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O. Introduction 

As is well known, the application of operator  theory  or calculus of varia- 

tions to  the s tudy  of differential equations leads to the question whether  the  solu- 

t ions thus obtained are sufficiently smooth  to  be solutions in a classical sense. Ra the r  

complete results are known concerning the regulari ty of the solutions in the interior 

of their domain of existence (cf. H6rmander  [6], Malgrange [9] and the references 

given there). The regulari ty at  the boundary  of solutions of boundary  problems has 

been far less studied, a l though quite recently very  impor tan t  progress has been made  

(el. Browder [1], Gusev [4], Lopat inski  [8], Morrey-Nirenberg [10], Nirenberg [11]). 

The purpose of this paper  is to give a complete description of the boundary  condi- 

tions which give rise to regulari ty at  the boundary,  in the special case where the 

coefficients of the differential operators considered (in the interior and in the boundary  

conditions) are constant  and the boundary  is plane. This case can be studied essenti- 

ally in the same way as the corresponding problem of interior regulari ty was studied 

by  HSrmander  [5], but  considerable technical difficulties are added. 
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In the case of boundary conditions satisfying condition (a) of Theorem 3.3, it 

is easy to extend the study to the case of variable coefficients and curved boundaries. 

(In this case one can also admit overdetermined systems of differential operators and 

boundary operators.) Indeed, one can argue as in Morrey-Nirenberg [1] using a priori 

estimates for the case of constant coefficients obtained by Fourier transformations 

from estimates for ordinary differential operators. However, these results will not be 

developed here since the author has been informed by Professor Nirenberg that  he, 

Agmon, Douglis and Schecter have also independently obtained the same theorems. 

A classical prototype for the results in this article is contained in Schwarz' 

reflection principle. According to this principle, a function u satisfying the differ- 

ential equation 

a u = 0  (0.1) 

in an open set ~ and vanishing on a plane piece eo of the boundary of ~,  can be 

extended as a solution of (0.1) across ~o. Thus it is analytic in ~2 (J w since every 

solution of (0.1) is analytic, that  is, it has a power series expansion in a neigh- 

bourhood of each point in this set. 

In extending this result we shall consider solutions of a partial differential equa- 

tion with constant coefficients 

P (D) u = 0 (0.2) 

(for notations see section 2 or H6rmander [5]), which are defined in an open set 

and on a plane piece eo of the boundary satisfy a number of boundary conditions 

with constant coefficients 

Q,(D) u=O, ~=1,  ... oneo. (0.3) 

In  order tha t  the interpretation of these equations shall be elementary we assume 

that  the derivatives of u of order ~< k are continuous in ~ U co, where k is the maxi- 

mum order of P (D) and Q, (D). Since the coefficients are constants there is in fact 

no real difficulty in extending the study to weak solutions, but for the sake of 

simplicity we shall not do so. Our purpose is to investigate the following two ques- 

tions: 

A) What are the conditions on P and Q, in order that every solution o] (0.2), 

(0.3) shall be in/initely dif]erentiable in ~ U m? 

B) What are the conditions /or these solutions to be analytic in ~ U co? 
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In  studying A (B) it is natural  to assume tha t  the operator P (D) is hypo- 

elliptic (elliptic), tha t  is, such tha t  every solution of the equation P ( D ) u = 0  in an 

open set is infinitely differentiable (analytic) there. Indeed, if P (D)is  not elliptic and 

~o is a bounded subset of a hyperplane, we can take ~ such tha t  a solution of 

P (D) u = 0 vanishes in a neighbourhood of w but not in the whole of ~ (Hhrmander [5], 

Theorem 3.2). Then u satisfies all boundary conditions (0.3) but is not analytic in ~ .  

Thus one must  assume tha t  P (D) is elliptic in studying question B, a t  least if one 

wants a result independent of ~ as will be the case here. Similarly, it is natural to 

assume tha t  P (D) is hypoelliptic when studying A. 

Algebraic characterizations of hypoelliptic and elliptic operators have been given 

by Hhrmander  [5] and Petrowsky [13]. P (D) is hypoelliptic if and only if 

I m  ~-~c~ when ~ - - ~  on the surface P (~)=0,  (0.4) 

P (D) is elliptic i f  and only if 

P~ for real ~=~0, (0.5) 

where po (~) denotes the principal part  of P (~), tha t  is, the homogeneous part  of 

highest degree. 

Thus in all tha t  follows we assume that {0.4) is ]ul/illed. We also suppose tha t  

is contained in one of the half spaces bounded by the plane through co and de- 

note by N an interior normal of this half space. This means tha t  < x -  x 0, N> > 0  if 

x E ~ and x o E co. We shall consider the roots of the equation in 

P (~ + vN) = 0, (0.6) 

where ~ is real. If  T is a real root, it follows from (0.4) tha t  ~ + v N  belongs to the 

compact se t  in R n defined by P = 0. Let  $ be the residue class of $ modulo (z N}. 

Then, if ~ is outside a compact set K in R ' / ( v N ) ,  equation (0.6) has no real roots. 

Now the roots are continuous functions of ~, for the coefficient of the highest power 

of v in (0.6) is independent of ~ (el. Hhrmander  [5, p. 239]). Hence in each com- 

ponent of C K, the number  of roots with positive imaginary par t  is constant. As- 

suming as we may  tha t  K is a sphere, C K  has 1 component if n - l > l  and 2 

components if n -  1 = 1. When n = 2 we therefore add to our hypothesis (0.4) tha t  

the number  of zeros with positive imaginary par t  is the same for $ in the two com- 

ponents. We shall say tha t  P is of (determined) type /~, if the number  of zeros with 

positive imaginary par t  is ju for all 6ECK; when n > 2  all hypoelliptic operators are 

thus of determined type. 
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Example. When n = 2  and P ( } ) = $ 1 + i $  2, N =  (0,1), we have one root with posi- 

tive imaginary par t  if }, > 0 but none if }1 < 0. Hence, although elliptic, P is not of 

determined type. 

Remark. The above argument shows in particular tha t  every elliptic operator 

in n > 2 variables is of even order. This was also observed by Lopatinski [8]. 

We can now formulate our final hypothesis: The number o/ boundary conditions 

(0.3) shall be ~t t .  Since we can add a finite number  of identically satisfied boundary 

conditions (Q,=0),  we may  and will assume tha t  there are precisely /~ boundary 

conditions. Our reason for this restriction has been tha t  the problems A) and B) would 

otherwise be analogous to the problem of characterizing the ovcrdetermined differ- 

ential systems which only have infinitely differentiable solutions. The solution of this 

problem has been given quite recently by C. Lech but was not known when the 

results of this paper were obtained. 

Summing up: Given a hypoelliptic (elliptic) differential operator P ( D ) o f  de- 

termined type it, we are going to characterize the systems (0.3) of # boundary condi- 

tions such tha t  the solutions of (0.2), (0.3) arc infinitely differentiable (analytic) 

in ~ U o .  

D E F I N I T I O N  0.1. The boundary conditions (0.3) are called hypoelliptic (elliptic), 

with respect to the hypoelliptic (elliptic) operator P (D), ~2 and co, i/ all k times con- 

tinuously di//erentiable solutions in ~ U co o/ (0.2), (0.3) are in/initely di//erentiable 

(anulytic) in ~ U w.  (1) 

We recall tha t  k denotes the maximum of the orders of P (D) and Q~ (D). The 

assumption tha t  u E C ~ can easily be relaxed, as mentioned previously. 

The plan of the paper is as follows. In section 1 we present some basic facts 

concerning ordinary differential equations, and in section 2 some algebraic prelimi- 

naries. In section 3 we then state our main result, the algebraic characterization of 

hypoelliptic and elliptic boundary conditions and discuss some special cases. The ne- 

cessity and sufficiency of these conditions is proved in sections 4 and 5-6, respectively. 

In  doing so we also s tudy inhomogeneous boundary problems. 

1. Preliminaries concerning ordinary differential equations 

Let k ( ( 5 ) = ~ + a ~  1(~ 1 + . . .  +%, (1.1) 

where (~ = - i  d/d t, be an ordinary differential operator with constant coefficients and 

(1) This terminology differs from that of BROWDER [1]. 
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order  #.  As is well known,  t he  solut ions of t he  equa t ion  k ( 5 ) u = O  are  the  l inear  

combinat ions  of the  exponent ia l  solut ions G (t) e its, where r is a zero of the  po lynomia l  

]~ (T) = . t . l , + a t t _ l  Tp 1 +  . . .  + a  0 

of h igher  o rder  t h a n  the  degree of the  po lynomia l  G. 

Le t  q,((~), v = l  . . . . .  #,  be some o the r  o rd ina ry  di f ferent ia l  opera tors .  We  are  

going to  de te rmine  a condi t ion  in order  t h a t  

k ( 5 ) u = 0 ;  (q~ (5) u) ( 0 ) = 0 ,  v = l  . . . . .  ~ ,  (].2) 

shall  i m p l y  t h a t  u = 0 .  The equat ions  

k ( 5 ) u = 0 ;  (q~(5)u)(O)~,,, ~ = 1  . . . . .  ~ ,  (1.3) 

t hen  have  one a n d  only one solut ion for  a r b i t r a r y  complex ~p~, and  we are  going to  

give a formula  for th is  solut ion.  

Assume for a m o m e n t  t h a t  the  zeros T 1 . . . . .  T~ are  all di//erent.  Then the  solu- 

t i ons  of k (5)u = 0  are  t he  funct ions  

IL 

u (t) = Y Cj e'~, ~ 
1 

with cons tan t  Cj. In  order  t h a t  u shall  sa t i s fy  (1.2) we mus t  have  

tt 

1 

Thus one can f ind a non t r iv ia l  solut ion of (1.2) if a n d  only  if de t  qv(Tj)=0.  

In  order  to  s t u d y  the  case of coinciding zeros also, we in t roduce  a r a t iona l  func- 

t ion of the  inde te rmina te s  T~ . . . . .  r ,  def ined b y  

R (]c; qi . . . . .  q~) = de t  q, (vj)/1-[ (zj - r~). 
l< j  

Since i t  is obvious t h a t  each fac tor  in the  d e n o m i n a t o r  d iv ides  the  numera to r ,  t he  

r ight  h a n d  side is a po lynomia l  in  the  var iables  rj  and  is thus  def ined also in t he  

case of coinciding zeros. Since i t  is a symmet r i c  funct ion of these  var iables ,  i t  can 

be expressed as a po lynomia l  in the  coefficients of k. Hence:  

R (]c; ql . . . . .  ql,) is a po lynomia l  in  the eoe//icients o/ k, qt . . . . .  q~, which is l inear 

and an t i symmetr ie  in  ql . . . . .  qt~ and vanishes  when  ]c is a /actor o/ some q~. 

