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1. Introduction

A linear recurrence sequence of order t is a sequence {un}nez of complex numbers
satisfying a relation

Up =ClUp—1+...FCtin_y (REZ) (1.1)

with ¢>0 and fixed coefficients ¢y, ..., ¢;, but no relation with fewer than ¢ summands, i.e.,
no relation u,=c|tp—1+...+¢;_1Un—t+1. This implies in particular that the sequence is

not the zero sequence, and that ¢;,#0. The companion polynomial of the relation (1.1) is
Plz)=z2t—c12'7 ==y

Write .
P(z) =[] (z— )™ (1.2)
i=1
with distinct roots i, ..., ax. The sequence is said to be nondegenerate if no quotient
a; /o (1<i<j<k) is a root of 1. The zero multiplicity of the sequence is the number of
n€Z with u,=0. For an introduction to linear recurrences and exponential equations,
see [10].

A classical theorem of Skolem-Mahler—Lech [4] says that a nondegenerate linear
recurrence sequence has finite zero multiplicity. Schlickewei [6] and van der Poorten and
Schlickewei [5] derived upper bounds for the zero multiplicity when the members of the
sequence lie in a number field K. These bounds depended on the order ¢, the degree
of K, as well as on the number of distinct prime ideal factors in the decomposition of

the fractional ideals (¢;) in K. More recently, Schlickewei [7] gave bounds which depend
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only on ¢t and the degree of K. The linear recurrence sequence is called simple if all
the roots of the companion polynomial are simple. Evertse, Schlickewei and Schmidt [3]
showed that a simple, nondegenerate linear recurrence sequence of complex numbers has
zero multiplicity bounded in terms of ¢ only. The purpose of the present paper is to show
that this holds for any nondegenerate sequence.

THEOREM. Suppose that {un}ncz s a nondegenerate linear recurrence sequence
whose companion polynomial has k distinet roots of multiplicity <a. Then its zero multi-

plicity is under some bound c(k,a). We may take
c(k, a) = exp((7Tk*)8F"). (1.3)

Our value for c(k, a) is admittedly rather large; but it is preferable to give some value
at all, rather than to say that “c(k,a) is effectively computable”. No special significance
attaches to the numbers 7 and 8 in (1.3), which could easily be reduced. In the case of a
simple linear recurrence, a=1, and our bound (1.3} is of the same general shape as the

one given in {3].

COROLLARY. The zero multiplicity of a nondegenerate recurrence sequence of order
t is less than
c(t) =expexpexp(3tlogt). (1.4)

Proof. This is certainly true when t=1 or 2. When ¢>3 we note that k<t, a<{, so
that the zero multiplicity is
< clt, t) = exp((7t1)8"") = exp exp(8t!(t log t+log 7))
< expexp(t3) = exp exp exp(3tlog t). O
At the cost of some extra complication, the logt in (1.4) could be replaced by an
absolute constant.
It is well known that a recurrence with the companion polynomial (1.2) is of the

form
Uy = Py(n)al+...+ Py (n)a}

where P, is a polynomial of degree <a;—1. The zero multiplicity therefore is the number

of solutions z€Z of the polynomial-exponential equation
Pi(z)ai+...4+ Pr(z)ai =0. (1.5)
Given a nonzero k-tuple P=(P, ..., P;) of polynomials with

deg P,=t;, (i=1,...,k),
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set

a=1+maxt;, (1.6)
2

k
t=t(P)=_(t:i+1). (1.7)

i=1
Our Theorem and its Corollary can now be formulated as follows. Suppose that ay, ..., oy
are in C*, with no quotient o, /cy; (i%£5) a root of unity. Then the number of solutions
x€Z of (1.5) does not exceed c(k,a) or c(t).

A first, intuitive response to an equation (1.5) probably is that if all quotients «; /o
(i#7) are “large” or “small”, the summands in (1.5) will have different magnitudes when
z is outside a limited range, so that there will be few zeros. As is basically known, and
as we will explain again in §2, the Theorem can be reduced to the special case when
a1, ...,0r and the coeflicients of the polynomials P4, ..., Py are algebraic. The intuition
can then be put into the more precise form that there should be few solutions if the
(absolute logarithmic) heights h(a; /o) (1<i, j<k; i#7) are not too small. As will be
shown in §4, this intuition is correct. Note that h(a;/c;)>0 precisely when «;/a; is not
a root of 1. A major difficulty now comes from the fact that when a;/a; is of large
degree, the height, though positive, may be quite small.

The idea to overcome this difficulty is as follows. Write

o)=Y e ™ (i=1,..h),
j=1

and set

k
Nj(Xl,...,Xk):Zaini (]:1,70)
=1

The equation (1.5) may be rewritten as
> Nj(of,...,af)ai "t =0. (1.8)
j=1

Suppose that ay, ..., ar and the coefficients a;; lie in a number field K of degree D, and
let ££(0) (o=1,..., D) signify the embeddings K—C. Then, in an obvious notation,
(1.8) gives rise to

ZNj(a)(aga)ma-.-,agco-)w)xj_l:U (o':]'""’D).
j=1
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For each ¢, this is a linear equation in 1,z, ..., 7%~ !. Hence given embeddings o1, ..., g4,

we obtain a system of linear equations whose determinant must vanish, i.e.,

|N;0i)(agai)x,....a;cai)z)hgi.jga::o. (19)
This equation is of purely exponential type, i.e., the coefficient of each exponential is
a constant, and hence can be dealt with by methods developed elsewhere, e.g., in 3].
A difficulty in dealing with (1.9) is that the determinant s likely to have many exponen-
tials

(01) _(0a)YF
(7.7

with nonzero coefficients. A possible advantage for us is that when D is large, there will
be many a-tuples o1, ....0,, hence many equations (1.9) at our disposal.

A needed auxiliary result which may be of independent interest will be treated in
an appendix.

Let us finally introduce the notation
a=f3

to mean that «, 5 are in C* and that «/3 is a root of 1.

2. Specialization(?)

Let @ be the algebraic closure of @ in C. Let X,Y be algebraic varieties in C* defined
over Q. It is well known that when X\Y is not empty, i.e., if there is a point acCk
lying in X\Y', then there is in fact a point 8€QF lying in X\Y. Moreover, when X is
irreducible and of degree A, there is such a point 3 with degree d(3):=[Q(8):Q]<A.

When V is an algebraic variety defined over Q and V\Y is not empty, write 6(V\Y')
for the minimum degree of the points B€Q¥ in V\Y. Write §(V\Y)=oo when V\Y is
empty.

LeMMmAa 1. Let X, Y, V1, Vs, ... be algebraic varieties defined over Q, and set V=
Uy Va. Suppose that §(V,\Y)—>oc as n—oo, and that X\(YUV) is not empty. Then
there is a point B€QF with

Be X\(YUV). (2.1)

Proof. There is an irreducible component X’ of X such that X’\(Y'UV) is not empty.
Let A be the degree of X', and Va the union of the varieties V;, with §(V,\Y)<A.

{1} Some results of this and the next two sections first appeared in an unpublished manuscript of
Schlickewei, Schmidt and Waldschmidt. Added in proof. This work has now been published: Zeros of
linear recurrences. Manuscripta Math., 98 (1998), 225-241.
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Whereas V is not necessarily a variety, Va certainly is, and hence so is YUVA. Since
X'\(YUVA) is not empty, there is by what we said above a point € X'\(YUVa) with
degree d(3) <A. This point cannot lie in a set V,,\Y with §(V,\Y)>A, and hence cannot
lie in YUV. O

When @, ..., in C* are given, and when z€Z, the equation (1.5) is linear in
the t=(t14+1)+...4+(tx +1) coefficients of the polynomials Py, ..., Py of respective degrees
<t1,...,t,. Hence when Z is a subset of Z, the totality of equations (1.5) with z€Z
defines a linear space in these coefficients. This linear space is #{0} precisely when
a=(aq, ..., o) lies in a certain algebraic variety X =X (2,11, ..., t;). Thus when ay, ..., ax
are nonzero and if (1.5) holds for x€Z, then a€ X\Y where Y is given by a; ... ax=0.

Let ®,,(x) be the mth cyclotomic polynomial, and ®,,(z,y)=y*™®,,(z/y) its ho-
mogeneous version. For 1<i<j <k, let Vj;,,, be the variety in C* defined by ®,,(c, a;)=0.
Then 6(V;jm\Y)=¢(m). Now if, in addition to the condition on a given above, we have
o;#ay for i#j, then agV=|J; U, U, Vijm, so that a€ X\(YUV). By Lemma 1, there
is a B€Q” with (2.1). This 8 has nonzero components with Bi#0; for i#3, and there
are polynomials ﬁl, y }Njk of respective degrees <t1, ..., tx, not all zero, so that

Pi(2) 8% +..+ P (2) 8 =0

for zeZ.

It is therefore clear that in proving our Theorem, we may suppose from now on
that o, ..., ay are algebraic. They will lie in some number field K. The equation (1.5)
with x€ Z is linear, with coefficients in K, in the coefficients of P, ..., Pk, and if these
equations have a nontrivial solution, they have a nontrivial solution with components
in K.

In summary: We may suppose that a, ..., ai and the coefficients of P, ..., Py lie in
a number field K.

3. A survey of some known results
We will quote a few facts which will be used in our proof of the Theorem.

LEMMA 2. Let ai,...,tq,a1,..., 84 be in C*, and consider the exponential equation
a107 +...+aq0; =0. (3.1)
When a;#a; for i#j in 1<1,j<q, the number of solutions x€Z is less than

A(q) =exp((6¢)*7).
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Proof. This follows immediately from Theorem 1.2 in {3].(%) O
A solution z of (3.1) is called nondegenerate if no subsum vanishes.

