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1. Introduction

1.1. The operator 85 +03 +83 was considered—to my knowledge—for the first time in
1913 in N. Zeilon’s article [20], wherein he generalizes I. Fredholm’s method of construc-
tion of fundamental solutions (see [5]) from homogeneous elliptic equations to arbitrary
homogeneous equations in three variables with a real-valued symbol (cf. [20, IT, pp. 14-22],
[6, Chapter 11, pp. 146-148]). An explicit formula for a fundamental solution was given
in [19]. The objective of this paper is to generalize the calculations in [19] to the op-
erators 95403 +03+3a0,0205, ac€R\{—1}. As discussed below, this class of operators
comprises all real homogeneous cubic operators of principal type in three dimensions.
According to Newton’s classification of real elliptic curves, the non-singular real
homogeneous polynomials P(£) of third order in three variables are divided into two
types according to whether the real projective curve {[(]€P(R3): P(£)=0} consists of
one or of two connected components, respectively. (For £eR™\ {0}, [{]€P(R™) denotes
the corresponding projective point, i.e., the line {t£:t€R}.) In Hesse’s normal form, all

non-singular real cubic curves are—up to linear transformations—given by

Po(§) =€l +63+85+3a61683, acR\{-1}

(cf. [3, 7.3, Satz 4, p. 379; English transl., p. 293], [4, §7, (10), p. 39], [17, §1.4, p. 19]). Let
X, ={[(]eP(R?): P,(£)=0} denote the real projective variety defined by P,. For a>—1,
X, is connected, whereas, for a<—1, X, consists of two components (cf. Figure 1). The
corresponding operators P,(8) also differ from the physical viewpoint: For a<—1, every
projective line through [1,1, 1] intersects X, in three different projective points, and thus
P, is strongly hyperbolic in the direction (1,1,1) {[1, 3.8, p. 129]); for a>—1, P, is not
hyperbolic in any direction, nor is it an evolution operator (cf. [15, Example 1, p. 463]
for the case of a=0).
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Fig. 1. {(&1,&2):[£1,€2,1]€ X, } for a=—2 and for a=0.

1.2. In §2 of this paper, we shall define the fundamental solution E, of P,(d)
as Fourier transform of the homogeneous distribution which is of order —3 and has
vp(1/P,(w))€D’'(8?) as its restriction to the sphere. From theorems on the wave front set
of the Fourier transform of a homogeneous distribution ([11, Theorems 8.1.8, 8.4.18]), it
immediately results that the (analytic) singular support of E, is the dual (see [1, p. 154])
of X,, i.e.,

sing supp E, = singsupp, E, = {tVP,(£): £€R3, P,(€)=0,t€R}.

By the classical Pliicker formulas (cf. [9, p. 280]), [sing supp E,\{0}] is an algebraic curve
of degree 6. Its complexification has nine cusps, three of which are real in correspondence
with the three flexes of X, (cf. Figure 2). Explicitly, we have singsupp E,={z€R3:
A, (z)=0}, where

Au(x) :=3a(a®+4) 222222 +4(a®+1) (2323 + 2323 + 23 23)

(1)
+6a2c 2023 (s + o5 +23) — (23 43 +23)2
If a<~1, then P, is hyperbolic with respect to (1,1,1), and
W, ={zeR3*: A,(2)=0,21+12+23 >0} (a<-1) (21)

consists of two conical surfaces which are the respective duals of the two components
of X,. Let F, denote the unique fundamental solution of P,(8) with support in {x€R3:
r1+22+x320}. Then Ea:%(Fa—F‘a), where the superscript ~ indicates reflection with



FUNDAMENTAL SOLUTIONS OF CUBIC OPERATORS IN THREE DIMENSIONS 285

W

r1=T9

T2=T3 T1=1T3 T2=T3 T1=1T3

Fig. 2. {z€Wqs:z1+224+23=1} for a=—10 and for a:%.

respect to the origin. Further, we denote by K, the propagation cone of P, with respect
to (1,1,1), i.e.,

K, := dual cone of the component of (1,1,1) in {z€R3: P,(z) #0} 3

= convex hull of W,.
From the Herglotz-Petrovsky-Leray formula (cf. [1, 7.16, p. 173]), we infer that F, has
a Petrovsky lacuna (in the sense of [1, p. 185]) inside the cone

Ly:={2€K,: As(z) >0} (a<-1). (41)

Hence W, consists of 0K, and of 0L,, which bound a convex and a non-convex cone,
respectively (cf. Figure 2).

