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1. I n t roduc t i on  and  results  

A continuous function w: [0, +ce)--~R with w(0)=0 will be called a majorant if ~(t) is 

increasing and w(t)/t is nonincreasing for t>0. If, in addition, there is a constant C(w)>0 
such that 

Je t2 dt <~ C(w).oJ(e) 

whenever 0<~<1, then we say that w is a regular majorant. Given a majorant w and 

a compact set ECC,  the (Lipschitz-type) space A~(E) consists, by definition, of the 

functions f:  E -~C satisfying 

{ [f(z:)- f(z2)[ } 
{{I{{A'~(E) defsup W([Zl--Z2[) :z:,z26E, z:#z2 < c o .  

Now let D denote the unit disk {[z[<l}, T its boundary and Dd=efDUT. Further, 

let A stand for the algebra of holomorphic functions on D that are continuous up to T. 

We shall be concerned with the space 

A~, d----e~ ANA~ (D), 

which in fact coincides with ANA,,(T) (for regular majorants, this last statement follows 

from Lemma 4 below; for the general case, see [T]). 

The purpose of this paper is to characterize the functions of class A~ in terms of 

their moduli (the w's involved are assumed to be regular majorants). To this end, we 
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introduce several equivalent norms on A~;, each of them depending only on the modulus 

of the function in question. 

In order to state the results, we require some more notation. With each point zED 

we associate the Poisson kernel 

1-Izt2 CeT, Pz(r d--tel ir 

and the harmonic measure dpzd--e--fPz din; here and throughout, dm is the normalized arc 

length measure on T. The Poisson integral of a function f E C ( T )  is defined, as usual, 

by 

Pf(z )  d--e--f fTf (r162 ), z e D ,  

and by 

~ f ( ~ ) ~ f f ( f f ) ,  ~ � 9  

In case f lives on a larger set containing T, P f  will stand for P(fIT) .  Finally, given two 

nonnegative (possibly infinite) quantities X and Y, we write X ~ . Y  to mean that  there 

exists a constant C>O such that  

C - 1 X  <~ Y <~ CX; 

the constants in this paper are allowed to depend only on w. We begin with the following 

simple result. 

THEOREM 1. If f E A and if both w and w 2 are regular majorants, then 

1 {,p(i.fl2)(z)_lf(z)12}i/2. (1.1) IIflIA~(~) • sup 
~ o  ~ ( 1 - M )  

The norm appearing on the right-hand side of (1.1) can be viewed as an analogue of 

the so-called Garsia norm on the space BMO (see [G, Chapter VI] or [K, Chapter X]). 

The proof of Theorem 1 is fairly elementary (see w below), but the point is that  the 

assumptions imposed on w are somewhat too restrictive. For example, among the majo- 

rants of the form w( t )= t  a, only those with 0 < a < �89 satisfy the hypotheses of the theorem. 
1 Moreover, letting f ( z )=z  and w(t)=t a with ~ < a <  1, one observes that  fEA~,  whereas 

the right-hand side of (1.1) is infinite. Thus Theorem 1 becomes false if one drops the 

assumption on w 2. 

This apparent defect is dispensed with in the next theorem, which applies to an 

arbitrary regular majorant a: (and, in particular, to w(t)=t ~ with 0<c~<l).  We find 

it quite spectacular that  dealing with higher degrees of smoothness makes it so much 

harder (see w / to introduce the sought-after modulus-dependent norms. 
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THEOREM 2. Let l E A ,  and set 

~(z)~flf(z)l, z~D. 

Given a majorant w, consider the quantities 

= p ~ ( z ) - ~ ( z )  Nl(f) def [[~][h,o (T)-[-  s u p  

N2(f)  de f II~IIA~(T> + [[~ll~,rad, 

where 

and 

If  w is regular, then 

def { L~(0-~(r01 ) 
II~ll~,~d = s u p  ~v(1-r) : r  0 ~ r < I  , 

N3(f)~elI~IIA~(~). 

[[fl[A~(b) ~ N l ( f )  ~ N2(f)  ~ Na(f) ,  

the constants involved being either numerical or dependent only on w. 

In particular, taking the endpoints of (1.2), one obtains 

(1.2) 

Ilfl[A~(~> x [[ Ifl IIa~(~), 
which looks tantalizingly (and perhaps deceptively) simple. However, the author knows 

no simple proof of this fact. 

Further, Theorem 2 enables us to derive exhaustive information on the canonical 

(inner-outer) factorization of A~-functions. Let us recall that,  given a nonnegative func- 

tion ~ on T with log ~ E L  1 (T, dm), the corresponding outer function is defined by 

O~o(z) : exp~JT ~ log~(~)dm(~}) ,  z E D .  

If ~eC(T), then O ~ e H  ~ and l imr-q-  [(9~(r~)[=~(r everywhere on T (cf. [G, Chap- 

ter II]). Recall also that a function 0 E H  ~ is called inner if l imr_q- [0(r~)]=l for m- 

almost all ~ E T. 

We proceed by pointing out two corollaries of Theorem 2. One of these characterizes 

the outer functions lying in A~ in terms of their moduli on the boundary, while the other 

one describes the interaction between inner and outer factors. 
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COROLLARY 1. Let ~ be a regular majorant. Suppose that ~EA~(T), ~>~0, and 

log ~ELI(T,  dm). Consider the extension of ~ into D given by 

def f f  ) 
~(z) =exp~JTlOg~(~)d#z(~) , z � 9  

The following are equivalent. 

