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A. The setting
1. Introduction

Let V be a homogeneous algebraic set in C° defined over the rationals, i.e. a set

V= V(g)': V(%la ceey %r)a

consisting of the common zeros of given forms ,,..., &, of positive degrees, in s
variables, and with rational coefficients. We are interested in

zp(V) = 2p(®),
the number of integer points x=(x,, ..., x;) on V with
|x| := max (|xy, ..., |x,|) < P.

Not much is known in general about the behaviour of z5(V) as a function of P. In those
cases where we do have information and where zp(V)— (i.e. where V contains an
integer point besides Q) we have

2p(V)~uP?,

where 4>0, >0 and B is an integer.
Birch [1] could show that a system & of r forms of odd degrees <k in s>c,(k, )
variables possesses a nontrivial integer zero. In particular, zp(¥)— . It would be easy

(") Partially supported by NSF-MCS-8015356.
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to deduce that z(%¥) tends to infinity quite fast if s is rather larger than ¢,. However,
the elementary diagonalization method of Birch is ‘‘wasteful’’ in the number of varia-
bles, and does not seem to yield our first theorem, which will be proved by analytic
methods:

THEOREM L. Suppose that § consists of r forms of odd degrees <k in s>cy(k,r)
variables. Then

(@) >> P77,
with a constant in >> which may depend on .

Let
F=F*, ... (1.1)

be a system of forms, with the subsystem g(‘” (1=d<k) consisting of r;=0 forms of
degree d and with rational coefficients. The number of integer points with |x|<P is
~(2P)°. When we substitute such a point into a form of degree d, we will in general
obtain a value of the order of magnitude of P, and hence the ‘‘probability’’ for the
form to vanish should be about P9, Therefore the probability for & to vanish
simultaneously should be about P~%, where

k
R=Y dr, 1.2)
d=1

Hence when s>R, one might expect (somewhat optimistically) that zx(¥) will have the
order of magnitude of P*~%,

More generally, let B be a box with sides parallel to the cordinate axes, i.e. a set
B=I,x...xI,, where each I; is an interval (open, closed, or half open) of finite positive
length. We write zp(3F, B) for the number of zeros of § in the blown up box PB. We
will call ¥ a Hardy-Littlewood system (or briefly HLS) if for every box B,

2§, B) = uP*~F+0P* ), (1.3)

where 0>0 and where u=u(F,B) is defined by an infinite product which will be
explained in §3. We further will call ¥ a proper Hardy-Littlewood system (or briefly
PHLS) if u(F, €)>0, where € is the cube

C: | <1. (1.4)
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This terminology was chosen since up to now the Hardy-Littlewood circle method has
been the most successful in estimating zp.

Let us recall some known cases. Waring’s problem, i.e. that of representing an
integer m as a sum of dth powers of nonnegative integers, does not quite fall into our

framework, since the equation x%+...+x?=m is not homogeneous (but see §9), and

since the variables are restricted a priori to the bounded domain O<x<m!¢

(i=1,...,s5). In Waring’s problem one is interested in the numbers of solutions as a
function of m.
(A) Davenport and Lewis [5] have shown that a single additive form

F=a,X+..+a,X*

where d=18, s>d? and a;a;...a,+0, and where either d is odd or where the coeffi-
cients are not all of the same sign, is a PHLS.

Now if & is a form of degree d>1, write h(F) for the least number 4 such that &
“‘splits into h products™, i.e.

8‘=?I,%1+...+?I;,Q3h (15)

with forms %U;,B; of positive degrees and with rational coefficients. When
F=(&, ..., &) consists of forms of equal degree d>1, write

h(¥) = min (), (1.6)

with the minimum taken over forms § of the rational pencil of &, i.e. F=c,&
+...+¢, &=c§, where ¢+0 has rational components.

(B) Although Davenport [4] did not give such a formulation, he did prove that a
single cubic form § with h(F)=16 is a PHLS.

(C) A system of r quadratic forms with h(i})>2r2+3r is a HLS, and it is even a
PHLS if h(8)>4r"’+4r2 and if it possesses a real nonsingular zero (i.e. a zero with
8%;/ox; (1sj<r, 1<i<s) of rank r) (Schmidt [9]). Again, a system of r cubic forms with
h(@)>c3 r*>0 is a PHLS (Schmidt [12]).

(D) Let V*(i}) be the set of x€C* for which the matrix 9%;/9x; (1sj<r, 1<i<s) has
rank less than r. When r=1, then V*(F)< V(&) by Euler’s identity, but this need not be
the case when r>1. Birch (2] showed that a system & of r forms with dim V=s—r and
with

s>dim V*+(d—1)297"Hr+1)
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is a HLS. It is even a PHLS if it possesses a nonsingular zero in each local field. (The
dimension of an algebraic manifold is the maximum dimension of its irreducible
components.)

Another result on ‘‘general’’ systems is due to Tartakovsky [14].

On the other hand, there are many examples of systems which are not HLS or
PHLS. First of all, there may not be any local zeros. Or take F=2¢ where Q is a linear
form, so that zp(F)=zp(Q)~uP*"!, rather then ~uP*~9. The trouble here is that R
was defined in terms of § and not of V=V(g). Perhaps one should replace R by
R=R(V)=min R($®), over all systems § with V=V(i¥). Another example with too many
zeros is when §=%(X;, X>). Then zp(§)>>P° 2, no matter what the degree of . As a
final example take

F=6P+..+@&P

where D is even and where &=(8,,...,8,) is a PHLS of forms of degree d. Here
2p(F)=2p(@)~uP*~ ", whereas R(F)=dD may be both larger or smaller than dh. The
trouble here seems to be that A(f) is small, namely h(F)<h.

Linear equations can always be got rid of by elimination, and they will not quite fit
into our general scheme. Hence we will deal with systems

F=@&“,....8), (1.7)
where i}“” (2<d<k) consists of r;=0 forms of degree d. The total number of forms is
r=rt.+r. (1.8)
We put

(d) 3
hy= {h(g ) if r,>0, L.9)

+o if r;=0.
THEOREM IL. There is a function x(d) such that a system § as in (1.7) with
ha=x(d)rgkR Q<d<k) (1.10)
is a HLS. For instance one may take y(2)=2, x(3)=32, x(4)=1152, and in general
x(d)<2%-d\.

Write v(n)=v(ry, ..., ry) [or v(rg, ..., r;,0)] for the least number such that a system
(1.1) [or a system (1.7)] in more than v(r) variables has a nontrivial p-adic zero for each
prime p. To obtain a PHL.S we need the following
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SUPPLEMENT. § as in (1.7) is a PHLS provided, firstly,
hazy(drakv@r) 2<dsk), (1.11)

and secondly,

dim Vg = s—r,

where Vy is the manifold of real zeros of §. This second condition is always satisfied if
all the forms of § are of odd degree, i.e. if r4=0 for d even.

To prove Theorem II and its supplement we will need exponential sums. The
following theorem is typical of the estimates which we will obtain.

THEOREM III. Suppose F=FX1,...,X;) is a form of degree d>1 with integer
coefficients and with (&)=h, say. Given a and given P>1, put

§= e@F),
k=P
where e(z)=e*"2. Suppose that 0<Q<h/t(d) where 1(2)=2, 1(3)=8, 1(4)=72, and in
general t(d)<d-2*¢-d!\. Then for A>0 and for P>Py(F,Q, A), either

) |S|s P A9
or

(ii) there is a natural qg<P* with ||qa||<P~?*2, where ||-|| denotes the distance
to the nearest integer.

The plan of the paper is as follows. In § 2 we will deduce Theorem I from Theorem
II. In § 3 we will explain the product formula for the coefficient 4 in (1.3). The proofs of
Theorem II and III will be contained in parts B, C, D. In part B we will give an
‘‘axiomatic’’ exposition of the Hardy-Littlewood Method. In part C we will estimate
exponential sums in terms of a certain invariant g. In part D, which is essentially
algebraic in nature, we will derive a relation between g and h. Part B will be fairly
routine, part C will be less so, and part D still less.

2. Deduction of Theorem I

Given odd k and given a vector u=(ry, r¢—3,...,71), we have to show that a system
F=FP, F*2, ... FY), with F consisting of r,=0 forms of degree d, has(')

(") The numbering of constants is started new in each section.
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(F>P 7,

where ¢;=c(x). In what follows, c¢; will be the smallest number with this property.
We start with the observation that (when the right hand side is finite)

C](rk,...,r3,r1)=C1(rk,...,r3,0)+r1: (2'1)

for there is an injective linear map 7: Q' '—Q° which maps integer points into integer
points such that F’(z})=0, identically in Y=(¥,, ..., Y,_,). Setting ¢,=c,(r;, ..., 13, 0),

and F*=FaD), ..., VD), we have
() >> P
Since |rY]=<|r]||Y], it follows that
2p(@) = 2pp(F)>> P

Thus c,(¥)<c,+r;, and since the reverse inequality is obvious, (2.1) follows.

It remains for us to deal with the case when u=(r, r¢—2,...,r1,0). By Theorem II
and its supplement, we have in fact a PHLS, unless some A, is small. Thus we may
suppose that some form of the pencil of 8(‘” will be of the type (1.5) with h<<ci(d, »).
We may suppose that one of the forms of §?, say &?, is of this type. Say U,,..., ¥,
are of odd degrees. Let €, ..., €, be forms of degree d—2, obtained respectively from
%, ...,%, by multiplication by suitable powers of xj+...+x2. Then Vg(F=2Vy(F*),
where F* is obtained from § by replacing FP by €,,...,€,. The vector y* belonging to
F*is

wr=urd)=(ry ... Ty rg= Lirgotes(d, u), ry_yy ..oy
Thus whenever ry, ..., r; are not all zero, we have

c1(w) <max c,(u*(d)), 2.2)

where the maximum is over odd d in 3<d=<k with r,>0. By (2.1), the relation (2.2) is
true whether r,=0 or not.