I t  is easy  to  see t h a t  these  proper t ies  charac te r ize  R up  to  a funct ion which 

is i ndependen t  of q,. F u r t h e r m o r e ,  one can ver i fy  t h a t  R vanishes  if and  on ly  if 
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some l inear  combina t ion  of t he  po lynomia l s  q,, 

1 

where  all a~ do no t  vanish,  has  /c as a factor .  This fact  connects  our  resul ts  wi th  

those  of Agmon,  Douglis,  Ni renberg  and  Schecter .  

F o r  fu ture  reference we also observe t h a t  R does no t  change if we s imul tane-  

ously make  a t r ans l a t i on  of k and  all  q ,  and  only  mul t ip l ies  b y  a cons tan t  f ac to r  

if we make  some other  l inear  t r ans fo rma t ion  of the  i n d e p e n d e n t  var iable  3. 

The i m p o r t a n t  role of th is  funct ion here is due to  t he  following theorem.  

T H ]~ O R E M 1.1. A necessary and su/]icient condition in  order that (1.2) shall possess 

a non trivial solution is that 

R (k; ql . . . . .  q~,) = 0. (1.4) 

Proo/. I n  the  case where the  zeros of k are  simple,  t he  resul t  is a l r e a dy  proved.  

Now suppose t h a t  31 . . . . .  Tr are di f ferent  zeros wi th  mul t ip l ic i t i es /~I  . . . . .  /~r and  t h a t  

/zl+ ... +#,=# 

so t h a t  there  are  no o ther  zeros. The  solut ions of k ( 5 ) u =  0 are  t hen  

u = Z e .  (i t) ~ e~J t, 

where ~ are  cons tan ts  and  the. s u m m a t i o n  is e x t e n d e d  over  

0 ~< s</~j ,  l ~ < ~ < r .  

App l i ca t ion  of Le ibniz '  fo rmula  gives (cf. H S r m a n d e r  [5, p. 177]) 

(qv (5) u) (0) = E Cjs q(/) (3j). 

Hence  (1.2) has  a non t r iv ia l  solut ion if and  only  if 

ql ( 3 1 )  q l  ( 31 )  . . .  q(1 p ' - I )  (31)  ql (33) " ' "  

. . . .  , . . . . . . . . . . .  

q. (31) q' (31) ... q(.,-1) (vl) q. (33) ... 

= 0 .  ( 1 . 5 )  

On the  o ther  hand,  no t ing  t h a t  R is a cont inuous  funct ion  of v 1 . . . . .  3~, and  

pass ing to  the  l imi t  f rom the  case where al l  # zeros are  different ,  using Tay lo r  series 

expansions ,  i t  is easy  to  see t h a t  in t he  p resen t  case the  funct ion R is prec ise ly  t he  

d e t e r m i n a n t  in (1.5) d iv ided  b y  
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]--1 S</~j , l < ~ k < j ~ r  

This shows tha t  {1.4) is equivalent  to  (1.5), which completes the proof. 

When  solving the inhomogeneous equations (1.3) we shall again need to  consider 

expressions defined by  

R (k; /, . . . . .  / ,) = get  fi (rj)/YI ( r j -  vk) (1.6) 
k<) 

when the  zeros rj are different and by  cont inui ty  otherwise. However,  all h will no t  

be polynomials,  which requires some prel iminary s tudy  of expressions of this form. 

We first recall some notions from difference calculus. I f  / is an analyt ic  func- 

t ion  of a complex variable 3, its divided differences are defined as follows (cf. N6r- 

lund [12]), when all vt are different: 

/ ( 3 .  3~) = ( / ( ~ , )  - ! ( ~ ) ) / ( 3 ~  - ~ )  . . . .  

/ (31 . . . . .  Tn) = ( /  (T1 . . . . .  3 n _ 1 )  - -  / (T2 . . . . .  3 n ) ) / ( T  1 - -  3n ) .  

I t  is easy to  show t h a t  /(31 . . . . .  3n) is a symmetr ic  funct ion of v 1 . . . . .  Tn. A s s u m e  

for simplicity t h a t  all v~ are s i tuated within a J o r d a n  curve C and t h a t / i s  analyt ic  

there. I t  is then immediate ly  established tha t  

! (3~ . . . . .  ~ )  = (~ ~ i)-' f / (z) d z / ( z -  30 ... ( z -  ~ ) .  
c 

This formula has a sense even for coinciding zeros and we take  it as a definition 

in t ha t  case; ] (v 1 . . . . .  vn) is then an analyt ic  funct ion of all its variables. 

l~rom another  formula for the divided differences one obtains the following useful 

est imate (cf. N6rlund [12, p. 16]) 

1 I/(3, I sup ]/,~-:) (z)I, (1.7) 
. . . . .  3 ~ ) , < ( n _  1) ! ~o~ 

where K is the convex hull of the points vt, provided tha t  / is analyt ic  in a neigh- 

bourhood of K. 

B y  subtract ing columns in the de terminant  defining R (k; ]1 . . . . .  /~) and using 

the definition of the divided differences, one immediately  obtains 

R (k; h . . . . .  /~) = a c t  fi (vx . . . . .  vj), v, j = 1 . . . . .  /~, (1.8) 

when all Tt are different. I f  all ]~ are analytic,  we thus obtain a definition of R also 

in the case of multiple zeros, and R becomes an analyt ic  funct ion of all vs. 
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Apply ing  the  e s t ima te  (1.7) to  (1.8) we can get  e s t ima tes  of R. Thus  if K is 

the  convex hull  of the  zeros of k we have  

tt [ . -1 I/7) ) I R ( k ;  t, . . . .  , l,>l< ,  osup (z)l/j  �9 (1.9) 

We shall  now give the  solut ion of (1.3). 

T H E O R E M  1.2. I /  R(k;  ql . . . . .  q,)=~O, equations (1.3) have one and only one 

solution and this is given by 

u ( t )=  ~ R (k; q~ . . . . .  q~-l, e 't~, qv+l . . . . .  q , ) /R  (k; q~ . . . . .  q,). (1.10) 
1 

Proo[. The exis tence a n d  uniqueness  of the  solut ion follows f rom Theorem 1.1. 

Since the  r igh t  h a n d  side of (1.10) is a cont inuous  func t ion  of v~ . . . . .  T, as  long as 

R (k; ql . . . . .  q,)=~0, i t  is suff icient  to  p rove  (1.10) when al l  T~ are  different .  I n  t h a t  

case we shall  de t e rmine  u b y  means  of the  equat ions  

u=~.a je% t, ~ , = ~ a j q ,  (vj), v = l  . . . . .  /x. 
1 1 

Considering this  as a homogeneous  sys tem in t he  var iab les  a.j a n d  1 and  using the  

def in i t ion  of R, we i m m e d i a t e l y  ob ta in  (1.10). 

N e x t  a ssume t h a t  k (v) is a fac tor  of a po lynomia l  p (T), 

p (v) = ~" + lower order  t e rms ,  

a n d  t h a t  the zeros o/ k (v) and p (v)/k (v) have positive and negative imaginary parts, 

respectively. Denot ing  b y  u an  inf in i te ly  d i f ferent iable  func t ion  vanish ing  for  large t, 

we set  

p (~) u = {; (q, (6) u) (0) = v2,, v = 1 . . . . .  # ,  (1.11) 

a n d  are  going to  give a fo rmula  for u in t e rms  of / a n d  %, assuming t h a t  the degree 

o] p is greater than the degree of q, for  all  v = 1 . . . . .  t t. 

F i r s t  wr i te  

go (t) = (2 7~) -1 f e't~/p (~) dr.  (1.12) 
--O0 

This  in tegra l  is abso lu te ly  convergent  if a~> 2 a n d  for a = 1 i t  converges when t~: 0. 

The  funct ion  go ( t - s )  is a f u n d a m e n t a l  solut ion of the  d i f ferent ia l  ope ra to r  p {~) wi th  

pole a t  s. W e  shall  mod i fy  i t  in order  to  ob t a in  a fundamen ta l  so lu t ion  g (t, s ) s a t i s -  

fy ing  
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q~ (5) g (t, s)t~o = 0, ~ = 1 . . . . .  ~.  

According  to  Theorem 1.2 the  funct ion  

g (t, s) = go ( t -  s) - Y (q, (5) go) ( - s) h, (t), (1.13) 
1 

where for  the  sake of b r e v i t y  we have  wr i t t en  

h~ ( t ) = R  (k; ql . . . . .  q~-l, e ~t~, q,+i . . . . .  q, ) /R  (k; ql . . . . .  q,), (1.14) 

satisfies the  des i red  b o u n d a r y  condi t ions ,  a n d  the  compensa t ing  t e rm  w sat isf ies as  

a func t ion  of t t he  equa t ion  k (5)w = 0, hence p (5)w = 0. Thus  wr i t ing  

U 1 (t) = f g (t, 8) / (8) d8  
o 

we get  p (5) u I (t) = p (5) f go ( t - -  s) / (s) d s = / (t), t > 0. 
0 

We also ob ta in  (q~(5) U l ) ( 0 ) = 0  for v = l  . . . . .  /t. W i t h  u s = u - u  1 i t  therefore  fol- 

lows t h a t  

p (5) u s = 0, (qv (5) us) (0) = ~o,, ~ = 1 . . . . .  /~. 

The  f i rs t  equa t ion  can be rep laced  b y  ]c (5)u  S = 0, for  u s is bounded  when t > 0, since 

u and  u I a re  bounded ,  and  p (v)/k (v) has  al l  zeros in the  lower half  p lane .  Hence  

u s is given b y  Theorem 1.2, a n d  we ob ta in  t he  fo rmula  

u (t) = f g (t, s) / (s) d s + ~ ~ h, (t), (1.15) 
0 1 

where g a n d  h, are  g iven b y  (1.13) and  (1.14). 

W h e n  using this  formula  in sect ion 5 we shall  need  some rough  es t ima tes  of t he  

kernels  g and  h~. They  will be consequences of the  following theorem.  

TF tEOREM 1.3. I1 the zeros of p(v)  satis/y the inequalities 

I ~ I < A i ,  lira ~l>~ a +Ao,  Ao>O,  

then ]or t *O we have 

I g0 (i) (t) [ ~< 2 ~ A1 i e -hoft I, (1.16) 

where a is the degree o! p and go is de[ined by (1.12). 

Proo/. If  a =  1 we have  p ( v ) ~  ( ~ - ~ ) ,  and  assuming  for  example  t h a t  I m  2 <  0, 

we ge t  

16 - 665064  Acta mathematica. 99. Imprim(~ le 11 j u i n  1958 
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go(t)=O if t > 0 ,  g o ( t ) = - i e  u~ if t < 0 .  

Thus the result is true when a = 1. 

Next assume tha t  j = 0 ,  a > l .  Moving the line of integration in (1.12)we obtain 

go (t) = (2~) -1 ] dt(~*th'>/p (v __+ iho) dr .  