LEMMA 3. Again let o, ..., a4, a1, ..., aq be in C*, but this time suppose an=~...~aq.
There are

B(g)=¢""
vectors c(w):(cgw), - c((;w)) (w=1, ..., B(q)) such that for any nondegenerate solution of

(3.1), the vector (af, ..., a) is proportional to some vector c),

Proof. We may suppose that ¢>1. Setting n=¢—1, b;j=—a;/aq, (i=(a;/0q)”
(i=1,...,n), we obtain
brCyt o bnCr =1 (3.2)

where (3, ..., (,, are roots of 1. By a recent result of Evertse [2] which improves on earlier
work of Schlickewei [8], the equation (3.2) has at most B(n+1)=DB(g) solutions in roots
of unity where no subsum of b;(;+...+b,(, vanishes. Given such a solution (i, ..., {n,
the vector (af, ..., af) is proportional to (¢, ..., (n, 1). O

A solution x=(z1,....z4) of an equation
a1z1+...+aqccq =0 (33)

is called nondegenerate if no subsum vanishes.

LEMMA 4. Let T be a finitely generated subgroup of (C*)7=C*x...xC* of rank r,
and let ay,...,aq be in C*. Then up to a factor of proportionality, (3.3) has at most

C(q,r) =exp((r+1)(6¢)*) (3.4)

nondegenerate solutions x€T.

Proof. This is just a homogeneous version of a theorem in [3]. Again set n=¢—1,

b;=—a;/aq, and write y;=xz;/z4 (i=1,...,n). Then (3.3) becomes
biyi+-.+bpyn=1, (3.5)
and (y1, ..., Yn) lies in a group I'" of rank <r. By Theorem 1.1 of [3], (3.5) has at most(?)

exp((r+1)(6n)*") < Clg,7)

(?) Added in proof. The estimate in the final version of [3] is slightly better.
(3) Added in proof. Again the estimate in the final version of [3] is better, but effects no essential
improvement of our main results.
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solutions (y1,...,Yn) €T’ where no subsum of byy;+...+b,y, vanishes. Since z;=y;zq,
the lemma follows. O

Let h(zi:...:z4) denote the absolute logarithmic height of a point x=(x1:...:%Xq)
in projective space ]P’q_l(@). Let hin(z1, ..., 2,) be the inhomogeneous height of a point
x€Q™, so that ki1, ..., Tn)=h(21:...: 2, :1). Given a number o €Q, there should hope-
fully be no confusion writing h(a)=hi,(a)=h(a:1).

When x=(z1,...,2q), Y=1, ..., Yq), set

X*y=(931y1a---7$qu)- (36)

LEMMA 5. Let g>1 and T be a finitely generated subgroup of (Q*)? of rank r.
Then the solutions of

21442, =0, (3.7)

with 2=(21, ..., zq) =x*y where x€T', ye(Q*)? and

1
are contained in the union of not more than C(q,r) proper subspaces of the ({g—1)-
dimensional) space defined by (3.7).

Proof. Set n=g—1. The lemma is an immediate consequence of the following in-
homogeneous version.

LEMMA 5. Let T' be a finitely generated subgroup of (Q*)™ of rank r. Then the
solutions of

214t z, =1, (3.8)
with z2=(21, ..., zn) =xxy where x€T', yeQ" and

1

hin g )
W<

hin(x)a (39)

are contained in the union of not more than C(n,r) proper subspaces of Q™.

This is a variation on Proposition A of [9]. In that proposition, the bound on the
number of subspaces depended on the degree of the number field generated by I'. But in
contrast to our estimate C'(n,7), that bound was not doubly exponential.

Proof of Lemma 5'. In the proof of Proposition A we distinguished three kinds of
solutions.

(i) Solutions where some y;=0, i.e., some z;=0. These clearly lie in n subspaces.
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(ii) Solutions where each 3,70, and where h;,(x)>2nlogn. These were called large
solutions in [9], and it was shown in (10.4) of that paper that they lie in the union of
fewer than

2307*(21n2)"

proper subspaces.

(iii) Solutions where each y; #0 and where hi,(x)<2nlogn. These were called small
solutions in [9]. Here we argue as follows. We have hi,(y)<(2nlogn)/(4n?)<log2 by
(3.9). Then each component has hi,(y;)<log2, and since y; €Q*, we have y;==41. The
equation (3.8) now becomes

tritzat...tx, =1 (3.10)

The group I generated by I' and the points (£1,..., £1) again is finitely generated, and
of rank 7. By Proposition 2.1 of [3], the solution of (3.10) with (+z1, ..., £z,) €I lies in
the union of not more than

exp((4n)*"-2(r+1))
proper subspaces of Q™.

Combining our estimates we obtain

n+2397"(21n2)" +exp((4n)3™-2(r+1)) < C(n, 7). O

LEMMA 6. Let 3,b in Q% be given. Then there is a u€Z such that

h(b3™*) = 1 h(B) x|
for xeZ.

This is the case r=n=1 of Lemma 15.1 in [9]. For the convenience of the reader,

we will present the proof of our special case.

Proof. We may suppose that h(8)>0. Let K=Q(b,3) and M be the set of places
of K. With ve M we associate the absolute value | - |, on K which extends the standard or
a p-adic absolute value on Q, as well as the renormalized absolute value || - ||, = (| - [)%/?,

where D=deg K and d,, is the local degree belonging to v. Then when a€ KX,

1
hla)= Y max(0,log lall) =5 3 [1ogllalu]
veM veM
by the product formula. Hence

h(b57) =5 3 llog Ibllv-+ 1o 5]

vEM
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Defining
P(E.)=3 3 I€log Bl +Clo bl
veEM
for (£,¢)€R?, we have
P(z, 1) =h(b8%), ¥(£,0)=[¢h(B). (3.11)

The function ¢ has $(§+€', (+C)<H(E, O)+(E, '), as well as HOE ) =[AIB (€, )
for A€R. The set WCR? consisting of points (£, ¢) with (£, ¢)<1 is convex, symmetric
about 0, closed, and it contains O in its interior. But it may be unbounded.

When V¥ is unbounded, there is some (&g, (o) #(0,0) with ¢ (£o, {o)=0. Since ¥(1,0)=
h(8)>0, we have {,#0. By homogeneity, there is some £; with 4(£;,1)=0. On the other
hand, when ¥ is bounded, hence compact, pick (&g, (o) in ¥ with maximal possible (.
Writing &y as £o=C0&1 we obtain (o(£1,1)€W, hence (ov(§1,1)<1.

Let (¢, ¢) be given. When ¥ is unbounded, ¥(¢&1,¢)=|¢|¥(&1,1)=0<¢ (£, (). When
¥ is bounded, we have ¥(C&1, ¢)=|¢|¥ (&1, 1) <|¢|/Co <9 (€, €), with the last inequality due
to homogeneity and the maximality of (5. Taking the difference of (&, () and (¢&1,(), we
obtain ¥(£—(&,0)<2¢(¢,¢), and hence

1§ —C€1|R(8) <29(,¢)
by (3.11). Setting (=1 and replacing £ by x€Z, we have
h(bB") = (x,1) > Fla—E&i|h(B).
We pick u€Z such that & =—u+y with |u[<3. Then

4. Consequences of having some height h(a;/a;) not too small

Define the degree of the zero polynomial to be —1. Given a k-tuple P=(P, ..., P;) of
polynomials where deg P;=t; (i=1, ..., k), define ¢(P) by (1.7), and set

t*(P) =1+ maxt;.

Note that a zero polynomial does not contribute to ¢(P).
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LEMMA 7. Consider the equation (1.5), i.e.,
Pi(z)aT+...4+ Py(z)ag =0, (4.1)

where (aq, ..., ) €(Q*)* and where each P; is nonzero and has coefficients in Q. Sup-
pose that t(P)>3 and that
max h(o;:a;) 2k, (4.2)

2,
where 0<hA<1. Set t=t(P), t*=t*(P),
E=16t2-t*/k, F =exp((6t)*)+5ElogkFE.
Then there are k-tuples
P =(P™, . P")#£(0,..,0) (1<w<F)

of polynomials with

degPi(w)gti (I<w< F,1<i<k),
degP,iw)<tk (1<w<F),

such that every solution T€Z of (4.1) satisfies
PN z)af+..+ P (z)af =0 (4.3)
for some w in 1Sw<F.
Proof. Suppose u€Z, and set y=x+u. Then (4.1) may be rewritten as
Pi(y—u)ar“al+..+ Pe(y—u) oy “of =0,

which is the same as
QW) 4. +Qi(y)al =0 (4.4)
with
Q:(y)=Py—u)a[* (i=1,...,k).

Suppose our assertion is true for (4.4), with polynomial k-tuples Q(“’):(ng), .
(1Sw<F). Thus every solution y€Z of (4.4) satisfies

&)

@ )ad +..+QM (y)al =0 (4.5)
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for some w. But then x=y—u satisfies (4.3) with Pi(w)(a:):ng)(m—f—u)a;‘ (i=1,..., k).
We therefore may make a change of variables x—y=x+u.
We may suppose that h{ai:az)>h. Write

Pz(l') = aio—l-ailx—i-...-}—ai’tia:ti.

Pick u according to Lemma 6 such that
Yy—u
a1, [ 01 1 oy 1
T"Y=h| =2 — > -h| — = - hly|.
harg0f “razs,08 )= (a2,t2 <a2) ) 1 (ag) lyl 1 lyl

Qi(y) =Pi(y—u)a; “ =bio+bay+...+b;1,y",

Setting

we have by 1, =a1+,07 ", by, =as 05", so that
h(b, tlal bs t2a2) ﬁ|y| (4.6)

for yeZ.
The equation (4.4) is of the form

(b10 —|—b11y+...+b17t1 ytl )Ctlll +...+ (ka +bgry+...+ (bk’tkytk)az =(.
Some coefficients may be zero; omitting the zero coefficients we rewrite this as
(Broy" 0 +.tby sy ) al + o+ (B y O+t b, ¥ ) o = 0.