Now we will write u*<u if there is some | with rf<r, (possibly u*=(r}, rf,,...)
with t<[), but r¥=r, for d>I. Since each nonempty set of vectors u contains a smallest
element with respect to <, Theorem I may be proved by induction on «. Since in (2.2),
u*(d)<u, and since the components of u*(d) are bounded in terms of u, the theorem
follows.
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By Theorem II and its supplement, we may take (%)
c3(d, u) = x(d) rakv(y). (2.3)

When u=(r;,0), we have u*(3)=(r;—1,c3(3,u))=(rs—1,c4rsv(u)), hence by (2.1),
(2.2),

ci(r3, 0) < ¢1(r3— 1, 0)+car3 v(W).
Since v(u)<<r; ([11]), one gets c,(r;, 0)<c,(r;—1,0)+ O(3}), hence
c,(ry, 0)<<n3,

as in [12].
For k>3 it is known (Leep and Schmidt [8]) that

V(s oo 1) S C5(R) (ot 2 2.4

Define exp;x by exp,x=¢* and by exp,x=exp{exp,—;x). It may be shown that our
estimates imply

c,(rk, o)< expk_g(cs(k) (rk+...+r1)). (25)

3. The local densities

Suppose F has integer coefficients. Let p be a prime, and write v,=v/(p) for the number
of solutions of the system of congruences

Fx)=0 (modp).
Further put x;=v;p""~%. The limit

up) = Ilirgm, (3.1

when it exists, will be called the p-adic density of zeros of §.
We note that, with the notation ¢F=a; §;+...+a, &,

Ir - 5
D e(p-’qzs(:_c))={” when (z) =0 (modp). 32)

therwise.
iy 0 otherwise

(® In the notation of § 1, v(w)=v(rs, 0,rc_3, ..., r3,0,r,). Observe that the condition (1.11) is stronger
than (1.10), since v(r)>R, as noted e.g. in (4.6) below.

17—858286 Acta Mathematica 154. Imprimé le 15 mai 1985
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For n€p~'Z" put

Em=p" D enFw). 3.3)
x(modp)
In view of (3.2) we have
w= 2, E@a). 3.4
¢ (modph
Writing
AP™= Y, E(p"a) 3.5)
@ (modp™)
(a,p)=1
where (g, p)=gcd (ay, ..., a,, p), We obtain

w=14+AQ@)+...+AQD),
and when the p-adic density exists, it is given by
u@P) = 1+A@P)+A@PH+.... 3.6)

Our formulae may be rewritten in the following more trendy way, which will
however not be used in the sequel. (A more systematic exposition of this approach is
given by Lachaud [6].) Let Q, be the field of p-adic numbers, Z, the ring of p-adic
integers. Let |€|, be the p-adic absolute value on Q,. Let A(5) be the indicator function
of Z,, i.e. A(n)=1 when n €Z,, and A(57)=0 otherwise. Put

p' when |n|,<p~",
0 otherwise.

A =p'AUp ') = {

Put A(m)=Afmy)...ALn,) for n=@n,...,n)€Q,. An element £€EQ, may uniquely be
written as &=[£]+{£} where [E]€Z, and where {£}=a;p~'+a,p~%+... with
0<a;<p. The character

e(€):=e({&})

is sometimes called the Tate character. Let d§ be the Haar measure on Q,, normalized
so that Z, has measure 1. Further let d§, dn be the Haar measure of Q; and Q,,

respectively.
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With these conventions we have

w=p" D MF@)=| HFE)E.
z;

3 (modp')

The formula (3.3) may be replaced by
E(m =f e(nF(&)) di.
Z
This definition in fact makes sense for every 5 € Q,. Further (3.4) becomes
W= f EQp) dn.
r'z,
When the p-adic density u(p) exists, then

Hp)= f E(n)dn.
Q

We now turn to the real density. This density u(x)=u(%,B) will depend on the
given box B. Write A(n)=1—|n| when |5|<1, and A(y)=0 otherwise. For L>0 put

_ _J[LQ-Lly) whenly<L™,
Am = LA(Lm) = {0 otherwise.
Put 2,(n)=2,(71) ... A(y,) for pER”. Now set
= [ o
B

The limit
p(®) = (e, B) = ,!im My 3.7
when it exists, will be called the real density.
Put
K@) = f emFE) dk. (3.8)
B

We will see that under certain assumptions on ¥ we have

K(p) << min(1, [n|~""h. (3.9)
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Thus

pu*() :=f K(n)dn
-

exists. Moreover, as was shown in [9, § 11], it follows that
lu*(o)—pr| << L7,

so that the limit u(«) of (3.7) exists, and u(0)=p*().

The analogy in the definitions of u(p) and u(=) is clear. One difference is that only
u(») depends on B. Under some further conditions, the local densities could be
expressed as integrals along the manifold §=0, either in Z; or in BcR?, by means of
the Leray differential form. But these integrals offer no advantage for the purpose of
this paper.

When defining a HLS in § 1, we postponed the definition of u. We now give the
following condition:

For a HLS we postulate that the local densities as given by (3.1) and by (3.7) exist, that
the product u(,B) u(2)u3) ... of these densities exists, and that the number u of (1.3)
is this product:

u= (o, B)u)ud).... (3.10)

Hence a HLS is a PHLS precisely when all the local densities are positive.
Classically, J=u(=) is called the singular integral, and ©=u(2)u(3) ... is called the
singular series.

So far we have defined the density x only when ¥ has integer coefficients. It may
be seen that the local densities have simple transformation properties, and that the
global density # remains unchanged, when § is replaced by a proportional system
@=cF with integer coefficients. Hence in general we may define u(F)=u(®), where @
is proportional to ¥ and has integer coefficients.

B. The Hardy-Littlewood method
4. A Hypothesis on exponential sums

Our goal in part B will be to show that the machinery of the Hardy-Littlewood method
may be applied, provided we make a certain assumption on exponential sums. Let
F=@"“,....8?) be a system of r=ri+...+r, forms as in (1.7), with rational coeffi-
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cients and in s variables X=(X,,...,X,). In proving Theorem II we can and we will
suppose without loss of generality that the coefficients of { are in fact integers. Let T
be the group T=R/Z, and T’ the r-dimensional torus. Elements a of T” will be written
as

a=@@%,....a®) .0

with ¢ € T (2<d<k), where T°={0}. The inner product of a and & may be written
as

aF = aVF9+...+g? 3°.

For a €T, let ||a|| be the distance from a to the zero element of T. That is, when a
consists of reals =& (mod 1), then ||a|| is the distance from £ to the nearest integer. For
2 €T’ put ||g||=max (||ay|, ..., ||a]]) when >0, and ||g||=0 when I=0.

Given a box P and given P>1 we put

S(@)=S@,B)= > e@Fw). “4.2)
XEPB )
Then
zp=f S(a)da. 4.3)
T'

Given a positive number Q, we now introduce the following

HYPOTHESIS ON &. For any box 8B, any A>0, and for P>P\(F,Q,B,A), each
a €T satisfies at least one of the following two alternatives. Either

(i) |S(@)| < P29, or
(ii) there is a natural q=q(q) < P with

lga @ <P~9+4 @<d<k).

We will say that the restricted Hypothesis holds if the above condition holds for
each A in 0<A<]1,

The r-tuples g with (ii) form a subset JYA) of T” which is the union of certain
“‘boxes’’ (see below), traditionally called the major arcs. The complement m(A) of
PYA) in T" is called the minor arcs (although for r>1 this terminology, especially the
plural, makes little sense). Thus the Hypothesis means that S(g) is small on the minor
arcs. Our main task in part B will be a proof of the following
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PROPOSITION 1. Suppose § satisfies the Hypothesis with some
Q>r+1, 4.9
or the restricted Hypothesis with some
Q>R. “4.5)
Then ¥ is a HLS.

Given a prime p, define v,(r)=v,(rs, ..., 1) (O Vp(rg, ..., r2,0)) as the smallest
number such that any system F as in (1.1) (or ‘as in (1.7)) in more than v,(r) variables
has a nontrivial p-adic zero. The number v(r) introduced in § 1 is then the maximum of
v,(r) over all primes p. These quantities are known to be finite, and recursive estimates
were derived in [8]. It is well known that (in the case (1.7))

v ZKr+...+ 221, >R>r+1. (4.6)
FIRST SUPPLEMENT. Suppose the restricted Hypothesis holds with
Q>uv,(n). @.7
Then the p-adic density u(p) is positive.

SECOND SUPPLEMENT. Suppose the restricted Hypothesis holds with (4.4), and
suppose that dim Va(B)=s—r, where Vr(B) is the manifold of zeros of § in the interior
of B. Then the real density u(x,B) is positive. Moreover, we do have dim Vg(€)=s—r
if § consists only of forms of odd degree.

Combining Proposition I and its supplements with what we said in § 3, and noting
that dim Vx(€)=dim Vg, we obtain the

COROLLARY. Suppose the restricted Hypothesis holds with
Q>u(), 4.8)

and suppose that dim Vg=s—r. Then § is a PHLS.

5. The minor arcs

We will assume that the assumption of Proposition I holds.
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LEMMA 5.1. For each A>0 we have

f |S()|da << PR~? (5.1)
m(A)

where 0=0(A)>0.

Proof. When the Hypothesis holds with Q>r+1, choose E so large that EQ>R;
when the restricted hypothesis holds with Q>R, set E=1. At any rate, for ¢ € m(E) we
have |S(g)|<<P’~E@<pP*~R-% Hence (5.1) is certainly true when A=E, for then
m(A)cem(E). When A<E, pick numbers A=A <A;<...<A,=E. Then m(A) is the
union of m(E) and the set-theoretic differences

m;=JANND(A;-) G=1,...,h).

The measure of m; is <<P~***"*D_ On the other hand, on the complement of P(A,_,),

the integrand |S(q)| is <<P" %12 Thus the integral over m; is

<< PR Q¥ (4D
But
~A QEAr+D) = —AQ—r—1D)+(A~AL) Q< —}AQ-r-1)<0

if the sequence Ay<...<A, was chosen with small enough differences A;—A,;_;.

6. The major arcs

The major arcs R(A) are the union of the “‘boxes’ PY(A, q, g), consisting of g with
|qg(d)—g(d)| <P % (2=d<k), - (6.1)

where g<P? and where g=(g®, ..., a®) runs through the integer points. In fact, since
we are interested in ¢ € T"=(R/Z)’, we may restrict ourselves to a set of points
a(mod g), and we further may suppose that (g, g9)=gcd (a5, ..., a,, g)=1. The union will
then be disjoint if A is small and P is large.

Generalizing (3.3) we write

Eq'a)=q" Y, elq’'aFw),

x(mod g)
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and we set

13)= f e(BF(8)) d&.
PR

LEMMA 6.1. Suppose a=q 'a+BEM(A, q, a). Then

S(@) =q~*S(q 'a) IB)+O(gP° ~'*4).