(i) O v � 9  

(ii) P ~ ( z ) - ~ ( z ) = O ( w ( 1 - l z l ) ) ,  z e D .  

(iii) ~ ( ( ) - ~ ( r ( ) = O ( w ( 1 - r ) )  as r--+l-, uniformly for all ~�9 

(iv) ~ � 9  

To prove Corollary 1, one merely notices that O , � 9  [O~[=~ on D, and applies 

Theorem 2 to f=O~.  Writing out the conditions Nj (O~)< co with j = 1,2, 3, one arrives 

at (ii), (iii) and (iv), respectively. 

The next consequence of Theorem 2 will be stated now and derived in w below. 

COROLLARY 2. Let w be a regular majorant. Suppose that F � 9  and 0 is an inner 

function. The following are equivalent. 

(i) F~�9  

(ii) F � 9  and 

F, , ,~/'w(1-]z[)'~ (1.3) z � 9  

(iii) FEA~ and 

F ( r  inf w(1 - r )  "~, 
] r e T. (1.4) 

In connection with Corollaries 1 and 2, we would like to mention some previous 

results on the canonical factorization of A~-functions. In the special case where w(t)=t  ~, 

0 < a <  1 (let us denote the corresponding spaces A~ and A~ by A ~ and A~), Corollary 1 

was recently obtained by the author [D3]. On the other hand, in [D1] and [D2] the author 

established the A~-version of Corollary 2, part (i) r (ii); a simpler proof was suggested 

later by E. M. Dyn'kin [Dyn]. In fact, the present paper reflects the author's attempt to 

develop a unified approach to his earlier results and to reveal the underlying mechanism 

(now it seems to be described by the new-born Theorem 2). Our current techniques 

are different from those of [D1] and [D2]; they are largely inspired by [Dyn], the main 

ingredient being the so-called pseudoanalytic extension. 

An alternative study of the inner-outer factorization of A~-functions is due to 

N.A. Shirokov (see [Shl] and [Sh2]). We cite some of his results as Theorems A and B 

below, so that the reader might compare them with our Corollaries 1 and 2, respectively. 

The w involved is assumed to be a regular majorant. 
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THEOREM A. Suppose ~EA~(T) is a nonnegative function with f log ~ d m > - o c .  

For z E D , put 

M(z) d--efmax{~(~) : ~ E T, Ir 2(1-Izl)} 

and consider the set 

In order that O~oEA~o, it zs 

a d ef {z E D:  M(z) ~ w(1-Iz[)}. 

necessary and sufficient that 

THEOREM B. Suppose that F E A  and 0 is an inner function. Denote by a the 

singular support of 0 (i.e. the smallest closed subset E of T such that 0 is analytic 

across T \ E ) .  In order that FOEA,~, it is necessary and sufficient that FEA~, FI~=0 

and 

F(~)=O(~o(lO'(~)l-1)), ( E W \ a .  

The AS-version of Theorem A is contained in [Sh2, Chapter II]; for generic regu- 

lar w's, the proof is essentially the same. Theorem B can be found in [Shl], along with 

an earlier (and more cumbersome) version of Theorem A. When suitably modified, The- 

orems A and B remain valid for higher orders of smoothness, e.g. for AS-spaces with 

c~ > 1 (see [Sh2]). 

We remark that both results and techniques of [Shl], [Sh2] seem to be quite different 

from ours. 

As a final application of Theorem 2, we use it to give a new proof of the follow- 

ing (essentially known) result, sometimes called the Havin-Shamoyan-Carleson-Jacobs 

embedding theorem. 

THEOREM 3. Let w be a majorant such that r is a regular majorant. 

Suppose that ~oEA~(T), ~o~>0, and log~ELl(T,  dm). Then O~EA~ and 

IIO~IIA,~(~) ~< const'll~llA~{W)(I+fT log ~lIc#ll~ din(C)), (1.5) 

where II~ll~d----efmaxw ~o and const depends only on w. 

This theorem was proved, in a somewhat more general setting, by V.P. Havin [H]; 

the estimate (1.5) was not, however, stated explicitly. It was also shown in [H] that, 

under the hypotheses of the theorem, the conclusion Q,  EAr could not, in general, be 

improved. The A~-version of Theorem 3, with 0<a~<l, had been obtained earlier by 
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Havin and Shamoyan [HS] and, independently, by Carleson and Jacobs (unpublished). 

Alternative proofs of Theorem 3 (except possibly for the estimate (1.5)) and of its A s- 

version with a > l  can be found in [Shl] and [Sh2, Chapter II]. 

Our proof of Theorem 3, based on an application of the norm N2 from Theorem 2, 

is shorter than the original one; in addition, it yields (1.5). It is actually intended to 

demonstrate the strength of our current approach. 

Besides, it is interesting to compare Theorems 2 and 3. While Theorem 3 tells us 

that,  given an outer function f ,  the inclusion 

]fl e A~(T) (1.6) 

implies merely that  f e A r  with r  (and, in fact, nothing more can be ex- 

pected), Theorem 2 provides the "correct" point of view, where one replaces (1.6) with 

the condition [flEA~(D) and arrives at the (seemingly) natural conclusion that  fEA~.  
This said, the author believes that  the current results might also lead to further 

progress in some other directions. For instance, they might prove useful in connection 

with the peak sets for the algebra A~; a complete characterization of such sets (even in 

the AS-case) seems to be a long-standing open problem. 