Let g be the total number of (nonzero) coefficients here, and consider the following vectors

in g-dimensional space:

X=(bood,....br 0l bigal, .. b, al),
Y:( y bS] ytl IR yvko LRS! ytk )'
Our equation becomes
Zy+...+Z,=0 (4.7)

with Z=XxY=(X,Y1,...,X,Y;). Here X lies in the group I of rank r<2 generated by
the points (byg, .-, 1,615 -5 gy -, Dk yti ) a0d (01, ..., @1, ..oy Qi .o, ). Further

h(X) > h(bl tlal ba tza2) ﬁ|y| (4.8)
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by (4.6). On the other hand, YeQ9, in fact YE(Q*)? when y#0, and h(Y)<t*log|y|
since each t; <#*. Therefore when

ly| >2Elog E, (4.9)

so that |y|>(32¢2t*/h)log(164%t*/k) in view of ¢<t, then

16g%¢*
lyl > —— log Iy,
and 5 1 K 1
R(Y) tlogly|<16q2 ly] P Rl 17 (X)

by (4.8). Invoking Lemma 5, we see that for such y the vector Z is contained in the
union of at most
C(q,2) <exp((69)°?) < exp((6t)™) (4.10)

proper subspaces of the space (4.7). Consider such a subspace ¢1Z;+...+¢,Z;=0 (where

(e1,.--s¢q) is not proportional to (1,...,1)). Taking a linear combination of this and (4.7)

t4

we obtain a nontrivial relation ¢; Z;+...+¢;_,

Zg-1=0. But this means exactly that y

satisfies a nontrivial equation

Or(y)ol +..+Quly)al =0, (4.11)

where deg@igti (i=1,...,k-1), deg§k<tk.

There are not more than 5E log E values of y where (4.9) is violated. For fixed y,
and since t>3, there will certainly be polynomials @1, ey @k, not all zero, with (4.11)
and the same restriction on their degrees. Altogether we get fewer than F polynomial
k-tuples (5:((21, ...,@k), where F is the sum of the right-hand side of (4.10), and of
5Flog E. 0

Lemma 7 gives us a possible opening to prove our Theorem. Note that each P®)
has t(P(®))<t(P), so that we can start induction on t=t(P), provided (4.2) holds with
some fi=F(t)>0 independent of the degrees of a1, ..., a;. But in general such a condition
(4.2) will be hard to satisfy.

5. A proposition which implies the Theorem

An n-tuple of linear forms Mj,..., M, in a variable vector X will be called linearly
independent, over @ if there is no y={(y1, ..., yn) €Q™\{0} such that we have identically
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PROPOSITION. Suppose that linear forms My, ..., M, in X=(X1,..., X)) have alge-
braic coefficients and are linearly independent over Q. Let ay,...,ax be algebraic and

have o;%a; when i#j. Consider numbers x€Z for which
Mi(af,...,0%), .., My(af,.. of) (5.1)
are linearly dependent over Q. These number fall into at most
H(k, n) = exp((7Tk™)%")

classes with the following property. For each class C, there is a natural number m such
that

(a) solutions z,z' in C have r=x' (modm),
(b) there are 4, j with h(af*: ) >k, where

h="h(k,n)=e 10K" (5.2)

We will now deduce the Theorem. We are concerned with (1.5), where we write P;
in the form

Pi(x)=Zaija:j_1 (221,,]{2)
j=1
with a=1+max; deg P;. Define linear forms
k
Nj(X)=Zaini (j:l,...,a)
=1
in X=(Xjy,..., Xx). Then as already noted in the Introduction, (1.5) may be written as
e .
> Nj(af,..,af)a? Tt =0. (5.3)
j=1

Here Ny, ..., N, are not necessarily independent over Q. Let n be the maximum number of
independent ones among them. There are linear forms My, ..., M, linearly independent
over QQ, such that

NiX)=> ;Mo (X)  (j=1,...,0)

with rational coefficients c¢;,. Then (5.3) becomes

i(icg-r:cj‘l)MT(agf,...,ai):(l. (5.4)

r=1 ‘j=1
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There are less than @ numbers x where
a
.- B
E cpd’ i =0 (r=1,..,n).
j=1

For the other solutions of (5.4), the n numbers in (5.1) are linearly dependent over Q. By
the Proposition, these numbers fall into at most H(k,n) classes. Let us look at solutions
in a fixed class.

When g is a solution in the class, every solution in the class is of the type x=z¢+mz
with z€Z. In terms of z, the original equation (1.5) becomes

Pi(2)& +...+ B(z)az =0, (5.5)
where Isi(z)zafOPi(x0+mz), a;=a™ (i=1,...,k). But now for some i, j,
h(@;:a;) > Mk, n).
We will prove that when ¢(P)=t, the equation (1.5) has at most
Z(t, k%) = exp(t(Tk*)™*") (5.6)

solutions . We clearly may suppose that k>2, t>>3. We will prove our assertion by
induction on t in 3<t<k®. We apply Lemma 7 to (5.5). Since t*(P)<t, n<a, we have

E <1663/ A(k, n) < 16k32e105™" < o135
5Elog E < 65k2%. ¢13K™ < 18k

F <exp((6£)7) +exp(18k2) < exp((6k%)°F" )+ exp(18k2%) < exp((Tk*)> ).

By Lemma 7, each solution of (5.5) satisfies an equation with a polynomial vector P(*)=
(Pl(w), o P,Ew)) #(0, ...,0) with 1<w< F having t(P(*))<t. By induction on ¢, each such
equation has at most Z(¢t—1, k*) solutions. We therefore obtain

<a+H(k,n)F-Z(t—1,k%)
<a+exp((Th™)%" +(7k*)*")-exp((t—1) (k) ™)
< exp(t(Tk®)™*") = Z(t, k)

solutions, establishing (5.6).
Since t<k®, the number of solutions of (1.5) certainly is

< exp((7k*)%F%). O
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6. Splitting of exponential equations

Let nonzero ay, ..., a4, a1, ...,0q be given. We consider the function
fl@)=aaf+...+a40. (6.1)

We group together summands a;af and ajaf where a;~a;. After relabeling, we may

write (uniquely up to ordering)

fl)=filz)+...+ fq(z) (6.2)

where

fi(m):a“afl+...+ai,qiaf’qi (’L:l,,g)
with g1 +...+¢g,=¢ and

a5 ~=oy, when 1<i<g, 1<j,k<q,
ij# oy when 1<i#1'<g, 1<j<q, 1<k<gr.

LEMMA 8. All but at most

G(q) =exp((79)*) (6.3)

solutions x€Z of f(x)=0 have

filz)=...= fy(z)=0. (6.4)

We will say that the equation f(z)=0 splits into the g equations (6.4).

Proof. The lemma is nontrivial only when g>2; and then g=q(f)>2. We proceed
by induction on ¢. When ¢=2 and g=2, we have in fact f(z)=aaf,+ba3; with ab#0
and a11%ag;. There can be at most one z€Z with f(x)=0.

We now turn to the step g—1—+¢ where ¢2>3. Observe that (af, ..., a7) lies in a group
' of rank r<1. By Lemma 4, there are at most C(g,1)=exp(2-(6¢)*9) vectors c!) =
(cgl), ...,cf,l)), 1<I<C(q,2), such that for every nondegenerate solution x€Z of f(z)=0
we have (of, ..., af) proportional to some c®. Thus the quotients (a;/a;)® depend only
on [. But since g2, some «;/a; is not a root of 1, so that for given [, there can be at
most one solution z€Z.

When z is a degenerate solution of f(z)=0, there is a nontrivial partition of {1, ..., ¢}

into subsets {i1,...,9n}, {J1,---»Jm} (With n+m=q) such that

a0 +...t+a;, 05 =0, ajof +...+a;,0f =0.
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There are <297 ! such partitions. But each partition yields nonzero f*, f** with

)= (x)=0, (6.5)

and with f*+f**=f as well as q(f*),q(f**)<g=q(f) (where ¢(f) is the number of

nonzero summands of a function f). Write

@)= fi@)+.+ (),
@) =7 (@) 4+ 7 (),

where f;, f** are linear combinations of afj,...,af By induction, all but at most

1.qi°
2G(g—1) solutions of (6.5) have

hence (6.4). The number of exceptions to (6.4) therefore is

<exp(2(6¢)*)+27G(g—1)
<exp(2(69)*)+27exp((7g)*1~*)
<exp((79)*) =G(q). O

A summand ¢;of in {6.1) will be called a singleton if a;%#a; for every j#i, 1<j<q.
Then one of the g summands in (6.2) equals just a;o, and hence has no zero. We

therefore obtain the following

COROLLARY. Suppose that f as given by (6.1) contains a singleton. Then f(x)=0
has at most G(q) zeros z€Z.

The o;; (1<j<g;) occurring in f; are all ~ to each other. However, given a solution
z of fi(xz)=0, there may be a subsum of f; which vanishes. We will refer to such a
possible phenomenon as a subsplititng. It causes considerable complications in our proof
of the Theorem; in particular, it necessitates the Appendix.

A solution z of f;(x)=0 where no subsplitting occurs is called a nondegenerate
solution. To ease notation, let us suppose that f itself as given by (6.1) has a;~...~ay.
By Lemma 3, there are vectors ¢(*) (1<w< B(g)) such that for a nondegenerate solution,

(of,..., ag) is proportional to some c(*).
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7. Algebraic numbers having many conjugates which are = to each other
Throughout, «, 3,7, § will be in Q*.

LEMMA 9. (i) = is an equivalence relation on Q*.

(i) If amf, y~4, then ay=f4.

(iii) If o'=p" for some 1€Z\{0}, then a=f.

(iv) If a~p and o is an embedding of Q(a, B) into Q, then o(a)=~o(f).

Note that (i) has already been tacitly used above.