If a>—1, then still E, has lacunas inside L, and —L,, where now we define
L := component of (1,1,1) in {zx€R3: 4,(z) >0} (a>-1) (42)

and
Wo:=0L, (a>-1). (22)

In both cases, the fundamental solutions E, are constant inside L, and —L,, and we
represent these constant values as complete elliptic integrals of the first kind. Finally, we

show in §2 that E, is continuous outside the origin.

1.3. In §3, we shall derive an explicit representation for E,(z) by elliptic integrals
of the first kind. Following N. Zeilon, we introduce first one of the complex zeros of the
rational integrand in the Herglotz—Petrovsky—Leray formula as a new variable, and, using

a substitution (also indicated by N. Zeilon already), we transform the resulting integral
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into Weierstrass’ canonical form. Then we use the addition theorem for the p-function
and the qualitative information from §2 in order to find a real-valued representation of
E, symmetric in the variables x1,x9,z3. The final result is contained in the following
theorem. (Y denotes Heaviside’s function and F the Fourier transform, cf. 1.4.)

THEOREM. Let a€R\{—1}. The limit

i YUE +EE+E3+3a61685| <)
N0 SHE+E+3a616:6

defines a distribution in S'(R3). If E,:=(i/2n)3FT,, and Ay,Wa, L, and, for a<—1,
K, are as in {1),(21),(22), (41), (42), (3), respectively, then:
(a) E, is a fundamental solution of 93+85+03+3a010205;
(b) E, is homogeneous of degree 0;
(¢) E, is odd and invariant under permutations of the co-ordinates;
(d) singsupp E,=singsupps E,=W,U—-W,;
(e) E, is continuous in R3\{0};
(f) If a<-—1, then E,=1(F,—F,), P.(8)Fa=6, supp Fy=K,;
(g) E, is constant in L, and in —L,, and the values E,}1, are given by the following

f

complete elliptic integrals of the first kind:

a>-—1,

1 /°° u
2y Vo
E‘alLL1 =
1 ¢ 2du
43w Jox Vpa(u)’
where po(u):=4(a®+1)u?4-9a?u?+6au+1 and o is the smallest real root of p,(u);
(h) Let z€U,, where Uy:=R3\(L,U—L,) if a>—1, and U,:=K,\(L,UW,) if
a<—1, and denote by z(x) the only simple real root or, if x belongs to one of the co-

ordinate azes, the triple root 0, respectively, of the cubic equation
Qa(x, 2) = Ag(z) 22+ 9(ax? 4 xo23) (azs +7123) (axi + 71 22) 2°
+[9a%c3x3ai+6a(alr+adad+adad) 3 zoas(at+a3+ad)] 2 (5)

2 2 3
+3azx3rs +x‘i’x%+x‘i’w§+x%x3 =0.
Then z is a real-analytic function in U,, and

sign(P,(z)) /zm du
4\/?: T 4 Da ('U,)

alL,+

where P,(z):=3[(a®-2)o+a%]z 12973 — (3a0+1) (23 +z3+13).
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Remark. Before proceeding, let us comment on some of the properties of the poly-
nomial @),, which, outside the lacunas, yields the level sets of E,.
First, if ¢; denote the coeflicients of ), with respect to z, i.e.,

3
Qolz,2)= Zqi(a, x)2",

i=0

then
—A _3 9% _1 9 _1 g
q3 = Aq, (I2—4 da’ Q1—3 9 qo—6 90’
Second, let us investigate the relation between @, and p,, P,. We note that all @
belong to the four-dimensional subspace V spanned by
By(z)=x%z323, By(z) =x3z3+a3zd+adal

By(x) = z102w3(2] +a3+23), Ba(z) = (2] +25+23)°
in the complex vector space of all symmetric polynomials in x1, z9,x3 of degree six. The

closure C, of {[Q.(x,2)]:2€C} in P(V) is a cubic curve: Qa(x,z)zzzl:l Bi(2) B;(x)
with

B1(2) =3a(a®+4)23+9(a+1) 2% +9a2+3a,
Ba(z) =4(a®+1)23+9a%22 +6az+1,

B3(2) =6a%23+9az+3z,

Ba(z) = —-2>.