The rest of the paper is organized as follows. In w we collect a number of auxiliary 

(and mostly elementary) facts about majorants and A~-spaces, to be employed later on. 

In w we prove Theorems 1, 2 and Corollary 2. Finally, w contains the deduction of the 

Havin-Shamoyan-Carleson-Jacobs embedding theorem. 

Throughout, we use the following notation. For zEC\{0} ,  we set y. de=fz/Iz [ and 
z* ~ f l / 2 ;  in case z--0, it is understood that  s and z*=c~. Further, we put 

Qz ~fdist(z ,  T ) =  I I z l - l h  z e C .  

The region C \ D  is denoted by D_. By C we denote any absolute positive constant, and 

by C(w) any positive constant depending on w. The values of these constants may vary 

with each occurrence (even within a single calculation). 

2. Prel iminaries  

Our first lemma is essentially borrowed from [H]. For the reader's convenience, we include 

a short proof. 

LEMMA 1. Let w be a majorant. Then ~z, defined by 

co~(6)~f~ aJ(t)dt, ~>0 ,  (2.1) 
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is a majorant of class C 1 satisfying 

�89 < co~ (5) < co(6) 

and 

(2.2) 

0 ~ w~ (5) ~< col (5____~) (2.3) 
5 

If w is regular, then Wl is also regular. 

Proof. Clearly, c01EC 1. Using directly the definition (2.1) and noting that 

w~5) t<~w(t)~<co(5) f o r 0 < t < 5 ,  

one arrives at (2.2). Further, differentiating (2.1) gives 

co~(5) = �89 
In conjunction with (2.2), this leads to (2.3). Since 

col (5) ~' 1 (co~ (5)_ w~5(_~5) ) - - g - ]  = ~  

(2.3) just means that col is increasing and co~(5)/5 is decreasing; thus co~ is indeed 
a majorant. Finally, the last statement of the lemma is an immediate consequence 
of (2.2). [] 

LEMMA 2. If cO i8 a regular majorant and zED, then 

f co(l~-~l______)) dm(~) <. C(co) 
CO(C0z) 

I~-zl  2 Oz 

(see w for the meaning of the symbols 5 and Oz). 

Proof. Once ( e T  is fixed, let te ( - r r ,  Tr] be defined by eit=~/5. Observing that 

Ir215 and Ir 2• 
(the constants involved being numerical), we get 

(I0+I) dm(~).< C [ ' o o a t = C  . (2.4) )r  2 Jo t +ez  , 

Estimating the two integrals by using the inequalities 

co(t) co(O~) (O<t<Oz) and 2 2 2 - -  t + O z > ~ t  , t 2+~ <~ ~ 

we see that the right-hand side of (2.4) is hounded by 

Qz \ Jo. t2 ] Oz 
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LEMMA 3. If W is a regular majorant, fEA~(T)  and zED, then 

lPf(z)-f(~)l < C(~)IlfllA~(T)u(a~). 

Proof. We have 

= 

~< ItSII,~r162 d~(r < C(~) IISlIA~r 
where the last inequality relies on Lemma 2. [] 

LEMMA 4. If  w is a regular majorant and fEA~(T),  then P f e A ~ ( D ) ;  moreover, 

IIPflIA~(~) ~< c(~)IIflI.~(T). (2.5) 

In particular, for f E A one has 

IIf]h~(~) < C(W)[If]IA~(T)" (2.6) 

Proof. In order to verify (2.5), we let zl, z2eD and look at the quantity 

R(Zl, z2) d____ef •f(Zl)  --Pf(Z2).  

Let us distinguish two cases. 

Case 1: max(Izll, Iz21)~<�89 It is not hard to see that, for (ET,  

IPz,(r  4Clz l - z21  < 2C - ~ ( I z l - z 2 1 )  (2.7/ 

(the last inequality holds because w(t)/t is nonincreasing). From (2.7) it easily follows 

that 

IR(zl, z2)t < CIIftl,~(T)~(Izl-z~l)- (2.S) 

Case 2: max(Izll, lz2l)> 1. For j = l , 2  write zj=rj~j, where rj=lzj] and ~jeT.  

Assume that rl>~r2 (and hence r l>�89 Further, for a fixed re(0,  1) set 

g~(z) ~pf (rz ) ,  z e ~ .  

Of course, g~ is harmonic on D and continuous up to T. Also, it is easily shown that 

g~ITEA~(T) and 

IIg~IIA~r ~< IlfllA~('r). (2.9) 
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We have 

R(z1,  z2) = {gr l  (~1)--grl  (~2)}"~ {grl (~2)--gr2 (r def R1 +R2. 

In view of (2.9), 

IRll ~ llfnA~(T)W(l~l--~21)- 

On the other hand, since 

Lemma 3 tells us, in combination with (2.9), that 

IR21 <~ C(w)Ug..HA.(T)W(l-r2 ] ~ C(w)HflIA~(T)W(1--~ ). 
\ r 1 / 

Since rl  > 1, it follows that  

-< 41z -z21 and 1 - r 2  ~<2[zl-z2[. 
r l  

(2.10) 

(2.11) 

(recall that z*=l/2 and note that Qz now stands for Izl-1).  

