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0. Introduction

As is well known, the application of operator theory or calculus of varia-
tions to the study of differential equations leads to the question whether the solu-
tions thus obtained are sufficiently smooth to be solutions in a classical sense. Rather
complete results are known concerning the regularity of the solutions in the interior
of their domain of existence (cf. Hoérmander [6], Malgrange [9] and the references
given there). The regularity at the boundary of solutions of boundary problems has
been far less studied, although quite recently very important progress has been made
(cf. Browder {1], Gusev (4], Lopatinski [8], Morrey-Nirenberg [10], Nirenberg [11]).
The purpose of this paper is to give a complete description of the boundary condi-
tions which give rise to regularity at the boundary, in the special case where the
coefficients of the differential operators considered (in the interior and in the boundary
conditions) are constant and the boundary is plane. This case can be studied essenti-
ally in the same way as the corresponding problem of interior regularity was studied

by Hérmander [5]), but considerable technical difficulties are added.
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In the case of boundary conditions satisfying condition (a) of Theorem 3.3, it
is easy to extend the study to the case of variable coefficients and curved boundaries.
(In this case one can also admit overdetermined systems of differential operators and
boundary operators.) Indeed, one can argue as in Morrey-Nirenberg [1] using a priori
estimates for the case of constant coefficients obtained by Fourier transformations
from estimates for ordinary differential operators. However, these results will not be
developed here since the author has been informed by Professor Nirenberg that he,
Agmon, Douglis and Schecter have also independently obtained the same theorems.

A classical prototype for the results in this article is contained in Schwarz’
reflection principle. According to this principle, a function u satisfying the differ-

ential equation

Au=0 (0.1)

in an open set Q and vanishing on a plane piece w of the boundary of Q, can be
extended as a solution of (0.1) across w. Thus it is aralytic in QU w since every
solution of (0.1) is analytic, that is, it has a power series expansion in a neigh-
bourhood of each point in this set.

In extending this result we shall consider solutions of a partial differential equa-

tion with constant coefficients
P(D)yu=0 (0.2)

(for notations see section 2 or Hérmander [5]), which are defined in an open set ()
and on a plane piece w of the boundary satisfy a number of boundary conditions

with constant coefficients
Q. D)yu=0, v=1, -~ on w. (0.3)

In order that the interpretation of these equations shall be elementary we assume
that the derivatives of u of order <k are continuous in QU w, where k is the maxi-
mum order of P (D) and @, (D). Since the coefficients are constants there is in fact
no real difficulty in extending the study to weak solutions, but for the sake of
simplicity we shall not do so. Our purpose is to investigate the following two ques-
tions:

A) What are the conditions on P and @, in order that every solution of (0.2),
(0.3) shall be infinitely differentiable in QU w?

B) What are the conditions for these solutions to be analytic in QU w?
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In studying A (B) it is natural to assume that the operator P (D) is hypo-
elliptic (elliptic), that is, such that every solution of the equation P (D)u=0 in an
open set is infinitely differentiable (analytic) there. Indeed, if P (D) is not elliptic and
w is a bounded subset of a hyperplane, we can take ) such that a solution of
P (D)u=0 vanishes in a neighbourhood of w but not in the whole of Q (Hérmander [5],
Theorem 3.2). Then u satisfies all boundary conditions (0.3) but is not analytic in Q.
Thus one must assume that P (D) is elliptic in studying question B, at least if one
wants a result independent of ) as will be the case here. Similarly, it is natural to
assume that P (D) is hypoelliptic when studying A.

Algebraic characterizations of hypoelliptic and elliptic operators have been given
by Hérmander [5] and Petrowsky [13]. P (D) is hypoelliptic if and only if

Im (o0 when (oo on the surface P ({)=0, (0.4)
P (D) is elliptic 'if and only if
P (£)+0 for real £=0, 0.5)

where P°(£) denotes the principal part of P(£), that is, the homogeneous part of
highest degree.

Thus in all that follows we assume that (0.4) is fulfilled. We also suppose that
Q is contained in one of the balf spaces bounded by the plane through « and de-
note by N an interior normal of this half space. This means that (z—x, N)>0 if

x€Q and r,€w. We shall consider the roots of the equation in 7
P({+1TN)=0, ’ (0.8)

where £ is real. If v is a real root, it follows from (0.4) that &+7 N belongs to the
compact set in R" defined by P=0. Let £ be the residue class of & modulo {r N}.
Then, if £ is outside a compact set K in R"/{r N}, equation (0.6) has no real roots,
Now the roots are continuous functions of £, for the coefficient of the highest power
of 7 in (0.6) is independent of & (cf. Hormander [5, p. 239]). Hence in each com-
ponent of C K, the number of roots with positive imaginary part is constant. As-
suming as we may that K is a sphere, CK has 1 component if n—1>1 and 2
components if n—1=1. When n=2 we therefore add to our hypothesis (0.4) that
the number of zeros with positive imaginary part is the same for £ in the two com-
ponents. We shall say that P is of (determined) type u, if the number of zeros with
positive imaginary part is u for all £€CK; when n>2 all hypoelliptic operators are
thus of determined type.
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Example. When n=2 and P (£)=¢&,+1¢&, N=(0,1), we have one root with posi-
tive imaginary part if £ >0 but none if £, <0. Hence, although elliptic, P is not of
determined type.

Remark. The above argument shows in particular that every elliptic operator
in n>2 variables is of even order. This was also observed by Lopatinski [8].

We can now formulate our final hypothesis: The number of boundary conditions
(0.3) shall be <u. Since we can add a finite number of identically satisfied boundary
conditions (¢, =0), we may and will assume that there are precisely u boundary
conditions. Our reason for this restriction has been that the problems A) and B) would
otherwise be analogous to the problem of characterizing the overdetermined differ-
ential systems which only have infinitely differentiable solutions. The solution of this
problem has been given quite recently by C. Lech but was not known when the
results of this paper were obtained.

Summing up: Given a hypoelliptic (elliptic) differential operator P (D) of de-
termined type u, we are going to characterize the systems (0.3) of x4 boundary condi-
tions such that the solutions of (0.2), (0.3) are infinitely differentiable (analytic)
in QU w.

DEFiNITION 0.1. The boundary conditions (0.3) are called hypoelliptic (elliptic),
with respect to the hypoelliptic (elliptic) operator P (D), Q and w, if all k times con-
tinuously differentiable solutions n QUw of (0.2), (0.3) are infinitely differentiable
(analytic) m QU w. (1)

We recall that ¥ denotes the maximum of the orders of P (D) and @, (D). The
assumption that »€C* can easily be relaxed, as mentioned previously.

The plan of the paper is as follows. In section 1 we present some basic facts
concerning ordinary differential equations, and in section 2 some algebraic prelimi-
naries. In section 3 we then state our main result, the algebraic characterization of
hypoelliptic and elliptic boundary conditions and discuss some special cases. The ne-
cessity and sufficiency of these conditions is proved in sections 4 and 5-6, respectively.

In doing so we also study inhomogeneous boundary problems.

1. Preliminaries concerning ordinary differential equations
Let k(0)=06"+a, 16" 1+ +a,, (1.1)

where 8= —id/dt, be an ordinary differential operator with constant coefficients and

(*) This terminology differs from that of Browper [1].
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order u. As is well known, the solutions of the equation k(d)u=0 are the linear

combinations of the exponential solutions G (t)e'"", where 7 is a zero of the polynomial
E(r)=1"+a, 17" '+ +a,

of higher order than the degree of the polynomial G.
Let ¢,(d8), »=1, ..., u, be some other ordinary differential operators. We are

going to determine a condition in order that
k(0)u=0; (g, (O) ) (0)=0, »=1, ..., u, (1.2)
shall imply that w=0. The equations

E@)u=0; (@) w)0)=y, »=1,..,u (1.3)

then have one and only one solution for arbitrary complex y,, and we are going to
give a formula for this solution.
Assume for a moment that the zeros t,, ..., T, are all different. Then the solu-

tions of k£ (6)u=0 are the functions
"
u(t)=> C, e
1
with constant C);. In order that u shall satisfy (1.2) we must have

u
;01‘17(‘5;):0, v=1, ..., p.

Thus one can find a non trivial solution of (1.2) if and only if det g, (r;)=0.
In order to study the case of coinciding zeros also, we introduce a rational func-
tion of the indeterminates 7,, ..., 7, defined by

Rk qq, ..., qu)=det q,(r;)/[1 (z;— 1)

l<j

Since it is obvious that each factor in the denominator divides the numerator, the
right hand side is a polynomial in the variables 7; and is thus defined also in the
case of coinciding zeros. Since it is a symmetric function of these variables, it can
be expressed as a polynomial in the coefficients of k. Hence:

R(k; qy, ..., q.) ts a polynomial in the coefficients of k, q,, ..., qu., which is linear

and antisymmetric in qy, ..., gu and vanishes when k is a factor of some gq,.