The proof if as for Lemma 9 in [9].
Generalizing (3.5), put

A@)= D, E@ o),
g(mod q)
5 (@, q)=1

and write

B(L)= D, A,

g<sL

W= K@dy,

IntsL

with K(») given by (3.8).

LEMMA 6.2. For sufficiently small A>0 there is a 6>0 such that

f S(a) da = PP RS(P*) J(PY)+ 0P F9).
MA)

The proof is as for Lemma 10 in [9].

6.2)

In view of this and Lemma 5.1, and by (4.3), the proof of Proposition I will be

complete if we can show that the local densities exist, that the infinite product

S =u@uB)uG)...
is convergent, and that with suitable 6>0
SPYH-G << P9,
P —pu(®) = JPH-J<< P~

This will be accomplished in the next two sections.

(6.3)

6.4)

6.5)
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7. The singular series
LEMMA 7.1. Suppose (a, 9)=1. Now if the restricted Hypothesis holds with some
Q>®, then |
E(g 'a)<<q™®. 7.1

The constant in << may depend on § and ®.

Proof. E(q"'a)=q*S(a) with a=q~'a, with P=q and with B the cube 0<{;<l.
We now apply the Hypothesis with A=®/Q<1. Alternative (i) gives precisely (7.1).
Alternative (ii) gives a number §<q®<gq (when g+1) with

ldg~'a?¥|| << g 4** (@sd<h),

so that ||gg~'a?||<q~! when q is large. Since (g, ¢)=1, this is impossible.
Now if the restricted Hypothesis holds with Q>r+1, we get E(g”'a)<<q™""17°
where 6>0, and hence A(g)<<g~'~°. Thus the sum

B(x)= >, Ag)
gq=1
is convergent, and
S(P*)—B(o) << P~°.

The densities u(p) given by (3.6) exist, and since A is multiplicative,
&) =[Jupm=6.
14

Hence the assertions about the ‘‘singular series”” © made in the last section are correct.
Next, suppose that the restricted Hypothesis holds with Q>u,(r). Then
E(g'a)<<q ?™°, and A(g)<<q " so that

AQP)+AQPY+... << p O™, (7.2)

On the other hand the argument for Lemma 2 in [12] yields

v, >>p"“ "7, (7.3)

so that

1+A@)+...+AQPY) = py= p'y,;>> p'T ™,



258 W. M. SCHMIDT

This, together with (7.2), shows that the first supplement to Proposition I is correct.
We remark that (7.3) may be regarded as the analogue of Theorem I in the local
field Q,. But (7.3) was very easy to prove.

8. The singular integral
LEMMA 8.1. The restricted Hypothesis with Q>r+1 implies (3.9).

As we had seen in § 3, it follows that the real density exists, and
u(®) = u*(») = f K(n) dy.
R'

Further,

H(o)—J(P?) = K@dp<<P*,
|q|>PA

so that (6.5) holds.
Moreover, as was shown in [9, Lemma 2], we have u(e,B)>0 when
dim Vg(B)=s—r. And, as was shown in [12, §2],

dim Vg = dim Vg(€&) = s—r 8.1

is certainly true if all the forms of ¥ are of odd degree. Hence the second supplement
follows.

Proof of the lemma. We proceed as in Lemma 11 of [9] and Lemma 12 of [12]. We
may suppose that ||>2. Writing §=P"§’ we have

K(m =P~°Ip) (8.2)
where I() is given by (6.2) and where
B=@BY, .89 => ", ..., P y?).
We are still free to choose P; we set
P=[y*2.

Put ¢=(r+2)"'. Then g lies on the boundary of the *‘box’* M(g, 1,0). The boxes
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DU, q, a) with g<P?®, with g(mod g) and with (g, g)=1 are disjoint, at least when ||
and hence P is large. Hence g lies on the boundary of R(¢), hence lies on the boundary
of m(p). By the Hypothesis with A=¢, we have

ISB)| < P9° = P|p| ™% << P*ly| ™.
But since § lies in J¥(¢, 1,0), Lemma 6.1 yields
S@B) = IB)+0WP*~*%) = IB)+O0P*|y| ™).

The last two relations in conjunction with (8.2) yield (3.9).

We remark that (8.1) may be regarded as the analogue of Theorem I in the local
field R. We also remark that the hypothesis was used for the minor arcs, for the
singular series and the densities u(p), as well as for the singular integral J=pu().

Incidentally, the restricted Hypothesis with some Q>r, and in consequence (3.9)
weakened to K(7)<<min (1, |_17|"'6') with 6,>0, would have been enough to prove the
weaker version J(P2)—u(x)<<P~% of (6.5), and hence enough to deal with the
singular integral.

9. Inhomogeneous polynomials
The results of part B easily generalize the systems

§B = (%(k)’ ey SB(Z))’

where B is a set of polynomials of degree d. Namely, let F=(F¥, ..., §?), where
§ consists of the forms of degree d belonging to . Define u(p) as in § 3, but with
& replaced by . On the other hand define u(, ) exactly as in § 3, so that it depends
only on the homogeneous part § of 8. Define S(g) in terms of . Then if B satisfies the
Hypothesis with Q>r+1 (or the restricted Hypothesis with Q>R), we may conclude
that % is a HLS, in the sense that a formula analogous (1.3) holds. About the only extra
line is in Lemma 6.1, where one has to note that

j e(&?@»dg:‘,’ e(B%(5) d{;'+O(P"'+A)=I(§)+0(PS—I+A)‘
i PB

There is no analogue to the first supplement. But the second supplement holds,
with Vx(®) the manifold of zeros of  (not ) in B.
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C. Estimation of exponential sums
10. Manifolds ! and invariants

With each form §(X) of degree d we associate the unique symmetric multilinear form
FXi|...1Xp) with FX]... | X)=(-D?d!FX). Suppose F=F1,...,d,) is a system of
forms with complex coefficients and of equal degree d>1. The complex pencil of F
consists of forms aF=a; F+...+a,F, with nonzero ¢ €C". Let ¢, ..., ¢; be the basis
vectors. When d>1 we associate with F the set IM=PUF) of (d—1)-tuples
(X15 ++es Xg—1) €EC*?D for which the matrix

(my) = @z ... [ra-1led) (A <iss, 1sj<r) (10.1

has rank <r. Thus I is an algebraic manifold in C*“~", consisting of the (d—1)-tuples
for which some form & of the complex pencil has

Fl. aa|D=0, (10.2)

identically in Z. The manifold M depends only on the complex pencil of %, i.e. it is
invariant under substitutions F—TF where T is a nonsingular linear map of C’.

Birch [2] had defined V*=V*() as the set of x€C* for which the matrix 3%;/9x;
(1<is<s, 1sj<r) has rank less than r, i.e. for which the matrix

8ilxl... |xle) (I=siss, Isj=<r)

has rank less than r. Hence V* is the intersection of It with the ‘‘diagonal”
X1=...=x4-1. This diagonal has codimension s(d—2), and hence V*, interpreted in this
way as a submanifold of C*“~Y, has codimension

< codim M+s(d—2).
(S. Lang [7, §11.7])). Hence if V* is interpreted as a submanifold of C*, we get
codim V* < codim N, (10.3)

as had already been noted by Birch.

Suppose that the forms of §F have rational coefficients. An integer (s—1)-tuple
(x1, ..., X4—1) now lies in I precisely if there is a form § of the rational pencil with
(10.2). We write g=g() for the largest real number such that

zp(IM) << Pr-D-g+e (10.4)
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holds for each £>0. Since zp(P)<<PU™™ we have
codimM=<g. (10.5)

The number g is invariant under substitutions F—TF where T is a nonsingular linear
map of Q'. It is easily seen to be invariant also under substitutions 8()_()»3(1(5’))
where 1 is a nonsingular linear map of Q°.

PROPOSITION Il;. Let 8=§_}(")=(%1, ..., &) be a system of forms of equal degree
d=2, with rational coefficients. The Hypothesis of §4 is then true for any Q in

0<Q<g/2? ' (d-1)n). (10.6)
In conjunction with Proposition I this shows that & is a HLS when
g>2d"(d—1)r(r+1).
By (10.3) and (10.5), this is certainly true if
codim V* > 29" (d—1) r(r+1).

Thus we have recovered the theorem of Birch quoted in § 1.
Now let F=(FY, ..., §?), where F consists of r,=0 forms of degree d, with
rational coefficients. For each d with r,>0 put

ga=8F?). (10.7)
Further set
v,=87'2(d-1)r, whenr,>0, g,>0, (10.8)
and y,=0 when r;=0, and y,=+% when r;>0, g,=0. Finally set

T=patdys+ .. 42y (10.9)

PROPOSITION II. The system $ satisfies the restricted Hypothesis of §4 for every
Qin

0<Q<tl (10.10)
It follows via Proposition I that % is a HLS if

tR<1. (10.11)
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Furthermore, by the corollary to Proposition I, we have a PHLS if dim Vg=s—r, and if
wr)<l1. (10.12)
Noting the definition of z, and Z{(1+2' %)<k, we obtain the
COROLLARY. F=F®,...,§?) is a HLS if
ga>(d-1) (1421771235 kR 2<d<k). (10.13)
It is even a PHLS if dim Vg=s—r and if
ga>(d-1)(1+2'"H 71235 k() (2sd<kh). (10.14)

In view of (10.3), (10.5), the conclusions remain valid if the g4 in (10.13), (10.14) is
replaced by codim V3%, with V3=V*F).
Part C will be devoted to a proof of Propositions II, and II.

Remark on inhomogeneous polynomials. It will be clear from our proofs that
Propositions I, and II continue to hold for systems P of inhomogeneous polynomials
as in §9, provided the sets I, and the invariants g,, y, and t are defined in terms of
the ‘*homogeneous part” ¥ of .

11. Weyl’s inequality
Given a function ¥(X), define

1 1
Ty s XD = D, oo O, (CDTTF e X ey X,

g=0 ¢g;=0

as in [10]). Then &, is symmetric in its d arguments, and FAX}, ..., X4-1,0)=0. By [10,
(2.1)], or directly,

%d+|(X|v -°-7Xd+|)
= %J(Xp ---aXd_de)"'(l'}d(Xp ---;Xd_p/_Yd.H)—g'd(Xp .--,Xd_l,XﬁXM)-

Therefore, if for fixed x,, ..., xa—; we set 8X)=F(x1, ..., Xa-1,X), we obtain
%dﬂ(-lp ---s-!d_pX,p I_Yd.”) = _@z(Xd; Xd+|)- (11.1)

Given a finite set ¥ of integer points in R*, write %—~x for the set of points g—x
with g € Y. The difference set A2 is of the union of the sets A —x with x €A. Define
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1 1
Axy, e x)=N ... N (UA—g,x,—...—€,%).
g=0 =0
Then Ax)=UN{A—x), and for 1=2,
AX1, ooor X)) = A1, ooy X)) N ACx1, . os X)) — X0

LEMMA 11.1, Let § be defined on Z° and real-valued, and put

5= e(§W).