Proof. We have 

=-- f(r (r a dm(r ( f ( 5 ) - f ( r 1 6 2  e dm(r 

I~(Pf(z*))[ < C(0J)Ilfllh~(T)0J(Qz______)) 
gz 

Remark. In connection with (2.6), see also [T]. 

Before stating the next lemma, recall that the Cauchy-Riemann operator 0 is de- 

fined by 

02 2 \Ox Oy]' z=x+iy.  

LEMMA 5. I f  o~ i8 a regular majorant, fEAw(T)  and zED_, then 

A juxtaposition of (2.8) and (2.12) now yields (2.5), which in turn reduces to (2.6) in 

case f c A. [] 

Using these inequalities to estimate the right-hand sides of (2.10) and (2.11), we eventu- 

ally obtain 

IR(zl, z2)l ~< C(w)I[fllA~(W)~(Izl-z21). (2.12) 
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whence 

f ~(Ic--el) 10(7~f(z*))l~[lfllA~(T)lZ*l 2 ic-_z,12 dm(c-). 

Applying Lemma 2, with z replaced by z*, and noting that 

we obtain 

~ z " = -~l 

f ~(IC--~L) 
dm(c-) < C(w)lz I W(Qz~). Q ic--z,i 2 

Substituting (2.14) into (2.13) yields the result. 

Remark. Lemma 5 remains valid if 0 is replaced by O=O/Oz. 

LEMMA 6. Let w be a majorant, and let f E A. Consider the quantities 

M0(f)~fsup if,(z)l Qz 
~ D  ~(~z)' 

M1 (f) d_ef sup 1 / 
z c D ~  If(C)-f(z)ld/zz(c-), 

def 1 ( /  
M2(f) = ~eDsup ~ I f ( f f ) - f ( z ) l  2 d#~(c-)) 1/2. 

The following assertions hold true: 

(i) One always has 

Mo(f) < Ml ( f )  ~ M2(f). 

(ii) If  w is regular, then 

(C(c~) )-IM1 (f) < IIflIA~(T) ~ C(c~)Mo(f). 

(iii) If  ~2 is a regular majorant, then 

M2(f) ~ C(w)HflIA~(T)" 

Proof. (i) For zED, we have 

ezmf'(z)l= ( f (r  <~ If(r162 

which implies the first inequality in (2.15). The second one is obvious. 

(2.13) 

(2.14) 

[] 

(2.15) 

(2.16) 

(2.17) 
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(ii) First let us prove the right-hand inequality in (2.16). Given C1,C2ET, put 
def 1 

h = 51CI-if21 and let I be the shorter subarc of T connecting ffl and C2- Set 

h'l d el {rC1 : r e [1-- h, 1] }, 

72 d-----ef {(1-- h)C : CE I}, 

?3 ~f {rG : re[1-h, 1]}, 

and ?a---efVlUV2 U?3. When endowed with the appropriate orientation, ? becomes a path 

going from C1 to @. We have 

Using the estimate 

and the assmnption 

]f(C1)-f(C2)l= f1,ff(z)dz <"~.l~lfl(z)]ldz[.= j 

If'(z)t <~ Mo(f) w(o~) 
Oz 

(2.18) 

for o~(t) 
dt 

t 

(this should be used when dealing with the integrals along 71 and 13), one deduces from 
(2.18) that 

If(C,)-Y(G)I 
Hence IIfIIA~(T)<~C(w)Mo(f). 

To prove the rest of (2.16), we fix CET, z E D  and write 

lf(C)- f(z)I <~ lf(C)- f(5)l+If(5)- f(z)l 
(2.19) 

< IIflIA (T) (Ic-- I)+C( )IIflIA (T) (ez) 
(we have invoked Lemma 3 to estimate the second term). Integrating (2.19) against 

d#z(C), while taking Lemma 2 into account, yields Ml(f)<.C(w)][f[[h~(T). 
(iii) Noting that the regularity of w 2 implies the conclusion of Lemma 3, we still 

have (2.19) at our disposal. Rewriting it in the form 

If(C)-f(z)l 2 < (2.20) 

then integrating (2.20) against d#z(C), and finally using Lemma 2 (with w replaced 

by w2), we arrive at (2.17). [] 

Remark. Of course, for w(t)=t ~ ( 0 < a < l ) ,  the equivalence of Mo(f) and ][f[[h~(W) 

is a well-known fact, due to Hardy and Littlewood. 

The next lemma is a version of the remarkable E.M. Dyn'kin theorem on pseudo- 

analytic extensions (see [Dyn] for the AS-case). Because of its crucial role in what follows, 

we include a complete proof of the version required. 
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LEMMA 7. Let w be a regular majorant and f E A .  In order that fEA~,  it is neces- 

sary and sufficient that there exist a bounded function F E C I ( D _ )  such that 

lim F(z) = f(~), ~ E T ,  (2.21) 
z--*~ 

z E D -  

and 

Moreover, 

IIfiiA:(w) •  ]OF(z)I:zeD_ , 

where F ranges over the bounded functions of class e l ( D _ )  satisfying (2.21) and (2.22). 

Proof. Given fEA~,  set 

F(z) =f(z*) ,  zED_ .  