The square polynomials make up a quadric curve S in P(V'), namely
4
S = closure of {[P,(r)%]:2€C}= { [Z aiBi(x)] tap=0,03—4aay= 0}-
i=1

The curves C, and S meet at [Q,(x, 2)] for those z for which p,(z)=0, since f2=p, and
ﬂg —45184 = (12az3+922)ﬂ2.

The polynomial P,(x) fulfills P,(z)2=4(a3+1)Qa(z, 0), and hence [P,(z)?] is just one
of the three intersection points of C, and S.

For a discussion of the zeros of Q. (z,z) with respect to z, we refer to 3.4.

1.4. Let us establish some notations. We consider R™ as a Euclidean space with
the inner product z-y:=x1y1+...4+Tpyn and write |z|:=y/z-z. S"~! denotes the unit
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sphere {we€R"™:|w|=1} in R™ and do the Euclidean measure on S"~!. We write P(V)
for the projective space corresponding to the vector space V (over R or C, respectively),
and [¢]€P(V) for the projective point corresponding to (€V'\{0}. By

f

When we make use of the theory of distributions. we adopt the notations from [11],
(13], [18]. In particular, the Heaviside function is abbreviated by Y, i.e., Y (t)=1 for ¢t>0
and 0 else, and (p, T') stands for the value of the distribution 7" on the test function ¢.

we denote the Cauchy principal value.

We use the Fourier transform F in the form

(Fo)(@):= / exp(—iz-€)p(€) dE.  peSR™).

2. Singular support and lacunas of E,

2.1. Let us repeat first some elements from [19, §2]. If P is a real-valued, homogeneous
polynomial of principal type in n variables and of degree m, then ®:=vp(1/P(w))€e
D’(S™ ') defined by

vo— N i pw) oo -
<<p, pP(w)>._51\O/P(w)|>e P(w)d (). #eDE™).

solves the division problem P(w)-®=1 on the sphere S"~!, and
§ ) /\:‘ i n
T:= Pf |¢| = eS(R
P lo(E )| esm

solves the division problem P(£)-T=1in R™. Hence E:=(i"/(27)") FT is a fundamental
solution of P(J). Theorems 8.1.8, 8.4.18 in [11] yield the representation

W :=sing supp F = singsupp, E={tVP(£): £€R", P(£)=0,tc R}
for the singular support of E.

2.2. Let us prove next, similarly as in [1], that, for P as above and odd n, the
Petrovsky condition on lacunas is valid (cf. [1, 10.3, p. 185]). First, radial integration in
the Fourier integral for F yields Borovikov’s formulas (cf. [2, (5r), (5B), p. 204; English
transl.. (5¢), (5d), p. 16], [7, Chapter I, 6.2, (5), (6), p. 129]):

(_1)(71—1)/2 m—n
125 T(m—n)! </<p(:v)(w:l:) 81gn(w‘z)dx,<b(w)>, mzn,
<99? E} = (6)

_1\{n—1)/2
(T(IQ)W)T {{p(2), 6 D (w-2)). ®(w)), m<n,
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where peS(R™) and ®:=vp(1/P(w)) as in 2.1.
Let xcR™\W and set

vz(§) = VP(§)— =5 (- VP(E)), {€R™

[ef2 l

If £ is a small positive number, then P(w+icv, (w))#0 for all weS™ ™! (since z¢ W), and

=ttm( L L )1y . + !
250\ P(w)+ie  Plw)—ie ~2:50 P(wtiev,(w))  Plw—ievg(w)) /)

If P is hyperbolic in the direction 8 and if F' denotes the unique fundamental solution
of P(9) with support in {z€R™: 0-2>0}, then

1

ar (2, () ])

with ¥=limg\ o 1/P(w+ie0)€D'(S"1) (cf. [12, Theorem 12.5.1, p. 120], [16, Proposi-
tion 1, p. 530]), and hence ®=1(¥+(~1)™¥) and E=1(F+(-1)™F).