€N
Then for each d=2,

SFSET Y LY | Y B

gleﬁ[o ,yd_lEQID Edeu(lp---de_l)

Here |%P| of course means the cardinality of %°. The lemma is a modern
formulation of Weyl’s inequality.

Proof. In
ISE=2, > e@D-Fo»

yEN y€NU
set x;=x—y, x»=y. Then HEAP and KHEANA-x)=AUx;). We note that
@ —FO)=F(x1+x2)—F(x2)=Falx1, 22)—F1(x1). Thus

2 9(8'2(& s Iz))

£€%()

ISP= D e-Fix) D @il xN< D,

;,ESID !26”(3;) ;ieﬁo

b

which is the case d=2 of the lemma.

For the step from d to d+1, we square the inequality of the lemma, and use
Cauchy’s inequality, to obtain

2

Islzdslguolz"-um—l E )

new?  y, ewd

Y eF s xd)

3469—‘(31,»-»84_1)

(11.2)

Denote the sum over x, on the inside by S,. Then §, is like §, except that FX) is
replaced by GX)=F«x1,...,X4-1,X), and A is replaced by A(xi,...,xs_1). By
applying the case d=2 of the lemma, and observing (11.1) as well as the relation
Axy, ..., x4-1)° AP, we get
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ISL< > D 6By X)) |-

x4€ AP | %44 EUlxy, .59
By substituting this into (11.2) we get the desired result.

LEMMA 11.2. Suppose & is a form of degree j>0. Then
@) Fa=0 when d>j.

b) Xy, ..., X)) is multilinear.

(c) When 1<d<j, then

j=d+1

%‘{(XU ---1Xd) = 2 @d,[(XU ~--!Xd)s
=1

where 8, ;is a form of degree | in X4, and a form of total degree j~lin Xy, ..., X4_;.

Proof. Since FL£0,X,,...,X,)=0, each monomial occurring in FAX,,...,X,) has
some component of X, as a factor. The same is true for X5,...,X, Since the total
degree is j, each monomial has a degree between 1 and j—d+1 in each of X3, ..., X . (In
the case d=1, all but &, ; vanish identically.)

Now if ¥ is a form of degree d, then by (b), FAX,,...,X,) is symmetric and
multilinear. Each of the 2¢ summands in the definition of FAX, ..., X) is a multiple of

FX), so that FAX, ..., X)=0(d) F(X) with a numerical factor o(d). Taking FX)=X* we
see that o(d)=(—1)?d!. Thus

X1, ... X)) =FX,|... X0, (11.3)

where the right hand side is the multilinear form of the last section.
Write || for the maximum absolute value of the coefficients of a polynomial
with real coefficients. Write ||&|| for the maximum of || f]| over the coefficients f of .

LEMMA 11.3. Suppose § is a form of degree j. Then
1§l <27 ||

Proof. We have [|F(X;+...+X,)||<p’/||3||. Since F, consists of 2 summands, each
of the form x(e; X +...+€4X,), the assertion follows. (It would not be difficult to
prove a stronger assertion.)

LEMMA 11.4. Suppose

FXO =FO+FX+...+FPN0
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where FV (0j<k) is a form of degree j with real coefficients. Then

(A) %k(Xls ---,Xk)-_-%(k)().fd le)-
(B) Suppose that 1<d<k and that ||F9||<P°~ for d<j<k, where =0, P>1. Also

suppose that xy,...,xXq— are integer points in PE. (This last supposition is empty
when d=1.) Then

k—d+1

%d(-!p---,-!d_pX):%(J)(Z||--~Ild_1m+ 2 @fjh(~§|y---,-¥d_1)X),
I=1

where 8P X)=CPx,, ..., x,_, X) is a form in X of degree | with
89| << P’ (I1sisk—d+1),
and with the constant in << depending only on k, s.

Proof. (A) follows from Lemma 11.2 and from (11.3). As for (B),

k
F,= 30+ D, g9

J=d+1
k  j—d+1
—= uld) )]
=&+ Z Z O
j=d+1  I=1
k—d+1

=39+ 2 O,
I=1

where
k

= > Y
je=max(d+1,I+d—1)
Since ||BY)I<|I3PN<</|F|l, and since BY, is a form of degree j—! in X, ...,Xq4 1,
and since further |xy|, ..., |x4~,| are bounded by P, we see that (as a form in X only)

k
189 << > PYgv|
Jj=d+1

<< i Pi-ipti

j=d+1

<P (I1<i<k-d+1).

18—858286 Acta Mathematica 154. Imprimé le 15 mai 1985
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12. Predominantly linear exponential sums
Write fx=p8, x1+...+Bx, for the standard inner product.

LEMMA 12.1. Suppose BX)=GP+GVX)+...+G"(X), where Y is a form
of degree j with ||®Y||<Q~ (j=1,...,m) with some given Q>1. Suppose that 0<d<1
and that M, ..., M, lie in 1<M;<Q'~° (1<i<s). Given 8, put

S= z e(Bx+B(x)).
lsxT<Mi
Then
|S| << [ [ min @, 18170,

i=1
with the constant in << depending only on m, s, 0.

Proof. We may suppose that the constant term &®=0. We further may suppose
without loss of generality that |8?|<Q~ (j=1,...,m). For the vectors x of the sum,
|8x)|<<Q QU ~V=0"¥ (j=1,...,m), so that |B(x)|<<Q°. Let I be an integer
with [6>s, and put

{
PX) =Y, ri®X))'n!.

n=0

Then
e(B(x) = H()+0(B(x)) = DX +0(Q ™) = H(x)+0(Q ™),

and therefore

S= D eBn9H+0oq).

X
lsx <M,

(12.1)

We now write
HX) = 1+9PX+...+9" X (12.2)
where 9 is a form of degree j. Our hypothesis implies that

19V << Q™ (1<j<ml). (12.3)
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Now
M M
D eBr) =Y, (= (x—1)) (e(Bx)+eB0x+1))+...+eBM))
x=1

x=1

M
<< 2 *'min(M, ||8]|™H

x=1

<< M'min(M, ||B||™").

Hence for a monomial 2173()_{)=X’,'l X’s" of total degree j,+...+j,=j, we have

s
z e(Bx) M(x) << Qfl_[ min (M, ||8|™Y.
i=1
l&xfsM,-
This, together with (12.1), (12.2), and (12.3), gives the desired result.

LEMMA 12.2. Suppose GX)=GP+BVX)+...+G"(X) where BV is a form
of degree j. Suppose 0<0<1/4, P>1, and suppose there is a natural q with

q<P? and |qg®V||<cP’ (j=1,...,m),

where c is a constant. Given § and given a box B with sides at most 1, write

S= Y eBx+G).

EPB

Then for >0,

S
§ << P%+ [T min(P'-%, ||gBJI ™,

i=1
with a constant in << which depends only on m, s, c, €.

Proof. Choose § with 0<d<1/2, and put
Q=P M=Q'",

The box PB may be split into <<(P/Mgq)* boxes with sides <Mgq. In each such small
box write x=g+qy, where ¢ runs through a residue system modulo g, and y runs
through a box with sides <M. Given the small box and given the residue class g, we
have x=b+gqz, where z runs through a box B(b) of the type 1sz;<M; with M; <M
(i=1,...,5). Put



268 W. M. SCHMIDT

SBy= Y, elgfz+G(b+qz)).
2€EB(b)

Since the number of possibilities for b is
<< (P/Mq)‘ S — (P/M)s << P20.:+26s’

and since 0 may be chosen arbitrarily small, it will suffice for us to show that
S << [ [ min ', [lg8)I™).
i=1

Now G%X+nN=9"X, 1) = 9°X, N+...+9"(X, D), say, where each term is a form
of total degree / in X, Y, and where ${ is of degree jin Y and of degree /—j in X. Clearly

lg9Pll < llg©?)| < 2'|g&?)).
For fixed b we have

®%b+492) = O")+99"b, D+...+4' 96, 2)
=RO+RPD+...+R(2),

say, where RY is a form of degree j. Since |b|<<P, we obtain for j=1, ..., that

RPN << ¢l 1q®)| << ¢’P'~P*!

= }”(I')/q)_J << POpi6-1 Q—j(]+a).
Now
@(b'*'(IZ) = ER«”HR“)(ZH . +§R(M)(Z)

with RO=RO+RD + . +RYD (j=0,1,...,m), so that
IRO<Q™ (=1,....,m)

if P and hence Q is large. Lemma 12.1 yields

(&) << [ [ min (M, [1g8]I ™.
i=1

13. Exponential sums and multilinear inequalities

LEMMA 13.1. Suppose FX)=FV+FVX)+...+FXX), where 2 is a form of
degree j with real coefficients. Let B be a box with sides <1, let P>1, and put
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S= Y e@Fw).

IEPB

Now let 2<d<k and £>0. Suppose that either d=k, and put 6=0 and q=1. Or else,
suppose that 2<d<k, that 0<60<1/4, and that there is a natural

g<P® with ||g¥P) <P’ ford<j<k.

Then

N S (H. min (P, g3, l&d_xlzs)ll")>.
i=1

where the sum ¥ is over (d—1)-tuples of integer points x,,...,x4_ in P€, where
€1, ..., €5 are the basis vectors, and where the constant in << depends only on s,k, ¢.

Proof. The case d=k is e.g. Lemma 2.1 of Birch [2). But Birch does not give details
of the proof and refers to Davenport [3], who did the case k=3. Hence it seems
appropriate to go into the details.

Our hypothesis on 8 implies that (PB)°cPE. Lemma 11.1 gives

ISF << (PO YD Y e Xapx)|- (3.0

5EPE 5, EPC |E@EBYay,..o5.0)
In the case when d=k%,
Sdlx1, ..o, Xa-1, X) =X
with
Bi=FP s Xa €)= Fxy o xaile) G=1,...,9). (13.2)

Hence a bound

<[ min, 187
i=1
holds for the inner sum in (13.1). In the case when 2<d<k, Lemma 11.4 tells us that

k-d+1

%d(-!l, ""'xd—l'X) =§X+ Z @&D(X)
: , =1
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where 8 is given by (13.2) and where & is a form of degree / with
lg®P| << PP (=1,...,k=d+1).