Clearly, F is bounded, smooth and satisfies (2.21). Further, using the estimate Mo(f)<. 

C(w)HfIIA~(T ) (see Lemma 6, parts (i) and (ii)), one gets 

10F(z)l = If'(z*)l" Iz* 12 < C(~)[If liAr(T) ~(az*) IZ* [2 ~< C(~)[If liAr(T) ~(~z), 
Qz* ~z 

and so F satisfies (2.22) with const~<C(w)[If]lAw(T)" 

Conversely, let F E C I ( D ) N L ~ 1 7 6  be a function with the properties (2.21) and 

(2.22), so that  

B4----efzeD_SUp ~oz) lOF(z)l < oo. 

Fix z E D  and R > I .  The Cauchy-Green formula, applied to the function that  equals f 
on D and F on D , gives 

I=R ( - -z  7r <Ir ( - - z  

(it is understood that  ff=~+ir/). Differentiating (2.23) and noting that the arising contour 

integral is O(1/R) as R---*c~, one obtains 

1 8F(~) d~d~? <~ n w ( r - 1 ) r d r  
If'(z)l = -~ I>1 (r ~ r - 1  [re"-z[ 2 

// /o ~< 2B co(r- 1) a~(t) 
(r-1)(r-lzl) d r = 2 B  t(t+Oz) dt. 

The regularity assumption on ~o implies that the last integral is <~C(w)'w(O~)/Oz. Thus 

Mo(f) de2sup Oz ~cD ~ If'(z)l ~< C(w)B 

and hence (in view of Lemma 6, part (ii)) [[fHh~('r) <C(w)B. [] 

IOF(z)l <. const, w(Qz), z E D_. (2.22) 
coz 
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LEMMA 8. 

majorant, then f E A~ and 

IIflIA~(T) < C(~)IIf0IIA~(T). 

Proof. By Lemma 7, there exists a bounded function G E C I ( D  ) such that 

lira G(z)=f(~)O(~),  ~ E T ,  
z---*~" 

zED_ 
and 

Let f EA and 0 be an inner function. If  fOEA~, where w is a regular 

It then follows that the function 

F(z) ~f a(z) O(z* ), 
is bounded, smooth and satisfies (2.21), while 

z E D _ ,  

IDF(z)I = I O(z *) OG(z) I • I~a(z) l. 
Another application of Lemma 7 completes the proof. [] 

Remark. Another proof of Lemma 8 can be found in [Shl]. 

Finally, we require some modified versions of Lemmas 2 and 3 above. 

LEMMA 9. Let w be a majorant. Given 0</3<1,  there exists a constant C1(/3)>0 

such that 

(~ - -  "" ./11 ~t[--~ dt ~ C1(/3). w((~/3), (2.24) 

whenever 0 < 5 < 1. 

Proof. The integral on the left can be written as f J  + fhl~. Using the inequalities 

~(t) ~< ~(5~) (o ~< t ~< ~), 

~(t)~_< ~(e')e--z- (t/> 5,) 

to estimate the two integrals, one eventually arrives at (2.24). [] 

LEMMA 10. Let w be a majorant. Given 0</3<1,  there is a constant C1(r 

making the following statements true for any z e D  and fEA~(T) :  

(a) f w(I~-s dm(~)<Cl(/3) w(O~z). 
Ir 2 Oz 

(b) IPf(z)-  I(~)i < C1 (9) ii f IIA~ (T) ~(~). 
Proof. To verify (a), one recalls the relation (2.4) from the proof of Lemma 2. The 

term f0 e~ is handled as before, while f : .  is now estimated with the help of (2.24). To 

derive (b), one reproduces the proof of Lemma 3 (except for the very last step) and 

employs part (a). [] 

IOG(z)I<C(~)IlfelIA~(T) ~(~ zED_ 
Oz 
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3. Proofs  of  Theorems 1, 2 and Corollary 2 

Proof of Theorem 1. Under the hypotheses of the theorem, Lemmas 4 and 6 tell us that  

IlfllA~(~) ~ IIflIA~(T)X M2(f), 

where M2 (f)  is the quantity appearing in Lemma 6. It remains to notice that  the right- 

hand side of (1.1) coincides with M2(f).  [] 

Proof of Theorem 2. First let us remark that,  in view of Lemma 1, there is no loss 

of generality in assuming that  wECI(0, c~) and 

w(t) (3.1) J(t)~< T ' 0 < t < ~ .  

Otherwise, one should work with wl instead of w, where wl is defined by (2.1). (In fact, 

once we assume that  w is smooth, (3.1) is just a restatement of the hypothesis that  w(t)/t 
is nonincreasing.) 

This said, we proceed by estimating the norms involved. Clearly, 

N3(f) ~< IlfllA~(~). (3.2) 

It is also obvious that  

whence 

Further, for zED,  one has 

max(llq0llA~(T), II~lL,r~d) < N3(f),  

N2(f) ~2Na( f ) .  (3.3) 

~< + 
~(Qz) ~(~z) ~(~z) 

C(~) II ~IIA~ (T)+ II~ll~,rad, 

where we have used Lemma 3 to estimate the first term. It follows that  

N~(f) ~C(w)N2(f). (3.4) 

Now that (3.2), (3.3) and (3.4) are established, it remains to prove that  

IlfllA~(~) ~ C(w)Nl(f). 

def 
Set K=l l~ l ] l~ (T)  and 

M d__ef sup Pqo(z) -- ~(z) 
~D ~(ez) 

(3.5) 
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so that NI ( f )=K§  Let f=gO be the canonical factorization of f (here g is outer and 

0 is inner), and let 
h dej fO = g8 2 . 