It is easy to see that these properties characterize R up to a function which

is independent of g,. Furthermore, one can verify that R vanishes if and only if
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some linear combination of the polynomials g,,
m
2., g,
1

where all a, do not vanish, has % as a factor. This fact connects our results with
those of Agmon, Douglis, Nirenberg and Schecter.

For future reference we also observe that R does not change if we simultane-
ously make a translation of k¥ and all g,, and only multiplies by a constant factor
if we make some other linear transformation of the independent variable 7.

The important role of this function here is due to the following theorem.

THEOREM 1.1. A necessary and sufficient condition in order that (1.2) shall possess

a non trivial solution is that
Rk q, ..., q.)=0. (1.4)

Proof. In the case where the zeros of k are simple, the result is already proved.

Now suppose that 7;, ..., 7, are different zeros with multiplicities M5 -5 4y and that
Wt pue=p
80 that there are no other zeros. The solutions of % (8)u=0 are then
u=3 C (11) &',
where (), are constants and the. summation is extended over
O0<s<yy, 1<j<r.
Application of Leibniz’ formula gives (cf. Hérmander [5, p. 177])
(3, (9) u) (0)=Z C)s 3" (7))
Hence (1.2) has a non trivial solution if and only if
0 (1) @ () oo gV (1) 41 (1) -

=0. (1.5)

AR (T1) oo GV (T1) G () ..

On the other hand, noting that R is a continuous function of 7, ..., 7, and

passing to the limit from the case where all u zeros are different, using Taylor series

expansions, it is easy to see that in the present case the function R is precisely the
determinant in (1.5) divided by
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ﬁ [Ts! I1 (75— T )9 R

F=1 s<ug 1<k<igr

This shows that (1.4) is equivalent to (1.5), which completes the proof.
When solving the inhomogeneous equations (1.3) we shall again need to consider
expressions defined by

Rk fyy oo fu) =det f, ())/1] (1, — ) (1.6)

k<ij

when the zeros 1; are different and by continuity otherwise. However, all f; will not
be polynomials, which requires some preliminary study of expressions of this form.

We first recall some notions from difference calculus. If f is an analytic fune-
tion of a complex variable 7, its divided differences are defined as follows (cf. Nor-
lund [12]), when all t; are different:

Fry ) =(f (7)) — F(z))/ (11— 1), ...
F@ s T) = (T s Taca) = F (T oovs T))/ (11— 7).
It is easy to show that f(z;, ..., 1,) i8 a symmetric function of 7,, ..., 7,. Assume

for simplicity that all 7, are situated within a Jordan curve C and that f is analytic
there. It is then immediately established that

Fae rn)=(2ni)‘1ff(z)dz/(z-11) e (2 T,)

This formula has a sense even for coinciding zeros and we take it as a definition
in that case; f(z,, ..., 7,) is then an analytic function of all its variables.

From another formula for the divided differences one obtains the following useful
estimate (cf. Norlund [12, p. 16])

1
'f (Tl, vaey ‘rn)lé(—n—_—ﬁ—! SZI:II? lf(n~1) (z)l, (1.7)

where K is the convex hull of the points 7;, provided that f is analytic in a neigh-
bourhood of K.

By subtracting columns in the determinant defining R (k; f,, ..., f,) and using
the definition of the divided differences, one immediately obtains

Rk fr oo f)=1aet f, (7, ..., 1), %=1, ..., 4, (1.8)

when all 7, are different. If all f, are analytic, we thus obtain a definition of R also

in the case of multiple zeros, and R becomes an analytic function of all 7,
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Applying the estimate (1.7) to (1.8) we can get estimates of R. Thus if K is

the convex hull of the zeros of k£ we have

YU~

(R (k; fy, ..., ml<ﬂl(2 sup Iﬂ"’(z)l/f!)- (1.9)

=1 \j=0 2eK
We shall now give the solution of (1.3).

TrerorEM 1.2. If R(k; q, ..., qu) =0, equations (1.3) have one and only one

solution and this is given by

»

u®)=2p Rk q, s Gr, €7 @ity oo s @)/ RE qps oov s qu)- (1.10)

1

Proof. The existence and uniqueness of the solution follows from Theorem 1.1.
Since the right hand side of (1.10) is a continuous function of 7,, ..., 7, as long as
R(k; qq, ..., qu)*=0, it is sufficient to prove (1.10) when all 7; are different. In that

case we shall determine » by means of the equations

P P
u=§:a,e”i‘, 1p,=§a,q., (), v=1, ..., p.

Considering this as a homogeneous system in the variables a; and 1 and using the
definition of R, we immediately obtain (1.10).
Next assume that k(z) is a factor of a polynomial p (1),

p(r)=1"+ lower order terms,

and that the zeros of k(1) and p (v)/k (v) have positive and negative imaginary parts,
respectively. Denoting by u an infinitely differentiable function vanishing for large ¢,

we set
p@)u=f; (g B)u) (0)=w,, =1, ..., u, (1.11)

and are going to give a formula for u in terms of f and ,, assuming that the degree
of p is greater than the degree of ¢, for all v=1, ..., u.
First write

+o0

g% t)=Q2n) [ &7/p(r)dr. (1.12)

— o0
This integral is absolutely convergent if 6>2 and for o=1 it converges when ¢=+0.
The function g, (¢ —s) is a fundamental solution of the differential operator p(4) with
pole at s. We shall modify it in order to obtain a fundamental solution g (£, s) satis-

fying
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q,,(é)g(t, 8)i=0=0, v=1, ..., u.

According to Theorem 1.2 the function

u

g(t, 8)=go (t—5)— 2 (¢ () go) (— &) I (8), (L13)

1

where for the sake of brevity we have written

h” (t) =R(k; q].’ e q”"l’ eitt’ ql’+1) e Qﬂ)/R (k; ql’ e ql‘)’ (1'14)

satisfies the desired boundary conditions, and the compensating term w satisfies as
a function of ¢ the equation k(8)w=0, hence p(5)w=0. Thus writing

-3

u (t)=[ gt ) f(s)ds

0
we get P (©8)u, ()=p(©0) [ go(t—3)f(s)ds=F(t), t>0.
1]

We also obtain (g,(6) %) (=0 for y=1, ..., u. With u,=u~u, it therefore fol-
lows that

p(0) uy =0, (g (B)uy) (0)=1v,, v=1, ..., u.
The first equation can be replaced by k (d) u,=0, for u, is bounded when £> 0, since

u and wu, are bounded, and p (7)/k(r) has all zeros in the lower half plane. Hence

u, is given by Theorem 1.2, and we obtain the formula
0 "
w®=[gt f ) ds+ b (1) (1.15)
0

where g and &, are given by (1.13) and (1.14).
When using this formula in section 5 we shall need some rough estimates of the
kernels g and A,. They will be consequences of the following theorem.

TrHEOREM 1.3. If the zeros of p(t) satisfy the inequalilies
|t|<Ap | Imz|=1+ A, Ag>0,
then for t*O» we have
lgo” (£)| <207 Af e B, (1.16)
where o is the degree of p and g, ts defined by (1.12).

Proof. If 6=1 we have p(r);(r—l), and assuming for example that Im 1<0,
we get

16 — 665064 Acta mathematica. 99. Imprimé le 11 juin 1958
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9 ()=0if t>0, g,(t)=—ie* if t<O.

Thus the result is true when o=1.
Next assume that j=0, ¢>1. Moving the line of integration in (1.12) we obtain

go (t) = (27) ! [ 124 /p (v +iAg) d .

Now the integrals fdr/lp (tiA,y)| are <z. In fact, if J; are the zeros of p (v £1A,),

we have |Im 4;|>1, hence the integrand can be estimated by |t —A,||7—2,]7'<
(|v—2, 2+ |7 —24,|™®)/2, and if we calculate the integral of the right hand side,
the assertion follows. Thus (1.16) holds when j=0.

Now we prove the result in the general case, assuming that it has already been
proved for derivatives of order <j; when p is of order <o. Let 2 be a zero of
p (). Then

—igo—Age=(6—2)9,

is' the fundamental solution (1.12) belonging to the operator p(8)/(d—4), and hence
by hypothetis
[0+ gy — A 6°gy| <27 M AT e MMM, s <.

Multiplying this inequality by A’ ' and adding for s=1, ..., j—1, we obtain
i-1 _ _
l(y' go_ligolgA{—l e—A.ItI Z 2o~l+s <A;1—1 e—AoItI 20-1+i .
0

Hence, using the estimate of g, already proved and the fact that A,>1,
|8 go| < Al et (1 4 2071),

which implies (1.16). The proof is complete.
We shall finally prove an inequality for the solutions of (1.1), which in a somewhat

weaker form will be useful in section 4.

TREOREM 14. There is a constant y depending only on p such that, if u is a

solution of an equation k(6)u=0 where all zeros of k(1) have non mnegative imaginary

parts, we have
lu@)|<ya™[lu)dt, a>0, (1.17)
[H]
b a
[lu@|dt<®/ay [|u)|dt, 0<a<b. (1.18)

0 0
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Proof. First note that (1.18) follows from (1.17). Indeed, if we write
b
I()=]|u®)]|dt,
0

(1.17) gives I' (b)<y b I(b). Dividing by I (b) and integrating from ¢ to b, we ob-
tain (1.18).