Now Lemma 12.2 gives a bound

3
<< plOs+e l—I min (P'~2, ”qﬂi”—l)

i=1
for the inner sum in (13.1).

LEMMA 13.2. Make all the assumption of the preceding lemma. Suppose further
that

NEY sl (13.3)

where K>0. Then the number N of (d—1)-tuples of integer points x,,...,xq4— in PE
with

laF x| ... |x sl <P (i=1,...,5) (13.49)

satisfies

N>> pd-0-2"1K-e, (13.5)
with a constant in >> depending only on s,k, .

Proof. Let Ny(xy,...,Xq—2) be the number of points x,—, € P€ with (13.4). Then
N=N, when d=2, and

N= o D Nty Xy (13.6)

5EPE 1, ,€EPE

when d>2. It will be convenient to set
J=Pp'"2, 13.7)

and to write {a} for the fractional part of a real number a. Then for any set of integer
points x, ..., X4—» and any integers a;, ..., a; with 0<a;<J, the inequalities

T 'a, < {qFPx,| ... |galxailed} < T '@ +1) (1<iss)

cannot hold for more than Ny(x,,...,X4—2) integer points x,_; lying in a prescribed
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box of side P: for if x);—, is one solution of these inequalities, and if x;_; denotes the
general solution, then

g P - [2gglrg —xailed| < T G=1,...,9),

and x4_;—x;—1 €EPE. Thus the number of possibilities for x,—; is indeed at most
No(x1, -y Xa-2)-
Dividing the cube P€ into 2° cubes of side P, we obtain

2 (H min (J, [lgF“(x,]... Ild—zll‘d—llgi)ll—l))

54— EPE

it S 3 ([ mee (2. 2)

a,;=0
<K Ny(xys oeer X4_) F (log J)'.
In conjunction with (13.6), (13.7), and the preceding lemma, this gives
'slzd" << NP(Z""—d+l)s+2t.

Since £>0 is arbitrary here, the hypothesis (13.3) yields the desired conclusion.

14, An application of the geometry of numbers

LEMMA 14.1. Let
8;(X)=l,'|X1+...+A.,'_‘-XS (i=1,...,S)

be linear forms with Ay=A; (1i, j<s). Given A>1 and Z>0, let N(Z) be the number of
integer points x with

K<ZA and |RX)||<ZA™' (i=1,...,s). (14.1)
Then for 0<Z,<Z,<1 we have
N(Z\)>>(Z\/Z)°N(Z,),
with a constant in >> which depends only on s.

Proof. See Davenport [3, Lemma 3.3]. Davenport has strict inequalities in (14.1),
but it is easily seen that this does not matter.
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COROLLARY 1. Suppose that 1<R<P<J, and let
N be the number of |x| <P with ||fx)||<J™' (=1,...,9)
N’ be the number of x| <R with ||Q(x)||<J'RP™' (i=1,...,9).

Then
N'>>(R/P)’N. (14.2)

Proof. Apply the lemma with A=(P))'?, Z,=(PIN"?, Z,=RI/A.
COROLLARY 2. Suppose that 6<R<J<P. Define N as in Corollary 1, and let
N" be the number of |x| <R with ||@x)||<J?R (i=1,...,5).

Then
N">>(R/P)’N.

Proof. Divide the cube |x|<P into cubes of side <(1/3)J, more precisely into
<<(P/J)* such cubes. One of these subcubes will contain >>(J/P)’N points x with
IRxIIsJ~! (i=1,...,5). If x* is a fixed one of these points and x any one of these
points, then y=x—x*€(1/3)J€ and ||8,(_y)||$(J/2)". By Coiollary 1, applied with
(1/6)R, (1/3)J, (1/2)J in place of R,P,J, we find that the number of |x|<R with
|IRXII<J 2R (i=1,...,s) is

>> (R/2JY’ (JIP)*N >> (R/P)*N.
LEMMA 14.2. Make the same assumptions as in Lemma 13.2. Suppose n>0, and
n+40=<1, (14.3)
Then the number N(n) of (d—1)-tuples

X1y ey Xd—1 in Pﬂ@

with
”qg(d)(-lll |)_Cd_||f,')” < prdriord-by i=1..9

satisfies

N@p) >> Ps(d—l)r;—Zd"K—e’

with the constant in >> dependent only on s, k,n, €.
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Proof. For fixed x3,...,x4_1, let
L4X) = gF“Xx2] ... [xa-1led-
Put J=P'"%, R=4P", and let N,(x,, ..., x,_,) be the number of
x1€EPE  with ||Qx)lI<sJ™' (=1,...,9).

By Lemma 13.2,

—\—2d—1p_
Z E N](lz,...,,;_rd_l)>>Px(d 1-24-1g e

$EPE 5, EPE
Let Ni(x3,...,x4—1) be the number of
5 EP'E  with ||R(x)||SJ R =P (i=1,..,s).
We infer from Corollary 2 that
NY(xy, .o, X4 ) >> PO VSN (2, 0 x4 ).
Therefore the number of (d—1)-tuples x;, ..., x4—; with
X EP'E, x,EPE, .., x,,€EPEC
and with
lgF Vx| ... Ixiledl| S4PH9* (i=1,...,5)
is
> Ps(d—2+r1)—2""l(—e'
Next, for fixed x;, x3, ..., x4-1, let
LX) = gF x| X)xs| ... [ra-iled G=1,...,5).
Put J=2P?~4=71 R=pP", and let Ny(x,x3, ..., x4—;) be the number of
nEPE with R(x)ll<J™! G(=1,..,9).

We have just seen that

E 2 Z ACHE METIN DT S

1 EPIG 5EPE x4 EPE

273
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Let N3(xy, X3, ..., Xq—1) be the number of

LEP'E  with ||(xy)||SJ'RPT =P (i=1,...,59).
We infer from Corollary 1 that
Ny(x1, Xy oves Xg_) S>> PTUSNY(x, X3, o, Xy )

Hence the number of (d—1)-tuples
xEPIE, x,€EP'E, x,€PC, .., x4_,EPC
with
lgF DG, .. [£ailedl| S 4P (i=1,...,5)
is

= Ps(d—3+2q)—2""x—e

Continuing with this process, considering xs, ..., x4—; in turn, and applying Corol-
lary 1 each time, we finally obtain the desired conclusion.

15. Systems of forms

Let §=(F%, ..., F®) be a system of forms as in (1.7) and with integer coefficients, and
let a=(a®, ..., ®) be as in (4.1). Further let M;=TAF?) (2<d=<k) be the manifolds
of §10.

LEMMA 15.1. Suppose that K>0, >0, and that 2<d<k. Suppose that either d=k,
in which case set =0 and q=1. Or else, suppose that 2<d<k with ry>0, that
0<0<1/4, and that there is a natural

q<P° with|qaY||<P%7 for d<j<k. 15.1)

Given a box B with sides <1, and given P>1, define the sum S(a) as in (4.2). Given
n>0 with (14.3), one of the following three alternatives must hold. Either

) S(@)|<sP°X, or

(ii) there is a natural

—d+40+r{d—1)n
b

n<< P with ||nga®|| << P or

(iii) Zg(IM)>>RE-Vs~2" K¢
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holds with R=P". The constants in << and >> here depend only on s, k,ry, ..., 13,1, €,
and §, and hence only on ¥, 1, €.

Proof. We have oF=FP+..+3® with FP=¢PF?. In the case when
2<d<k, the hypothesis (15.1) implies that ||gF?||<<P?~ for each j in d<j<k, with a
constant in << which depends only on F. It is clear that Lemmas 13.1, 13.2 and 14.2
hold with this slightly weaker assumption. In particular we may apply Lemma 14.2
when (i) fails. Then the number N() of integer (d—1)-tuples x, ..., Xs— in R€ with

laag®Fxy| ... |xz le)l| S 6P~H+HET (i=1,..,5) (15.2)

satisfies

N@p) >> Rs@-D-2"""(Kin)—¢
Suppose 3@=(%(|d)’ “ees %5?). Given x,,...,x,_, as above, form the matrix
(m) = (F (). lx,ile)) (<iss, 1sj<r).

Now if this matrix has rank less than r, for each of the (d—1)-tuples counted by N(#),
then clearly alternative (iii) holds. Hence we may suppose that one at least of these
matrices has rank r;. We may suppose that the submatrix with 1<<i<r, is nonsingular.
Write n for the absolute value of the determinant of this submatrix. We have

my; << Rd_ ! N
and hence

n<< 44V = prdd=nn,

From (15.2) we have

]
q>,d®m;=b+e, (1<i<s),
j=1

where the b; are integers and the g; are bounded by the right hand side of (15.2). Let
a....a, be the solution of the system of linear equations

d
D amy=nb, (1<is<ry. (15.3)

j=1



276 ‘W. M. SCHMIDT
Then

"d
D (qnal®-aymy=no, (1<i<r,). (15.4)
j=1

Cramér’s rule applied to (15.3) shows that the g; are integers, and applied to (15.4) it
shows that

lignal®|| < lgna{®-a|<< R4 DCDp-d+0+@d-1n

= P—d+40+(d— Dryn .

The proof of Lemma 15.1 is complete.
For d with r;>0, define g,=g(F”) and y, as in § 10, and put

va=29"Yga=yd(d—Dry). (15.5)

The third alternative of Lemma 15.1 may not happen for large P if 27 'K/y<g,. In
particular it may not happen with =Ky, +¢. The condition (14.3) is fulfilled when
46+ Kyz<1 and when >0 is sufficiently small.