Now the integrals / d v/I p (z ___ i A0) I are ~< :~. In fact, if 2, are the zeros of p (~ • iA0), 

we have I Im 2jl ~> 1, hence the integrand can be estimated by [ z - 2 1  I- l[v-)t~[-1 ~< 

( I v - 2 1 [ - z + [ z - 2 2 [ - ~ ) / 2 ,  and if we calculate the integral of the right hand side, 
the assertion follows. Thus (1.16) holds when j = 0 .  

Now we prove the result in the general case, assuming that  it has already been 

proved for derivatives of order <~ when p is of order < a .  Let  2 be a zero of 

p (v). Then 

- i g o -  2go= ( 6 -  2) g o 

i s  the fundamental solution (1.12) belonging to the operator p (O) / (~-2) ,  and hence 

by hypothetis 

]~s+l go - -2~  go[ <-..2~-l+SA~ e-A~ S< ~. 

Multiplying this inequality by 2 j 1 s and adding for s= 1 . . . . .  7"-1, we obtain 

/ - 1  
I (~i go -- 2t go [ ~< A{ -1 e-A' Itl ~ 2.-1+s ~< A~-I e -h .  ttl 2o-~+J. 

o 

Hence, using the estimate of go already proved and the fact tha t  A1 > 1, 

15,g0 [ < AJl e-A, ,t) (1 + 2a-1+1), 

which implies (1.16). The proof is complete. 

We shall finally prove an inequality for the solutions of (1.1), which in a somewhat 

weaker form will be useful in section 4. 

THE O R EM 1.4. There is a constant ~ depending only on /u such that, i/ u is a 

solution o/ an equation k (r where all zeros o/ k (v) have non negative imaginary 

Tarts, we have 

lu(a)[<.. .ya-l~[u(t)[dt ,  a>O,  (1.17) 
0 

b a 

f lu(t)ldt<.(b/aV flu(t)ldt, O<a<~b. (1.18) 
0 0 
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Proo/. Firs t  note  t ha t  (1.18) follows from (1.17). Indeed,  if we write 

b 

I (b)=f lu(t)ldt, 
0 

(1.17) gives / ' ( b ) ~ b - l I ( b ) .  Dividing by / ( b )  and integrat ing from a to  b, we ob- 

ta in  (1.18). 

Nex t  note t h a t  to  prove (1.17) it is sufficient to  assume t h a t  a =  1, since the  

general case reduces to this by  means of the subst i tut ion t = as .  One m a y  further-  

more assume in the proof t h a t  k ( 0 ) = 0 .  For  let T o be one of the  zeros of k(~) with 

the smallest imaginary  par t  and write k 1 (~) = k (v § T0), u 1 (t) = u (t) s Then  the  

zeros of k 1 have non negative imaginary  parts,  too, k 1 (0 )=0 ,  and  from /~ ( 6 ) u = 0  

- f it follows t h a t  k 1(6) u 1 = 0 .  Since lu1(a) l = l u ( a ) l  bu t  f l u l ( t )  l d t ~  l u ( t )  l d t ,  the  
0 0 

inequal i ty  (1.17) follows from the corresponding one where u is replaced by  u 1. 

I n  the  proof we m a y  also assume t h a t  the  theorem has a l ready been proved 

for solutions of differential equations of order lower than  /x, for it is tr ivial  when 

f t = l .  

Denote  the  zeros of k (T) b y  ~1 . . . . .  T, and  set 

1 

M ( r l  . . . . .  ~ ) =  sup lu(1)l/flu(t)ldt, 
0 

where u varies over the  solutions of the (fixed) equat ion k (6) u = 0. We have to  prove 

t h a t  M is bounded when I m  rj >/0, j = 1 . . . . .  /~. 

LEMMA 1.1. M (v 1 . . . . .  T~) is a cont inuous  /unc t ion  o/ ~1 . . . . .  re,. 

Proo/ .  Denote  by  ~j (t; v 1 . . . . .  vt,) the divided differences of the  funct ion e tt~ at  

the  arguments  T 1 . . . . .  Tj; 1 ~<j~<ft. Considering for example Cauchy 's  problem for the  

equat ion (1.1) and  using (1.10) and (1.8), we find t h a t  the functions ~j const i tute a 

basis for the  solutions of (1.1) regardless whether  the  zeros are multiple or not .  

Fur thermore  the functions ~j are continuous functions of all variables. Now 

m ( v ,  . . . . .  ~ , ) =  sup IE  a,qr v, . . . . .  ~ , ) l / f l E a ,  q , ( t ;  7:, . . . . .  ~:~)]dt 
1 6 1  

/t 

and the supremum obviously does not  change if we add  the  restr ict ion ~ ] a j l =  1. 
1 

Since the supremum is then taken  over a fixed compact  set and  the denomina tor  

does not  vanish, the  cont inui ty  is obvious. 
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F r o m  Lemma 1.1 it follows tha t  M is bounded when the absolute values of all 

vj are ~<#. I t  therefore only remains to  consider the case where some zero has a 

larger absolute value. According to  Lemma 1.1 it is enough to  consider the case of 

simple zeros zs and as we have remarked above we m a y  assume tha t  some of them 

equals 0. Then there exists an integer v < #  such tha t  there is no zero of k in the 

annulus v < I z I < v + 1. For  if each of these contained a zero of k we would get  ~t + 1 

zeros altogether,  count ing the one at  0 and the one with absolute value >/x, which 

is impossible. We now decompose a solution of k ( b ) u = O  in the form 

U : U 1 -t- U2~ 

where u 1(u2) is the sum of those exponential  components  of u with exponent  

value. We shall prove tha t  with a constant  C only de- ~<v(~>v+l )  in absolute 

pending on # we have 

in Theorem 1.4, 

case, it follows 

only on #, 

flu,(t)ldt<CfluIt)ldt, i = l ,  2. (1.19) 
0 0 

Since u~ is a solution of a differential equat ion of order </x of the type  described 

and we have assumed t h a t  the theorem is a lready proved in t h a t  

f rom (1.17) and (1.18) that ,  with another  constant  C 1 depending 

1 

lu,(1)l<cl f lu(t)ldt, 
0 

and the theorem will be proved. 

In  order to prove (1.19) we argue in the following way. Let  ~0 (x) be a con- 

t inuous function with suppor t  in ( - ~ ,  O) and set 

U (t) = u~eqp (t) "- f u (t - s) q~ (s) ds .  

�89 1 

Then f I U (t) I d t  ~< flu (t) l d t  max I~o (s)I" �9 (1.20) 
0 0 

Let  ~ be the Four ie r -Laplace  t ransform of qJ. I f  

~ ( v ) = O  when k ( z ) = O  and I ~ l > i v + l ,  (1.21) 

( v ) = l  when k ( v ) = 0  and [zl <v ,  

we have U = u  1. To prove (1.19) with i =  1 (and hence wi th  i = 2 )  we thus  only have 

to  prove t h a t  one can find a function ~v having these properties and which is 

bounded by  a constant  depending on /~ only. 
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Take a /ixed funct ion ~v E C a with compact  support  in (-21-, 0) such t h a t  ~ (3)=~ 0 

when [ 3 ] ~ Ft. Write  

]c a (3) = 1-] ('V -- T/), k 2 (T) = ~ (1 --  T / T / )  
Iril~<v Ir/l~>v+l 

and, with the operator  h ((~), of order lower than  tha t  of k 1, still to  be determined,  

= h (5) k s (6) ~. 

Then ~ (3) = h (3) k 2 (3) ~ (3), 

so tha t  (1.21) will be fulfilled if and only if 

h (3) = 1//k~ (v) ~ (3) when k I (v) = 0. (1.22) 

This condition determines the polynomial  h (3). Moreover, if rl . . . . .  3r are the zeros 

of k 1 and we write F (3)= 1/k 2 (v)v~ (3), Newton ' s  interpolat ion formula (NSrlund [12, 

p. 11]) gives 

h (T) = ~ F (31 . . . . .  3i) (3  - T1) . . .  (3  - 31_1). 
J=l 

Now all 3j with 1 ~<j~<r have absolute values ~</~, and to est imate the divided 

differences of F we just  have to use (1.7), not ing tha t  if 3j is a zero of k 2 (v) we 

have [3j]>/1 and 

l ( 1 - 3 / / 3 j ) l > ~ ( 1 - ( ~ t - 1 ) / / # ) = l / #  if 13l~<v. 

Since the est imates of the coefficients of h thus obtained depend on ~t only, and 

the inequali ty [Tj[~> 1 is valid for every zero of k 2 (5), the inequal i ty  (1 .19)and hence 

the theorem follows. 

2 .  N o t a t i o n s  a n d  algebraic  prel iminaries 

In  order to give our results an invar iant  form we shall in this and the next  

section use a formalism which avoids the use of coordinate systems. Thus let G be 

a real vector  space of dimension n and G* its complex dual  space, i.e. the space 

of all complex linear forms on G. We shall denote  the elements of G by  x, y, ... 

and those of G* by  Greek letters ~, ~, $ . . . .  Usual ly ~ and ~ will denote  real ele- 

ments  in G*, i.e. real linear forms. If  P ($ )  is a polynomial  in G* we denote by  

P (D) the differential operator  act ing on the functions in G such tha t  

P ( D )  e i ~z, ~> = p ($) e ~ <~. ~>; 
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if x k and Sk are coordinates in G and G* with respect to dual bases, we obtain P (D) 

by replacing ~k by  - i ~ / ~ x  k in P(~).  

In  studying the problem sketched in the introduction we shall let ~ be an open 

set in G and ~ a par t  of its boundary which is an open set in a hyperplane F. 

The dual space F* of F is a quotient space of G*, 

F* ~ G*/F ~ 

where F ~  is the orthogonal space of F. In  fact, if ~EG*, the restriction of the 

linear form (x, ~} to F defines an element ~ of F*, and this element is 0 if and 

only if ~ is orthogonal to F. Since F is a hyperplane, F ~ is 1-dimensional. By  the 

normal N of F we shall mean one of the real elements in F~ we assume tha t  the 

half space 

G+ = {x ~ G; (x, N}/> 0} 

contains f~. 

We choose once for all a Euclidean norm in G. In F, G* and F* we use the 

norms obtained by restriction and duality respectively. The norm in F* is then the 

quotient norm of that  in G*. For future reference we also note tha t  obviously 

IRe  l<l l- 
Now let P (D) be hypoelliptic and of determined type # (cf. Section 0). We shall 

denote by A the set of all ~ E G* such tha t  the equation 

P ($ + v N) = 0 (2.1) 

has precisely # roots with positive imaginary par t  and none tha t  is real. The coef- 

ficient of the highest power of v is independent of ~ (H5rmander [1, p. 239]) so we 

may  assume tha t  it equals 1. Obviously A is open and by  hypothesis a real ~ E G* is 

in A if ~ belongs to a suitable neighbourhood of infinity in F*. We shall now esti- 

mate  the size of A more precisely. 

THEOREM 2.1. Suppose that P(D)  is elliptic and of determined type /~. Then 

there is a constant M such that A contains all ~ satis/ying 

I Re r >~M (1 + I Im  .~ I). (2.2) 

Proof. The theorem is a consequence of the following lemma. 