Proof. Let TCQ be the torsion subgroup, i.e., the group of roots of 1. Then a~f
precisely when a, 8 have the same image in the factor group Q*/T'. This implies (i), (ii).
When £ T for some I€Z\{0}, then £€T; and this implies (iii). Finally, if {eTNQ(a, 5)
and ¢ is an embedding of Q(a, 8) into Q, then o(£)€T; and this yields (iv). ]

LEMMA 10. Let 8 be of degree d, and S={BM, ..., 814} the set of its conjugates.
Partition S as

S=5U..US,

into equivalence classes under ~. Then(*) d=mn with some n€Z, and

191 = ... = [ S| = 1.

Proof. Let G be the Galois group of K=Q(8l, ..., l4). When o€G, let o(S;) be
the set of elements ¢(3!%) where 5% runs through S;. By (iv) of the preceding lemma,
G permutes the sets Sy, ..., S, i.e., G acts on the m-element set ©={S1, ..., Sy, }. Since
G acts transitively on S, it acts transitively on X. Given S;, S; and o0 €G with o(S;)=5j,
we have |S;|=|c(S;)|=|S;|. Therefore S, ..., S, have some common cardinality n, and
d=mn. d

Lehmer’s conjecture says that if 341 is of degree d, then h()>¢; /d with an absolute
constant ¢;>0. The best that is known in this direction is Dobrowolski’s [1] estimate
h(B)=(cz/d)(log* log*d/log*d)3, with the notation log™é=max(1,log&). According to

1
Z .

Voutier [11], we may take co=5. We will use the slightly weaker version

W) > —

> W. (7.1)

The following lemma can sometimes be used in place of Lehmer’s conjecture.

(*) The number n here and in n(8), nx(8) below should not be confused with the number n in the
Proposition.
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LEMMA 11. Let 3 be as in Lemma 10, and suppose 3%1. Then

1

h(B) > W (7.2)

Proof. In the notation of Lemma 10, we may suppose that € 5. Let y; (i=1,...,m)
be the product of the elements of S;, i.e.,

Y= H 5[a]-
Blales;

Then G permutes 71, ..., v, so that every conjugate of v, is among vi, ..., Vm. We may
infer that +; is of degree <m. Moreover, v, %1, for otherwise 8" ~~;~1, and hence S=1,
against the hypothesis. Therefore h(y;)>1/(4m(log*m)3). But

h) < Y R(B) =|S1|h(8) =nh(B).

Blale s,

We may conclude that

h(m) 1
h(B) > > . ]
) n 4d(log*m)3
Henceforth we will use the notation n(3)=n where n is as in Lemma 10. Suppose
that Q(B8)C K where K is of degree D. Let £—¢(9) (o=1, ..., D) signify the embeddings
K<C. Then each gl (1<a<d) occurs D/d times among B, ... 3P Therefore
among W), ... B(P) there are

n ()= n(B)

elements which are = to each other. Note that D=mng(3). We immediately get the
following

COROLLARY. h(B)>1/(4d(log™ (D/nk(B)))?).
Again let 3 be as in Lemma 10, and suppose S;={8!, ..., g"}. So gl ..., gl have

a common absolute value b, and we may write
Bl =p.e2mes (i=1,...,n) (7.3)

with 0 g; <1. The differences p; —g; are rational, since Al /,B[jlzl.

More generally, let R={p1,...,0n} be a system of reals such that each difference
0;—0;€Q, but 9;—0;¢7Z when i%j. Let r;; be the denominator of g; —g;, i.e., the least
natural number such that 7;;(0; —0;)€Z. Given z€N, let u;(z) be the number of j in
1<j<n with r;;|z. The system R will be called homogeneous if ui(z)=...=un,(zx) for
zeN.
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LEMMA 12. Let {5[1],...,B["]} be as above, and o1, ..., 0n defined by (7.3). Then
R={01,...,0n} is homogeneous.

Proof. Write v;(x) for the number of j in 1<j<n with r;;=z. Since u;(z)=
> yie Vi), it will suffice to check that vi(z)=...=v,(z). Since Bl 8lil = ¢27irii /i with
ged(r;, rgj)zl, we have r;;=x precisely when 5[i]/,8[j] is a primitive xth root of 1.

Given i and z set v=v;(z), and suppose that SU/8I] (1<k<w) is a primitive zth
root of 1 for v distinct numbers Iy, ...,1, in 1<I<n.

Let G’ be the subgroup of the Galois group G of Q(B, ..., 8l4) which permutes
B ..., 8" ie., which acts on Sy={8", ..., 8"}, Since G acts transitively on S and
permutes 51, ..., Sy, the group G’ acts transitively on S;. Now let 7 in 1<j<n be given,
and pick 0€G’ with o(1)=8U1. We have o(8U+)=8U+] where I, ...,I/ are v distinct
integers in 1<!’'<n. Further

Bl (B
are primitive xth roots of 1. Therefore v;(z) >v=v;(z). By symmetry, v;(z)=v;(x), and
the lemma follows. a

When «, 8,7 are in Q* or more generally in C*, write
Gla:8:7) (7.4)

for the subgroup of C* generated by a/8 and a/~y. Clearly G{a:3:v) is finite precisely
when arfzsy. With 8 and Slz{ﬁ[”,...,,@["]} as above, a triple of integers ¢,7,h in
1<4, j, h<n will be said to be e-bad if

|G(81: gL g < en.
In the notation of (7.3), this happens precisely when
lem(ri;, mip) <en.

Now let {3, and consider [-tuples of integers uy,...,u; in 1<u<n. Such an I-tuple will
be called e-bad if some triple u;, u;, up with distinet ¢, j, h in 1<4, j, h <1 is e-bad, i.e., if
it has

|Gl ; glusl : plenly| < en.

Since R={p1, ..., 0n} is homogeneous, and by the Corollary of the Appendix,

the number of c-bad [-tuples is <e/?p3pt,
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Suppose again that Q(3)C K and that £—£(9) (0=1, ..., D) signify the embeddings
K<+C. There are ng(8)=nD/d numbers p in 1<u<D such that gWe{glll, ... g},
Let M be the set of these numbers. Given >3, an I-tuple p1, ..., gy of numbers in M
will be called e-bad if there are distinct numbers 7, 7, h in 1<¢, 7, h<! such that

|G(B#): ) gl < en.

Since for each v in 1<u<n there are D/d numbers p in M with B =M and since
nk (8)=nD/d, we see that the number of ¢-bad [-tuples of numbers in M is less than

28 nx(B). (7.5)

Here M is typical of a subset of {1, ..., D} such that the numbers 8™ with pe M make
up an equivalence class under ~. Any such set M has |[M|=ng(3). We have

LEMMA 13. Let MC{1,..., D} be such that the numbers 3" with ue M make up
an equivalence class under = of the numbers 81, ..., 3P). Then the number of e-bad
I-tuples py, ..., with ;e M (i=1,...,1) is less than (7.5).

8. Two easy lemmas

Let K be a number field of degree D, and let £—£(9) (=1, ..., D) signify the embeddings
K—C. When a=(ay,...,a,) €K™, set a("):(a(la), ...,aS{’)) (6=1,...,D).

LEMMA 14. Suppose that ac K™. Then the vectors al®) (6=1, ..., D) span a rational
subspace of K™.

Proof. This is well known. O

LEMMA 15. Suppose that ac K"CC" but a¢T where T is some subspace of C™.
Then there are at least D/n integers o in 1<o<D with al®)¢T.

Proof. We will first suppose that ai,...,a, are linearly independent over Q. If the
lemma were false for a, there would be a set of more than D—D/n vectors a in T. Since
T#C", it will suffice to show that any set of more than (1—1/n)D vectors a(°) spans C™.

So let AC{1,...,D} be given with |A|>(1—1/n)D, and let B be the complement
of A, so that |B|<D/n. Since ay, ..., a, are linearly independent over Q, the vectors a(?)
(6=1,...,D) span C"™. We may suppose without loss of generality that a"),...,a(®) are
linearly independent. Suppose that K is generated by «, i.e., K=Q(«). Let G be the
Galois group of its normal closure Q(aV), ..., aP}). For g€G we have g(a!l?))=a!%s),

where 1g,..., D, is a permutation of 1,...,D. Given o and 7, there is a g€G with
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04,=T; in fact, the number of such g€G is |G|/D. Given o, the number of g€G with
0,€B is |G|-|B|/D. The number of g€G such that at least one of 1g4,...,n, is in B
is <|G|-|B|n/D<|G|. Hence there is a geG such that 14,...,n4 all lie in A. Since
a),..;a™ are independent and g(a?)=alls) (i=1,...,n) with 1,,...,n, in A, the vec-
tors a?) with o€ .4 indeed span C”.

This takes care of the case when ay,...,a, are linearly independent over Q. In

general, we may suppose that ay,...,a, are linearly independent over QQ, and that
T
a; = cja; (r<j<n)
i=1

with rational coefficients ¢;;. Since a¢T, there is a relation y,z1+...4+7, 2, =0 valid
on T, such that y1a14...4+7,a,7#0. But then

Yia1+..+yar #0

with ’Yz{:’Yi+Z?:T+1 ¢i;7;- Thus a=(aq, ..., a,) does not lie in the space T'CC" defined
by viz1+...+7.2.=0. By the case of the lemma already shown, there are at least
D/r>D/n integers ¢ with a()¢T”, so that ,},la(lff) +.‘.+'yna£f) #0, and hence al?¢T. O

9. Nonvanishing of determinants

After the preliminary work of the preceding sections, we can finally commence with the
proof of the Proposition. We first dispose of two simple cases.

(a) When k=1, M;(X)=b;X, and the linear independence condition means that
b1, ..., by, are linearly independent over Q. Then for any £ #0, in particular for £=a7, the
numbers M1(£}=b1&, ..., M, {£)=b, £ are linearly independent over Q.

(b) When n=1, M1(X)=a;X;+...+a X\ is not identically zero, and furthermore
My(of, ...,af)=0 becomes aijaf+...+araf=0. By Lemma 2, this equation has at most

A(k) < H(k,1)

solutions. We now put each solution into a class by itself. Hence in each class we may
choose m arbitrarily large, in particular so large that some h(af*:a]*) 2 fi(k, 1).