On the other hand, for arbitrary P as in 2.1 and for a multi-index »€Nj which
satisfies n—m+|v|>0, we obtain from (6), by differentiation,

F:

vy (F)TI2 w” (n=metlvl=1) . >
PE@)= o I . Plotin@)’’ (w-z)).

Note that the two limits lim.\ o P(wicv, (w))~* exist in D'(S72) if
82_2 ={we sl w-z=0}

and k€N (cf. [1, p. 121]). Therefore,

8yE($)_( HOZ / 2( Iaﬂl2 ‘”)n_mﬂyl_l(P(wigvm(w)ﬂdoﬂ,ﬂw)

x

where (4 (w)=w+icv,(w) and do, is the surface measure on S?72. Let 1,(¢) be the
Leray form on {(€C™: (-z=0}, i.e.,

n

d(C-T) A (C) =3 (1)1 dG A AdG_1 AdCga A AdG + O(C- ),

Jj=1
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nz(¢) being the restriction of 7,(¢) from C™ to {(€C™:(-2=0} and O{(-z)—0 for

C':E "‘)U, aI]d put
v . |:[| (C) .

Then 4, , induces a holomorphic (and hence closed) (n—2)-form on U,:={[(]eP(C"):
¢-x=0, P(¢)#0}, which we denote by [¢; ], and
sy (1
3] E($) = W /Cz[d]z.u]? (7)
where ¢, is the homology class of the (n—2)-chain s, .+3;., the cycle s; . being given
by
$2.:S07 25U, we wticv, (w)],

and ¢ is small. (We choose 7, as orientation on S"~2.) Essentially, the representation
in formula (7) is equivalent to [1, (7.17'), p. 173] (cf. also the proof on p. 176) or to [12,
(12.6.10)", p. 131] for hyperbolic operators. Due to (7), E coincides with a polynomial of
the degree m —n in those components of R™\ W which contain a point z with vanishing c,

in the homology group H,,_o(U,.). This is precisely the Petrovsky condition for lacunas.

2.3. We apply the foregoing discussion to P, (£):= £} +£5+£3+3a€16283, ae R\ {—1}.
In this case, ® is odd and thus A—>®(£/{¢])|€]* is analytic in A=—3. Hence T,:=
D(&/1€]))EI72 and E,:=(i/2m)2 FT, are also odd and homogeneous of the degrees —3
and 0, respectively. As in [19, 2.2], we obtain T,=lim\ o Y (|Pa(€)|—€)/Pa(§).

For z=(1,1,1), all the three zeros of P, in {[¢(]€P(C?):(-z=0} are real. In fact,
they are given by [—1,0,1], [0,1,~1], [1,—1,0]. Moreover, s, . and 3;. coincide since
vz{—w)=v,(w). Hence ¢, in 2.2 vanishes (cf. [1, (6.26), p. 167] and Figure 3), and E, is
constant in the two components of R\ W, containing (1,1,1) and —(1, 1, 1), respectively,
ie, in L, and in —L,. Of course, in the hyperbolic case a<—1, moreover E, vanishes
in R*\(K,U~K,), the so-called trivial lacuna (cf. [1, p. 115]).

In order to obtain an equation for the wave front surface W,, we take into ac-
count that W, is the set of z where the two equations £-z=0, P,(£)=0 have multiple
solutions [¢]€ P(R?®). Hence W, is the zero set of the discriminant of the polynomial
Py (u, —(uzy+13)/22,1) With respect to u. This discriminant is 27A,(z)/z§ with A, as
in (1).

2.4. Let us calculate next the constant values E,|.,. Upon application of some ob-
vious estimates and of Lebesgue’s dominated convergence theorem (cf. [19, 2.2]), formula
(6) implies that F, is a locally integrable function given by

1 sign(uzy +vre+x3)
E =——1 du dv. 8
a(x) 87T2 EH% \/lvpa(u,v’1)|>5 Pa(u,v, ].) uav ( )
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Fig. 3. The path s; . in {[(]€P(C3):{-z=0} for z=(1.1.1.. (Each x denotes one of the
three real zeros of P, in the complex projective line considered.)