L E ~ M A  2.1. Suppose that P (D)  is elliptic. Then there is a constant M such that 

P(~)*0 if IRe~l~M(l+lIm~l) .  (2.3) 



ON T H E  R E G U L A R I T Y  OF T H E  SOLUTIOI~TS OF B O U N D A R Y  PROBLEMS 239 

To prove that  Theorem 2.1 follows from Lemma 2.1 we first note tha t  if v is 

real and (2.2) is fulfilled, we have 

IRe ( r  r  r (r 

hence P ( r  in virtue of (2.3). Thus (2.1) has no real root if (2.2) is valid 

and hence the number of roots of (2.1) with positive imaginary part  is constant in 

each component of the set defined by (2.2). Now each component of this set con- 

tains real points with arbitrarily large absolute values which proves Theorem 2.1. 

Proo/ o/ Lemma 2.1. Let  P = P~ + Pro-1 + " "  + P0 be the decomposition of P in 

homogeneous parts, the degrees being indicated by the subscripts. By hypothesis we 

have 

Pm (~) :~ 0 when ~ :~ 0 is real. 

Therefore Pm (~) has a positive lower bound in some complex neighbourhood of the 

real unit sphere, thus for some positive e and c we have 

[Pm($)[~>c if ]~[=I a n d , ] I m r  ]. 

Since Pm is homogeneous this yields 

Estimating the lower order terms in P (~) in an obvious fashion we now get with 

another constant c 1 

IP(;)l >el im--Cl(I;fm-'+ "" + l )  if JIm r<eJRe J. 

Hence P($)~=0 if ]~l~>c~ and I I m ~ l  ~<e]Re$1, and the lemma follows with 

M = max (e -1, c~). 

Remark. Conversely, it is easy to see that  P (D) is elliptic if (2.3) is valid for 

some constant M (cf. H6rmander [5, p. 217]). Thus (2.3) gives an alternative defini- 

tion of an elliptic operator, which i s  closely related to the characterization of hypo- 

elliptic operators given by (0.4). 

THEOR~.M 2.2. Suppose that P (D )  ks hypoelliptic and o/determined type/~. Then, 

given any number B, there is a number B' such that A contains all ~ satis/ying 

l ira ~[~<U, [Re r (2.4) 

Proo/. This is merely a rephrasing of the characterization (0.4) of hypoelliptie 

operators. Indeed, (0.4} means that  there is a number B' such that  
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P ( ~ ) * 0  if Jim ~[~<B and IRe ~]>~B'. 

(2.4) follows from this fact in the same way as (2.2) followed from (2.3). We do 

not repeat the argument. 

We shall also consider the projection / i  of A into F*. This is an open set. In 

the case of an elliptic operator P (D), Theorem 2.1 means that  2i contains all r with 

IRe $1>~M(l+lIm r (2.5) 

In the case of a hypoelliptie operator, Theorem 2.2 means that  ~i contains all ~ with 

[ I m r  IRer (2.6) 

When ~ fi A we denote by vx . . . . .  r~ the zeros of P (~ + v N) with positive im- 

aginary part  and set 
tt 

k~ (z) = 1-I (T - •). (2.7) 
1 

Lv.~aMA 2.2. The coeHicients o~ k s are analytic /unctions o~ ~ when ~fiA. 

Proo/. Thia lemma is classical (cf. Goursat [1, pp. 289-290]). 

Let  us write 

and consider the function 

q~ (r) = Q~ (~ + vN), (2.8) 

~-->R (kr q} . . . . .  q~), ~ E A. (2.9) 

If ~ and ~' are in A and ~ - ~ '  is proportional to N, this function has the same 

value at  ~ and at ~', since kr q~ will differ from ks., q'r by the same translation. 

Hence (2.9) is a function of r only. We shall denote it by C (r thus 

c (~) = R (ks; q~ . . . . .  q~). (2.10) 

We shall call C (r the characteristic ]unction o] the boundary problem. In virtue of 

Lemma 2.2 it is an analytic branch of an algebraic function. 

If P (D) is of type 0, we shall have no boundary conditions at all and define 

C (r = 1 everywhere. 

In section 5 we shall need a rough estimate of the zeros of P (~ + ~ N). 

LE~IMA 2.3. There are constants C and M such that all zeros o / P ( ~ + T N )  satisfy 

the inequality 

I v l < C  (]~IM+ 1). (2:11) 
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Proof. Since the coefficient of the highest power of v is independent of ~, this 

follows immediately from any estimate of the zeros of a polynomial. For instance, 

if we write 

P ( ~ + T N ) = T ~ §  v a - l +  "" §  

the coefficients aj are polynomials in $, and the zeros satisfy 

I~l<l+ 5 la, I. 
0 

3. Characterization of elliptic and hypoelliptic boundary problems 

The main results of this paper are the following two theorems. 

THEOREM 3.1. A necessary and sufficient condition /or the boundary conditions 

(0.3) to be hypoelliptic with respect to the hypoelliptic operator P (D) o/ determined type 

#, ~ and co, is that 

Im ~-->oo i/ ~-->~ in ~t satisfying C(~)=O. (3.1) 

The analogy between this condition and the condition (0.4) for the hypoellipticity 

of an operator is obvious. Note that  the only geometric property of ~ and ~o which 

is involved in (3.1) is the direction of the interior normal of ~ on co. 

THEOREM 3.2. A necessary and sufficient condition for the boundary conditions 

(0.3) to be elliptic with respect to the elliptic operator P (D) of determined type /~, 

and co, is that with some constant M 

C(r when IRe r  r (3.2) 

M may be assumed so large that all ~ satisfying the latter condition are in A. 

This is clearly analogous to the characterization of elliptic operators given by 

Lemma 2.1. The following theorem connects it with the condition (0.5) (cf. also the 

results of Petrowsky [13] concerning elliptic systems). 

T HV, OREM 3.3. Let QO and po be the principal parts of Q, and P, which we 

assume elliptic: Let C o be the characteristic function o/ the boundary problem defined by 

po and QO. Then 

(a) I f  C~ for real ~:vO, the boundary conditions Q, are elliptic with re- 

spect to P. 

(b) I /  the boundary conditions Q, are elliptic with respect to P and n > 2, we have 

either C o = 0  identically or C ~ (~):~0 for real ~ :~ O. 
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Proof. (a) Denote the degree of Q, by m,. Then, as is immediately verified, 

CO (~) is a homogeneous function of ~ of order 

M = m  z+-- .  + m ~ -  1 - 2  . . . . .  ( /~-  1). 

Clearly it will be bounded from below in a complex neighbourhood of the real unit 

sphere. From this the result follows easily if we argue in the same way as in the 

proof of Lemma 2.1. 

(b) Let  $:~0 be real and such that  C ~  We have to prove that  C O must 

then vanish identically. Let // be a real vector and note tha t  

s-MC(s(~+wil))-->CO(~+wil) when s-->c~ and is real, (3.3) 

provided that  J wJ is sufficiently small (cf. (a) above). Now by assumption the func- 

tion on the left hand side of (3.3) is analytic in w and is =~0 if s is real and 

positive and 

s ( J ~ J - J / l J J R e w D > ~ M ( l + s J / / J J I m  wJ), 

hence if JwJ ~< (J ~J-Ms- ' ) / (1  +M) J/1J. 

I t  t h u s  follows that  the limit C~ when s-->~ is either identically zero or 

never zero when J w J< l$ J/(1 + M)]/1J. But  by assumption this function vanishes when 

w=O, so that  it  must vanish in the whole circle. If  J/l] < J~J/(1 + M), the circle contains 

w= 1 and we obtain C O ($ +/1) =0.  But  since C O is analytic and vanishes in a neigh- 

bourhood of $i it  must vanish identically, which completes the proof. 

The proof of Theorems 3.1 and 3.2 will be given in sections 4-6. In this sec- 

tion we shall only illustrate the results with a few examples. 

Example 1. Let  the boundary conditions be the Diriehlet conditions 

~Vu/ST~=O in o~, ~---0, 1 . . . . .  / ~ - 1 ,  (3.4) 

where T is a direction transversal to (o, i.e. (T ,  N ) *  0. A simple computation shows 

that  C(r is a constant =~0. Thus the Dirichlet boundary conditions are (hypo-) 

elliptic if P(D) is (hypo-)elliptie. Note tha t  it  may occur tha t  # = 0  so that  no 

boundary conditions are present. 

A remarkable feature of this example is tha t  the Diriehlet boundary conditions 

are {hypo-)elliptie with respect to all (hypo-)elliptie operators of type ju, in spite of 

the fact that  conditions (3.1) and (3.2) involve P also. We are going to s tudy the 

boundary conditions which have this property. 



O N  T H E  R E G U L A R I T Y  O F  T H E  S O L U T I O N S  O F  B O U N D A R Y  P R O B L E M S  243 

D E F I N I T I O N  3.1. The # boundary conditions (0.3) are called completely elliptic i /  

they are elliptic with respect to all elliptic operators P (D) o/ determined type ~. 

Let  D (vl . . . . .  3,, 8) be the principal par t  of the polynomial 

QI( +3N) . . . . .  , 

where 31 . . . . .  3p and 8 are considered as independent variables. We shall call D the 

characteristic /unction o/ the boundary conditions (0.3). 

T H E OR E M 3.4. A su/]icient and, i / n  > 2, also necessary condition/or the boundary 

condition (0.3) to be completely elliptic is that 

D (V 1 . . . . .  T t z  , ~) * 0 i/ I m  3j > O, j = "1 . . . . .  /z, and 8 is real, ~ =v O. (3.5) 

An equivalent condition is that the polynomial in 

n (31 + ~ 3 ~ . . . . .  3, + 2 3~, 8) (3.6) 

has only real zeros i/ 3 ~ . . . . .  3 ~ and 31 . . . . .  Tz, ~ are real, ~ *0 .  (When ~=0  

the polynomial either vanishes identically or else it has only real zeros.) 

Note tha t  if D (v I . . . . .  3,, 0) does not vanish identically, this means precisely 

tha t  D is hyperbolic with respect to all vectors (31 . . . . .  3~, 0) with all 33>0. (For 

the definition of hyperbolic polynomials cf. Gs [2].) 

Proo/ o/ Theorem 3.4. The sufficiency of (3.5) is quite obvious. Indeed, if P (D) 

is an elliptic operator of determined type ju and po its principal part,  we have 

o = D (31 . . . . .  8) + 0 (J 

where M is the degree of D and 31 . . . . .  3, are the zeros of the polynomial po (8 + 3 N) 

with positive imaginary part .  As in Theorem 3.3 (a) this implies tha t  (3.2) is fulfilled. 