Next note that to prove (1.17) it is sufficient to assume that a=1, since the
general case reduces to this by means of the substitution f=as. One may further-
more assume in the proof that k(0)=0. For let 1, be one of the zeros of k(r) with
the smallest imaginary part and write &, (7) =k (v +1,), %, (t)=wu (t)e'® 2% Then the

zeros of k; have non negative imaginary parts, too, k; (0)=0, and from %(6)u=0
a a

it follows that k, (6)u;=0. Since |u(a)]=|u(a)| but [|u, (t)|det< [ |u(®)|dt, the
0 0

inequality (1.17) follows from the corresponding one where u is replaced by u,.

In the proof we may also assume that the theorem has already been proved
for solutions 'of differential equations of order lower than g, for it is trivial when
uw=1

Denote the zeros of k(7) by 74, ..., 7, and set

1
M (v, ..., t)=sup |u(V)|/[ ()] dt,
0

where u varies over the solutions of the (fixed) equation % (6) u=0. We have to prove
that M is bounded when Im 7,20, j=1, ..., u.

Lemwma 1.1. Mz, ..., tu) s a continuous function of 1, ..., Tu-

Proof. Denote by ¢, (t; 7;, ..., 7.) the divided differences of the function e** at
the arguments ;, ..., 75 1<j<pu. Considering for example Cauchy’s problem for the
equation (1.1) and using (1.10) and (1.8), we find that the functions ¢; constitute a
basis for the solutions of (1.1) regardless whether the zeros are multiple or not.

Furthermore the functions ¢; are continuous functions of all variables. Now
u 1 u
M (v, ..., T.) = sup |§a,<p,(l; Ty oo Tu)|/ﬂ§1:a/% & Ty oo T | dE
]

7
and the supremum obviously does not change if we add the restriction > |a;|=1.
1

Since the supremum is then taken over a fixed compact set and the denominator

does not vanish, the continuity is obvious.
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From Lemma 1.1 it follows that M is bounded when the absolute values of all
v; are < yu. It therefore only remains to consider the case where some zero has a
larger absolute value. According to Lemma 1.1 it is enough to consider the case of
simple zeros 7; and as we have remarked above we may assume that some of them
equals 0. Then there exists an integer »<u such that there is no zero of k¥ in the
annulus »<|7|<»+1. For if each of these contained a zero of k we would get p+1
zeros altogether, counting the one at 0 and the one with absolute value >y, which

is impossible. We now decompose a solution of %k (0)u=0 in the form
U= Uy + Uy,

where wu, (u,) is the sum of those exponential components of u with exponent
<y(zr+1) in absolute value. We shall prove that with a constant C only de-
pending on p we have

s 1

[lu@|de<Cflu@®|de, i=1,2. (1.19)

0 0
Since u; is a solution of a differential equation of order <y of the type described
in Theorem 1.4, and we have assumed that the theorem is already proved in that
case, it follows from (1.17) and (1.18) that, with another constant C, depending

only on u,
1

lu; (1) <0y [|u ()] dt,

0
and the theorem will be proved.

In order to prove (1.19) we argue in the following way. Let ¢ (x) be a con-
tinuous function with support in (—1, 0) and set

U)=uxp@t)=[u(t—s)p(s)ds.

3 1
Then v [1U @ dt< [|u )| dt max | g (s)]. . (1.20)
0 0

Let @ be the Fourier-Laplace transform of ¢. If
® (r)=0 when k(r)=0 and |7|=>v+1, (1.21)

~

¢(r)=1 when k(r)=0 and |7|<v,

we have U=wu,. To prove (1.19) with i=1 (and hence with ¢=2) we thus only have
to prove that one can find a function @ having these properties and which.is

bounded by a constant depending on u only.
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Take a fized function y€(C> with compact support in (—}, 0) such that p (z) =0
when |7|<pu. Write

k()= 11 t-7), km=_11 A-1/1)

I5j1<» [rjlvi1
and, with the operator % (8), of order lower than that of k,, still to be determined,
@="h(9) ky () .

Then P (M) =h(2)k, (v) P (1),
so that (1.21) will be fulfilled if and only if
h(r)=1/ky(r) 9 (r) when k, (r)=0. (1.22)

This condition determines the polynomial A (). Moreover, if 7, ..., 1, are the zeros
of k, and we write F (r)=1/k,(7) 9 (r), Newton’s interpolation formula (Norlund [12,
p- 11]) gives

r

Br)= 2 F(ty, ..., 5)(x—1) ... (T—75_y)

i=1

Now all 7; with 1<j<r have absolute values <y, and to estimate the divided
differences of F we just have to use (1.7), noting that if ¢; is a zero of k,(r) we

have [7;/>1 and

|Q~7/1)|> A~ (u~1)/uw)=1/u if |7|<».

Since the estimates of the coefficients of % thus obtained depend on u only, and
the inequality |7;|>1 is valid for every zero of k,(d), the inequality (1.19) and hence
the theorem follows. '

2. Notations and algebraic preliminaries

In order to give our results an invariant form we shall in this and the next
section use a formalism which avoids the use of coordinate systems. Thus let ¢ be
a real vector space of dimension n and G* its complex dual space, i.e. the space
of all complex linear forms on &. We shall denote the elements of & by z, y, ...
and those of G* by Greek letters &, 5, £ ... . Usually & and # will denote real ele-
ments in G, ie. real linear forms. If P({) is a polynomial in G* we denote by

P (D) the differential operator acting on the functions in G such that

P (D)e"& =P ()"
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if ¢ and {, are coordinates in G and G* with respect to dual bases, we obtain P (D)
by replacing {, by —:9/62* in P({).

In studying the problem sketched in the introduction we shall let ) be an open
set in G and w a part of its boundary which is an open set in a hyperplane F.
The dual space F* of F is a quotient space of G*,

PG /P,

where F°<G* is the orthogonal space of F. In fact, if {€G", the restriction of the
linear form <(x, (> to F defines an element { of F*, and this element is 0 if and
only if { is orthogonal to F. Since F is a hyperplane, F° is 1-dimensional. By the
normal N of F we shall mean one of the real elements in F°; we assume that the
half space

G, ={z€G; (z, N)=>0}

contains Q.

We choose once for all a Euclidean norm in G. In F, G* and F* we use the
norms obtained by restriction and duality respectively. The norm in F* is then the
quotient norm of that in G*. For future reference we also note that obviously
|Re £[<|¢].

Now let P (D) be hypoelliptic and of determined type yu (cf. section 0). We shall
denote by A the set of all {€G* such that the equation

P(+TN)=0 2.1)

has precisely u roots with positive imaginary part and none that is real. The coef-
ficient of the highest power of 7 is independent of { (Hormander [1, p. 239]) so we
may assume that it equals 1. Obviously 4 is open and by hypothesis a real £€G” is
in 4 if £ belongs to a suitable neighbourhood of infinity in F*. We shall now esti-

mate the size of A more precisely.

THEOREM 2.1. Suppose that P (D) is elliptic and of determined type u. Then
there is a constant M such that A contains all { satisfying

|Re {|=M (1+|Im £|). (2.2)
Proof. The theorem is a consequence of the following lemma.

LEMMA 2.1. Suppose that P (D) is elliptic. Then there is a constant M such that

P()=0 if |ReZ|=M (1+|Im Z|). (2.3)
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To prove that Theorem 2.1 follows from Lemma 2.1 we first note that if ¢ is
real and (2.2) is fulfilled, we have

[Re C+TN)|>|Rel|>M (1+|Im ¢])=M (1+]|Im ({+ 7 N)),

hence P({+tN)=+=0 in virtue of (2.3). Thus (2.1) has no real root if (2.2) is valid
and hence the number of roots of (2.1) with positive imaginary part is constant in
each component of the set defined by (2.2). Now each component of this set con-
tains real points with arbitrarily large absolute values which proves Theorem 2.1.
Proof of Lemma 2.1. Let P=P,+ P, ,+ -+ P, be the decomposition of P in

homogeneous parts, the degrees being indicated by the subscripts. By hypothesis we
have

P,(L)+=0 when (=0 is real.

Therefore P, ({) has a positive lower bound in some complex neighbourhood of the

real unit sphere, thus for some positive ¢ and ¢ we have
[Pn(C)|2c if |E|=1 and |[Im |<e|Rel|.
Since P, is homogeneous this yields
|Pa(0)|>c|tl® if |Im¢|<e|Rel|.

Estimating the lower order terms in P () in an obvious fashion we now get with

another constant c,

[P@O]zelcl"—e (CI" + - +1) if |Im |<e|Re .
Hence P(£)+0 if |{|>c, and |Im {|<e|Rel|, and the lemma follows with
% ). : :
Remark. Conversely, it is easy to see that P (D) is elliptic if (2.3) is valid for

some constant M (cf. Hérmander [5, p. 217]). Thus (2.3) gives an alternative defini-
tion of an elliptic operator, which is closely related to the characterization of hypo-

M = max (&~

elliptic operators given by (0.4).