We may then suppose from now on that k>2, n>2. Again K will be a field contain-
ing o1, ..., a and the coefficients of our linear forms. Again we set D=deg K, and £—¢ (o)
(o=1,..., D) will signify the embeddings K—C. When M;(X)=a1;X1+...+ay; Xx, set
M](U)(X):agz)X1+...+a,(:;)Xk. We will write a;=(a;1, .., @) and aga):(az(.‘l’), ...,agz)).

Now if the n numbers (5.1) are linearly dependent over Q, we have

yMi(af, ..., af)+... 4y Mu(of,...,af) =0
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with y1,...,y, in Q, not all zero. Then for 0=1,..., D,
M, ) Ay MO (@ (@ ol =0.
Therefore the matrix with rows
(M@, al%), ., MO @7, i) (0=1,..., D)

has rank <n. Let D(oy,...,0,; ) be the determinant formed from the rows oy, ...,0, of

that matrix; then

D(oy,...0n;2) =0. 9.1)
LEMMA 16.
k k
D(01,...,0n;T) = Z Z A(agfl), . E:"))(az(-fl)...az(:"))z, (9.2)
=1 ip=1
where A(agfl), . aEZ")) is the determinant of the matriz with rows a( Do 50“ When

My, ..., M,, are linearly independent over Q, this determinant is #0 for certain oy, ...,0p

and 11, ...,y-

Proof. Since M}")(aﬁ")“,...,a,(f)”“‘)_ gj)a‘;’)’+ +a(a) ()2 e see that

D(o1, ..., On; )
agql)agol)z_i_ +a(01) (o1)x ag::)aim)z'f’ +a§cc;l)al(cm)
(Un) (an)w_l_ +a(0n) (on)w (Un) (Un)z+ +a(0")a,(:")z

_Z Ex( agﬂ;)l) (01)1 tay w(l)ai; 1)1) (aldn) (Un)ic_+_ +a§:’;()n)al(€0n)$)

m(n)®

where 7 runs through the permutations of 1,...,n, and where ¢, is the sign of 7. We
obtain

ko

k
D D D (L DO

i1=1 ip=1

>
x

A( (01)7 ._’a(n ))( (01). (‘7"))

1.1 K3 'Ll Zn

Given i, the vectors a ( ) (¢=1, ..., D) span a subspace S; of C" which is rational
by Lemma 14. We claim that when M, ..., M, are linearly independent over Q, then
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S1+...+85,=C". For otherwise, there is a nontrivial relation y; X3 +...+y, X,, =0 valid
on S1+...+ Sk, with coefficients y1, ..., y, in Q. Since a; €.5;, we have y10,1+...+Yn @in=0
(=1, ..., k), which leads to y; M1(X)+...+y, M,(X)=0, against our assumption. Now
C"=81+...4+5 is spanned by the vectors al(“) (i=1,...,k;0=1, ..., D), hence is spanned

by certain vectors a{”®, ..., ags"). But then A(agfl), e al(:"))gé(). O

11

Changing our notation, suppose that
A, al)y#o0. (9.3)

The n-tuple uq, ..., u, will be fixed from now on. By relabeling embeddings, we may
suppose that 7 =1. In view of (9.3), aq(;"’) does not lie in the space spanned by the
vectors al, a7 ... al"”). By Lemma 15, there is a subset Sz of {1, ..., D} of cardinality

|S2| = D/n such that aq(f;) does not lie in this subspace when o € Sy; thus

AP, a) a), . al™)£0

uy ? Fug 0

when 0€S82. When n>2, we continue as follows. Let 02€ 85 be given. Then ag?) does
not lie in the space spanned by a&?,a&i”,a&”, ...,a&"). By Lemma 15, there is a set
S3(0o2)C{1, ..., D} of cardinality > D/n such that a,(g) does not lie in this subspace when
0€85(03). Thus

A@P,al? a7 al™), . al™)) #£0

when o2€ S5, 0‘3683(0’2).
Continuing in this way, we inductively construct sets Sz, S3{53), ..., Sn(02, ..., Op—-1)

of cardinality at least D/n, such that S;(o2,...,0;_1) is defined when

02€S2, 03€83(02), ..., 0;1€8;-1(09,...,05_2), (9-4)
and such that
A(al),al?), ..,.alm) £0 (9.5)
when
09€ 8y, 0‘3683(02), . O'nGSH(O'Q,...,O'n_l). (96)

10. Selection of exponential equations

It will be convenient to set

A(77 ) = stalr, e,

11y eieyln

a LIRS o a.
A(} @O:@ﬁmégﬁ

U1y n
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and when o=(01,...,0,),

folz)= zk: Zk: A(‘“’ on ) (A(‘Z U“ ))z (10.1)

7;1, ceey lp

11:1 anl

Then (9.1) becomes
folz)=0. (10.2)

Here f, is of the type f considered in §6. According to Lemma. 8, the equation (10.2)
will split, with up to G(g) exceptions. The number ¢=¢(o) of nonzero summands in
(10.1) has ¢<k™, so that splitting occurs with at most G(k™) exceptions.(®) In principle,
we can do this for any o with 1<e; <D (i=1,..,n), which should give us a lot of
information. However, if we carried out this splitting for every n-tuple o, the number
of exceptions would depend on a factor involving the degree D, which we have to avoid.
We therefore have to select a small set of n-tuples o for which we will study (10.2).

Let § be the set of n-tuples ¢=(01,03....,0,) with g;=1, and with o9, ..., o, satis-
fying (9.6). When o €S, the coefficient

A(0-17 ...,O'n)
ULy ey Un
in (10.1) is nonzero, so that not all coeflicients of f, vanish. We will restrict ourselves

to 0 €S; but the set S is still too large and will have to be pared down.
As in (6.2), we may write fo=fs1+...4 fo g(o). Here we may suppose that f51 has

z
A(crl,...,an)<A(01,...,0n)) . (10.3)
ULy ooy Un Uy ey Unp

Let Z(o) be the set of n-tuples (i1, ..., ¢,) with

A(q,...,@) £0, (10.4)

‘il,...,lrn

A(man) zA(cn,u-,on) . (10.5)
21y.eytn ULy eeny Up

Clearly (u1,-..,us)€ZI(e), and
T1y.-,0n T1,y--,0n ¥
= . 10.6
fal(x) . Z A( éla“'aén )<A< ilr'*’én )) ( )

(%) When the linear forms M, ..., M, come from a polynomial vector P with ¢(P)=t, an estimate
g<c' with an absolute constant ¢ may be shown to hold, enabling one to replace logt in (1.4) by a
constant.

the summand
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We will first deal with the case where |Z(o)|=1 for some o€S. Then fs1 equals
(10.3), so that f, contains a singleton. It suffices in this case to restrict ourselves to
(10.2) with this particular o. By the corollary to Lemma 8, (10.2) has at most

Glq(o)) <G(k™) < H(k,n)

solutions x. Here we put each solution in a class by itself. We can choose m so large
that some h(a]*:a}*) > fi(k, n).

We may then suppose from now on that [Z(o)|>1 for each 0€S. The number
of n-tuples (i1, ...,in) is &, and the number of sets of such n-tuples is 25". Therefore
the number of possibilities for Z(e) is <2*". Given 01,09,...,0,_1 with o1=1 and
02, ..., 0n_1 satisfying (9.6), there is a set Z(oy, g, ..., 0n—1) such that Z(oq, ..., 0n-1,0,)=
Z(01,...,0n—1) when o, lies in a subset S, (o3, ...,0n_1) of 8,(02, ...,0,—1) of cardinality

[SL(Tay ey On-1)| > 275" [Sulog, oy on)| > D7 12757

Given 01,02, ...,0,_2 with o1=1 and o9, ...,0,_2 satisfying (9.6), then there is a set
Z(01,02, ..., On—2) such that Z(a1,...,0n_2,0,_1)=Z(01,...,0n—2) When og,_; lies in a
subset S,,_ (02, ..., 0n—2) of Sp_1(09, ..., 0n_2) of cardinality >D/(n-2%"). After carrying
out n—1 such steps, we obtain a set Z of n-tuples (i1, ..., i, ), as well as sets

Sé, Sé(UQ), veny SL(UQ,...,O’n_l), (107)
where S(03,...,0;_1) is defined for
0’265&, 0’368{;(0’2), . Jj_1€S;_1(02,...,Uj_2)‘

Each of the sets (10.7) has cardinality
D

> — 10.8
n'2k/.n ( )
Further, when S’ consists of & with ;=1 and
0’263&, UgESé(O’Q), . JnES;L(UQ, ...,O'n_l),
then
I{oc)=7 when oS8’ (10.9)
For 2<j<n, let 7, be the set of numbers i;#u; in 1<i; <k such that
(il,...,ij_l,ij,uj+1,...,un)EI (1010)

for certain 41,...,4;_1. (When j=n, (10.10) becomes (i1, ..., in—1,%n)EZL.)
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LEMMA 17. Suppose i;€T;. Then

h(aij ) > 1
o, ko™ deg(oy, o)
Proof. In view of (10.5), which holds for any n-tuple (¢4, ...,3,)€Z,
A(O:l, ...,(?‘j,O’j+1, ceey Un) ,-N\J,A(Ul’ ...,O'n)
2150525, Uj41, .05 Un ULy eery Un
for ¢€S’. Thus

(o1) (o5) (o;41) (on) oo Hlo1) (75) o (T541) (on)
Qe O T I Oy BRSOy 0, T Oy

oy, X (o, 7 auj_l)(‘”‘l)' (10.11)
Ay (&% QG

This holds when o1=1, g2€8), ..., Uj683(02,...,0j_1). Let such o2,...,0,_1 be fixed,
and let o; range through Sj(o2,...,0;-1). Then the right-hand side of (10.11) is fixed,
so that the number of (ay,/ay,)) (0=1,..., D) which are &~ to each other is at least
|S}(02, ...,05-1)|>D/(n-2¥"). In other words, in the notation of §7,

nK(ai">> D_ (10.12)

Qy, n-2k"

which is

Since i;#u;, and hence a;; /o, ;%#1, the corollary to Lemma 11 yields

S N T S

Qo 4(log(n-2%"))3 deg(ay, /o) = kO™ deg(ay; /)

on recalling that k>2, n>2. |
For 2<j<n, let T be the set of numbers o, /o, with i;€T;. Say 7}*:{,6’1, v B}

Clearly r<k; possibly r=0, and T;* is empty. We had seen in (10.12) and Lemma 17

that
D

ng(Bs) >~ (s=1,..,7) (10.13)
and that 1
—_— =1,..71). 10.14
MB)> g (5= Lor) (10.14)
Set
I=3k". (10.15)

Recall the definition of the group G{a:3:7v) in §7.
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LEMMA 18. Suppose

k2n

D>e¢t (10.16)

Let 2<j<n, and let o4, ...,05_1 with o1=1, 02685,...,0]-_168]’-_1(02,...,oj_z) be given.
Then there is a subset /=87 (01,...,05-1) of Si{o1,...,0;_1) of cardinality
|SJI'I(017 -~-70-j~1)| :l)
such that
IG(BP: B B)| > e % " deg B, (s=1,...,7) (10.17)
for any triple of distinct numbers ¢,y,w in S} (0a,...,05-1).