Next  assume tha t  n > 2  and that  the boundary conditions (0.3) are completely 
t 

elliptic. Take 8' real, $' * 0 ,  and 3~ . . . . .  3, with positive imaginary parts. We have 

to prove tha t  

D ( '  ' 8') T 1 ,  . . .  , T ~ ,  : ~  0 .  

t t  t t  

Since D does not vanish identically and n >  2, we can find 31 . . . . .  3~ with positive 

imaginary parts and a real ~" such tha t  $' and $" are linearly independent and 
i !  D (3I(, . . . .  3~, 8") * O. Let P (8) be a homogeneous positive definite polynomial of 

degree 2/~ such tha t  P (~' + 3 N) is divisible by 1-I (3 - 3~) and P (8" + 3 N) is divisible 
1 
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It 

by  l~(27-27~'). The existence of such a polynomial  will be proved when /~= 1 in 
1 

Lemma 3.1; in the general case one only has to mult iply /~ such factors. Now we 

obviously have 

lim s -M C (s ~) = D (271 . . . . .  Vl, , ~ ) ,  
s-~r  

if 1" 1 . . . . .  Tt~ now denote the zeros of P (~+27 N) with positive imaginary  parts,  and 

arguing as in the proof of Theorem 3.3 (b), we can thus  conclude t h a t  the r ight  

hand  side either vanishes identically or is ~:0 for all real ~ with ~:~0. Now by  

assumption it does not  vanish when ~ = ~", and hence not  when ~ -  ~' either. This 

proves (3.5). Since the equivalence between the two conditions in the theorem is 

obvious, it only remains to prove the following lemma. 

LEMMA 3.1. Let ~' and ~" be real, ~' and ~" linearly independent, and let 2, 

and 2" be two non real numbers. Then there is a positive definite quadratic /orm S (~) 

such that S (~' + 2' N)  = S (~" + 2" N)  =O. 

Proo/. Since ~' + 2' N,  ~" + )," N and N are linearly independent,  we can find 

a complex vector  y E G + i G so tha t  

(y ,  ~ ' + ) , ' N } = ( y ,  ~ " + 2 " N } = 0 ,  (y, N } = l .  

Write S (~) = ((y, ~} + (9, ~})2 + s($); 

S (~) will have the desired properties if s (~) is positive definite in ~ and 

s (~') = - ((y, ~' + 2' N}  + (y, ~' + ~ N})* = - ((9, (2' - 2 ~) N}) 2 = 4 (Im 2') *, 

s (~") = 4 (Im 2") 2. 

Since 4 (Im 2') 2 > 0 ,  4 (Ira 2") 2 > 0  and $' and ~" are linearly independent,  one can 

find a form s (~e) with the desired properties. 

Example  2. Let  P ( D )  be the Laplace operator,  t ha t  is, if we introduce co- 

ordinates so tha t  N = (0 . . . . .  0, 1), 

P (~) = (~', ~') + ~ ,  

2 where ~' = (~1  . . . . .  ~ n - - 1 )  and (~', ~') = ~12 + --. + ~n-1. We have tt = 1 and, changing if 

necessary the boundary  condition with a multiple of P (D), we m a y  assume tha t  

Q (D) = qo (D') u - i ql (D') ~ u / a  x n, (3.7) 
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where q0 and ql are polynomials in ~'. If ~=(~',  ~ . ) w e  can obviously identify 

with ~' and then have 

C (r = qo ($') + i ($', $')t ql (~'), (3.8) 

where (~', ~')�89 denotes the square root with positive real part. The condition (3.2) 

/or elliptieity is equivalent to the ellipticity o/ the polynomial 

F (~') =% (~,)2 + (~,, ~,) ql (~,)z. (3.9) 

Indeed, if this polynomial is elliptic, (3.2) follows from Lemma 2.1 because C is a 

factor of F. On the other hand, assume that  (3.2) is fulfilled. If n = 2 it follows if 

we apply (3.2) to positive and negative ~1 respectively, using (3.8), that  

q0 (~1) ~--- i ~1 ql (~1) ~ 0, 

and hence the product _~ of these two polynomials does not vanish identically which 

proves the assertion since all polynomials ~ 0 in one variable are elliptic. If n > 2 

we decompose the principal part  Q0 in a form similar to (3.7) and obtain 

CO (6) = qO (~,) + i (~', ~')�89 q0 (~,). 

This cannot vanish identically since (~', $')~ is not a rational function when n > 2 .  

Hence, according to Theorem 3.3, the boundary condition being elliptic, we have 

C O ( 6 ) * 0  for real 6 * 0 .  Multiplying C~ and CO( - 6) together, noting that  qo and 

ql are homogeneous, qo of one degree higher than ql, and that  ( - ~ ' ,  - ~ ' ) } =  (~', ~')�89 

we find that  

q0 0 (~,)~ + (~,, ~,) q0 (~,)~. 0 for real ~ 0. 

But this means precisely that  the principal part  of F (~') satisfies the definition (0.5) 

of an elliptic polynomial, so that  the assertion is proved. 

In particular, the result shows that  the conditioa /or ellipticity with respect to the 

Laplace equation does not depend on whether ~ is situated in the hal/ space x ~ >0  or 

xn<O. 

The latter conclusion does not hold in the hypoelliptic case. Indeed, let n = 3 and 

Q (~) = i $~ + $a. 

Then C ($') = i ~ + i ~/~+ ~ 

if ~ is situated in the half space x" > 0  and 

(3.1o) 

(3.11) 

(3.12) 
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if ~ is si tuated in the half space x " <  0. (Note tha t  the square root is defined so 

that it has a positive real part.) Now (3.12) vanishes if $1 and ~2 are real and satisfy 

the equation ~ = ~ + ~ .  This curve has a real infinite branch, so tha t  the boundary 

condition (3.10) is not hypoelliptic with respect to the Laplacean if ~ is situated 

in the lower half space. On the other hand, if (3.11)vanishes, we must  have Re ~12~0 

in view of the definition of the square root. Hence 

If a bound for IImr is prescribed, this gives an estimate of ]Re ~{ when C ( ~ ' ) = 0 ,  

thus according to (3.11) we get an estimate of [ ~  [. Thus (3.10) defines a hypoeIliptic 

boundary condition with respect to the Laplacean if ~ is si tuated in the upper 

half space. 

4. Necessity of the conditions for (hypo-)ellipticity 

Using the theorem on the closed graph and the category theorem we shall prove 

i n this section tha t  the algebraic conditions in Theorems 3.1 and 3.2 are necessary 

for the boundary conditions (0.3) to be (hypo-)elliptic. The results to be proved were 

formulated in an invariant  way in these theorems, but  when we prove them in this 

and the following sections we shall use non invariant methods. Thus we use in what 

follows a coordinate system such tha t  the hyperplane F is defined by x n = 0  and 

is si tuated in the half space x n >0 .  In order to avoid unnecessary complications we 

assume tha t  ~ is bounded; the modifications tha t  are otherwise required will be 

indicated a t  the end of the section. By ~ '  we shall denote a domain whose closure 

is contained in ~ U ~o but  not in f~. 

L~MMA 4.1. Suppose that the boundary conditions (0.3) are hypo-eUiptic with 

respect to P (D). Then, i/ k is the integer occurring in De]inition 0.1, there is a con- 

stant C such that 

sup ID~u(x)l.<-<c Y~ sup ID~u(x)l (4.1) 
Ig{~k+l x~L'~' I~l~k xG~ 

for all uEC~(~U o~) satisfying (0.2) and (0.3). 

Proo I. Inequali ty (4.1) is void if the right hand side is not finite. Now let U 

be the set of all u E C k (~ U o~), which satisfy (0.2) and (0.3), such tha t  the norm 

N (u)= Y. sup ]D~ u (x)[, 

which is the right hand side of (4.1), is finite. I t  is obvious tha t  U is complete, 

and thus a Banach space, with this norm. By V we denote the space of functions 
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vECk+l (~  ') with bounded derivatives up to order k + l  and the norm defined by 

V= sup ]D=,~ (z) l. 
IM~<k+l xe[~" 

V is also a Banach space. Now by  hypothesis, the restriction of a function u E U to 

~ '  is in V, for f2' is a compact subset of f2U eo so tha t  the ( k + l ) s t  derivatives 

of u are bounded there. Hence mapping the functions in U on their restrictions to 

f~' gives a linear mapping of U into V, which is defined in the whole of U, and 

it is clear tha t  this mapping is closed. Hence it is bounded in virtue of the theorem 

on the closed graph, and this proves the lemma. 

L~.MMA 4.2. Suppose that the boundary conditions (0.3) are elliptic with respect 

to P (D). Then there is a constant C such that 

sup iD,  u(x) l<~C' j !  s su I:1<~+, xm" I:J<~ x+g I D:  u (x) l, i =  1, 2 . . . .  (4.2) 

/or all uECk (~ O w) satis[yin9 (0.2) and (0.3). 

Proo]. Let U be defined as in the proof of Lemma 4.1, and let Fr be the 

subset of those u EU such tha t  

sup ID=u(x)l<r'j!, j = l ,  2 . . . .  
)M~<k+/ x+~' 

The sets Fr are obviously closed and increasing with r. Since by assumption and 

Definition 0.1 every u E U  is analytic in ~ U  oDg2 ' ,  every u E U  belongs to ~'r for 

some r. Hence in virtue of the category theorem we can find R so large tha t  F a 

has an interior point, and since FR is convex and symmetric,  it then contains a 

sphere {u; N (u)~< e} with positive radius e. We then have 

s u p i D : u ( x )  l < R ' ] ! N ( u ) / e ,  ] = 1 , 2  . . . . .  

in view of t h e  homogeneity of this inequality and the fact tha t  it is true when 

N (u) = e. This proves (4.2) with C = R (1 + e-l). 

We shall now prove tha t  (3.1) and (3.2) follow from (4.1) and (4 .2)by applying 

the lat ter  inequalities to "exponential  solutions" of the boundary problem (0.2), (0.3), 

tha t  is, solutions of the form 

u = g<x. r v ((x, N)) ,  (4.3) 

where v is a function of a real variable. By straightforward computations using 

Leibniz' formula we obtain 

P (D) u = e t<'' r P ($ + ~ N) v ((x, N)) ,  



248 

where ~ means 

satisfies (0.2) and (0.3) if and only if 

P($ +~N)v(t)=O, 

(Q~ (~ + (~ N) v) (0) = O, 

L A R S  H O R M A N D E R  

- i  times differentiation with respect to the argument of v. Thus u 

v = l  . . . . .  # 

(4.4) 

(4.5) 

If ~ E A and C (r = R (kr q~ . . . . .  q~) = 0 (and only then), we can find v =~ 0 satis- 

fying (4.5) and 

k~ (5)v = 0, (4.6) 

which implies (4.4), since kr (z) is a factor of P (~+T N). 

Differentiation of an exponential solution with respect to a boundary variable 

x j, l < j < n - 1 ,  is equivalent to multiplying by ~. Thus it follows from (4.1) tha t  

I~)[ ~ sup lD~,u(x)[<~C ~ sup lD~,u(x)l (4.7) 
l a l<k  ~ '  [a [<k 

for the exponential solution (4.3). Now D~ u (x) = e ~<x' ~) v~ (<x, N>), where v~ is also 

a solution of (4.6). Denoting by H the supremum of ix] when x E ~  we have 

e-Him~l<~iei~:'r Hgmr xE~.  