THEOREM 2.2. Suppose that P (D) is hypoelliptic and of determined type u. Then,
given any number B, there is a number B’ such that A contains all { satisfying

|Im ¢|<B, |Rel|>B. (2.4)

Proof. This is merely a rephrasing of the characterization (0.4) of hypoelliptic
operators. Indeed, (0.4) means that there is a number B’ such that
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P()=0 if [Im |<B and |Re {|>B'".

(2.4) follows from this fact in the same way as (2.2) followed from (2.3). We do
not repeat the argument.

We shall also consider the projection A of A into F*. This is an open set. In

the case of an elliptic operator P (D), Theorem 2.1 means that A contains all ¢ with
|Re =M (1+|Im E)). (2.5)
In the case of a hypoelliptic operator, Theorem 2.2 means that A contains all { with
|Im ¢|<B, |Rei|>B". (2.6)

When (€4 we denote by 7, ..., 1, the zeros of P({+ v N) with positive im-
aginary part and set

k; (r)=I;I(r—r;)- (2.7)

Lemma 2.2, The coefficients of k; are analytic functions of { when (€ A.

Proof. This lemma is classical (cf. Goursat [1, pp. 289-290]).
Let us write ¢ (1)=Q, (L + 1t N), (2.8)
and consider the function

{~>R (kg qi, ... s qt), LEA. (2.9)

If { and ' are in A4 and {—{' is proportional to N, this function has the same
value at ( and at (', since k;, ¢; will differ from k;., ¢;- by the same translation.

Hence (2.9) is a function of { only. We shall denote it by C({), thus

C&)=R ks q, ..., ). (2.10)

We shall call C({) the characteristic function of the boundary problem. In virtue of
Lemma 2.2 it is an analytic branch of an algebraic function.

If P(D) is of type 0, we shall have no boundary conditions at all and define
C ()=1 everywhere.

In séction 5 we shall need a rough estimate of the zeros of P ({4t N).

LeMMma 2.3. There are constants C and M such that all zeros of P ({+ 1 N) satisfy
the inequality

|r]<C(¢|™+1). (2:11)
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Proof. Since the coefficient of the highest power of 7 is independent of (, this
follows immediately from any estimate of the zeros of a polynomial. For instance,
if we write

Pl+TN)=1"+a, 17" '+ +ay,

the coefficients a; are polynomials in , and the zeros satisfy

o~-1
|T|<1+ % |(1]-|.

3. Characterization of elliptic and hypoelliptic boundary problems

The main results of this paper are the following two theorems.

THEOREM 3.1. A mnecessary and sufficient condition for the boundary conditions

(0.3) to be hypoelliptic with respect to the hypoelliptic operator P (D) of determined type
u, Q and w, s that

Im (o0 if {>o0 in 4 satisfying C (£)=0. (3.1)

The analogy between this condition and the condition (0.4) for the hypoellipticity
of an operator is obvious. Note that the only geometric property of 2 and @ which

is involved in (3.1) is the direction of the interior normal of  on w.

THEOREM 3.2. A necessary and sufficient condition for the boundary conditions
(0.3) to be elliptic with respect to the elliptic operator P (D) of determined type u,

and w, is that with some constant M
C (£)=0 when |Re &= M (1+|Im {|); (3.2)

M may be assumed so large that all { satisfying the latter condition are in A.
This is clearly analogous to the characterization of elliptic operators given by
Lemma 2.1. The following theorem connects it with the condition (0.5) (cf. also the

results of Petrowsky [13] concerning elliptic systems).

TrEoREM 3.3. Let Q° and P° be the principal parts of Q, and P, which we
assume elliptic. Let C° be the characteristic function of the boundary problem defined by
P and Q7. Then

(@) If C°(E)=0 for real £=+0, the boundary conditions Q, are elliptic with re-
spect to P.

(b) If the boundary conditions @, are elliptic with respect to P and n>2, we have
either C°=0 identically or C°(€)+0 for real £=0.
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Proof. (a) Denote the degree of @, by m,. Then, as is immediately verified,

C°(£) is a homogeneous function of & of order
M=m1+---+m,‘—l—2—---——(‘u—l).

Clearly it will be bounded from below in a complex neighbourhood of the real unit
sphere. From this the result follows easily if we argue in the same way as in the
proof of Lemma 2.1.

(b) Let £+=0 be real and such that C°(£)=0. We have to prove that C° must
then vanish identically. Let # be a real vector and note that

sMC(s(E+wn)—>C°(§+wn) when s—>co0 and is real, (3.3)

provided that |w]| is sufficiently small (cf. (a) above). Now by assumption the func-
tion on the left hand side of (3.3) is analytic in w and is =0 if s is real and

positive and
s(|&]=|9l|Rew|)>M (1+s|7||Im w]),

hence if |w|< (€] -Ms)/ 1+ M) |7

It thus follows that the limit C°(£-+w7) when s—>co is either identically zero or
never zero when |w|<|&|/(1+ M)|#|. But by assumption this function vanishes when
w=0, so that it must vanish in the whole circle. If |7} <| &|/(1 + M), the circle contains
w=1 and we obtain C°(£+#)=0. But since C° is analytic and vanishes in a neigh-
bourhood of &, it must vanish identically, which completes the proof.

The proof of Theorems 3.1 and 3.2 will be given in sections 4-6. In this sec-

tion we shall only illustrate the results with a few examples.

Example 1. Let the boundary conditions be the Dirichlet conditions
Suf/oT' =0 in w, v=0,1,...,u—1, (3.4)

where T' is a direction transversal to w, i.e. (T, N>=+0. A simple computation shows
that C({) is a constant =0. Thus the Dirichlet boundary conditions are (hypo-)
elliptic if P (D) is (hypo-)elliptic. Note that it may occur that u=0 so that no
boundary conditions are present.

A remarkable feature of this example is that the Dirichlet boundary conditions
are (hypo-)elliptic with respect to all (hypo-)elliptic operators of type u, in spite of
the fact that conditions (3.1) and (3.2) involve P also. We are going to study the
boundary conditions which have this property.
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DEFiNITION 3.1. The u boundary conditions (0.3) are called completely elliptic if
they are elliptic with respect to all elliptic operators P (D) of determined type u.

Let D(‘L’i, ...» Tu, £} be the principal part of the polynomial

R(H(r—n); Q. (&E+TN), ...,Q,,(§+TN)),

1

where 7, ..., 7, and & are considered as independent variables. We shall call D the

characteristic function of the boundary conditions (0.3).

THEOREM 3.4. A sufficient and, if n>2, also necessary condition for the boundary
condition (0.3) to be completely elliptic is that

Dty o, T £)=0 if Im7;>0,§=1, ..., u, and £ is real, £+0. (3.5)
An equivalent condition is that the polynomial in A
D(r;+ A1), ..., 1.+ ATS &) (3.6)

has only real zeros if T?>O, e, T0>0 and 1, ..., T4 & are real, E+0. (When £=0
the polynomial either vanishes identically or else it has only real zeros.)

Note that if D(ty, ..., Tu, 0) does not vanish identically, this means precisely
that D is hyperbolic with respect to all vectors (t;, ..., Tu, 0) with all 7;>0. (For
the definition of hyperbolic polynomials ef. Garding [2].)

Proof of Theorem 3.4. The sufficiency of (3.5) is quite obvious. Indeed, if P (D)

is an elliptic operator of determined type u and P° its principal part, we have
C(&)=D(ty, ..., T E)+ O (€M),

where M is the degree of D and 7y, ..., 7, are the zeros of the polynomial P°(£+7N)
with positive imaginary part. As in Theorem 3.3 (a) this implies that (3.2) is fulfilled.
Next assume that n>2 and that the boundary conditions (0.3) are completely
elliptic. Take &' real, £&'=0, and i, ..., 7, with positive imaginary parts. We have
to prove that
D(t1, ..., 15 £')*0.

Since D does not vanish identically and »n>2, we can find T, ey t,',' with positive
imaginary parts and a real &’ such that £ and £ are linearly independent and

e

D(zy, ..., 1., &')=0. Let P(£) be a homogeneous positive definite polynomial of

"
degree 2y such that P (& +1 N) is divisible by [](z —1;) and P (¢ +1 N) is divisible
1
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I3
by [T(z—7;"). The existence of such a polynomial will be proved when y=1 in
1

Lemma 3.1; in the general case one only has to multiply u such factors. Now we

obviously have

lim sC (s&)=D(1y ..., T &),

3—»00

if 7y, ..., 1, now denote the zeros of P (£+ 7 N) with positive imaginary parts, and
arguing as in the proof of Theorem 3.3 (b), we can thus conclude that the right
hand side either vanishes identically or is =0 for all real £ with £+0. Now by
assumption it does not vanish when £=¢", and hence not when &=¢’ either. This
proves (3.5). Since the equivalence between the two conditions in the theorem is

obvious, it only remains to prove the following lemma.

