—Shamoyan—Carleson—Jacobs embedding theorem

For the reader’s convenience, we reproduce the theorem in question and then proceed
with the proof.

THEOREM 3. Let w be a majorant such that w(t)?—ifw(\/f ) is a regular majorant.

Suppose that o€ A, (T), p>0, and logpe L}(T,dm). Then O,€Ay and

106,y < C@) el (1+ [ 108 ”;’(”5 dm(<)).

Proof. We may assume that min;er ¢(¢)=0 (otherwise the theorem becomes almost
trivial) and ||¢lleo=1. Set

def def 1
K= and C:/lo —— dm({).

Letting (1, (2 €T be such that p({1)=1, ¢((2)=0, and writing

1=9(¢1)—9(C2) < Kw(|¢1—C2l) < Kw(2),

we see that K >1/w(2).
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We have to prove that

10¢lla, B) S C(W) K(1+L).

(4.1)

In virtue of Theorem 2, we can replace the left-hand side of (4.1) by ||¢||a, () +[|¢ll%, raas

where @ is extended into D by the formula,

o) e [ togodu. ) =10,
Since w(t) <vV2 P(t) for 0<t<2, it follows that
lella, ) < V2K,
and so (4.1) is equivalent to the estimate
el rad < C(w) K(1+L).
The proof thus reduces to showing that, for zeD,
lo(2) - ()| < Clw) K (1+ L) w(V/ez)-

To this end, we fix a point z€D and distinguish two cases.

Case 1. ¢(2)<p(2)+2Kw( /0. ). We have then

—2Kw(y/27 ) < 0(2)—0(2) < Po(z) —p(3).

Applying Lemma 10(b) with 8=1 gives

[Po(z)—¢(2)| < CKw(Vez ).

Combining (4.3) and (4.4) yields

lo(z)—p(2)| < CKw(y/ez ),

so that (4.2) holds true.

Case 2. ¢(Z)>p(2)+2Kw(\/o: ). Let n>0 be defined by

w(n) = %

(4.3)

(4.4)

(4.5)
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(since K>1/w(2) and p(2)<1, one sees that ¢(Z)/(2K) belongs to the range of w).
Further, set
IE{¢eT:|¢-2<n),

5 d——‘if/ logpdy, and Jo d=ef/ log p dps.
I T\I

We have
0< @(2)—p(z) = p(3)—e”t e’ = R+, (4.6)

where
REp(z)—e" and SEelr(1-e”).

In order to estimate R, we write

Ji= /1 (log (¢) ~log ¢(2)) du= (Q) + 2 (1) log p(2) = J3+vlog p(2),

where we put

32 [ (og () —log () du (0
and 'ydzmcuz (I). Since 0<¢(2)<1, we have
e”=p(2)e” > p(2)e”,

and so
R=0(z)—e" < p(2)(1-€”) < p(3)|J3]- (4.7)

Further, for (€I one has
¢(2) = () < Kw(n) = 5(2),
whence ¢(¢)>3¢(Z) and

Q=@ _ 2
w0, e} < o) LA

[log p(¢)—log ¢(2)| <

This in turn implies
2K
B € —= w(l¢—2|) du.(¢),
1l € =5 [ <=2 0

and an application of Lemma 10(a), with 3 =%, now shows that

19 < 255 Col V). (48)
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Substituting (4.8) into the right-hand side of (4.7) gives
R<CKw(\/0z)- (4.9
We proceed by estimating S, the second term in (4.6). To this end, we write
S=p(2)7e” (1-e") < p(2)7e”| Ja]. (4.10)

Using (4.8) and the inequality
p(2) >2Kw(y/e:) (4.11)

(recall the hypothesis of Case 2), we see that |J3|<C and hence
e <C. (4.12)
Further, it is clear that
1=y =p(T\I) = p.{C€ T: [(— 2| >n}. (4.13)
Observing also that 7>,/0. (see (4.5) and (4.11)), we deduce from (4.13) that
-y <uACET: (2> VB } < COVE (4.14)

(the last inequality can be verified by a straightforward calculation). Using (4.11) and
(4.14), we obtain

w(2)”
@) ~ mloe (><C“"_z

1
—— <
log log KT <C

where the final conclusion holds because K >1/w(2) and w(t)>1tw(2) for t<2. Thus,
P(2)Y < Co(2). (4.15)
Substituting (4.12) and (4.15) into the right-hand side of (4.10) yields
S<Cp(2)| 2. (4.16)

Further, for €T\ one has |{—Z|>% and hence [(—z|>17. Consequently,

= o 1 i o: og —— dm e
'J2"/T\Ilg(so(<)>|< <8 /Tzlgso(od ©O<8liz (1)
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Since 7>,/2; and the function t—w(t)/t? is decreasing, one has

win) w(ve:)

7” o e

Taking (4.5) into account, one can rewrite (4.18) as

o
n2

N

2K
<o eveE)

Combining (4.19) with (4.17) yields

|J2] < 16Kﬁw—(—\/—€_z—2,
w(%)

which in turn implies, together with (4.16), that

S<CKLw(\/27).

(4.18)

(4.19)

(4.20)

Eventually, a juxtaposition of (4.6), (4.9) and (4.20) enables us to conclude that

0<p(2)—p(2) SCK(1+L)w(Ve:),

and so (4.2) holds true.
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