Hence (4.7) gives 

: : av (<x, 

:Now let a be a positive number such that  <x, N> attains all values between 0 and 

a when vE~ ' ,  and let b be an upper bound of <x,N> when x E ~ .  Then it  fol lows 

from (4.8) that  

Ir y sup Iv~(t)l<c~ ~''~cm y sup [v~(t)l. (4.9) 
] I~l~<k 0 < t < a  Ittl~<k 0 < t < b  

We now use the fact tha t  all v~ are solutions of the equation (4.6) and not only 

of {4.4), and that  the zeros of k~ (~) have non-negative imaginary parts. I t  follows 

from Theorem 1.4 that  

sup I v~ (t)[. (4.10) sup I v~ (t) I < r (b/a)r-lo<t< a 
0 < t < b  

Combining (4.9) and (4.10) and noting that  v 0 * 0  we get, replacing [~j] by [Re Sj], 

with another constant C 1 

n--1 
~. [Re ~/[<C1 e2HlIm~l. (4.11) 
1 
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n--1 
The semi-norms ~ [ R e  ~j[ and IRe ~[ are equivalent since they vanish for the same 

1 

values of ~. Hence we get with constants C~ and C 3 

[Re r c'l~'a~l if SeA and C(r (4.11)' 

In virtue of this inequality and Theorem 2.2 we can, given any number B, 

find a number B' so large that  

] I m $ l < B ,  [Rer (4.12) 

implies that  ~ EA and C (~) =~ 0. (4.13) 

Hence we have ~EA and C(~)=~0 if [Im ~ [ ~ B  and ]Re ~[~>B'. For by definition 

this means  that  there is a real v such tha t  

[ I m ( ~ + i T N ) [ < . U ,  [ R e ( ~ + i ' r N ) ' [ = [ R e ~ [ > ~ U ' .  

Hence ~ + i v N E A and C (($ + i v N)" ) = C (r ~: 0 in virtue of (4.13). This proves tha t  

(3.1) is a necessary condition for hypoellipticity. 

We next prove that  (3.2) is a necessary condition for ellipticity, Choose M 1 

according to Theorem 2.1 so that  A contains all ~ with 

IRe r  I (1 + IIm $[). (4.14) 

With $ satisfying this inequa]ity and C(r  we apply (4 .2) to  the exponential 

solutions as before. This now gives 

ff )' levi j = l ,  2 . . . . .  

or with some other constants C 1 and C 2 

IRe r j =  1, 2 . . . .  (4.15) 

Now let IRe r >~ C1 and let ~" be the largest integer not exceeding IRe r 1. Then 

(] R e  ~ I / O 1 ) ] / j  ! ~ j l / j !  ~ 8(J-1)/2 ~ ~:]i:~ ~[12 C.-- 1. 

Hence (4.15) gives 

[ R e r  ~[) if C( r  and (4.14)holds, [Re t[~>V,. 

17 - 665064 Aeta mathematica. 99. lmprim6 le 11 juin 1958 
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Thus there is a constant M such that  

IRe r  $]) 

implies ~ E A and C (r 0. But arguing as before we can immediately conclude that  

this implies (3.2). 

Thus the proof is complete under the assumption that  ~ is bounded. If ~ is 

not bounded, it is necessary to modify the definition of the Banach space U so that  

it contains the exponential solutions. This can be done simply by adding in the 

definition of the norm 5 r (u) 

ceeds as before. However we 

IRe r 
Now algebraic arguments (el. 

value of c' for which such 

which proves that  (3.2) must 

a factor e -I~lc with c > l .  The proof of (3.1) then pro- 

get instead of (3.2) only that  C (r when 

>~C(l+[Im r 1/c+l/c'=l. 

the proof of Lemma 5.3) show that  there is a smallest 

an inequality can hold. But this value has to be ~< 1 

be valid. 

5. Sufficiency of the condition for hypoellipticity 

In this section we prove that  condition (3.1) of Theorem 3.1 is sufficient for 

hypoellipticity, and moreover we shall also study the inhomogeneous case. Thus let 

u EC ~ (~ U co) be a solution of the equations 

P ( D ) u = ]  in ~ ,  Q~(D)u=q~, in o~, v = l  . . . . .  ~, (5.1) 

where / and ~ are infinitely differentiable in ~ U eo and co, respectively. Since P (D) 

is hypoelliptic, u is infinitely differentiable in ~.  (The proof will be arranged so that  

we do not really use this fact.) Hence we only have to prove that  the derivatives 

have limits on co. To do so it is enough to show that  every point in eo has a neigh- 

bourhood 0 such that  all derivatives of u are continuous in the closure of ~ U O. 

If  a is the transversal order of P (D), that  is, the degree of P (~ + v N) with respect 

to T, it is indeed sufficient to prove the continuity of the derivatives of transversal order 

< a. For if we introduce a coordinate system such that  <x, N> = x n, as was done 

in the preceding section also, it follows from the remarks of HSrmander [5, p. 239] 

tha t  we can write 

P (D) = c (0/a x")" + . . -  

where c is a constant =~ 0 and the terms indicated by dots have transversal order 

< a. Differentiating the equation P (D)u = /  repeatedly with respect to the boundary 
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variables x 1 . . . . .  x ~-1, we can conclude the cont inui ty  of the derivatives of t rans-  

versal order a f rom the  cont inui ty  of those of transversal  order < q. Differentiating 

again with respect to x ~ it follows t h a t  the  derivatives of t ransversal  order  ~ + 1 

are continuous, and since the process m a y  be repeated indefinitely, all derivatives 

are continuous.  

I t  is also impor tan t  to  note  t h a t  we may assume that the transversal order o/ the 

operator Q, is < a. For  we can add to  Q, an operator  having P as a factor  so t h a t  

this is true, and this does no t  change neither the assumption t h a t  the r ight  hand  

sides in (5.1) are infinitely differentiable functions, nor  the definition of the char- 

acteristic funct ion for the boundary  problem. 

Let  ~ '  be an  open half sphere c ~  whose flat boundary  c oJ such t h a t  

~ ' c ~ 2  U m. 

We shall est imate the derivatives of a solution u of (5.1) in ~ ' .  

Let  I be a funct ion in C~ r (G+)~ where 

G+ = {x; (z, N~/> 0}, 

which vanishes outside of a compact  subset of f~ U oJ and equals 1 in a neighbourhood 

of ~ ' .  Wri te  

U = )~ u ,  ( 5 . 2 )  

and in terpre t  this product  as 0 outside of ~ U co. We have obviously UEC~ (G+) and 

P (D) U = F ~ + F~; Q, (D) U = ~,~ + ~b~, ~ = 1 . . . . . .  ~, (5.3) 

where F ~ = Z / E C ~  (G+), ~ = X ~ , E C ~  (F), (5.4) 

and  F ~ = 0 ,  ~ = 0  in a neighbourhood of ~ ' .  (5.5) 

Let  R be a positive number  such that ,  if x E ~ ' ,  / ~  and  ~b~ vanish in the  set 

{y=(y', y'); ly'-x'l<R, l y ~ - ~ l < R } .  

(Here and below we use the nota t ion  y' al ternat ively  for (yl . . . . .  y ,-1)  or 

(yl . . . . .  yn-1, 0).) We shall est imate the derivatives of U = u in E2' in terms of those 

of order ~< k in G+, the  maxima of F ~ and  r the derivatives of F ~ and  r which 

all exist by  hypothesis,  and the number  R. In  doing so, we will ]irst assume that 

all derivatives o/ U with transversal order <~ a are continuous in G+. This regular i ty  

assumption will make  convergence difficulties disappear, bu t  since we never use it 

in a quant i ta t ive  wa y  it can be removed  afterwards.  
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/? 
Fig. 1. 

I t  is clearly sufficient to place the origin a t  a point  in ~o U ~ '  and est imate 

the  derivat ives on the Xn-axis. Let  ~ (t, ~') be the Fourier  t ransform of U (t, x ' ) w i t h  

respect to  the boundary  variables x' 

~ (t, ~')= f u (t, x')e-tr dx'; 

all other  Fourier  t ransforms are defined similarly. The equat ions (5.3) give, if we 

write P ((~, ~') = P (~' + ~ N) and similarly for Q ,  

P (c$, ~') 0 (t, ~') = F~ (t, ~') + ~,2 (t, ~'), ] 
(5.6) / Q/(5, ~') ~ (t, ~')tffi0 = 51 (~') + r (~'), 5 = - id/dt. 

Since 0 vanishes for large positive t, this boundary  problem can be solved with the 

methods  of section 1 provided tha t  C(~')=~0, which is t rue by the assumption (3.1) 

if I ~'1 >~ K,  where K is a constant .  The  solution is then  given by (1.15). Let  G (t, s, ~') 

be the  Green's funct ion and H~ (t, ~') the  Poisson kernel for the problem (5.6) as given 

by (1.13) and (1.14). Then  we have 

~o 

0 ( t ,  ~ ' )=  f G(t, s, ~') (Fl(s, ~')+ F2(s, ~'))ds+ 
0 

Se 

+5H~(t, ~')(r I~ ' l>~g.  (5.7) 
1 

Let  v ~ be a funct ion in C~ (F') which equals 1 when I~'I<~K and write V~l(~')= 

= 1 - v  q (~'). Then  we have,  for all real ~', 

1 
(5.s) 

We shall also use the equations obta ined by  differentiating (5.8) with respect  to t, 
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/~'r (t, ~') =v~ (~ ') ~'(J)(t, ~')+ t91 (~e'){i Gr s, ~')($" (s, ~')+/~z (s, ~')) d s +  

+ ~ UT' (t, ~'1 (r (~') + r (~')) , (5.9) 
1 

where o) denotes differentiation of order j with respect to t. This will only be used 

when j ~< ~. 

Fourier's inversion formula gives, if D'~ denotes partial differentiations with re- 

spect to the boundary variables only, 

D' a U (j) (t, x t) = (2:7~) - ( n - i )  f ~ :  0 (1) (t, ~,) e|(X ,, ~.) d $'. 

As already observed, we are only interested in the value of this derivative on the 

x"-axis, so we set x ' = 0  and obtain, if (0, t ) f i~ '  

D~u r (t, 0)= (2ze)l-" f ~- ' 0 (j) (t, ~')d~'. (5.10) 

We now pass to estimating each of the integrals obtained by replacing /~'(J)(t, ~') in 

(5.10) by its value given by (5.9). The various terms are denoted by a, b . . . . .  

I t  is very easy to estimate the term 

a = (27~) l ~ n  f ~: Z9 (~') ~(i) (t, ~') d~' .  

For since 'va has compact support, we can estimate ~', by C I'1 where C is a constant. 