LEMMA 3.1. Let & and &' be real, & and &' linearly independent, and let i
and A’ be two non real numbers. Then there is a positive definite quadratic form 8 (£)
such that S(& +A N)=8(&"+1" N)=0.

Proof. Since &' +A'N, &’+A'N and N are linearly independent, we can find
a complex vector y€G+1iG so that '

Y, §+ X Ny=(y, &' +2"N)=0, (g, N)=1.

Write 8 (&)= (Cy, £ + G, )+ s(é);

S (&) will have the desired properties if s (&) is positive definite in & and
SE) =~ EHN N>+ E+ VNP = — (G, M =F) N)PP =4 (Im V)2,
s(&)=4(Im A")2.

Since 4(Im 2'*>0, 4(Im A’)*>0 and £ and &’ are linearly independent, one can

find a form s(£) with the desired properties.

Example 2. Let P (D) be the Laplace operator, that is, if we introduce co-
ordinates so that N=(0, ..., 0, 1),

P)=(&, &)+ &,

where & =(&,, ..., &,,) and (&, &)=&+ -+ &%_,. We have #=1 and, changing if

necessary the boundary condition with a multiple of P (D), we may assume that

Q(D)=gy (D) u—ig, (D)o u/o2", 3.7)
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where ¢, and ¢, are polynomials in &. If {=({’, ,) we can obviously identify
with ¢’ and then have

C (Y=g, () +i(L, T g (L), (3.8)

where (¢', ') denotes the square root with positive real part. The condition (3.2)

for ellipticity is equivalent to the ellipticity of the polynomial
F() =g+ e () (3.9)
Indeed, if this polynomial is elliptic, (3.2) follows from Lemma 2.1 because C is a

factor of F. On the other hand; assume that (3.2) is fulfilled. If n=2 it follows if
we apply (3.2) to positive and negative & respectively, using (3.8), that

9 () 148, q4 (&) 0,

and hence the product F of these two polynomials does not vanish identically which
proves the assertion since all polynomials %0 in one variable are elliptic. If »>2

we decompose the principal part @° in a form similar to (3.7) and obtain

C @) =gp (&) +i(&, &)l (&)
This cannot vanish identically since (&', £')! is not a rational function when n >2.
Hence, according to Theorem 3.3, the boundary condition being elliptic, we have
C°(£)=0 for real £=0. Multiplying C°(£) and C°(— &) together, noting that ¢, and

¢, are homogeneous, ¢, of one degree higher than ¢, and that (— &', — &)} = (&, &)},
we find that

_ @ &2+ (&, &) (&) =0 for real & =0.
But this means precisely that the principal part of F (£’) satisfies the definition (0.5)
of an elliptic polynomial, so that the assertion is proved.
In particular, the result shows that the condition for ellipticity with respect to the
Laplace equation does not depend on whether Q) is situated in the half space 2™ >0 or
2" <0.

The latter conclusion does not hold in the hypoelliptic case. Indeed, let n=3 and

Q)=iL8+¢s (3.10)

Then CE)=iB+iVE+5 (3.11)
if Q is situated in the half space z" >0 and

C)=il3—iV+ (3.12)
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if Q is situated in the half space =" <0. (Note that the square root is defined so
that it has a positive real part.) Now (3.12) vanishes if ; and {, are real and satisfy
the equation (}=(?+ (3. This curve has a real infinite branch, so that the boundary
condition (3.10) is not hypoelliptic with respect to the Laplacean if Q is situated
in the lower half space. On the other hand, if (3.11) vanishes, we must have Re {3<0

in view of the definition of the square root. Hence
[Re | <[Tm £,].

If a bound for |Im {'| is prescribed, this gives an estimate of |Re {,| when C (') =0,
thus according to (3.11) we get an estimate of |{,|. Thus (3.10) defines a hypoelliptic
boundary condition with respect to the Laplacean if Q is situated in the upper
half space.

4. Necessity of the conditions for (hypo-)ellipticity

Using the theorem on the closed graph and the category theorem we shall prove
jn this section that the algebraic conditions in Theorems 3.1 and 3.2 are necessary
for the boundary conditions (0.3) to be (hypo-)elliptic. The results to be proved were
formulated in an invariant way in these theorems, but when we prove them in this
and the following sections we shall use non invariant methods. Thus we use in what
follows a coordinate system such that the hyperplane F is defined by z"=0 and Q
is situated in the half space 2" >0. In order to avoid unnecessary complications we
assume that ) is bounded; the modifications that are otherwise required will be
indicated at the end of the section. By Q' we shall denote a domain whose closure

is contained in QU w but not in Q.

LeMma 4.1. Suppose that the boundary conditions (0.3) are hypo-elliptic with
respect to P (D). Then, if k is the integer occurring in Definition 0.1, there is a con-
stant C such that
sup | Dy u ()]< C|a|z<k sup | D, w (2)] (4.1)

Jal<E+1 zed
for all w€C* (QU ) satisfying (0.2) and (0.3).

Proof. Inequality (4.1) is void if the right hand side is not finite. Now let U
be the set of all w€C*(QU w), which satisfy (0.2) and (0.3), such that the norm

N@w)= > sup|D,u(z)|,

lai<k zeQ)

which is the right hand side of (4.1), is finite. It is obvious that U is complete,
and thus a Banach space, with this norm. By V we denote the space of functions
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v€C*** (Q') with bounded derivatives up to order ¥+ 1 and the norm defined by

sup lD,,v(x)].

lx|<k+1 zeQ)’

V is also a Banach space. Now by hypothesis, the restriction of a function u€U to
Q' is in V, for ¥ is a compact subset of QU w so that the (k+ 1)st derivatives
of u are bounded there. Hence mapping the functions in U on their restrictions to
Q' gives a linear mapping of U into V, which is defined in the whole of U, and
it is clear that this mapping is closed. Hence it is bounded in virtue of the theorem
on the closed graph, and this proves the lemma.

LEMMaA 4.2. Suppose that the boundary conditions (0.3) are elliptic with respect
to P(D). Then there is a constant C such that

sup | D, u (x)|<C'§! > sup |D,u(x)|, j=1,2, ... (4.2)
Ja|<k Ieg

Ja|<k+] zefd”
for all w€C* (QU w) satisfying (0.2) and (0.3).

Proof. Let U be defined as in the proof of Lemma 4.1, and let F, be the
subset of those w €U such that

sup | D u (x)|<r'j!, §=1,2, ...

lel<k+i zefd’

The sets F, are obviously closed and increasing with r. Since by assumption and
Definition 0.1 every w€U is analytic in QU w>, every u€U belongs to F, for
some r. Hence in virtue of the category theorem we can find B so large that Fj
has an interior point, and since Fj, is convex and symmetric, it then contains a

sphere {u; N (u) <&} with positive radius &. We then have

> sup|D,u(x)|<R'j! N(u)/e, j=1,2, ...,

lal<k+7 ze)’
in view of the homogeneity of this inequality and the fact that it is true when
N (u)=¢. This proves (4.2) with C=R(1+¢&7%).

We shall now prove that (3.1) and (3.2) follow from (4.1) and (4.2) by applying

the latter inequalities to “‘exponential solutions” of the boundary problem (0.2), (0.3),
that is, solutions of the form

u=e<"y((x, ND), (4.3)

where v is a function of a real variable. By straightforward computations using
Leibniz’ formula we obtain

P(D)u=e<"" P(+0N)v((x, N>),
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where 6 means —¢ times differentiation with respect to the argument of ». Thus «
satisfies (0.2) and (0.3) if and only if

P({+6N)v(#)=0, (4.4)
(@ (+N)v)(0)=0, »=1,...,pu (4.5)

If (€4 and C({)=R (ks g, ..., ¢9) =0 (and only then), we can find v+ 0 satis-
fying (4.5) and
kz (8 =0, (4.6)

which implies (4.4), since k;(7) is a factor of P ({-+1 N).
Differentiation of an exponential solution with respect to a boundary variable
), 1<j<n—1, is equivalent to multiplying by ;. Thus it follows from (4.1) that
n-1
(Z]C,]) > sup |Dyu(x)|<C 2 sup|D,u()| 4.7
1 le|<k & Q

lal<k

for the exponential solution (4.3). Now D, u (z)=¢<"% v, ((x, N>), where v, is also
a solution of (4.6). Denoting by H the supremum of |z| when z€Q we have
e Bl <2 0| LIl e,

Hence (4.7) gives

n-1
( > |C,~|) > sup |v, (Cz, M) | <0 5 sup |v, (Cz, N))|. (4.8)
1 lel<k Q i<k £

xl<

Now let a be a positive number such that {(z, N) attains all values between 0 and
a when v€Q’, and let b be an upper bound of <{x, N> when x€(Q. Then it follows
from (4.8) that

( é IC,I)I > sup |v, (t)|<0e2””"‘¢'I > sup |v. ()] (4.9)

x|k O<t<a alk O<t<b

We now use the fact that all v, are solutions of the equation (4.6) and not only
of (4.4), and that the zeros of k;(r) have non-negative imaginary parts. It follows
from Theorem 1.4 that '

sup | v, (0)| <y (b/a)"* sup |v, (8)|]. . (4.10)
O<t<b O<t<a

Combining (4.9) and (4.10) and noting that v,+0 we get, replacing |¢;| by |Re ],
with another constant C,

n-1

S |Re &|< C,2HPmA, (4.11)
1
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n-1
The semi-norms » |Re {;| and |Re (| are equivalent since they vanish for the same
1

values of . Hence we get with constants C, and C,
[Re £|<Cpe®™ if €4 and O ({)=0. (4.11)

In virtue of this inequality and Theorem 2.2 we can, given any number B,
find a number B’ so large that

|Im ¢|<B, |Rel|>H (4.12)

implies that L€A and C(£)=0. (4.13)

Hence we have (€4 and C(£)+0 if [Im ¢|<B and |Re £|>B. For by definition
this means that there is a real v such that

[Im (¢ +57N)|<B, |Re((+itN) |=|Rel|>B.