Employing the substitution w=u+wv, we infer

oo

Ba(1,1,1) = —— si n(w+1)dw?£oo du
Y S & oo 3u2(w—a)-3uw(w—a)+uwd+1

The quadratic polynomial of u in the last integral has no real zeros if and only if
(w—a)(w?+3aw?+4) is positive, and the inner integral yields

27 sign(w—a)

V3 /(w—a)(wd+3aw?+4)

in this case and 0 else, i.e.,

1 > sign((w+1){(w—a)) dw
Eo(1,1,1) = 4\/577/_00 [(w_a)(w3+3aw2+4)]i/2,

where z.:=Y (z)z for r€R. With p,(u):=4(a’+1)u®+9a*u?+6au+1, the substitution
u=1/(w—a) furnishes

o0

1 . —1/2
E.(1,1,1 :——/ sign(1+u(a+1 U du.
o ) Er) o gn( ( ))Palu)y
The discriminant of p, is —2%-33-(a®+1), and hence p, has one or three real roots
according to the sign of a+1.

If a>—1, then the only real root ¢ of p, satisfies —1/(a+1)<p<0, since p,(0)=1
and p,(—1/(a+1))=-3/(a+1)2. Thus 1+u(a+1)>0 if p,(u)>0 and

1 < du

Eilr,=—
Iz 4\/§7T o \/pa(u)

(a>-1).
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If a<—1, then p, has three real roots. say g<o<7. From p,(0)>0, p/(0)<0,
pL0)>0, and pa(—1/(a+1))<0, pl(~1/(a-+1))=—6(a—2)/(a+1)<0, pl(~1/(a+1))=
—6(a—2)%<0, we conclude that 0<p<o<7<~-1/(a+1), and thus again 1+u(a+1)>0
if po(u)>0. By [10. 222.2b], this implies

2.5. Let us finally show in this section that E, is continuous outside the origin.

From formula (8) we infer (substituting w=u+v for v as in 2.4)
/ 7§ sign(u(z; —x2)+wze+x3) du
82 3u(w—a)—3uw(w—a)+wd+1°

For real values «, 3,7, 4, [10, 131.3] yields

1 lln B+ad++/B2—ay oy < B
jﬁx du ) VB -l 2 1B +ad—/BP—ar | ’
s ou+2Bu+y ; :
s (S
VI3*—en] Vay=p3?

In our case, f2—ay=—3(w—a)(wd+3au?+4) and 6=(wra+x3)/(x2—x1). If T17F72,
then Lebesgue’s dominated convergence theorem can be applied in order to show that
E, is continuous in z. Since (1.1,1)¢ W,. we conclude, by the symmetry of E, with
respect to the co-ordinates 1, z2, z3. that E, is continuous in R3\ {0}.

Let us note, by the way, that, for a=—1, P, decomposes:

P_1(&) = (& +&+E)E+E+HE - L6~ 68— EEs).

From this factorization, one can see that lim. oY {(|P-1(w)|—¢)/P-1(w) diverges in
D’'(S?), and hence E_; is not defined. But it is easy to check that

sign(z,+x2+z3)

12437

is a fundamental solution of P_;(8).

2,.2, .92
In(z{+z5+x5— 212 —T1T3—T223)

3. Representation of E, by elliptic integrals

3.1. Let us consider now formula (7) in the case of P=P, and z€K,\L,. Then P,
has two complex conjugate zeros in {[¢(]€P(C3?):(-z=0}, say p,p. The residue theorem
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implies

1
0jEue) =157 | 2]

; 1
= i;f; (Res [¢z,5] —Res [4hr,5]) =+ 5~ Tm(Res [¥,5]),

where 1, ;:=(;1:()/P.(¢). Using (; as variable on {(€C3:(-z=0,(3=1} yields suc-
cessively