Note that ]hl=[g]=~ on T. In view of Lemmas 4 and 8, we have 

IIfllA~(~) < C1(~)[If liAr(T) ~< 62(~)IIhllA~(T). 

Thus, to verify (3.5) it would be sufficient to show that 

IIhlIA~,(T) ~< C(w)(K-I-M). 

By Lemma 7, this last task will be accomplished if we construct an appropriate "pseudo- 

analytic extension" for h, i.e. a bounded function H E C I ( D _ )  satisfying 

lim H(z) = h(~), ~ � 9  (3.6) 
z--~r 

zED_ 

and 

JoSH(z)] ~< C(w)(K+M) w(Q~), z �9 D_.  (3.7) 
Qz 

We begin with some preparations. Recalling the definition of M and using the 

Thus 

P~(z)-lh(z)l ~2Mw(Qz),  z E D .  (3.8) 

d e f .  
Further, let nl = av'g (here ~ is the outer function with modulus v/~ on T) and note 

that  the left-hand side of (3.8) equals 

7~[hi [2(z)-[hi  (z)12 = / [hi ( ~ ) -  hz (z)12 d#~(~). 

This enables us to rewrite (3.8) in the form 

/ [hl(~)-hz(z)[ 2 d#z(~) < 2Mw(~z), z �9 D, 

obvious inequalities 

[g(z)l.lO(z)l <~ �89 +]O(z)[ 2) <~ �89 Pcp(z)+ �89 2, z �9 D, 

we obtain 

Mw(~) ~ PV(z)-(p(z) = Pep(z)-]g(z)[. ]0(z)] 

>>. �89189 �89 zeD.  
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and hence to conclude, by virtue of Lemma 6, part (i) (where we currently replace f by 

hi and w by vrw), that  

Ih'l(z)l ~< v/2-M ~ ,  z e D .  (3.9) 
Qz 

Throughout the rest of the proof, z will denote a point in D_. Consider the sets 

E d e f .  
1 = tze~J_ : Ih(z*)l ~< Mw(~)}, 

E d e f t  2 = Iz El-J_ : [h(z*)[ ) 2Mw(Q~)} 

and the functions H1,2 defined on D_ by 

Hl(z)~fh(z *) (=h~(z*)), 
H~(z) def~(z)/h(z*), 

where r z ) ~f P~o( z* ). 
really matter.) 

Claim 1. For z EEl,  

Indeed, we have 

(Strictly speaking, H2 lives on {z: h(z*)r but that does not 

10H~ (z) l ~< 2312M w(p:). (3.10) 
Qz 

]0H1 (z)l = 12hi (z*)c9hl (z*)l = 21hl (z*)l. Ih~ (z*)l. Iz* ] 2. (3.11) 

Recalling the definition of El,  we get 

Ihl(z*)l< ~ ,  zeE1, (3.12) 

while (3.9) gives 

Ih~l(Z*)l<~ 2x~-M VIw(Oz*) <.x~-M ~ l z l ,  zeD_. 
Qz* Qz 

Substituting (3.12) and (3.13) into (3.11) yields (3.10). 

Claim 2. For z EE2, 

JSH2(z)J <~ C(~)K ~(Oz) 
Oz 

Indeed, since the function z~--+l/h(z*) is holomorphic on E2, one has 

cSg2(z) = 2 r  h(z*) Or 

(3.13) 

(3.14) 

(3.15) 
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Further, 

Since 

r  r  
h(z*)  - Ih(z*)l +1. 

r = Pp(z*)-ih(z*)I <~ 2Mw(Qz.) ~< 2Mw(Qz) 

(3.16) 

(here we have employed (3.8)) and 

Ih(z*)l >1 2Mw(Qz) for z e E2, 

(3.16) shows that 

Besides, Lemma 5 tells us that 

r ~<2, zEE2. (3.17) 
h(z*) 

03(Qz) 
10r ~< C(w)K (3.18) 

Qz 

Now a juxtaposition of (3.15), (3.17) and (3.18) yields (3.14). 

The two claims having been verified, we also observe that 

lim Hi(z) = h(~), ~ E TNclosE1, (3.19) 
z---*~ 
zEE1 

(this is obvious) and 

lim H2(z) = h(~), ~ E TMclos E2. (3.20) 
zEE2 

(If h(~)~0, then (3.20) just follows from the fact that r in case h(~)=0, one 

should also make use of (3.17).) 

Finally, we are going to construct the sought-after pseudoanalytic extension H(z), 
satisfying (3.6) and (3.7), by welding the two "partial extensions" H1 and/ /2  together. 

To this end, we pick a nondecreasing function xECI[0, oc) such that 

0 for 0~<t~< 1, 

x ( t ) =  1 for2~<t<oc,  

and set, for z E D_, 

) +H (z)x ) . (3.21) 
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Clearly, HIE 1 ----H1 and HIE 2 =H2.  Consider the region 

E3 ~f D_ \ ( EI U E2 ). 