Proof. For brevity, write §;=8}(02,...,0;_1). When r=0, the condition (10.17) is
vacuous. Since Sj has cardinality >D/(n-2¥")>3k"=1 by (10.8), (10.16), it certainly
contains a subset S}’ of cardinality /.

Now suppose that r»>0. Set

e=e 8" (10.18)
Note that
21213 (n- 25" Y < e1/2. 54k 13T = 543 tLeR T < 1 (10.19)
since k=2, n>2, and that
212(n-2*" ) < 18%%"e3*”" < D (10.20)

by (10.16).

Let Bs€T;" be given. We had seen in (10.11) that the numbers 55") with o€
S;(ag, ..., 0;-1) were all = to each other. So let M be the set of all the ¢ in 1<o <D for
which ,8§"> is =~ to these numbers. By Lemma 13, the number of e-bad I-tuples pq, ..., 14
in M is less than

e 283ng (8,) <2 1P D (10.21)

In particular, the number of e-bad [-tuples p1, ..., s with each y; in S; is less than (10.21).
So far, 8,€7;" was fixed. The number of I-tuples u1,...,u; in S} which are e-bad for
some B, 1<s<r, is

D 1
<rel2PD < 2P D < % (W) (10.22)

by (10.19). The number of l-tuples of numbers yy, ..., in S of which at least two

! 1/ D \
< (2) Dl ?PD < 5 (W) (10.23)

numbers are equal is
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by (10.20). On the other hand, the number of all l-tuples p1, ...,y in S} is

D l
‘S;(O'Q....,O'j_l)V} ( )

n-2k"

Comparing this with (10.22), (10.23), we see that there is an [-tuple yu, ..., g of distinct
numbers of §; which is not -bad for any of i, ..., 8,. By definition, this means that for
any three distinct numbers ¢, 7, h in 1<1, j, h<I, we have

|G(B{H): Bk : Bn))| > en(B,) = e(deg Bs) D™ nc (Bs)

edeg s _gg2n
> ok > (deg Bs)e

by (10.13), (10.18).
We now set S/(02,...,05_1)={p1,...,su}. Then indeed for any three distinct num-
bers ¢, 9, w in 87(...) we have (10.17). O

The condition (10.16) on D can always be achieved by enlarging the field K, if
necessary. We will assume from now on that (10.16) holds.

Remark. Without (10.16) we might not produce an {-tuple p1, ...,y of distinct inte-
gers. This really would not make much difference. Note that if we enlarge K, there may
be several embeddings ¢: K—C whose restrictions to the field generated by o, ...,k
and the coefficients of M, ..., M,, are equal.

We now define S” to be the set of n-tuples o=(0y,...,0,) with o1=1, 02€87,
03€8Y(02),...,0,€8 (01, ..., 0n—1). We will deal with the equations (10.2) where o €S”.

The number of these equations is
ISIII — ln‘l < 3".k"2) (1024)

hence is bounded independently of D.

11. Conclusion

As noted above, each equation (10.2) splits, with at most G(q)< G (k™) exceptions. If we

carry this out for each € S8", we get
<IS"|G(K™) < 37k™" exp((TK™)*"™) < exp((Tk™)%") (11.1)

exceptions. We put each exceptional z into a class by itself. As we have noted before,
we then can make m so large that h(a]*:a]") > fi(k, n).
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For nonexceptional z, each equation (10.2) with o€S” splits, so that x satisfies
fori(x) =0 (cES"). (11.2)

We write this out in detail:
T
v A(C’F’ ""(,T")(A<J‘1’ o on )) —0. (11.3)
(i1,...,in)€I 11,50 11y--yn

Here in each summand we have (10.4), (10.5). One of the summands has (i1, ...,i,)=
{1,...,un). A mnatural impulse would be to apply Lemma 3 to (11.3). But not so
fast: x might be a degenerate solution of (11.3), i.e., the unpleasant phenomenon of
subsplitting might occur.

Given o0€8” and given a solution z of (11.3), there will be a subset I(o,z)CZT
containiﬁg (u1, ..., u,) such that

S AT (e
i) T ) i1y ey in U1y ey in
but that splits no further, i.e., that no subsum of (11.4) vanishes. Since the coefficient

01,y On

()

ULy ey Up

by (9.5), e have necessarily |Z(o,z)|>1.
There are fewer than k™ tuples i=(41,...,4p)#(¢1, ..., un). Hence given o1, ...,0n_1,
there will be an n-tuple
i:i(O'l, e Op—1, .’L') 7é (ul, ,un)

such that i€Z(o,z) for at least [/k"=3 of the numbers 0,€S)(0s,...,0n-1). Let
8 (o2,...,0n_1,) consist of 3 such numbers o,. Next, given o1,...,0,_2, there will
be an n-tuple

i(O’l, <oy On—2, l.)

such that i(oy,...,0n-9,0n_1,2)=i(01,...,0n_2,2) for at least 3 of the numbers ,,_;.
And so forth. We obtain n-tuples

i(z), 1i(o2,z), .., 1i(o2,....,0n_1,2)
and 3-element sets

S{x), S3(02,%), ..., Si(02,...,0n_1,%)



272 W.M. SCHMIDT

with the following property. Let S*(x) consist of o=(01,...,0,) with

o1=1, 02€8;(z), 03€85(02,2), .., 0n€SH(02,...,0n-1,T).
Then
i(z)eI(o,x) (11.5)
when o€S5*(z).
Now let X be a system of 3-element sets S3, S;(o2), ..., Si(o1,...,0n—1), Where
S;(O’z,“.,O'j_l) is defined when 02€83, 05€85(02), .., oj_les;_l(@,...,aj_g), and

where S (03, ...,05-1)C8} (02,...,05-1). The number of possible choices for &3 is <3
The number of choices for S3(o9) is also <3, but carrying this out for each 0,€S3,
we get <I33 choices. The number of choices for all the sets Sf(o2,03) with 0,€S83,
03€83(02), is <1333, etc. Thus the number of possibilities for a system ¥ is

B3B3 R

When i is an n-tuple and ¥ a system as above, let C(i, Z) be the class of solutions

x with i(z)=1i and
S3(z)=85, Si(02,2)=85(02), ... Sp(02:.,00-1,2) =8} (02, ..., 0n-1)

whenever
02€S;, 03€8;5(02), ..., ORE€ESH(02, .. 0n_1). (11.6)

The number of classes is less than
k™13 = kM (3k™). (11.7)

We will now study solutions in a given class C(i, ). Let j=j(i) be the number such
that

i:(il,...,ij,uj+1,...,un)
and i;#u;. Possibly i,7#un,, so that j=n. But we cannot have j=1, for then (10.5)
A(O.'l,O'Q,...,O'n) z.’4(0’1,0'2,...,0’n) ’
11, U2, ..., Uy Uy, U2, ..., Un

gfl)zafﬁ‘), which cannot happen when i, #u;. Therefore

would give

and hence o

2<j<n. (11.8)
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For z€(C(1,%), and o with 01=1 and (11.6), the equation (11.4) becomes

A (Jl, ey Oy ) (A(Jl’ ey Op >)E+A ((7'1, ...,gn ) (.A (011, ...,7n ))Z
ULy ey Up ULy eeey Un 11y 0oy lp 21y -eey I (]_]_9)
(+ possible further terms) =0.

We will now restrict o with (11.6) even further. We fix 01=1, 09, ..., 0,1 arbitrarily
such that (11.6) holds, in so far as it applies to them. We let o; vary in S} (02, ...,0-1),
so that o; assumes three values ¢,7,w. Given a choice of o}, we again fix ¢;41,...,05
such that (11.6) holds. Thus we now have three n-tuples o, which we will denote by
04, 04,0,. We will study (11.4), which is the same as (11.9), for these three choices
of o.

The number of possibilities for each of Z(ag, ), (g, ), I(0,,z) is <2*". We
subdivide the class C(i, L) into

23k™ (11.10)

subclasses C(i, 3, Iy, Iy, L) such that Z(o 4, z)=1y, I(oy, ) =Ty, (0w, z)=1, in the
class. Let g4, qy,q. be the number of nonzero summands in (11.9) with =04, 04,0,
respectively. Each of these numbers is <k™.

No subsum of (11.9) vanishes. Hence we may apply Lemma 3. Fix =04 for the
moment. Let A, (x) be the vector in g4-space with components

()

21y ey ln

where (ig,...,in)€Zy. According to Lemma 3, there are vectors e (1<w< B(gy))
such that A,(x) is proportional to some e for every solution z. We subdivide

C(i,%, T4, Zy,Z.,) according to the e (w=1, ..., B(gy)) to which A, (x) is proportional.