(By C we always denote constants, but not always the same every time.) Further- 

more, we have 

100)(t, ~')l<~ f l u  u) (t, x ' ) ldx '  <~ C sup I U 0)[. 

Writing I U]~ = ~ sup [D~ U (x)], 
lal~<k 

we thus obtain, since j ~< a ~< k, 

(a) tal ~< I 
The study of the other integrals depends on the following lemma, the proof of 

which will be postponed to the end of this section. 

LEMMA 5.1. There are positive constants M, M', c, 7, ~', with y>~l, such that 

the /unctions Gr (t, s, ~') and H7 ) (t, ~') o/ ~' are analytic in the set 

n = { ~ ' ;  [Re ~ ' ] > ~ M ( l + [ I m  ~,[r)} (5.11) 

and satis/y the inequalities 
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IGr s, r162 ~ ' e D ;  0~</~<a; s, t>~O, 

IH(p(t, r162176 r 0~<~<a; l~<v~</~; t>~0. 

(5.12) 

(5.13) 

Using only a minor  pa r t  of this lemma we can s tudy  the te rm 

b = (2 ~)I- n f ~'r ?)~1 (~') d ~'f ~(1) (t, 8, ~') El (8, ~_') d8. 
o 

For  using (5.12) for real ~' only we obtain 

I~'I:>K I~'I;*K 

Assuming as we may  t ha t  y' is an integer and using a nota t ion  int roduced above, 

we thus  obtain since the integral is convergent  

(b) [b[ ~< C~ [F  1 [Ix[ +r'+n- 

In  the  same way it  follows t ha t  for the te rm 

/a 

c = (2 ~)~-n y f ~" #1 (~,) H~!' (t, ~') ~ (~')d~' 
1 

we have the est imate 

1 

We nex t  consider the terms 
e~ 

d = (2 z01- n f $, v~, ($') d ~' f G o~ (t, s, $') F~ (s, $') d s 
0 

and e~ = (2 :~)1 n ] , , (i) ... ~,a~(~)H~ (t,~')r ', ~=1 ,  , ~ .  

To do so we have to  use the information in L emma  5.1 about  G and H,  in the 

complex domain too. 

LEMMA 5.2. Let K (~') be a /unction, analytic in the set D de/ined by (5.11), 

where ~ >7 1, and satis/ying 

IK (~')]<~M'I$'[ ~', $' eD.  (5.14) 

Then there is a constant C, depending on M and ~ but independent o/ M ' ,  ~,' and 

K (•') such that 

]D~ (_~: g (~')) I ~< M'  Cl~l+l~l+r' [fl I! I~' V +I~I-I#I/y, (5.15) 

when ~' is real and I ~'1 >7 M § 1. 
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Free/. Since [r g (r < M'[~'  I ~'+~=~ in D, 

it is sufficient to prove (5.15) when ~ = 0. For  the general result follows ff we apply 

this special case to the function ~ K ( ~ ' ) .  I t  follows from the definition (5.11) of D 
tha t  there is a constant M 1 such tha t  the sphere 

{~'; 1~'-~'1~}, e = M l l ~ ' l  ''~, 

is contained in D if [ ~ ' I ~ M +  1, and a constant  C 1 such tha t  

[~'l-<cll~'l 

for all ~' in the sphere. Hence it follows from (5.14) tha t  

[K(U)I-<M'~'[~'[" 

in the sphere. But  then it follows from Cauehy's inequality for the derivatives of 

an anMytic function in a circle (sphere) tha t  

I N K  (e')l .<M' ~"  le' I v" I~l !/0 '~', 

which proves (5.15) with C =  max (C1, 1/Ma). 
In  virtue of (5.12) and (5.13), this lemma applies to G m and H(~ j) which makes 

it possible to estimate the terms d and e,. We star t  with e~ which is-slightly simpler 

to handle than  d. 

The choice of R following formula (5.5) means tha t  

r  when ] x ' l < R .  

Thus if we set, with a positive integer r to be chosen later, 

r (~') = I~' I ~',e, (,+), 

it follows tha t  sup I~0, (x')l ~< R - "  sup I ~  (x')l- 

Now pass to Fourier transforms. I f  A' denotes the Laplace operator along the bound- 

ary, D~+ ... + D ~ - I ,  we obtain 

~,,~ (~,)= A ' ,  +, (~,). 

Eliminating ~ in the definition of e, by  means of this equation and integrating by  

parts,  we obtain 

e, = (2~) ~-" ~ ~, (~') A" {C' H; j, (t, ~')01 (~')} d~'. 
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Now we have  0 1 ( ~ ' ) =  1 outside of a compac t  set, and f rom L e m m a s  5.1 and  5.2 

it  follows t h a t  for [ ~'[ >~ M + 1 

I A 'r (~'~ H o~ (t, ~'))1 ~< M'  C 1~l+2r+r" (2 r)! (n - 1)~1~ ' ]v'+l~l 2~/r. (5.16) 

I f  we choose r so large t h a t  

~, ' -+-] : r  i.e. 2 r > ~ , ( ~ / + ] ~ [ + n - 1 ) ,  (5.17) 

this is an integrable funct ion in a ne ighbourhood of inf ini ty and hence we get  by  

es t imat ing  v~r in an obvious fashion t h a t  

<~,) I~,1 < C,.r I ~or ]o ~ < C,.rR -~r I r Io, 

where C~.r are finite constants .  

Finally,  we split  the  t e rm  d into two par t s  d'  and d", 

t+R 

d' = (2 ~r) 1-n f ~ v~x (~') d}' f G (j) (t, s, ~') ~ (s, ~') ds 
0 

and ~"=  (2~)1--f ~: ~, (~') ~ '  }0 a,,, (t, ~, ~,) ~ (~, ~')d~. 
t +R  

Since (0, t) 6 ~ '  we have  for every  s ~< t + R 

F2(s,  x ' ) = 0  if ]x'i<R. 

Thus  we can es t imate  d'  in the  same w a y  as e, and  obta in  

(d') [d'] <~ C~.~ (t + R) R -~" ]F~[0 

provided  t h a t  (5.17) holds. 

Finally,  to es t imate  d "  we use the  exponent ia l  factor  in (5.12) which has  been 

neglected unti l  now. We then  get  

Id"l~<c sup I~(~, ~')lf ~'1 ''+',' ~-~ 

and hence, calculating the  integral  and  es t imat ing  /~ ,  we get  

(d") [d"[ ~< C F ( ~  (y' + [~ [ + n - 1)) (cR)-~(~'+J~l+~-a)[F2 [0. 

Summing  up all the  es t imates  denoted by  (a), (b) . . . . .  we have  now proved  

t h a t  
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[D', uO) (x) I~< C'='+1 I U Ik + C~ IF' h=,+~'~-- § c~ ~ ] (/,} I,=,+~'+~ + 
1 

+~=.r [F210 + [r § men' ,  y<~, (5.18) 

where r satisfies (5.17) and we have assumed that  c R <  1, t + R <  1. 

This inequality has been established under the assumption that  all derivatives of 

U of transversal order ~< a are continuous. Now let us only assume that  u E C k (~ U ~o), 

hence that  U ECk(G+). Let ~v (x') be a function which is non-negative, infinitely dif- 

ferentiable, vanishes when I x'l/> 1 and satisfies the condition y ~p (x') dx'  = 1. We form 

the convolution 

U~(x)= f U ( x - e y ' )  W(y ' )dy ' ,  

and define F} . . . .  in the same way. W e  also set R ~ = R - e .  Since one can write 

U~ (x § x') = f V (x - y') ~v ((x' - y ')/e) d x ' / e  ~ -1 

and U has continuous derivatives of order a~</c, it follows that  all derivatives of 

U, of transversal order ~ a are continuous. Indeed, one can let the tangential  dif- 

ferentiations operate on ~v(x'). If  e < R ,  the inequality (5.18) in thus valid if we 

replace U by U~, F 1 by F 1 . . . .  and R by R~. Now we have by an obvious convexity 

argument for an arbitrary function K E C~ that  

[K~],<IK[~ 

for all e. Hence the right hand side of (5.18) is bounded when e--~0 and thus the 

left hand side is bounded too. Therefore, every derivative of transversal order ~< a 

of U~ is uniformly bounded in ~ '  when ~--~0, and hence those of transversal order 

< g are equicontinuous. Letting ~--~0 through a suitable sequence we can therefore 

assume that  D~ U~ is uniformly convergent in ~ '  for every differentiation D~ of trans- 

versal order < a. But this shows that  all derivatives of the limit U of transversal 

order < a exist and are continuous. In virtue of the remarks at the beginning of 

this section, this completes the proof of Theorem 3.1, except for a verification of 

Lemma 5.1. 

Proof o I Lemma 5.1. We first have to rewrite the assumption (3.1) in our pre- 

sent notation. Let A' be the set of those complex ,~' such that  the equation 

P(U+~2v)=0  
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has precisely # zeros with positive imaginary part and none that  is real. To simplify 

the writing we assume, which is no real restriction, tha t  the norm is so chosen that  

I~'[ = I~' [. I t  then follows from Theorem 2.2 that  A' contains all ~' satisfying 

lIm ~'I<B, ire ~'I>~B'. (5.19) 

Thus (3.1) means that  to any number B there is a number B" such that  

lira r  IRe $'[>~B" (5.20) 

implies that  ~ 'EA' and C(~')~:0. We shall now prove that  one can take for B' and 

B"  sufficiently high powers of B. This is the main step in the proof of Lemma 5.1. 

An estimate of B' is contained in Lemma 3.10 in H6rmander [5]. Indeed, this 

emma can be written in the following way: There are constants ~ > 0  and C > 0  

such that  

P(~):~0 if ]Re ~ [ > ~ C ( l + l I m  ~[0). 

As in the proof of Theorems 2.1 and 2.2 it then follows that  A' contains all $' 

satisfying the inequality 

]Re ~'[>~ C (1 + Jim ~' [o). (5.19)" 

For if this inequality is fulfilled and v is real, we have 

[Re (~ '+rN)[~>[Re ~'[>~C(1 + [ I m  ~ ' I o ) = C ( I + [ I m  ( $ ' + r  N)D, 

and hence that  P (~' +TN)=~ 0, which obviously implies the assertion. 

Also note that  if r is a complex zero of P (~'+ r N) we get 

] R e ~ ' [ ~ < [ R e ( ~ ' + r N ) ] ~ C ( l + [ I m ( ~ ' + r N ) ] 0 ) ~ < C l ( l + [ I m ~ ' ] e + [ I m r [  ~ 

hence C1 Jim r [o/> [Re ~'[ - Cx (1 + Jim ~' ]0). (5.21) 

This estimate will be useful later. If P is elliptic, it  follows from Lemma 2.1 that  

we can take 0=  1. 

LEMMA 5.3. For sulliciently large M and r, the set 

D={~';  IRe r  ~'[r)} (5.11) 

is contained in A' and C(~')~ 0 in D. 