COROLLARY. Let F=F*,...,§?), a=@?,...,a®) and P be as above. Sup-
pose either that d=k, in which case set 0=0, g=1. Or suppose that 2<d<k, that r;>0,
that 0<0<1/4, and that there is a natural q with (15.1). Suppose that £>0, and that
K>0 satisfies

49+Kyy<1 (15.6)
Then either

() |S(@|<PK, or
(ii) there is a natural n with

n<< P and |nga@|| << pTHHO R,
The constant in << depends only on §,n and .
In particular, when Ky;<1 and when
IS(@)}>P K,
there is an n; with

~k+Ky,+e

n,<<P** and |n,a®||<<P (15.7)
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Suppose now that r,_;>0 and that 4Ky, +Ky;_1<1. When ¢ is sufficiently small we
may apply the corollary with d=k—1, 8=Ky,+¢ and g=n,. (Clearly everything works,
even though the < in (15.1) is replaced by << in (15.7).) We infer that there is a natural
Ny with

ne_ <<P1* and ||ngn,_, a® V|| << pTET VKNSR e - (15.8)

(Actually one obtdins multiples of ¢ in the exponents, but since £>0 was arbitrary these
multiples may be replaced by ¢ itself.) In the case when r,_;=0 we have y,_,=0, and
(15.8) is trivially satisfied with n,_,=1. Now when 4°Ky,+4Ky,_,+Ky}_,<1, the
argument may be‘repeated. Ultimately we obtain

LEMMA 15.2. Put
Tg=Ya+dyg+..+4 %, Q=<d<k).
Suppose that €0, and that K>0 has

Kt <1 (15.9)

Given ‘Cs', a and P as above, we either have
(i) |S(@)|<P*%, or
(ii) there are natural numbers ny, ny_,, ..., ny With
n << P (15.10)
and ‘

n,...n,a9 << P45 Q<d<k). (15.11)
k d

Proof of Proposition Ily. We apply the corollary to Lemma 15.1 with d=k. We
suppose (10.6) to hold, so that Qy,<1. We set K=AQ, so that Ky,+£<A when £>0 is
small. Thus when P is large, say when P=P (3§, Q, A), then either

(i) |S(@)|<P*~2%, or

(ii) there is a g with
g<P® and |qa||sP 92
But what about the condition (15.6)? In our context this condition means that Ky <1,

and for this it suffices that Ky ;<Qy,, i.e. that Ay <y,, i.e. that A<(d—1)r. We are
thus left with the case when '
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A>d-1r.

But in this case (ii) (of the Hypothesis) is always true by Dirichlet’s Theorem on
approximation.

In our lemmas we supposed that B had sides <1. But clearly the proposition is true
in general with P=P(§, Q, A, D).

Proof of Proposition 11. We apply Lemma 15.2 with K=AQ. In view of (10.10) we
have Qr<1. Setting g=nyn;_, ... n, we have

g<<P¥*¢ and |lga“||<< P-4k (Q<d<k),

since ty+y4-1+...+y2S1=1 (2<d<k). Here Kt+e=AQr+e<A if >0 is sufficiently
small. Thus, as in the proof of Proposition II,, either (i) or (ii) holds. In our present
context, (15.9) becomes AQr<1, which is true for A<1. Hence § satisfies the restrict-
ed Hypothesis.

D. The invariants g and h
16. Invariants gc and Ac

In this section we will introduce quantities g¢ and s which are easier to handle than g
and h. ‘

If % is a form of degree d>1 with complex coefficients, let hc=hc(F) be the least
number A such that § may be written in the form (1.5), where the U;, B; are forms of
positive degrees with complex coefficients. Given an r-tuple § of forms of degree d, let
hc() be the minimum of hc(F) over all forms of § of the complex pencil of §. Define
the manifold IM=M(F) as in § 10, and put

gc = codim IN.
LEMMA 16.1. gc<29"'h,.
Proof. We may suppose that F=(&, ..., &,) and that F, may be written as in (1.5)

with h=hc. Write e()=deg U;, f()=degB;, so that e()+f()=d (1<=sishc). It is easily
seen that the multilinear form &,(X,]|...|X,) is a sum of products

UK. 1X;, ) DX, |- Xy,

i

where I<ishc and where ji<...<j,yp and k;<...<kq, are disjoint subsets of
{1,...,d}. A point (xy, ...,x4—) Will certainly lie in IR if
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ALx; |...[x; )=0

“h “Jetiy
for 1<i<h¢ and any 1<j,<...<j,;»<d—1, and if furthermore
Bxs,| - I'Xk,m) =0

for 1<i<hc¢ and any 1=<k,<...<kqy<d—1. The number of all these equations is

he
2 ((‘2;)1)4’(7‘;)1)) <2 he:
PROPOSITION Illc. For a single form & of degree d>1,
he(®) < o(d) gc(B),
where p(2)=¢(3)=1, p(4)=3, <p(5)=l‘3, and p(d)<(log2)~?d! in general.

COROLLARY. For a system § of r forms of degree d>1,

he(B) < o(d) (gc(F)+r—1).
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Proof. Since IUF) is the union of JM(F) over the forms F of the pencil, and since

MAF)=DUF) for A+0, there is some ¥ in the pencil with

dim MF) = dim MAF)~(r—1),
or

gc(@) = codim PUF) < gc(F)+r-1.
Then

he(@) < he(@) < p(d) gc(B) < @(d) (gc(F)+r—1).

17. The arithmetical case

Now let ¥ be an r-tuple of forms of degree d>1 with rational coefficients, and define

h, g as before, i.e. as in § 1, §10. It is easily seen that

hc<h, gc=<g.

a17.1)

The proof of Lemma 16.1 does not seem to have an analogue in the arithmetical case,
nor is such an analogue of importance for the main purpose of this investigation.
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However, the analogue of Proposition IIl¢ holds, i.e. for a single form §,
h@) < p(d) [g(@)], 17.2)
where [ ] denotes the integer part.

PROPOSITION II1. Suppose that § is a form of degree d>1 with rational coeffi-
cients, and write M=PUF). Suppose that for some P>1,

zp(TR) > AP D71, (17.3)
where A=A(d, 5) is a constant independent of &, and where y is an integer. Then

h(®) < p(d) y. (17.4)

Now if y=[g(#)], then (17.3) is certainly true for some arbitrarily large values of P,
so that (17.4), and hence indeed (17.2) holds.

COROLLARY. For a system § of r forms of degree d with rational coefficient&,
h(®) < o(d) ([g@)]+(d—1) r(r—1)).
Proof. Put y=[g(§)1+(d—1) (r—1), and choose £>0 with
y+1>g(i_§)+(d—l)r(r—l)+2£. 17.5)
By definition of g=g(¥), there are certain arbitrarily large values of P with

2p(DUF)) >> pr-D-e=e, (17.6)

The constant in >> here and in what follows may depend on 3.

Suppose (x1,...,X4-y) with |x|<P lies in PUF). The matrix (10.1) then has rank
less than r. Thus there is a linear combination §=a, F,+...+4a,F, with (10.2). The
coefficients a; have to satisfy the system of linear equations

D mya;=0 (i=1,...,s). (17.7)

j=1

The rank of the matrix (m;) is <r—1, and the entries m; are <<P?~!, Hence there is a
nontrivial integer solution g=(a,, ..., a,) of (17.7) with

la| << PU-DC-D,
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The number of possibilities for such g is <<P“ P~ Hence there is a form § in the
rational pencil with

2 BUF)) >> P4 DD (D).
In conjunction with (17.5), (17.6) this gives
Zp(BUF)) >> PV rIre
and hence gives (17.3) when P is large. Thus (17.4) holds, and further
h(@) < h(@) < @(d)y.

In the next section we will deduce Theorems II and III. Proposition Il will be
proved in §§ 19-23. The necessary modifications for the proof of Proposition III will be
given in §24.

18. Deduction of Theorems II and III

The corollaries of Propositions II and III, together with
(d—1)(1+2“")"2""5rdkR+(d—l)rd(rd—1)<(d—1)23"‘5rdkR
show that Theorem II is indeed true with

2(d) =(@d-1)2>¢(d).

We have x(2)=2, x(3)=32, x(4)=1152, and in general y(d)<2*-d! The Supplement to
Theorem II follows in the same way.

As for Theorem III, we had seen in Proposition II, that ¥ satisfies the Hypothesis
with every Q<g/(2?~'(d~-1)), and hence it satisfies the Hypothesis with Q<h/z(d),
where t(d)=(d—1) 2" ¢(d). Here 1(2)=2, 1(3)=8, 1(4)=72, and in general 7(d)<2%¢-d!

19. Simple points

Let
s=e+t, (19.1)

and let V be an irreducible algebraic variety of dimension ¢ embedded in C*. Let (V)
be the ideal of polynomials f(X) € C[X]=C[X,, ..., X,] which vanish on V. We will write

19—-858286 Acta Mathematica 154. Imprimé le 15 mai 1985
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3f13X; for the partial derivatives, and 8f/dx; for the partial derivatives evaluated at a
particular point x. Given x €V, let G(x) be the set of vectors

grad f(x) = (8f/éx,, ..., 3f18x,)

where f runs through J(V). Then G(x) is a vector space (over C). It is well known (see
e.g. Lang [7], Chapter VIII.2) that

dimGx) <t (19.2)

Points with dim G(x)=1 are called simple or non-singular, points with dim G(x)<t are
called singular. Again, it is well known that the singular points form a proper algebraic
subset Vg of V.

Let C=(C)y, ..., C;) be a new vector of variables. For x€V, let H(x) be the set of
linear forms

Q) = offex)C..
i=1

Then H(y) is a vector space isomorphic to G(x), and thus dim H(x)<t. This means that
there are ¢ linear forms (which depend on x), say

kl(C)s sevy kl(C)’

which generate H(x). In section 20 we will generalize this fact to higher derivatives.

LEMMA 19.1. Suppose that x is a simple point on V. Suppose that, say, the vectors
(0f13xy, ..., 0f10x,) where f ranges over J¥(V), contain t independent ones. Write
x=(x1,..., X, Y1, ..., ¥e). Then there exist unique formal power series

X €C[[Yy,.... Y]] (=1,...,0
with constant term zero such that

e +X(D), x4+ X (D 1+ Yy, . y.4+Y,) =0 (19.3)

for each fEX(V).

Moreover, if V is defined over the rationals (i.e. if it is definable by polynomial
equations with rational coefficients), and if x has rational components, then the series
X; have rational coefficients.
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Proof. Except possibly for the last assertion, this is well known (Lang [7], Chapter
VII1.4). The uniqueness part of the lemma is obtained by a quite simple argument,
which also gives the last assertion (about rational coefficients) without extra effort.