In fact we do this for o, as well as for oy, 0, so that we divide into

<B(gs) B(ay) B(gu) < B(k™)*

subclasses. Thus altogether, by (11.7), (11.10), the number of subclasses (which we will

call “classes” from now on) is

< k™ (3kn)3" 23k"B(kn)3 < (3kn)3“+1. 23k". (kn)QkQ"

- (11.11)
<KV <exp(12nkint).

Considering only the two components of A, (x) highlighted in (11.9), we get

(oo
L1y ereyln ULy oery Un
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when =04, where c¢=c§>w):c<(,w)(i1,...,in)/cf;")(ul,...,un) in a given class is fixed.

By our definition of j, this gives

(agfl)... aﬁjj))x =cy(altV ... aft‘:f))z

(( ai_-,‘ >(¢)>I ((Chq >(Ul) (G’u]—l )(UJ‘I)>1:
=cy | —— .
Qu; ai, Qg

An analogous relation holds when o=0; or o=0,,. Taking quotients we obtain

((aij/auj)(‘z’) )z <o

(0, /o, ) ¢y

for o=0y4, or

Now ay, /auj is one of the numbers 3, in 7}*, so that we may write
BN ¢y
( §‘“> Ty
Similarly (ﬂ§¢)/ﬂ§‘“))’=c¢/cw. Hence if z, 2’ lie in our class, then
ﬁgqb) r—z’ g¢) r—z’
( (w)) = ( (w)) -
& s

So if lG(ﬁ§¢): §.¢):5§“))|:m, we obtain z=z' (mod m). On the other hand, m>
e~ deg 3, by (10.17), so that in view of (10.14),

—9k%"

kﬁn

€

> 10K o Bk, n).

h(B{") =mh(Bs) >

But £, is the quotient of two numbers ¢;/c;, so that h(a?:a'}”)>ﬁ(k, n).
So how many classes do we have? Adding (11.1) to (11.11) we obtain indeed at most

exp((7k™)%") = H(k,n)

classes. O

Appendix: Denominators of certain rational numbers

Consider a system R={p1, ..., 0} of real numbers whose differences g; —g; lie in @, but
not in Z when i#j. We will briefly refer to such a set of reals as a system. Let ry; be
the denominator of g;—gj, so that g;—pg;=r};/ri; with r;;>0 and ged(ri;,7;;)=1. In



THE ZERO MULTIPLICITY OF LINEAR RECURRENCE SEQUENCES 275

particular, 7;=1 (1<i<n). We would like most of these denominators to have order of

magnitude at least n. Given €>0, let Ng(e) be the number of pairs ¢, 7 in 1<, j<n with
45 <en.

Is there a function 4(g) (independent of n and of R) which tends to 0 as ¢ —0, such that

No(e) < 8(e)n?? (A1)

The answer to this question is negative: Let R={0,1/n,...,(n—1)/n}. In this case
No{e)=nN'(e) where N'(g) is the number of integers i, 1<i<n, with ged(i,n)>1/e.
Now N'(g)=n—N"(e) where N”(¢) counts the number of integers i, 1<i<n, with
ged(?,n)<1/e. Clearly

Ny <n I] 1-p).
pln
pxl/e
Hence let n=n,,, be the product of the primes p in 1/e<p<m. Then when m>mq(¢),
we have N”'(¢)<3n, and hence N’(¢)>1n, No(e)>31n?, which is inconsistent with (A1).

Not to give up, we write N(¢) for the number of triples 4, j, k in 1<, j, k<n with
lem(ri;, rir) <en. (A2)

I conjecture that there is a function 6(¢) (independent of n and R) which tends to 0 as
€—0, such that

N(e) <6(e)n’. (A3)

1 cannot prove this conjecture, unless we make an extra assumption on the system R.

Given z€N and 1<i<n, write u;(z) for the number of integers 5, 1<j<n, with
rij | <.

We call R homogeneous if for every z, the number u;(z) is independent of ¢; say u;(z)=
u(z). For example, R={0,1/n,...,(n—1)/n} is homogeneous. Another example is the
system R, consisting of the numbers i/m with 1<i<m, ged(i,m)=1, so that R,, has
cardinality n=¢(m): for in this case, if i/m and ¢//m are in R,,, say i'=ki (mod m),
then 7;;=7y; where j' is the integer in 1<j'<m with 7 =kj (mod m). Occasionally
we will write uf*(z) and ufi(z) to indicate that our functions come from a particular
system R.
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THEOREM A. Suppose 0<3x<1. Then when R is homogeneous we have
N(e) <C¢(2—3)e™n?. (A4)

Thus in this case we may take §(¢)=((2—)e* in (A3). It may be shown that when
the denominators r;; are all powers of a fixed prime p, and when R is homogeneous,
then N(e)<e?n®. Therefore (A4) may perhaps be replaced by N(e)<co(s)e*n? for
0< <2, and possibly even for »=2. To carry out the proof of Theorem A, we will need
a somewhat more general theorem. Let R={p1, ..., 0n}, S={01, ..., 0} be homogeneous
systems. We will call R, S isomorphic, and write R~S, if u®(x)=u5(z).

THEOREM B. Let R={p1,...,0n}, S={01,..,0n}, T={71,..., 70} be homogeneous,
and isomorphic to each other. Suppose that all the differences 0, —oj, pi—Tr lie in Q.
Let a;; be the denominator of p;—o;, let by be the denominator of p;—7x, and N(e)
the number of triples i, 4,k in 1<4,j, k<n with

lem(ay;, i) <en. (A5)

Then (A4) holds for 3 in 0<sx<1.

The proof of Theorem B will proceed via a series of lemmas. Let R={g1, ..., 9} be
a homogeneous system. Note that r;; €N is least such that r;;(0; —0;)€Z. When zcN,
write gi%gj if rij|z, ie., if £(p;—0;) €Z. Clearly Z defines an equivalence relation among
the elements of R. Thus R splits into equivalence classes, where each class contains u(z)
elements, and the number of classes is v(z):=n/u(z).

When R={p1, ..., 0n}, S={01,...,0,}, write R=S if £(g;—o0;)€Z for 1<i,j<n. The
relation = for systems is symmetric and transitive but not reflexive, since not necessarily
RZR. But when RZS, then RZSZR, hence RZR. When R=R, then g;=01+(a;/x)
with a;€Z, but when i#; we have g;—p;={(a;—a;)/z¢Z, so that a;#a; (mod z}, and
therefore R has cardinality |R|<z.

LEMMA A. Let R be homogeneous, €N, and let Ri,...,R, be the equivalence
classes with respect to =. Then R,=R, (1<r<w), but RT;.RS when r#s. The sys-
tems R1,..., R, are homogeneous and isomorphic to each other. When RZR and x|m,
then v<m/x.

Furthermore, if S is homogeneous and isomorphic to R, with equivalence classes

S1,..,8y, then Ri~..~Ry~Si~..~S,. Given 1<r<wv, there is at most one s with
R,=8S,.

Proof. We have x(p;,—¢;)€Z, when p;, ¢;€R,, and therefore R,ZR,. But when
jesd x
0:€R,, 0;€R, with r#s, then p;#p;, and hence R,#R,. Now suppose that g;, g;
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are in R,.. Then gi%gj when r;;|y. But since r;;|z, this holds precisely if r;;|y’ where
y'=ged(y, ). Conversely, if p;€R,, 0;€R and r;;|y’, then 75|y and 7i;|z, hence p; €R,..

Therefore

R, R, R

w7 (y) = (y) = ul (y') =u’(

y)-
We may conclude that R, is homogeneous with u®r(y)=uf(y’). Therefore Ri~...~R,.
When RER and x|m, each g;=pg1+a;/m with a;€Z. Now if g,€R,, ¢; €R, with r#s,
then 2(0; —0;)=z(a;—a;)/m¢Z, so that a;Za; (mod m/x). This shows that the number
v of classes Ry, ..., R, has v<m/zx.

When S is homogeneous with R~.S, each equivalence class Sy, ..., S, is homogeneous,
and u’: (y)=u5(y')=u®(y’), so that indeed Sy, ..., S, are isomorphic to Ry, ..., R,. When
RT%SS and RT%St, then SséSt, so that s=t. O

Write ¢(5,p)=(1-p*~2)"L,
c(se,m) = H c(s,p).
plm

LEMMA B. Suppose that we are in the situation of Theorem B, and that

3
ik}

RESET. (A6)

Then

N(e) < c(3e,m)e”n>.

Since for any systems R, S, T as in Theorem B there is an meN with (A6), and since
¢(3¢,m)<((2~- ), this lemma implies Theorem B.

Proof. When m=1, we have g;—g;€Z for 1<i,j<n, but ¢;—g;¢Z for i#j, and
therefore n=1. Then (A5) cannot hold unless £ 1; but then N(g)=1<e*=c(s,1)e*-13.
It will therefore suffice to prove the lemma for

m:plmo

where p is a prime, p{fmyg, [>0, assuming that the lemma is true for my.
We may apply a common translation to R,S,T. Hence we may suppose that all the
elements of R, S,T lie in m~'Z. Set

z,=mop T=mp~? (0<q<).
T

Let Ry, ..., Ry, be the equivalence classes of R with respect to =. Thus vy=v(zy), and
each R, (1<r<w;) has u(xz1)=n/v; elements. By Lemma A, we have v;<m/x1=p.
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Given a class R,, we split it into subclasses R, 1,..., R.,, with respect to 2. Since
RTERT, we have v <x1/29=p. Moreover, since R,~R, (1<r,r'<vy), the number v,
is by Lemma A independent of r in 1<r<wv;. Note that R splits into the classes R, ,,
(1<r; <vy, 1<ra<wy) with respect to 2, and these v1v systems R, ., are isomorphic
to each other. Suppose now that 1<g<!, and that we have defined systems R, . . _,

Tqg—
for 1<r; <v; (i=1,...,q—1), these being the equivalence classes of R with respect to £

ve<p, and v, is independent of 71, ...,74—1. The v; ... v, systems R, . . are all isomor-
x
phic to each other, and they are the equivalence classes of R with respect to =, so that

v(zy)=v1...vq. Each R,, _, contains n/(v; ...v,) elements. In this way, we eventually

a
construct systems R, . . for 0<g<land 1<r;<v; (i=1,...,q). When ¢=0, a notation
er,m,q will simply mean R.