Hence [ +itN€A and C((C+izN) )=C()=*0 in virtue of (4.13). This proves that
(3.1) is a necessary condition for hypoellipticity.

We next prove that (3.2) is a necessary condition for ellipticity. Choose M,
according to Theorem 2.1 so that A contains all { with

|Re £|=>M, (1+|Im ). (4.14)

With ¢ satisfying this inequality and C(f)=0, we apply (4.2) to the exponential
solutions as before. This now gives

(n§1|&'jl)i<7/ (b/ay tCljreHImA =12, ..,
or with some other constants C; and C,
[Re (/< Ojjle®™t j=1,2, .. (4.15)
Now let |Re {|>C, and let j be the largest integer not exceeding |Re (|/C,. Then

(I Re E|/CY /51> /i = ¢V~ > glRef2E-1,

Hence (4.15) gives

|Re £|<2C, (1+C,|Im Z|) if C({)=0 and (4.14) holds, |Re {|>C,.

17 - 665064 Acta mathematica. 99. Imprimé le 11 juin 1958
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Thus there is a constant M such that
|Re {|>M (1+|Im £|)

implies €4 and C({)=+0. But arguing as before we can immediately conclude that
this implies (3.2).

Thus the proof is complete under the assumption that Q is bounded. If Q is
not bounded, it is necessary to modify the definition of the Banach space U so that
it contains the exponential solutions. This can be done simply by adding in the
definition of the norm N (u) a factor ¢ I° with ¢>1. The proof of (3.1) then pro-
ceeds as before. However we get instead of (3.2) only that C({)+=0 when

|Re {|=C(1+|Tm &) 1/e+1/¢'=1.

Now algebraic arguments (cf. the proof of Lemma 5.3) show that there is a smallest
value of ¢’ for which such an inequality can hold. But this value has to be <1
which proves that (3.2) must be valid.

5. Sufficiency of the condition for hypoellipticity

In this section we prove that condition (3.1) of Theorem 3.1 is sufficient for
hypoellipticity, and moreover we shall also study the inhomogeneous case. Thus let
u€C* (QU w) be a solution of the equations

PDyu=fin Q, @, (D)u=9, in w,v=1, ..., u, (5.1)

where f and @, are infinitely differentiable in Q U @ and w, respectively. Since P (D)
is hypoelliptic, » is infinitely differentiable in Q. (The proof will be arranged so that
we do not really use this fact.) Hence we only have to prove that the derivatives
have limits on ®. To do so it is enough to show that every point in @ has a neigh-
bourhood O such that all derivatives of w are continuous in the closure of QU O.
If o is the transversal order of P (D), that is, the degrée of P (&£+ v N) with respect
to 7, it is indeed sufficient to prove the continuity of the derivatives of transversal order
<o. For if we introduce a coordinate system such that (z, N)=z" as was done
in the preceding section also, it follows from the remarks of Hérmander [5, p. 239]
that we can write
P(D)=c(@/oz")’+ ---

where ¢ is a constant +0 and the terms indicated by dots have transversal order
< o. Differentiating the equation P (D)u =/ repeatedly with respect to the boundary
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variables !, ..., "', we can conclude the continuity of the derivatives of trans-
versal order o from the continuity of those of transversal order < ¢. Differentiating
again with respect to 2" it follows that the derivatives of transversal order o+1
are continuous, and since the process may be repeated indefinitely, all derivatives
are continuous.

It is also important to note that we may assume that the transversal order of the
operator @, 1s <o. For we can add to @, an operator having P as a factor so that
this is true, and this does not change neither the assumption that the right hand
sides in (5.1) are infinitely differentiable functions, nor the definition of the char-
acteristic function for the boundary problem.

Let Q' be an open half sphere <Q whose flat boundary < such that

Q<cQUow.

We shall estimate the derjvatives of a solution = of (5.1) in Q’.
Let % be a function in CF (G), where

a. ={.’E (=, N> 20}7

which vanishes outside of a compact subset of Q U w and equals 1 in a neighbourhood
of Q. Write
U=xu, (5.2)

and interpret this product as 0 outside of Q U w. We have obviously U €Cy (G,) and

PD\U=F'+F*% QD\U=¢,+¢2 »=1,..,u (5.3)
where F'=x[€CF (G.), ¢=X9,€ECF (F), (5.4)
and F?=0, ¢2=0 in a neighbourhood of Q. (5.5)

Let R be a positive number such that, if x€Q’, F? and qu vanish in the set
{y=l" ") |y —2'|<R, |y"—="|<R}.

(Here and below we use the notation y’ alternatively for (¢, ..., y" ) or
(', ..., "1, 0).) We shall estimate the derivatives of U= in Q' in terms of those
of order <k in @,, the maxima of F? and 7 the derivatives of F' and ¢;, which
all exist by hypothesis, and the number R. In doing so, we will first assume that
all derivatives of U with transversal order <o are continuous in G,. This regularity
assumption will make convergence difficulties disappear, but since we never use it

in a quantitative way it can be removed afterwards.
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It is clearly sufficient to place the origin at a point in w U’ and estimate
the derivatives on the x,-axis. Let U (t, &) be the Fourier transform of U (¢, ') with

respect to the boundary variables z’
O, &)=[Ut, )e ' da’;

all other Fourier transforms are defined similarly. The equations (5.3) give, if we
write P (J, &)=P (&' +8 N) and similarly for @,,

PG, &0, &)=F(t, &)+ 2, &),

A \ (5.6)
06, EV0(t g =FLEV+ (&), 0= —id/at.

Since U vanishes for large positive ¢, this boundary problem can be solved with the
methods of section 1 provided that ¢ (£')+0, which is true by the assumption (3.1)
if |&|>K, where K is a constant. The solution is then given by (1.15). Let G (¢, s, &)
be the Green’s function and H, (¢, £') the Poisson kernel for the problem (5.6) as given
by (1.13) and (1.14}. Then we have

0@, &)= [ G, s &) Fs, &)+ P2 (s, &) ds+

o3

+3H 0 8) (B (&) + B2, |E]>K.  (5.7)

Let & be a function in C§ (F') which equals 1 when |£'|<K and write 9, (£')=
=1—9(£). Then we have, for all real &,

0t &)=8E)D &)+, )] 65, &) F (5. £)+ 7 0 £ s +
0
“ ~ ~
SSHEOGOEEO] 69

We shall also use the equations obtained by differentiating (5.8) with respect to ¢,
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09 (t, &) =9 (£) OV (1, &)+ 8, (£) { [ GO, s, &) F (s, &)+ F* (s, &) ds +
0
” . -~ ~
FIH GO BEO+EE), 69

where ) denotes differentiation of order j with respect to f. This will only be used
when j<o.
Fourier’s inversion formula gives, if D, denotes partial differentiations with re-

spect to the boundary variables only,

DU, 2)=(2m) D f E. OO (8, £) e84,
As already observed, we are only interested in the value of this derivative on the
x"-axis, so we set ' =0 and obtain, if (0, #)€Q’

Dyut (t, 0)=2m) ™" [ £, 00 (¢, £)d &' (5.10)

We now pass to estimating each of the integrals obtained by replacing U™ (¢, &) in
(56.10) by its value given by (5.9). The various terms are denoted by a, b, ... .

It is very easy to estimate the term
a=@2m)' " [E£9E) 0D ¢, &)dE.

For since ‘¥ has compact support, we can estimate &, by C'*! where C is a constant.
(By C we always denote constants, but not always the same every time.) Further-

more, we have
09 ¢, &)< [{UD (¢, 2')|da’ <C sup |UD].