20. Higher derivatives

Again let V<C® be an irreducible variety of dimension e and of codimension ¢. Let
x€V. Given f€ J(V) and given n>0, write

Mmo=L3. .S ¢ ¢, o
) nt =1 i,=1 ax,"---axin h I

so that £ is a form of degree n.
LEMMA 20.1. Suppose x is a simple point of V. Then there are forms
KO, ... kP(C) (p=1,2,..)
which depend on x, and where kl(.”) is of degree p, such that for fEJ(V) and for

n=1,2,... we have

0= > K kPO, (20.2)

p=t g=1
where hfl""” is a form of degree n—p which depends on f, as well as on n—p and q.
Moreover, when V is defined over the rationals and when x is rational, then the k‘;’)

have rational coefficients. When further f has rational coefficients, then so do the
h-p)
e

Proof. We make the same conventions as in Lemma 19.1. In particular, X;, ..., X,
will be the formal series of that lemma. We may suppose that x=0. Let i be the ring

R = ClX][[Y])] = CLX,, ..., X,){[Nh, ..., Y]},

consisting of formal series in Y whose coefficients are polynomials in X. For
f=fX, ) ER we have

f(X’ Y)_f(xl(Y)’Xb -..,X,, Y) = (Xl_xl(x))hl(A_Xr Y)
with A, €R. Similarly,

f(il(nsXZ, --"Xb Y)_f(fl(.y)! xZ(Y)’X:b -'-9Xty Y) = (XZ—-%Z(Y)) hZ(X’ Y)
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with A, €ER. Continuing in this manner we get
fX, D =X-Z,(D) X, D+...+X~X(D) h(X, D)+fED), D).

In the case when f€ J(V), this becomes

f&X D=2 X,~Z M hX, D). (20.3)
q=1

Now when x=0, then f® of (20.1) is just the form of degree n in the Taylor
expansion

AO) =fO+f PO +...+f O +....

Clearly in this way f“™ may be defined for fER, and not just for polynomials
fECIX,,...,X,]=C[X, Y]. Further it is clear that when f=uv with u, vER, then

n
f = 2 u®@ynP,
p=0

where 4©@=u(0), v®=uv(0). Applying this remark to (20.3) we get

t n
=3 Skons
q=1 p=0
where kX, V)=X,—X,(Y). Note that k, (g=1,...,?) is independent of f. Since kY=o,
formula (20.2) follows.
In the case when V is defined over the rationals and when x is rational, the series
%, will have rational coefficients by Lemma 19.1, and hence so will the 2. In the case

when f has rational coefficients, we may work in the ring Ro=Q[X] ([ Y]], and the series
h, will have rational coefficients.

Remark. The case n=1 of Lemma 20.1 is true for any x€ V, simple or not, since
(19.2) did not depend on the simplicity of x. The general case, or at least the first
assertion of the general case, is probably also true for any x € V. But this is not essential
for the present paper.

21. Operators D,

Given a multilinear form h(Cy,...,C,), and given a set o={u;<...<u,} of positive
integers, put

h(CY=HC,s s C):
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so that #(C,) becomes a multilinear form in vectors Cu,’ cees Cuq. Given a form f*(C) of

degree n, define the multilinear form f(Cy|...|C,) as in §10. When
FQ)=h""P(C)KP(C) with forms of respective degrees n—p,p, then it is easily
seen that

FOC)...|C) =D, " PAC,)KP(C,) ‘ @1.1)
[/ 274

where the sum is over the partitions of {1,...,n} into subsets g, o with respective
cardinalities n—p, p. (This fact was used in the proof of Lemma 16.1.) In particular it
follows from (20.2) that

FOC - 1C) =2, X D I PCYRPIC,). (21.2)

p=1 g0 g=1

Now suppose that
S=ws (21.3)

and that V is an irreducible variety of codimension ¢ in C5. We consider polynomials
fX)=fXs,...,X,,) where each X; has s components. Given a simple point
r=(x1,...,X,) of V, we may apply everyting we said above. We obtain forms f*(€)
(as in (20.1)) with €=(C}, ..., C,), and multilinear forms f™(¢,|...|E,,).

Given a subset

r<{l,...,w}

we introduce an operator D,(C,) as follows. The operator acts on polynomials f(X).
When =0, then Dy f=f(r), i.e. one substitutes ¢ for X. When r={u,, ..., u,}, then

DAC)f= (—n—l!)”fw(qu ey )s (21.4)
where
g=0Q,...,C...,0)0 (Isisw).
— [l -
Thus
SD,(C,)f=Zx...§s:Cul,.l...c - @L.5)

i=1 =l ot ax"lil ax"n iy
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Substituting (21.2) we get (for f€ J(V) and ¢ simple on V) that

n 4
(C1'RIDUC)f= D, D, D hE P ) kP(c,),
p=1 p,0 g=1
where the sum is over partitions of 7 into subsets g, o of cardinalities |o|=n—p, |o|=p.
Put

HEPC) = HE7P(e,),
KEXC,) = KPXc,),

so that A% and k%) are multilinear forms in vectors C with s components. With this
notation we finally get for f€ J(V) that

(=1)"n!DC,) f= > KEP(C) KEAC,). (21.6)

90
p=1 ¢,0 g=1

We recall that the k%) are independent of f€ J(V), while the A, depend on f.

When g is rational and V is defined over the rationals, then the k’s have rational
coefficients. If further f€ J(V) has rational coefficients, then so do the A4’s.

22. Proof of Proposition III-: Beginning

The case d=2 is easy. Here N consists of x with J(x|Z)=0, and hence IR is a subspace
of C’° of codimension g¢. Since neither g¢ nor A¢ are affected by a nonsingular linear

transformation of the variables, we may suppose that I is the subspace x,=...=xgc=0.

Each X may uniquely be written as X=Xmp+X"*, with Xp €M, and X! in the
orthogonal complement of IR. We have

8c
B = 1B Eart X Xt X9 = FAD = D, ¢ X, X,

ij=1

with certain coefficients c;. Since X, ..., X, g are linear forms in X, we have he<gc.

We now commence with the proof for the case when d>2. Let M be an irreducible
component of I, of codimension g¢. Let K be a field of definition of M, containing the
coefficients of %. From now on, (x;,...,x4-;) Will be a fixed generic point of M with
respect to K. In particular, it will be a simple point of M. Write
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u = transc.deg. K(x,, ..., x4—2)/K, 22.1)
v=transc.deg. K(x1, ..., Xxq— 1 )/K(x1, ..., Xq-2), (22.2)
so that u+v=dim M, and set
t=s(d-2)—u, a=s—v. (22.3)
Then
a+t=s(d-1)—dimM = gc. (22.4)

Let S be the subspace consisting of vectors y such that F(xy... |)_cd_2|_y|Z)=0, i.e.
such that (x,...,xs—2,) €. Since x4_; lies in § and has v components which are
algebraically independent over K(x,...,x4—»), it follows that dimS=v. If we had
dim S>v, then some x4 _; in S would have more than v components which are
independent over K(xy,...,x4-2), and (xy,...,Xq4-2,X3—1) would have more than u+v
independent components over K, contradicting the fact that dim J!=dim M=u+v. Thus
dim S=v and

codim S = a. (22.5)
In what follows write X=(X,, ..., X4—5) for vectors of variables and
=01, ..., Xd-2) (22.6)
where x,, ..., x4— are the given vectors. Further introduce the matrix
A): FX4| ... Xaoolede) (1<i,j<s),

where ¢, ..., ¢, are the basis vectors. A vector y=y, e,+...+y,¢; lies in § precisely if
5
> Bl [xaslele)y =0 (<j<s).
i=1

In view of (22.5) the matrix A(x) has
rank A(x) = a. 22.7)

We may suppose without loss of generality that the submatrix 1<, j<a is nonsingular.
In general denote the subdeterminant of A(X) with 1<i, j<a by A(%X), and let

AX) (Isiss-a=v, 1Sjsa)
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be the subdeterminant formed from the first ¢ rows, and from the columns
L2,...,j—1,a+i,j+1,...,a. Put

Y=y'@®=(} ..., A, -A,0,...,0),

Y=Y @ =(A},...,AL0,-A,...,0),
Y=y"® =(A},...,A0,0,...,—A).
Now

X X2y ®ep) (A sis<v)

is identically zero (as a function of X=(X, ..., Xx—,)) for 15j<a, while for a<j<s it is
an (a+1)x(a+1) subdeterminant of A(%X). So if these (a+1)x(a+1) subdeterminants are
D((X), ..., Dp(X), in some order, and if D(X)=(D(X), ..., DpmX)), then

FXil ... Xa-2p (@)D = BUDEF),2) (1<i<v), (22.8)

where B is a bilinear form, in the vector D with N components and the vector Z with s
components.
In view of (22.7) we have D(r)=0, but A(x)#0 by our remarks above. The vectors
Y@,y @)
are independent and lie in S, in fact they span S. Now if y'(¢), ..., y*(r) together with,
say z!,...,z% span C°, each X is uniquely

X = RXy @+ AN XY O+ 210 2'+... +8,X) 2° (22.9)

with linear forms N, ..., N,, L4, ..., L,. The space S is defined by &,=...=L,=0.

23. Proof of Proposition IIl: End

We will use the notation of §21 with w=d—2. Let © be the set ©={1,2....,d-2}.
Further let § and r=(xi,...,xs—2) be as in the last section. Let VcC*“~2) be the
variety with generic point t with respect to K; then codim V=s(d—2)—u=t by (22.1),
(22.3). Given 0c© we put

FACo, ¥, 2) = Fwy| ... |\wa—2|1N2)
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with
C, fori€o,
w,= .
i |, forigo.

We are going to apply ®.(C,) with =S to the identity (22.8). When 1= we get
nothing interesting: both sides become zero. Suppose now that t consists of a single
element «. In this case, applying D,(C,) to (22.8) we obtain

. [C) - 2V OID+ By - 1545 DLC) Y12) = B(DAC)D, Z) (1<i<v),

where D, applied to a vector acts componentwise. The last relation may be rewritten
as

FdCr, Y'@), D+ F(Co, DAC)Y', Z) = B(DAC) D, 2).

More generally, using (21.5) one sees that for arbitrary rc© we have

2 FolCor DnoCn )Y, D=B(D(C)D, 2) (1<i<v) (23.1)

[+ [=t4

We observe that

Fo(Co. ¥,y (®) = x| ... [ra—2 Ny =0 (1<j=<v).

Hence substituting Z=/(¢) into (23.1) we obtain

2 FoCor Dno(Cin 0¥ @) = (D C) D) (23.2)

Dogr

with certain linear forms £;. This is an identity of multilinear forms in vectors C, with
u€r.