In complete analogy, we construct systems Ss, . .. 3q and Ty, . ¢0s where again
1<s;<v; and 1<¢t;<v; (i=1,...,q), with the numbers vy, ..., v, the same as above by

Lemma A, and since R~S~T. Furthermore

for any r1,...,7¢, 81, ..., 84, t1, ..., tg under consideration.
If we have
Tq
R‘rl re — M8 sq — /Tt]..u,tq (A7)

..... tg_1- (A8)

When g=1, then (A8) is to be interpreted as Rf:f)Sf_—ET, which is certainly true by (A6)
and since zg=m. On the other hand, when (A8) holds, then by Lemma A the number
of triples 74, s4,tq with (A7) is <v, (since there are v, choices for ;). Write w; for the
number of triples 71, s1,#; such that (A7) holds for ¢g=1. By what we have just said,
w1<v1. Suppose that wy, ..., w,—1 have been defined such that the number of 3(¢—1)-
tuples 71, ...,7g-1, 81, ..., Sq—1, 1, ..., tlg—1 Wwith (A8) equals w; ... w,_1. Then let w, be a
number such that the number of 3¢-tuples rq,...,7¢, $1, ..., S¢,t1, ..., tg With (A7) equals
W1 ... Wg—1wW,. In particular, when wy ... wg_1 =0, then (A8) never holds, hence (A7) never
holds, and we set wgy=0. In this way w, is uniquely defined, and 0w, <v, for ¢=1, ..., 1.

For convenience we will write r=(r1,...,7), s=(s1, ..., s1), t=(t1,...,£;). There are
(v1vg ... ;)3 triples r,s,t. For 0<g</, let C, be the set of triples r, s, t for which ¢ is the
largest integer in 0<g<! for which (A7) holds. In particular, Cy consists of triples where
(AT) does not hold for g=1.
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The number of 3¢-tuples r1,...,7q,...,t1,...,tq with (A7) is wy...w,. Therefore C;
has cardinality

|C1|:w1...wl. (Ag)

When ¢</{, the number of 3(g+1)-tuples r1, ..., 7¢, 7g41, ..., t1, -y tq, tq41 With (A7) equals
wy ... wqus, . On the other hand, the number of 3(¢+1)-tuples where (A7) holds with
g+1 in place of ¢ is wy ... wawg41. Therefore the number of (g+1)-tuples with (A7), but
not (A7) with ¢+1 in place of ¢, is wy ...wq(vg’+1—wq+1). Given such a 3(g+1)-tuple,
the number of choices for rq19, ..., 71, ..., tg42, ..., t1 IS (V42 .- 11)% (to be interpreted as 1
when ¢=[—1). Therefore

|Cql = w1 ...wq(vg’+1—wq+1)(vq+2 L) (0<g <), (A10)

with the right-hand side to be interpreted as (v —w;)(vs...v;)® when ¢=0, and as
wy ...wl_l(v?-wl) when g=1—-1.
We now insert a sublemma to Lemma B. Given r,s,t, write N(r s, t;e) for the

number of triples ¢, j, k with o, ER,, 0;€ Sy, 7,€ Ty having (A5).

LemMma C. Suppose that t,s,t is in the class Cq. Then

N(r,s,t;€) < (s, mg) e*n®pla=V% (vy ... vy)* 73,

Proof. Numbers £€m™'Z may uniquely be written as
y z ! 1"
£ =—+—-=¢(+&,
- £+¢

say, where y, €7 and 0<z<p'. Accordingly, when p; € R, write g; =g} +p!. But mg=xz,,
73’_7/_0

so that g; = g;» for gi, 0;+ € Rr, and therefore ¢} is the same for every g€ R,. Using the
same argument for Ss, Ty, we have

! 11 ! 1" ! 1
0i=0;t0", 0j=0;+0", Tp=Tp+T

for (0i,0;,7k)E€Ry X Ss xTy. Since r,s,teC,, we have mq(gi—oj):mopl_q(gi—aj)EZ,
therefore p'~9(¢” —0")€Z, and also p*~9(¢"” —7"")€Z. On the other hand, when ¢<[, then
(A7) does not hold with g+1 in place of g, so that not both 441 (0i—0;), Zq4+1(0i—Tk)
lie in Z, and hence not both p'=971(p” —¢"), p! =7 1(¢” —7") lie in Z. We may infer that
the respective denominators a” and b” of ¢” —0” and ¢’ —7" have

lem(a”, ") =p!~9. (A11)
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Let R, be the system consisting of the o} where g;€ R,, and define S,, T{ similarly.
Then R.~Ry, S,~Ss, T{~Tk, so that R,~S.~T{. Furthermore R.ZS!ZT!. When
(0;,0%, 7)) ERL x Sy x Ty, let aj;, by, be the respective denominators of 0, =05, 0;—Ty-

Then a;;=a;;a", bir=bj,b". By (A11) and since ptaj;b,,

lcm(aij. bix) =pl_q lcm(a;j» :k)

The condition (A5) therefore becomes

lem(aj;, biy) <ep?'n=ep? o1 vi(n/vr . w0). (A12)

We supposed Lemma B to be true for my. We apply this case of the lemma to R, S., T}
with ep?~!v; ... v; in place of €, and observe that these three systems each have cardinality
n/(v1...v1). Therefore N(r,s, t;¢), which is the number of triples (g;, 0, Tk) € Ry X Sg x Tt
with (A5), satisfies

N(r,s.t;e) < (s, mg) (ep? vy oo vy)* (n /vy o vr)3

=¢(z, mg)e"n:‘p(q_l)"(vl ) *

This completes the proof of Lemma C. O

We now continue with the proof of Lemma B. Clearly
N(e):zzz N(r,s,t;e),
r s t

so that by Lemma C,

1
N(2) < e(3e,mo)en®(vy .. v))* > ) |Cq|pl=0.

q=0
Here w, enters in the formulas (A9), (A10) for |Cq—1],|Cyl, -, |Ci|. When wq increases,
then [Cq—1| decreases (or remains constant), whereas |Cgl,...,|C;| increase (or remain

constant), but the sum |Cy_1|+|Cq|+...+|Ci| certainly is constant. Since the coefficient
pla=1=D% of |C, 1| in the above sum is smaller than the coefficients of |Cy|, ..., |Ci|, the
sum can only increase when w, increases. Since we had 0wy <v,, we may replace wq

by vg (¢=1,...,1). In this case the sum becomes (starting with the term g=I[)

V1 e 04 (1 0 ) (0 =) P A (V1 - v (VP — iy ) U p T2
Foe o1 (13 —2) (3 o 0) BT D (03 vy ) (v o vy) 3

We may infer that

N(e) < 5, mo)s"n3f1 (v1, .., vp) € (5, mo)s"n3f7(v1, ey 01)
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where y=c(3,p)=(1—-p*~2)~! and

fﬁ(vlw")vl)
2 2 2 2
e vi—1 wi,—1 v ,—1 vi—1
:(’Ul...vl) 2<§+ l% + L ;x ’Ul2+ L ?2>x (vl_lvl)2+...+ 1lx (Uz...vl)2>.
p p p
We claim that in the domain 1<v, <p (¢=1,...,{), we have
fw(Ulw',Ul)g’Y:C(’f,P)’ (A13)

and this will finish the proof of Lemma B, hence of Theorem B. Here (A13) will be
shown by induction on I. Hence we will assume that I=1, or that />1 and (A13) has
been established for [—1. When v;_q,...,v1 are given, fy(vi,...,v;) is of the form

Avy+ By ?

with positive coefficients A, B. This function in v;>0 is first decreasing, then increasing,
so that its maximum in any closed interval of positive reals is taken at an end point.
For =1 we have f,(1)="%, fy(p)=14+vp* 2 —p~2<1+vyp*~2=4, so that in 1<v1<p we
have indeed f,(v;)<7. When [>1 we have by induction

2
_ vi_1—1 v?—1
f,y<v1,...,'l)l_1,1)2(’111...111_1)% 2<’Y+ lp;% +...+ ]1) (Ulu-vl—l)Z)

<f’y(vlv-~-7vlwl)<’)/7
2 2
_ _ _ vi  —1 vi—1
fy(vn, v, p) = (v1 .o v)* H14yp*2—p 2+—lplx—+...+]—?(—l1$(v1.--vz~1)2)
Sf'y(vlw"avl—l)<77

since 14+vp* 2 —p~? <. Our claimed estimate (A13) follows. a

With a view to application in the main part of the paper, we will now formulate a
corollary to Theorem A. When R is a system as above, we will say that a triple of integers
4,7,k in 1<4,4,k<n is e-bad if (A2) holds. Note that this property is independent
of the ordering of the triple. Let {23, and consider I-tuples of integers g, ...,u; in

1<y, ...,y <n. We call such an [-tuple e-bad if some triple u;, v}, up with distinct ¢, j, &
is e-bad.

COROLLARY. Suppose that R={p1, ..., 0n} is homogeneous. Then for any 1>3, the
number of c-bad l-tuples uq,...,u; is

<eV23pl.
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Proof. By the case x:% of Theorem A. the number of ¢-bad triples is
<C(2) eV <3610l

Hence given a triple ¢, j, k with 1<i<j<k<. the number of I-tuples uy, ..., u; for which
ui, uj, ug is e-bad is <3e'/2n3. n!=3=3¢1/2p!. The number of triples i, j, k in question

is (é), so that the number of e-bad I-tuples is

<3(é>61/2nl<51/2l3nl. |
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