In view of Claims 1 and 2, accompanied with relations (3.19) and (3.20), it now suffices 

to show that H is bounded on D and satisfies 

lim H(z) =-h(~), ~ E TNclosE3,  (3.22) 
z---+~ 
zEE3 

and 

For z E E3, we have 

10H(z)l • C(w)(K+M) w(@z), z E E3. (3.23) 
Oz 

MW(Qz) < Ih(z*)l < 2Mw(pz), (3.24) 

which enables us to repeat (with some very minor modifications, affecting only the nu- 

merical constants involved) all the estimates appearing in the proofs of Claims 1 and 2 

above. In particular, we get 

I ~(z) (3.25) h-~ <~ 3, z E E3, 

which is established in the same way as (3.17). 

Since H1 is bounded on D_ a n d / / 2  is bounded on E~UE3 (the latter follows from 

(3.17) and (3.25)), we conclude that H is bounded on D_. Further, for zEE3 one has 

IHl(z)l ~< 2Mw(@z), IH2(z)l ~<CMw(@z) (3.26) 

and 
02(~z) W(Qz) 

I~al(z) l  ~< CM , I@n=(z)l <~ C(w)K (3.27) 
@z @z 

(The inequalities for ]H2(z)l and laSH2(z)l rely on (3.25).) 

From (3.24) it follows that h(ff)=0 whenever ~ETMclos E3, while (3.26) yields 

lim H(z) = O; 
z--.-* ff 
zEEz 

this proves (3.22). 

Next, differentiating (3.21), we obtain 

- Ih(z*)l { Ih(z*)l OH(z) =OHI(z).{1-X(M---~(Qz) )}+OH2(z)'X\Mw(oz) ] 

+(H2(z)-Hl(z)).X'(\Mw(o~)/'-~O(w--~)).lh(z*)l "~ 1 - Ih(z*)l 

(3.2s) 
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For zEE3, the first two terms on the right are bounded in modulus by 

C(co)(K+M) ~o(O=), 
Oz 

as is clear from (3.27). In order to estimate the third term in (3.28), we note that 

IH2(z)-Hi(z)l <~ CMw(&), zE Ea (3.29) 

(see (3.26)), while 

Ix'(t)l < c, 0< t<oo .  (3.30) 

Finally, 
a(Ih(z*)i'~ 

k(.d(uOz) ) :~z) C~(hl(z')hl(z*) )~-Ih(z*)l~(~-~z) ) 
z .2 1 z o~'(e=) (3.31)  

- ~o(o~) hl(z*)hi(z*)--~.-~llh(z*)lw2(Oz). 

Recalling (3.1), (3.13) and the right-hand inequality in (3.24) (also used in the form 

Ihl (z*)l< v/2Mw(o,) ) we conclude from (3.31) that 

o(Ih(z*)l'~l < CM 
- - ,  zEE3. (3.32) 

\~(~=))1  oz 

Combining (3.29), (3.30) and (3.32), we see that the last term in (3.28) is bounded in 

modulus by CMw(Q,)/Q~ whenever zEE3. Eventually, we arrive at (3.23), and the proof 
is complete. [] 

Proof of Corollary 2. Assuming that the hypotheses of Corollary 2 are fulfilled, set 

f~eF8. For zED, one has the identity 

P l f l (z ) - I f (z ) l  = {PlFi ( z ) -  IF(z)l}+{IF(z)l (1-10(z)l)}. (3.33) 

Dividing (3.33) by w(~z) and noting that both terms { } are nonnegative, one concludes 

that 

Nl ( f )  ~ Nl (F)+sup  [F(z)l 1-le(z)__........~ I (a.a4) 
zeD ~(1--1zl)" 

In view of Theorem 2, (3.34) proves the equivalence of conditions (i) and (ii) (see the 

statement of Corollary 2). 

Further, set 

S(F, O) aef sup{ IF(~)] 1-lO(rr 
w(1- r )  " 
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The identity 

II(C)I-  If(rC) I = (IF(C)I- IF(rC)1)IO(rC)l+ IF(C) [ (1-10(rC)l), 

where frET and 0~<r<l, implies 

N2(f) ~< N2(F)+S(F, 0) 

and 

(3.35) 

S( F, O) <~ N2(f ) + N2( F). (3.36) 

From (3.34) and from the equivalence relation N~(. ).<N2(" ), it follows that 

N2(F) ~< C(w)N2(f). (3.37) 

Taken together, (3.35), (3.36) and (3.37) yield 

N2(f) ~ N2(F)+S(F, 0). (3.38) 

Finally, in virtue of Theorem 2, (3.38) proves the equivalence of conditions (i) and (iii). [] 

4. D e d u c t i o n  o f  t h e  H a v i n - S h a m o y a n - C a r l e s o n - J a c o b s  e m b e d d i n g  t h e o r e m  

For the reader's convenience, we reproduce the theorem in question and then proceed 

with the proof. 

THEOrtEM 3. Let w be a majorant such that ~b(t)~fw(v~) is a regular majorant. 
Suppose that ~EA~(T),  ~>0,  and log~ELl(T, dm). Then O~c:Ar and 

(l+ f log II~ll~ dm(~)). 

Proof. We may assume that minfcT ~(ff)=0 (otherwise the theorem becomes almost 
trivial) and IITII~=I. Set 

def def f .  1 
K = II~IIA~(T) and Z: = IT log ~ din(C). 