1

ﬁx(c) = W det((:7 x, dc)a
d¢y
1 ’ di
1Okt = ooz et o, | —madafae || = -2
0
1
R}ges (Vs3] = P%?S(l/)x,glggﬂ) S TR

where R(u):=P,(u, —(uz1+A)/z2,1) and p=[y;,y2,1]. Next we substitute A by 1
(cf. [20, p. 16]) in the integral E,(z)=["*(83E,)(z1, %2, A) d\. From

- A 8, P,
Pa(ylv*w‘li—)al> =0 = (61Pa—ﬂ82Pa) dy; = 2Te 0y
T2 T2 T
- dx T dy; _ mady
R/(y1> (02Pa)(y17 y271) 3(y§+ay1)
we infer

1 d
E,(x)=constant + — Im/ 5 y1 ,
o7 ) Yz ey
where () is a path in the Riemannian surface {(y1,y2)€C?: P,(y1,y2,1)=0} ending at
the point (yi(x), y2(x)), which fulfills y1(z)z1+y2(x) z2+23=0, and Imy,(z) >0, say.
Let us observe that

dy 3dy, < dy1 Adyo )
Q= = =-3PR.| ———
vit+ayr  OP,(y1,y2,1)/0ys Pa(y1,y2,1)

spans the space Q!(X¢) of holomorphic 1-forms on the elliptic curve X¢:={[¢]eP(C?):
P,(¢)=0} (with the co-ordinates y1=C(1/(3, yo=C(2/(3), and that E, can be expressed

more symmetrically as E,(x)=constant+ (1/6m) f[ Q2. (Here P.R. denotes the Poin-

()]
caré residue map as in [9, pp. 147, 221].)
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The elliptic integral above is transformed into standard form with the help of the
substitution w=(14y2)/y1 (cf. [20, p. 60]). In fact,

Yi+us+1+3ay1y2=0 = (yi+ays)dyi+(ys+ay)dyz =0
dy:  (1+y2)dy
n ¥
= —@flg;—l)y-lg [y3 +v3 +2ay1y2+y3 +ayi]
(1+y2—ay1)(1-y2)
(y3+ay:)y}
dy1 yi dw
yvitayr  (l+yz—ay)(1—y2)

= dw=

and, on the other hand,

1+ys—a
(w—a) (w+3aw? +4) = — L2 WL (1 1y5)3 4 3ay, (14y2)* +43]]
Y
1+ys—a
= TR 114 g3+ Bay (1+32)7 — 4(1493) — 120y, 9]
1
B 3(lerQ—ayl)2(1—yz)2
—— . .
Yy
Hence we obtain
1 dw
E,(z) =constant + ——— Re / .
a(2) 237w +@ V(w—a)(w?+3aw?+4)

As in 2.4, we eventually transform this elliptic integral into Weierstrass’ form by setting
u=1/(w—a). This furnishes

1 ~1/@t+) 4
E,(z) = constant + ——— Re/ e

2v37 @) VPa(u)
o du

1
= constant+ ——— Re / =N
237 Ju@) v/pa(u)

where p, is as in (g) of the Theorem, and u(x) is determined by the equations u(x)=
1/(w(z)=a), wx)=(1+y2(z))/v1(z), y1(x)z1+y2(x)T2+23=0, Pa(yn(x),y2(2),1)=0,
and by the condition Imy;(z)>0.

(10)

3.2. In order to obtain an integral representation of F, over a path on the real axis,

let us employ the addition theorem of Weierstrass’ p-function, i.e.,

1 ﬂ@%«ﬂﬂj’ a1

ol +) =—pl)-0l0)+ 5
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cf. [8, 8.166.2]. Since p'(s)=1+/40(s)3—g2p(s)—gs , we have

{/oo_’_/oo] du _/oo du
o r 1VAud—gou—gs Jo 4uP—gau—gs

if p(s)=0, p(t)=7 and p(s+t)=z, which, by (11), amounts to

(40’T—g2)(0'+’7')-—293—2\/40'3——920'—93 \/473—92T—g3
4(oc—71)2 )