Proo]. I t  follows from (5.19)' that  the set D is contained in A' for large M 

and 7; this is of course true if ~, =~ and M>~ C. I t  thus remains to study the zeros 
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of C(~'). Assuming tha t  C (~') has a zero in A' with IRe ~'l~> t for every t - -  other- 

wise there is nothing to prove - -  we write 

M (t)= inf I Ira $'[ 

where the infimum is taken over all ~ ' E A '  with IRe $']~>t such tha t  C($')=O. We 

shall prove tha t  M (t) is a piecewise algebraic function of t. Since we know from 

(5.20) tha t  M(t)-->~ when t - ->~,  it then follows tha t  M(t )=c t* ( l+o(1 ) )when  

t - ->~,  with e > 0 ,  c > 0 ,  if we consider the Puiseux expansion of M(t) at  infinity. 

But  then the assertion is proved with 7 = max (~, l /e) .  

That  M (t) is piecewise algebraic follows from an elimination theorem of Seiden- 

berg. Indeed, the definition of M (t) may  be stated as follows: M (t) is the infimum 

of all /~ such tha t  the following system of equations and inequalities holds: 

]Re g'l:~>t 2, IIm g'l:=~:, ~>0, P ( r  
1 

I m  v l > 0  . . . . .  I m  T , > 0 ,  I m  T,+x< 0 . . . . .  Im  va< 0, 

k ( ~ ) = ~ ( v - - T s ) ,  O=R(k(v); Ql(~' + vN) . . . . .  Q~,(~' + TN)). 
1 

This is in fact a system of polynomial equalities and inequalities involving only real 

variables, Re $'j, I m  $~, #, t, I m  ~j, Re vj, the real and imaginary parts  of the coef- 

ficients of k. I t  thus follows from the results of Seidenberg [14] (Theorem 3) tha t  

the system can be satisfied by a suitable choice of the other variables if and only 

if /~ and t satisfy one of a finite number  of systems, each composed by  a finite 

number  of simultaneous equations and inequalities. Since for fixed t the infimum of all # 

with this property is M(t ) ,  it follows tha t  p=M(t)  must  satisfy some of the equa- 

tions or make some of the inequalities to an equality. This i,,,plies tha t  M (t) is 

piecewise algebraic. The details of the argument  are precisely the same as in the 

proof of Lemma 3.9 in H5rmander  [5] and need not be repeated. 

LEMMA 5.4. I/  the set D de[ined by (5.11) /s contained in A' and i/ C ( ~ ' ) * 0  

in D, then there are constants M 1 and c 1 such that 

[1/C($')[<i~[$'[% $' ED. (5.22) 

Proo/. As in the proof of Lemma 5.3 we can prove tha t  the supremum of 

1/C(~ ')  when $ ' E D  and IRe ~ ' l = t  is a piecewise algebraic function of t, and hence 

the Lemma follows in precisely the same way. The details may  be left to the reader. 
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End o/ the proo/ o/ Lemma 5.1. In virtue of Lemmas 5.3 and 5.4 we can choose 

the constants M and 7 in the definition (5.11) of D so that  D ~ A '  and 

[1/C(~')[<Ma[~'[ c', ~'ED. (5.22) 

We may also assume that  [Re ~ ' [>~2C1(1+t lm ~']Q) in D so that  in virtue of (5.21) 

we have, since O~<y, if P ( ~ ' + ~ N ) = 0  and ~'ED, 

Jim (5.21)' 

Since we may assume that  7>~1 (this follows in fact from (5.21)), we can estimate 

Jim ~'1 by IRe ~'] in D and write instead of (5.21)' 

Jim ~ 1/> C a ] ; '  ]1/),, (5.21)" 

We also recall tha t  according to Lemma 2.3 there are constants C and d such that  

131 c (I $' I d+ 1). (5.23) 

Now we can easily estimate the Poisson kernels and their derivatives. We have 

by (1.14), with the notations of section 2, p. 240, 

H(~ j) (t, ~ ')= C (~,)-1R (k~,; q~., . . . .  q~;-,, (i.~)jeU~, q~..~l . . . . .  q~,). 

To estimate H(/) we now only have to use the estimate (5.22) and inequality (1.9). 

In fact, the inequalities (5.21)" and (5.23) show tha t  the convex hull K of the 

zeros of k is contained in the circle I v l ~ < C ( l ~ ' l a + l ) a n d  also in the half plane 

Im ~> Ca l $' I x~7. We can therefore estimate the polynomials q~, and their derivatives 

in K by a power of 15'1, and noting that  ]e~t~l<~e -tc'.~'ll/:" in K, we obtain the 

estimate (5.13) with suitable M '  and y'.  

Let  go (t, ~') be the fundamental solution of P ( $ ' + d N ) a s  given by (1.12). Since 

the estimates (5.21)" and (5.23) ase valid for the zeros of P(~ '+SN) ,  it follows from 

(1.16) that  

1~(1) ( ~ -- 8, ~t ) l < 2a+ ] ( C ( ] ~t ld ~- l ) )] s C' ]~']ll~' ~t- tq, t ::# 8, 

if ~'ED. Here Ca is a positive constant. But in virtue of (1.13) we have 

It 

gO) (t, s ,  ~')  = g(o i) (t - s ,  ~') - ~ (Q. (~' + 5 N )  go) ( - s ,  ~')  H(. j) (t, ~'), 
1 

and hence the desired estimate (5.12) follows from (5.13) and the above estimate of 

g(~). The proof is complete. 
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6. Sufficiency o f  the condit ion for ei l ip t id ty  

I n  this section we assume th roughou t  tha t  the condit ion (3.2) of Theorem 3.2 

is fulfilled and we shall prove tha t  a solution u E C ~ ( ~  U e0) of the equat ions 

P ( D ) u = O  in ~ ,  Q , ( D ) u = O  in w, v = l  . . . . .  p,  (6.1) 

is then analytic in ~ U r As in section 5 we could have studied the  inhomogeneous 

ease also, bu t  since this can be reduced to the  homogeneous case by  means of the 

Cauchy-Kovalevsky  theorem, we shall no t  do so. 

F rom the results of section 5 we know already t h a t  u is infinitely differentiable. 

Let  ~ '  be a domain such as in section 5. 

L EMMA 6.1. I f  /or a solution u o/ the equation 

P (D) u = 0 (6.2) 

we have ] D'= u(" (x) I <~ Cl=l+ l [ot 1!, x E f~', 0 < i < a, (6.3) 

it /ollows that u is analytic in a neighbourhood o/ ~ ' .  

Proof. As observed at  the  beginning of section 5, the  equat ion ( 6 . 2 ) c a n  be 

wri t ten 

u (') = ~ Pj (D') u 0~, (6.2)' 
j<a 

where Pj(D' )  is a tangential  differential operator  of order at  mos t  a - ~ .  Let  K be 

a bound  for the sum of the absolute values of the coefficients in the operators  

Pj. Assuming as we m a y  t h a t  C >I 1 and K/> 1, we shah prove 

]D'=u,', (x)i<V~='+'+' K'(]~[+i)!, x6~ ' .  (6.4) 

This follows from (6.3) when i < a .  Assume tha t  the inequali ty has already been 

proved for i < J + a, where J >~ 0. We shall prove it for ~ = J + a. Differentiating (6.2)' 

we obtain  

D :  u (~+") (x) = 5 D :  P, (D') u (j+') (x). 

By  assumption we can use (6.4) to est imate the terms in the  sum on the right.  

This gives 

]D'u(~+~ K J+'-~ (]=]+J+a)!, xEf~', 

which proves that (6.4) holds. 
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From (6.4) it follows that  the Taylor series expansion of u at a point x in ~ '  

is convergent in a sphere with a radius independent of x and that  it converges to 

u in ~ ' .  Hence it follows that  u is analytic in a neighbourhood of ~ ' ,  which proves 

the Lemma. 

I t  now only remains to prove that  the estimates of the previous section can 

be improved so that  (6.3) tollows. According to our present assumptions we can take 

~ =  1 in Lemma 5.3 and hence also in Lemma 5.1. This is the fact which gives rise 

to estimates of the form (6.3). 

First, the estimate (a) of the term a is even bet ter  than that  required since it 

does not contain any factorial on the right. Also, the estimate (d") has obviously 

the desired form. Since we only consider the homogeneous equations (6.1) the terms 

b and c vanish so that  it only remains to study d' and e~. These te rms  have to be 

considered more carefully, however. Indeed, in estimating them we have differentiated 

repeatedly on the non analytic "cut  off" function v~l, and this has to be avoided if 

we want to obtain an estimate of the form (6.3). 

We first s tudy e~. Writing 

we have 

K(~')=~:H~J)(t, ~')(2~) l-n, ~'<a, 

e,=f  (A'r ~, (~'))K (~')v~ 1 (~') d~', 

Instead of integrating by parts, which leads to repeated differentiations of v~l, we 

note that  

(A'r~r) K - ~ r A ' r g = d i v  ' V, 

where 
r - 1  

V =  ~ ((A'J K) (grad' A ' r - J - l ~ r ) -  (A'r-S-l~r)(grad '  A'JK)). 
0 

Here we have denoted by div' and grad' the operations of divergence and gradiend 

with respect to the boundary variables. Using this identi ty and integrating by parts 

only once we now obtain 

e~ = f ~, (A" K) v~l d 2' - f (grad' v~x, V) d ~'. (6.5) 

We now use inequality (5.16). If r is the smallest integer such that  (5.17) holds, it  

follows that  the first integral in (6.5) can be estimated by 
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where C 1 is a constant. Next  consider the second integral in (6.5). We have 

and [grad A ' ' - j -1  0 ,  [ < CR-2'-x [r [0. 

From (5.16) it follows tha t  there is a constant C 2 such tha t  with r chosen as above 

we have in the support  of grad 01, which is compact,  

I A"XI < i<r,  

and recalling the proof of (5.16) we find tha t  if C 2 is large enough we have also 

-<C 2' (2r)[, ~<r, Igrad' A".KI 

in the support  of grad ~1- The second integral in (6.5) can therefore be estimated by 

I f  we now recall tha t  r is the smallest integer such tha t  (5.17) holds and if we sum 

the geometric series, it follows tha t  with a constant C, depending on R but  not on 

and u, this can be estimated by  

I t  is obvious tha t  d' can be estimated in the same way as we have estimated 

e,. Thus there is a constant C, depending on ~2 and ~ '  but  independent of u and 

such tha t  ff u satisfies (6.1) we have 

iD:="'(=)l<c'='§ I=1 , i<=.  (6.6) 

This comple tes  the proof of Theorem 3.2. Moreover, it follows from the proof of 

Lemma 6.1 tha t  the solutions of (6.1) can be continued across to into a domain ~*  

independent of u. In  the classical case mentioned in the introduction ~*  is obtained 

by  geometric reflection of ~2. I t  would be interesting to investigate more carefully 

the size of the largest domain ~2" to which all solutions of (6.1) have analytic con- 

tinuations. A special case of this question has been answered by  F. John [7]. 
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