Letting fix, 42 ET be such that ~(ffl)=1, ~ (~ )=0 ,  and writing 

1 = qo(~l)-qo(~2) ~< Kw(ICil -~21) ~< Kw(2), 

we see that K~>l/w(2). 
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We have to prove that 

IIO~IIA~<D) ~ C(w)K(l+s (4.1) 

In virtue of Theorem 2, we can replace the left-hand side of (4.1) by II~llhr II~llr 
where ~ is extended into D by the formula 

~(z) d--e--fexp(/TlOg~dpz)='O~(z)'. 

Since w(t)<.x/2r for 0~<t<~2, it follows that 

II~llA~(T) ~< v ~ K ,  

and so (4.1) is equivalent to the estimate 

II~pIIr ~< C(w)K(l+s 

The proof thus reduces to showing that, for zED, 

I~(z)-~(~)l ~< C(w)K(l+s (4.2) 

To this end, we fix a point zED and distinguish two cases. 

Case 1. ~(~)~<~(z)+2gw(v/~ ). We have then 

- 2 K w ( x / ~  ) ~< ~(z)-~(~)  < P~(z ) -~(~) .  (4.3) 

1 Applying Lemma 10(b) with/3=~ gives 

IP~(z)-~(5)[ <<. CKw(Vr~ ). (4.4) 

Combining (4.3) and (4.4) yields 

I~(z)-  ~(5)[ ~< cgw(vr~ ), 

so that (4.2) holds true. 

Case 2. ~(5)>~(z)+2Kw(v/-~ ). Let 7/>0 be defined by 

~ ( ~ ) -  ~(2) (4.5) 
2K 
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(since K>~l/w(2) and ~(5)~<1, one sees that ~(2)/(2K) belongs to the range of w). 
Further, set 

0 < ~(2)-  ~(z) = ~(5) -eJ ' e  J~ = R+8, 
We have 

where 
Rdej~(2)--e 41 and S~feY~(1-eJ2). 

In order to estimate R, we write 

J~ = f/(log ~(~) - log ~(~)) dtt= (4) + ~z (I) log ~(s = Ja +7  log ~(~), 

where we put 

J~ ~ f ~  (log ~( ( ) - log  ~(s d#z (r 

and 7~ftt~(I). Since 0~<~(2)~<1, we have 

and so 

Further, for ~EI one has 

whence T(~) >~ �89 and 

#~ = ~(5)~e J~/> ~(~)#~, 

, (~)-~(~) ~< K~(~) = �89 

min{~(~), V(s } ]log ~(~) - log ~o(5)J ~< 

This in turn implies 
[AI < 2K 

fT ~(lr du=(r 

and an application of Lemma 10(a), with/3--�89 now shows that 

l j31 <~ 2K - 4 ~  c~ (  4-i; ). 

(4.6) 

(4.7) 

(4.s) 
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Substituting (4.8) into the right-hand side of (4.7) gives 

n <. Cgw(v/-~). (4.9) 

We proceed by estimating S, the second term in (4.6). To this end, we write 

S = ~(2)7e J3 (1 - e  J2) < ~(5)7ea3 Ig21. (4.10) 

Using (4.8) and the inequality 
~(2) > 2Kw(x/~ ) (4.11) 

(recall the hypothesis of Case 2), we see that ]J3] ~ C  and hence 

e J3 < C. (4.12) 

Further, it is clear that 

1-3, = #z(T\ I )  = #z{~ E T:  1r > y}. (4.13) 

Observing also that ~ > v / ~  (see (4.5) and (4.11)), we deduce from (4.13) that 

1 - 7  ~< #~{~ �9 T:  > v~ ;}  < Cv~z (4.14) 

(the last inequality can be verified by a straightforward calculation). Using (4.11) and 
(4.14), we obtain 

1 
log ~(Z)7~(~) -- (1-7) log ~ < Cv/-~ log 2Kw(v/_~ ) <~ C, 

where the final conclusion holds because K>~l/w(2) and w(t)~> }tw(2) for t~<2. Thus, 

~(5) ~ < C~(~). (4.15) 

Substituting (4.12) and (4.15) into the right-hand side of (4.10) yields 

S ~ 6~(5)[J2]. (4 .16)  

Further, for ~ � 9  one has I~-5]>~? and hence I~-zl > 1~7. Consequently, 

fT (~--~)) 1- 'z '2 Q__~ / log 1 ~-2" Oz I J21= ~ n JT\I ~--~ \/log dm(() <~ 8 dm(r ~< 8/~ (4.17) 
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Since r/> v/-~ and the function t~-*w(t)/t 2 is decreasing, one has 

~(~) <~ ~(v~) (4.18) 
rl 2 Oz 

Taking (4.5) into account, one can rewrite (4.18) as 

Q2~ 2K 
~< - - ~  CO(v/-~-~ ). (4.19) 72 

Combining (4.19) with (4.17) yields 

. . . . . .  ~ ( ~ )  

which in turn implies, together with (4.16), that  

S <~ CKs (4.20) 

Eventually, a juxtaposition of (4.6), (4.9) and (4.20) enables us to conclude that  

0 ~ ~o(~)- ~(z) ~< C K ( l + s  

and so (4.2) holds true. [] 
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