Here we suppose that o #7 are sufficiently large real numbers. By a shift of the integration
variable, the following slightly more general addition theorem ensues from (12):

e <1 du * du
+ / J = (13)
{/o  1valw) Jo Valw)
where g(u)=cu’+pu? +yu+6, a>0, B,v,5€R, 0,7€C, Reo, Re 7 are sufficiently large,
o#7, and
_aoT(o+T7)+2B0T+y(0+7)+26-2+/q(0)q(T)

a(c—T)?

z

We apply formula (13) to (10) with ¢g=p,, o=u(z) and 7=u(z). This yields

1 *©  du
E, (x) :constant:l:—/ (14)
437 Jo@) v/Palu)
with
o) = 4(a®+ 1) ui(u+a)+18a?ui+6a(u+u)+2—2+/po(u) pa(@)
B 4a3+1)(u—1u)? (15)
_ 2(a®+ 1) (w+w—2a)+(w—a)(@—a)(w+2a)(W+2a)— S
N 2(a®+1)(w—w)?
wherein u=u(z) and w=w(z) are specified at the end of 3.1, and
S :=/(w—a)(wd+3aw? +4)(w—a) (w3 +3aw?+4). (16)

3.3. Let us next derive the cubic equation (5) for z(z). Since
T191(2) +22y2(2)+23=0 and Pu(yi(z),y2(x),1) =0,
y1(z) is a root of the following cubic polynomial in u:

23 Py (u, —(uz1+23) /12, 1) = 23 (03 +1) — (uz1 +23)* — 3aziu(uz; +3).
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This implies that

( :1+y2(x):_£ Io—T3
y1(z) T2 r2y1(T)

is a solution of the cubic equation
B(w):= (r§+$gm3+x§)w3+3(z1x2 41123 —amgwg)w2
+3x1(r1—aze —axz) w+(xs —z3)%—3ax?=0.
Furthermore, B(w)=0 implies

3(w—a)? (271 +wrs +wrs)?

~a)(w®+3aw? =—
(w—a)(w’+3aw®+4) (T2—73)2

bl

and thus, for w=w(z), the square root S defined in (16) fulfills

w—a)(w—a)(2r) +wze+wrs)(2x, +Wr2+1WT3)

_
S=3 oo

. (17)

We now consider B as a polynomial over K:=Q(a.z1,x2, x3), assuming a, z1, T2, Z3
transcendental over Q. If L is a splitting field of B over K, then B has three roots
wy,we, w3 in L, and z(z) is, according to (15) and (17), a rational function of w;, w2
say. Although the dimension of L over K is six, z(x) satisfies a cubic equation over
Q(a, 1,32, x3), since z(x) is mapped to itself by that element of the Galois group of L
over K which exchanges w; and wy (cf. [14]).

In order to determine the cubic equation for z(z) over K, we first express z(x) in

(15) by ws. Since wy,wsz, w3 are the roots of B, we have

T1To+T1T3—AX2T3
x%+x2x3+$§

wytwy = —wz—3

and

(1)1(1:1'—0,1‘2 —aafg)
2
T3+Tors+13

wiwse = —wz(w1+w2)+3
Inserting these equations into (15) and (17), and making use of B(w3)=0, a symbolic
calculation program yields

o) = Tox3(23+zox3+23) w3 —3arizl —ri(z2+x3) (T2 —73)°
4(x129+ax?) (2123 +0ax]) — (23 + 2223+ 32) ws+T1 T2+ 21 T3 — azox3]?

(18)

If N and D denote the numerator and the denominator, respectively, of the quotient
in (18), then z(z) is a root of the resultant of B(ws) and Dz—N with respect to ws,
which resultant is — (23 —23)%(22+ 2223 +23)2 Q. (z, 2).
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3.4. Let us finally verify the representation of E, announced in (h) of the Theorem.