Writing |U i =|¢]§k sup | D, U ()],

we thus obtain, since j< o<k,
(@) la|<C®*1| U},

The study of the other integrals depends on the following lemma, the proof of
which will be postponed to the end of this section. '

Lemwma 5.1. There are positive constants M, M', ¢, y, y', with y>=1, such that
the functions QY (t, s, ') and HP (¢, I') of ¢’ are analytic in the sel

D={¢; |Re {'|ZzM 1+ |Im ')} (5.11)

and satisfy the inequalities



254 LARS HORMANDER

|G (¢, 5, )| < M| e, €D, 0<j<0; 8, 620, (5.12)
|HO (¢, )| <M (¢ e, 1'eD; 0<j<0; 1<v<p;£>0. (5.13)

Using only a minor part of this lemma we can study the term
b=2n) " [£9,(E)VAE [ QN (2, 8, &) Fi s, ) ds.
0
For using (5.12) for real £ only we obtain

1§12 K

|b|< C J' IE’ |Ial+y’ lﬁl (s, &) I &' < C, sup (|§/ Ilal+y'+n Iiﬂ (s, EI)I) J‘ df'/lf' In_
18155

Assuming as we may that 9’ is an integer and using a notation introduced above,

we thus obtain since the integral is convergent
(b) |b|<01|F1|,¢|+yv+n.
In the same way it follows that for the term
” ;. -~
c=@n)' "3 [ & (E)HD (1, &) by (£)dE
1
we have the estimate
©
(C) ICI<0¢Z§I¢3’INI+V'+R'
We next consider the terms

d=@n)' " [E9,(E)AE [ G (L, s, E)FP (s, &) ds
0

and o= @a) " [ &0, (E)VHD @, £) P (E) AE, v=1, ..., .
To do so we have to use the information in Lemma 5.1 about @ and H, in the

complex domain too.

LeEMMA 5.2. Let K({') be a function, analytic in the set D defined by (5.11),
where vy =1, and satisfying

|E @) |<M |, ' €eD. (5.14)

Then there is a constant C, depending on M and y but independent of M’, y' and
K ({') such that

|D,§(_£;K (5')” <M C|¢I+Iﬁ|+y'|ﬂ|! If, |v’+lzl-|ﬂl/y, (5.15)

when & 1s real and |§'|>M+1.
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Proof. Since LK) <M ||+ in D,

it is sufficient to prove (5.15) when «=0. For the general result follows if we apply
this special case to the function (, K (’). It follows from the definition (5.11) of 1)
that there is a constant M, such that the sphere

{510 =¥<e}, =M |E7,
is contained in D if |§'|>M +1, and a constant C, such that
[l< G ]€]
for all {' in the sphere. Hence it follows from (5.14) that
& @)|<u eyt

in the sphere. But then it follows from Cauchy’s inequality for the derivatives of

an analytic function in a circle (sphere) that
| Ds K (& | < CY|& | B]1/e",

which proves (5.15) with C'= max (C,, 1/M,).

In virtue of (5.12) and (5.13), this lemma applies to G and H? which makes
it possible to estimate the terms d and e,, We start with e, which is-slightly simpler
to handle than d.

The choice of R following formula (5.5) means that
#Z2(x')=0 when |z'|<R.
Thus if we set, with a positive integer » to be chosen later,
¢ (@) =2'["y, (@),
it follows that sup |y, (2')| <R sup |$Z (2)]-

Now pass to Fourier transforms. If A’ denotes the Laplace operator along the bound-
ary, Di+ .-+ D%_,, we obtain

B2 (€)= AT, (&),

Eliminating $§ in the definition of e, by means of this equation and integrating by
parts, we obtain

e = 2a)" [ §, (E)VAT{ELHD ¢, &) 6, (£} dE.
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Now we have ¢, (£')=1 outside of a compact set, and from Lemmas 5.1 and 5.2
it follows that for |&'|>M +1

| A" (& HO (8, £)| < M O+ (20) (n— 1) | & [+ 1el=27 (5.16)
If we choose r so large that
y 4o -2r/y< —n+1, ie 2r>y(y +|a|+n—1), (6.17)

this is an integrable function in a neighbourhood of infinity and hence we get by

estimating 9, in an obvious fashion that
(ev) Ievl<Ca.r]ero<0a.rR_2r|¢%|0,
where C, , are finite constants.

Finally, we split the term d into two parts d' and d”,

t+R

d =@y " [£9,(E)dE [ @D, 5, €V F (s, &) ds
o

and d'=@2n) " [E9,(E)AE [ Q0 5, &) PP (s, &) ds.

t+R
Since (0, t)€Q’ we have for every s<t{-+ R
F?(s, 2’)=0 if |2'|<R.
Thus we can estimate d’ in the same way as e, and obtain
(@) |d'|<C..,(t+R)R* | F?|,

provided that (5.17) holds.

Finally, to estimate d’’ we use the exponential factor in (5.12) which has been

neglected until now. We then get

| |d"’|<0 sup |i’2 (s, 5’)” | & |7 =l e cRIEV g &
and hence, calculating the integral and estimating ﬁﬂ, we get
") |d”|<CT(y (y' +|a|+n—1)) (cR) v icin-D}p2|

Summing up all the estimates denoted by {(a), (b), ..., we have now proved
that
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"
| Dau?® @)| < CHH Ut Ol Pyt Cu Xl bl fagsyrn +

13
O R P2+ S 2] ) + € @) (cR) 2| P2, 2€Q, j<o, (5.18)
0 1 0

where r satisfies (5.17) and we have assumed that cBR<1, t+R<1.

This inequality has been established under the assumption that all derivatives of
U of transversal order < ¢ are continuous. Now let us only assume that « €C* (Q U w),
hence that U€C*(G.). Let w(z') be a function which is non-negative, infinitely dif-
ferentiable, vanishes when |z'|>1 and satisfies the condition f’lp (')dx’=1. We form

the convolution
Ue(2)=[U@—ey) py)dy,

and define F., ... in the same way. We also set R,—= R —¢. Since one can write
Ue@+a')=[U@—y)p (@ —y)/e)da’ /e

and U has continuous derivatives of order o<k, it follows that all derivatives of
U, of transversal order < ¢ are continuous. Indeed, one can let the tangential dif-
ferentiations operate on w(z’). If ¢<R, the inequality (5.18) in thus valid if we
replace U by U,, F* by F:, ... and R by R.. Now we have by an obvious convexity

argument for an arbitrary function K €C{ that
| K| <| K|,

for all e¢. Hence the right hand side of (5.18) is bounded when ¢—0 and thus the
left hand side is bounded too. Therefore, every derivative of transversal order <o
of U, is uniformly bounded in Q' when &0, and hence those of transversal order
< ¢ are equicontinuous. Letting ¢—0 through a suitable sequence we can therefore
assume that D, U, is uniformly convergent in Q' for every differentiation D, of trans-
versal order <g¢. But this shows that all derivatives of the limit U of transversal
order <g¢ exist and are continuous. In virtue of the remarks at the beginning of
this section, this completes the proof of Theorem 3.1, except for a verification of

Lemma 5.1.

Proof of Lemma 5.1. We first have to rewrite the assumption (3.1) in our pre-

gent notation. Let A’ be the set of those complex !’ such that the equation

P +tN)=0
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has precisely u zeros with positive imaginary part and none that is real. To simplify
the writing we assume, which is no real restriction, that the norm is so chosen that
|¢'|=1¢'|. Tt then follows from Theorem 2.2 that A’ contains all ¢’ satisfying

|Im {'|<B, |Re {'|>B'. (5.19)
Thus (3.1) means that to any number B there is a number B” such that
|Im {'|<B, |Re '|>B" (5.20)

implies that {'€A’ and C({')+0. We shall now prove that one can take for B’ and
B’ sufficiently high powers of B. This is the main step in the proof of Lemma 5.1.

An estimate of B’ is contained in Lemma 3.10 in Hérmander [5]. Indeed, this
emma can be written in the following way: There are constants ¢ >0 and C>0
such that

P()+=0 if |[Re {|=>C(1+]|Im o).

As in the proof of Theorems 2.1 and 2.2 it then follows that A’ contains all ¢’
satisfying the inequality

[Re £'|=C(1+|Im {']o). (5.19)
For if this inequality is fulfilled and 7 is real, we have
|Re (I'+TN)|=|Re ' |=2CA+|Im ' [)=CA+|Im (' +7 N)|),

and hence that P ({’'+ v N)=0, which obviously implies the assertion.
Also note that if 7 is a complex zero of P({'+ 1 N) we get

|Re '|<|Re (I'+TN)|<C 1+ |Im (' +TN))<C,(1+|Im ¢'|e+|Im z]e)
hence Cy|Im zje=|Re ¢'| - C, (1 +]|Im £']o). (5.21)

This estimate will be useful later. If P is elliptic, it follows from Lemma 2.1 that

we can take g=1.
LEMmaA 5.3. For sufficiently large M and vy, the set
D={; |Re {'|>M (1+|Im {'|")} (5.11)
s contatned in A’ and C(L')+0 in D.

Proof. It follows from (5.19)' that the set D is contained in A’ for large M
and y; this is of course true if y=p and M= C. It thus remains to study the zeros
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of C(¢'). Assuming that C (') has a zero in A’ with |Re {'|>t for every ¢ — other-

wise there is nothing to prove — we write
M (t)=inf |Im {’|

where the infimum is taken over all {'€A4’ with |Re {'|>t such that C'({')=0. We
shall prove that M () is a piecewise algebraic function of ¢{. Since we know from
(5.20) that M (t)—>co when t—>oco, it then follows that M (t)=ct*(1+o0 (1)) when
t—>o0, with >0, ¢>0, if we consider the Puiseux expansion of M (t) at infinity.
But then the assertion is proved with y = max (g, 1/¢).