For 6c©, we define a linear transformation U(C,): C°*—C"* as follows: Ax(Cx)
is the identity map, and for o+@ we stipulate that

AAC) Y @) = DACHY (Isisuv). (23.3)

This contains a certain arbitrariness, since the _y"(g) (i=1, ..., v) do not form a basis of C*
(except when v=s). For instance we may set U,(C,)y=0 for y in the orthogonal
complement of _y‘(g), ...,y"(r). At any rate we can make our choice so that AAC,) Y is
multilinear, i.e. linear in the C; (i€0) and in Y. Let ,,..., <, be the linear forms of
(22.9).
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LEMMA 23.1. §AC,, Y, Z) (as a polynomial in C,, Y, Z) lies in the ideal generated
by the forms
W2 (=si<a), (A)
by
(U, (C,) - %IUP(COP) V) (Isi<a) (B)

where 0y, ..., 0, are disjoint subsets of Tt whose union has cardinality <|t|, and by
K2XC,), ©
where 1<p<l|t|, 1<q<t, oct with |o|=p, and where the forms kg’a’ come from (21.6).

Proof. We proceed by induction on [z], beginning with the case when 7=@. In this
case

2(Co, ¥, 2) = Fx1| ... [xa-2|Y12). 23.9

Writing Y, Z in the form (22.9), we see that (23.4) is a bilinear form in (2(Y), ..., 2,(Y))
and (2,(2), ..., 2,(2)), hence lies in the ideal generated by (A).
Next, let us consider the case when |r|=1. Here (23.2) reduces to

FlCr, Y1), @) =LUDACID) (1=, j<v).

Again writing Y, Z in the form (22.9), we find that F.(C,, Y, 2) lies in the ideal
generated by L(2) (Isi<a), by L(N=%LAx(Cx)Y) (I1<isa) of (B), and by
Li(D(C,) D). Now each component of D, of D vanishes on the variety V whose
generic point was &, i.e. each component lies in J(V). So (21.6) may be applied, and
DAC,) Dy lies in the ideal generated by the forms kfl”o)(Ca) with p=1=|t|, with 1<g=¢
and with o=7.

Suppose now that |z[>1 and that the lemma has been shown for the proper subsets
of r. We may rewrite (23.2) as

F(Cor Y0, 50) = ZUDUCIDI= D, FofCp D o(Cn )y Y.
e

D¥ogT

Therefore FAC., Y, Z) lies in the ideal generated by 2(Y),%{(Z) (i=1,...,a), by the
forms

LADACHID) (I=i,j=v), (23.5)
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plus forms
%, (cg, N RUD D SCnY 2, 1D _y’(x,)) (23.6)
i=1 j=1

with @+og7. We write Z= L, %D _yj(g), and note that Z lies in S. We may replace
(23.6) by

Fo(Cop U (Cn D Y. D), 3.7

since the difference lies in the ideal generated by the 2(Y). Again by (21.6), each
DAC,) D,, and hence each form (23.5), lies in the ideal generated by (C). By induction,
8o(C,, Y, Z) with @+ lies in the ideal generated by (A), by (B) with disjoint subsets
ai, ..., 0, whose union is less than o, and by (C) with 1<p<|p| and ocp. Since LU2)=0,
the form (23.7) lies in the ideal generated by (C) and by

2x'(g[a,(ca,) Q[u",(Cap) i)11:\(;(Ct\0) Y)

Since 0, ...,0,, T\\0 are disjoint subsets of T whose union is less than z, this is of the
type (B).

The lemma will now be applied with r=&={1, ...,d—2}. The number of forms is as
follows. The number of forms (A) is a. The number of forms (B) is

a(14+04_2)
where 6,, is the number of disjoint nonempty subsets 0y, ...,0, of {1,...,m} whose
union has cardinality less than m. Here the ordering of oy, ..., 0, matters, but each g,

itself is an unordered set. The number of forms (C) is
d-2
d_2> d-2
t ( =127 °-1).
2,
By the lemma, applied with 7=, the multilinear form F(X,|...|Xy) lies in the ideal
generated by the
a+a(1+0,_5)+1(2%72-1) (23.8)

forms (A), (B) and (C).

Substituting X;=...=X,=X we see that F(X) lies in an ideal generated by forms of
degrees between 1 and d—1, the number of these forms given by (23.8). Since £X4_1)
from (B) and 24X ,) from (A) both become L4X), we may in fact save the summand a in
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(23.8). We remark that Lemma 23.1 is not symmetric in X, ..., X, and that a subtler
argument probably would lead to further, substantial savings. At any rate, we may infer
that

he(®) < a(1460,4_2)+1(2772-1),
so that by (22.4),
he(®) < gemax (1460,45,2972-1). (3.9
Proposition III¢ is now an immediate consequence of

LEMMA 23.2. The quantity n,=1+0,, has m;=1, 1,=3, n;=13, and in general
nm<(og2)™"m!

Proof. Setting g=p+1 in the definition, we see that 6,, is the number of partitions
of {1,...,m} into nonempty subsets o, ...,0, where g=2. Hence 7,, is the number of
partitions into nonempty subsets oy, ..., 0, where g=1.

7 “‘counts’’ only {1}, so that 5,=1.

7, counts {1,2}, {1}u{2}, {2} u{1}, so that n,=3.

Similarly, 73=13. In general,

= o » T
g=1 .. Fu,=m 1°°%g*
u>0

Setting u;+...+u,_=u and g—1=p, we obtain

-3 S 3 e (7)

u=1 p=1 u;+...tuy=u

-2 (D=5 (7).

u=1 u=0
if we put 7,=1. The quantities §,,=7,,(log2)™/m! have

2 (og2)™™*

(m—u)! b

u=0

Hence when &g,&,...,E,_; are <I, then £,<e'*%2—1=1. Therefore each of
£, &, ... is <1, and the lemma follows.
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24. Proof of Proposition III

Let us look at the case d=2 first. When § has rational coefficients, then I is a
subspace defined over the rationals. The number of integer points x in RN (PC) is

<< pdimB;

with a constant in << which depends only on s. Hence if A in (17.3) is sufficiently large,
we have s(d—1)—y—1<dimIR, so that codimI<y. Since for d=2 we have h(F)=<co-
dim I, the estimate (17.4) follows.

Before dealing with the case d>2, we need some general facts. Suppose that V is
an algebraic submanifold of C5. We will say that V belongs to the class €()) if it is the
set of zeros of polynomials f, ..., f;, each of total degree </. It is well known that

V=Viu..UuV,, (24.1)

where the V; are irreducible algebraic varieties, and this representation is unique if no
V; is redundant, i.e. if V¢V, for i=j.

LEMMA 24.1. Suppose VEGQ(). There is an I*=I1*(I,S) such that in the unique
representation (24.1) we have m<I!*, and each V; lies in E(I*).

Proof. See A. Seidenberg [13, § 65].

LEMMA 24.2. Suppose V € &(l) contains integer points in a given bounded domain
D, and write z5(V) for the number of these integer points. There is a subset V'cV
such that

(A) V' is an irreducible algebraic variety,

(B) V' is defined over the rationals,

(C) there is an integer point in V' ND which is a simple point of V',
D) zo(V)=cyz0(V) where c1=c (1, $)>0.

Proof. We will construct a sequence
V=V'5VIoVis ... (24.2)

where V' is an algebraic manifold belonging to €(l) with l;=I(l, S); and where
2o(V)=m; z25(V) with m;=mgl, $)>0.

Case (A). Suppose V' is not an irreducible variety. Then let V'*! be the irreduci-
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ble component of V* for which zg(V*?) is largest possible. By Lemma 24.1 and by
inductive hypothesis, V'*! will have the desired properties.

Case (B). Suppose V' is an irreducible variety, but is not defined over the
rationals. Let f, ..., f,, be n<l; polynomials of degree </; defining V*. The total number
of coefficients of fi,...,f, is bounded in terms of S and /;, and hence so is the
dimension D of the Q-vector space spanned by these coefficients. If 8,,...,8p is a
basis of this vector space, we may write f,,=X;8,; f,,; (1<m=n), where the polynomials
fmj have rational coefficients. Let V**! be the algebraic set defined by f,,,=0 (1sm=<n,
1sj<D). Then V*! is defined over the rationals and hence is a proper subset of V¢, so
that dim V*'<dimV* (Lang [7, §I1.3, Corollary 1]). FurtherV*'€@(;D) and
zp(V*Y=z5(V).

Case (C). Suppose V' is an irreducible variety which is defined over Q, but all the
integer points of V'n® are singular points of V'. In this case let V:*! be the set of
singular points of V.

The chain (24.2) must end after a bounded number of steps, since the case (A)
cannot occur twice in a row, and since in the cases (B) and (C) the dimension is
reduced. The last set of the chain has the desired properties.

Proof of Proposition 111. We suppose that d>2. For given xi, ...,x4_2, the x4,
with (xq,...,X4-2,X4—1) EM form a linear subspace S(x;,...,xq-2), With a certain
codimension a. Given x,...,x4_2, the number of integer points x,_,EPE with
(x1,...,X2- ) EM is then <c,(s)P*~° Let V,cC*“"? be the algebraic set consist-
ing of (xy, ..., X4_») for which codim S(x;, ..., x4_>)<a. Then())

2D < c)8) D, (V) P
a=0

By the hypothesis (17.3), there must be an a in 0<as<s with
25(V,) > cy(s) APS-Dr-1+a,

Since zp(V,)<c4(s, d) P?~?, it follows that for sufficiently large A we must have
a—y—1<0, i.e.

(") Added in proof. Rather than zx(V,) and zx(V’) below, we should count only points in V,, but not in
| SR
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Osas<y.

Now V,cC5=C*“~? js in some class () with /=I(s, d). Define V'cV, accord-
ing to Lemma 24.2. Thus V' is an irreducible algebraic variety, and is defined over the
rationals. We have zp(V')=c; zp(V,), hence

zp(V') Z css, AP D771,

Since V' €C(l') where I'=I'(s,d), it follows for a sufficiently large value of A that
dim V' zs(d—2)+a—y, or that

at+t<y, (24.3)

where r=codim V'

Further by part (C) of Lemma 24.2, there is an integer point r=(xy,...,X4-2)EV’
which is simple on V’. The whole construction for the proof of Proposition III¢ can be
carried over, but this time our point r has integer components. All the polynomials
occurring have rational coefficients. Whereas in §23 we used the fact that each
component D; of D lay in J(V), we now use the fact that D, € J(V,)=J(V’). Thus (21.6)
holds for f=D,, where the forms k are defined in terms of V' and . The inequality (24.3)
takes the place of (22.4). We may indeed conclude that A(F)<y@(d).
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