Define _ _
{ R3*\(L,U—L,), a>-—1,

K \(LsUW,), a<-1,

and consider z€U,. The discriminant of @,(z, 2) with respect to z is
27(x7 —23)* (2} - 23)* (x5~ 23)* Aa(),

and this is negative in U, except for the planes x1=x5, x1=x3 and xo=x3. Hence
Qeo(z, 2} has exactly one real root z(z) if z€U, and z does not belong to one of these
planes. When zo=x3, say, then there is a double root z=-z2/(x1+az2) (note that
Ay{—a,1,1)=0, so z1+ax3#£0), and since the discriminant of 9Q,(z, z)/0z is

36(z} —23)% (z1+az2) 73,
and (1,1,1) belongs to L,, we have precisely one simple zero except on the co-ordinate
axes. This simple zero is real-analytic in the whole set U,, for if say z1=1 and z2=2x3 is
small, we have just given the double zero explicitly, and it follows that the simple zero
is also analytic there. If ¢ and ¢ are small enough, it follows that the simple zero z can
be continued uniquely analytically to {(z2,73)€C?:0<|z3|<¢, |z2 —x3]|<d}, and since it
is bounded, it extends analytically also to z3=0. Therefore, if z(x) is defined as in the
Theorem, then it is a real-analytic function of z€U,.
If p denotes the smallest real root of p, (cf. 2.4), then a calculation shows that

P(x)?
%, Po(x):=3[(a®—2)p+a?|z1z225 — (3a0+1) (23 425 +23).

Qalz,0)=
Hence z(z)=g if Py(z)=0. Let us investigate P,. From (3ap+1)2=—4(a®+1)g3, we
conclude that sign p=—sign(a+1) and that 3ap+15£0 for acR\{—1}. Hence

(a®-2)o+a®

ﬁaz—?) 1P& a:=—
(Bag+1)Fs, a 3a0+1

and we have to decide on the sign of a+1. Using two values of a, say a=0 and a -1,
and the continuity of p(a), we obtain that 3ag+1 is always positive. b=d is a root of
the resultant

4(a®*+1)(b® +3a%0* - 3ab+a®+2)

of the two polynomials p,(u) and (3au+1)b+(a®—2)u+a® with respect to u, and there-
fore a#—1 when a#—1. A test on two values of a as above reveals that 41 is negative,

and hence X; always consists of two components.
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Fig. 4. W, (solid) and X; (dashed) on the plane z1+z2-+z3=1 for a=~10 and for a=2.

The curves [W,\{0}] and X, intersect on the lines [¢,¢,1], t€R, if and only if the
resultant of A,(t,¢,1) and P,(t,t,1) vanishes. This resultant is given by

108(b®+3a%b? — 3ab+a® +2)(a®+3ab—2)?,

and thus [W,\{0}] and X touch at points on the three projective lines z1=x9, ;=23 and
zo=1x3. Using two values of a as above then shows: If a>—1, then the convex component
of X; lies inside [L,\{0}], and the non-convex component belongs to [U,]; if a<—1,
then the convex component of X; belongs to [U,], and the non-convex component lies
in P(C3)\[K,] (cf. Figure 4).

Next let us discuss the behaviour of z(z) for z tending to OU, from inside U,. Evi-
dently, z(xz)—+o0, and we can decide on the sign of the limit by noticing that it coincides
with the sign of Q.(x,0) since A,(z)<0 in U,. For z=(—a,1,1)€0L,, Qu(z,0)=a®+1,

and hence
o, a>—1,
z(z) >
-0, a<-—1,
if x—=0L, from inside U,. On the other hand, if a<—1 and =(0,0, 1), then z(z)=0<yp
and P,(z)=—(3a0+1)<0 (whereas P,(—a,1,1)>0), and this implies that z(z)——oo if
r— 0K, from inside U,, a<—1. Hence, for all z€U,, z(z)=p if a>—1, and z(z)<p

if a<—1. From this we conclude that f:(z)du/ VPa(u) is real-analytic in [U,] except
possibly on X;N[U,]. A Taylor series argument as in {19, Remark] shows that

du

. z{z)
sign(P,(z)) / N
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is real-analytic on X;N[U,] also.

Combining now the continuity of E, in R3\ {0}, the values of E, |, calculated in 2.4,
the limit behaviour of z(z) on the border of U, analyzed above, lim, gk, Fo(z)=0 for
a<—1, and the representation of F, in (14) with the principle of analytic continuation,
furnishes a proof of the assertion (h) of the Theorem.
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