That M (t) is piecewise algebraic follows from an elimination theorem of Seiden-
berg. Indeed, the definition of M (f) may be stated as follows: M (¢) is the infimum

of all u such that the following system of equations and inequalities holds:
[Re 'F=>¢, |Im ' P=u? p>0, P('+TN)=2(r—17)
1

Im7,>0, ..., Im7,>0, Im7,,<0,..,Im7<0,

k(r)=2(t—7), O=RE(k(x); @' +7N), ..., @' +7N)).

=M=

This is in fact a system of polynomial equalities and inequalities involving only real
variables, Re (j, Im {;, u, t, Im 7;, Re 7;, the real and imaginary parts of the coef-
ficients of k. It thus follows from the results of Seidenberg [14] (Theorem 3) that
the system can be satisfied by a suitable choice of the other variables if and only
if 4 and ¢ satisfy one of a finite number of systems, each composed by a finite
number of simultaneous equations and inequalities. Since for fixed ¢ the infimum of all u
with this property is M (¢), it follows that u=M(f) must satisfy some of the equa-
tions or make some of the inequalities to an equality. This i.nplies that M (¢) is
piecewise algebraic. The details of the argument are precisely the same as in the

proof of Lemma 3.9 in Hormander [5] and need not be repeated.
LEMMA 5.4. If the set D defined by (5.11) is contained in A’ and if C(L')+0
in D, then there are constants M, and ¢, such that

[1/c@) <M, ||, ¢'eD. (5.22)

Proof. As in the proof of Lemma 5.3 we can prove that the supremum of
1/C (') when (€D and |Re {'|=t is a piecewise algebraic function of ¢, and hence

the Lemma follows in precisely the same way. The details may be left to the reader.
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End of the proof of Lemma 5.1. In virtue of Lemmas 5.3 and 5.4 we can choose
the constants M and y in the definition (5.11) of D so that D= A4’ and

|1/C &) |<M,|E |1, ¢eD. (5.22)

We may also assume that |Re ¢'|>2C, (1+|Im {’|¢) in D so that in virtue of (5.21)
we have, since p<y, if P({'"+tN)=0 and {'€D,

|Im 7|>C,|Re &'|'7. (5.21)

Since we may assume that p>1 (this follows in fact from (5.21)), we can estimate
[Im ¢’} by |Re ¢’| in D and write instead of (5.21)'

|Im 7]|>C, | M. (5.21)”
We also recall that according to Lemma 2.3 there are constants ¢ and d such that
|[z|<O(z']*+1). (5.23)

Now we can easily estimate the Poisson kernels and their derivatives. We have
by (1.14), with the notations of section 2, p. 240,

HP(t, O)y=C )V B kes gy oo s gi 8 G2V, g0, L, gf)

To estimate HY’ we now only have to use the estimate (5.22) and inequality (1.9).
In fact, the inequalities (5.21) and (5.23) show that the convex hull K of the
zeros of k is contained in the circle |t|<C(|{'|*+1) and also in the half plane
Im 7> C4|'["”. We can therefore estimate the polynomials ¢} and their derivatives
in K by a power of |¢'|, and noting that |er|<e tCIET
estimate (5.13) with suitable M’ and o'

Let g, (t, (') be the fundamental solution of P ({'+ dN) as given by (1.12). Since
the estimates (5.21)” and (5.23) ase valid for the zeros of P (¢’ + 4 N), it follows from
(1.16) that

in K, we obtain the

|98 (t—s, &) | <2 (C (& [P+ 1)) e RIS s

if ’€D. Here C, is a poéitive constant. But in virtue of (1.13) we have

g(j) (t’ s, CI) = gg) (t -S, C,) - (QV (C’ + 6 N) go) ( -8, C,) Hf'j) (t: C’):

NM‘:

and hence the desired estimate (5.12) follows from (5.13) and the above estimate of

99. The proof is complete.
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6. Sufficiency of the condition for ellipticity

In this section we assume throughout that the condition (3.2) of Theorem 3.2

is fulfilled and we shall prove that a solution u€C* (Q U w) of the equations
P(D)u=0 in Q, QD)u=0in w, v=1,..,u, (6.1)

is then analytic in Q U w. As in section 5 we could have studied the inhomogeneous
case also, but since this can be reduced to the homogeneous case by means of the
Cauchy-Kovalevsky theorem, we shall not do so.

From the results of section 5 we know already that u is infinitely differentiable.

Let ' be a domain such as in section 5.

Lemwma 6.1. If for a solution u of the equation

PD)u=0 (6.2)
we have | Dy u? () | <O !, z€Q', 0<j<a, (6.3)

it follows that wu is analytic in a neighbourhood of C¥'.
Proof. As observed at the beginning of section 5, the equation (6.2) can be

written
W@ =73 P,(D)uth, (6.2)

ji<e

where P;(D’) is a tangential differential operator of order at most o—~j4. Let K be
a bound for the sum of the absolute values of the coefficients in the operators

P;. Assuming as we may that C>1 and K>1, we shall prove
| Dy u? (x) | <O K (Ja| +4), z€Q. (6.4)

This follows from (6.3) when j<g¢. Assume that the inequality has already been
proved for j<J+ o, where J>0. We shall prove it for j =J + ¢. Differentiating (6.2)°
we obtain

D u*? (z) =i<z D, P; (D) u¥* 7 ().

By assumption we can use (6.4) to estimate the terms in the sum on the right.
This gives
|D; wto (z)|<K0|1I+J+u+1 Ki+e-1 (Ial +J+o), erl’

which proves that (6.4) holds.
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From (6.4) it follows that the Taylor series expansion of # at a point z in Q'
is convergent in a sphere with a radius independent of x and that it converges to
u in Q'. Hence it follows that u is analytic in a neighbourhood of ', which proves
the Lemma,.

It now only remains to prove that the estimates of the previous section can
be improved so that (6.3) Tollows. According to our present assumptions we can take
y=1in Lemma 5.3 and hence also in Lemma 5.1. This is the fact which gives rise
to estimates of the form (6.3).

First, the estimate (a¢) of the term a is even better than that required since it
does not contain any factorial on the right. Also, the estimate (d'') has obviously
the desired form. Since we only consider the homogeneous equations (6.1) the terms
b and ¢ vanish so that it only remains to study d' and e, These terms have to be
considered more carefully, however. Indeed, in estimating them we have differentiated
repeatedly on the non analytic “cut off”’ function #,, and this has to be avoided if
we want to obtain an estimate of the form (6.3).

We first study e,. Writing

K(@&)=&H ¢, &) 2a)™", j<o,

we have e=[ (A7 §, (&) K (&) 0 (§)dE.

Instead of integrating by parts, which leads to repeated differentiations of &#,, we
note that
ATp)K—9,ATK=div' V,

r-1

where V=73 (A K)(grad’ A"1$,)— (A1) (grad’ A" K)).
0

Here we have denoted by div’ and grad’ the operations of divergence and gradiend
with respect to the boundary variables. Using this identity and integrating by parts

only once we now obtain
6= [, (AT K) 9, dE — [ (grad’ 9y, V) dE'. (6.5)

We now use inequality (5.16). If r is the smallest integer such that (5.17) holds, it
follows that the first integral in (6.5) can be estimated by

@O g o< @M CE R | 2o
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where C, is a constant. Next consider the second integral in (6.5). We have
| A7, =l <CR200 | g2,
and |grad A" "1y, |<C R HE),.

From (5.16) it follows that there is a constant €, such that with » chosen as above

we have in the support of grad ¢,, which is compact,
[AYK|<CE @), j<T,
and recalling the proof of (5.16) we find that if O, is large enough we have also
|grad’ A K|<C3 2r), j<r,
in the support of grad ¢#;. The second integral in (6.5) can therefore be estimated by

C, C3" (2r)!/ Zz R | 42|,

If we now recall that  is the smallest integer such that (5.17) holds and if we sum
the geometric series, it follows that with a constant C, depending on R but not on
o and wu, this can be estimated by

Ot [l

It is obvious that d’ can be estimated in the same way as we have estimated
e,. Thus there is a constant C, depending on Q and Q' but independent of u and
o such that if « satisfies (6.1) we have

| D u? ()| <O &l |u)e, z€Q, j<o. (6.6)

This completes the proof of Theorem 3.2. Moreover, it follows from the proof. of
Lemma 6.1 that the solutions of (6.1) can be continued across  into a domain Q*
independent of . In the classical case mentioned in the introduction Q* is obtained
by geometric reflection of 2. It would be interesting to investigate more carefully
the size of the largest domain Q* to which all solutions of (6.1) have analytic con-
tinuations. A special case of this question has been answered by F. John [7].
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