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1. Introduction

The group A, of automorphisms of a free group F, on n free generators has
been investigated by J. Nielsen [4]. Nielsen found generators and relations for 4,;
it follows from his results that the elementary or t-transformations defined below
generate A,. Also, Nielsen found a recursive method to decide whether a given set
of n elements of ¥, generates the group. But for n>2 it still remained an unsolved
problem to decide whether a given element of F, could appear in a set of free gen-
erators of F,. This problem was solved by Whitehead [6]; in a subsequent paper,
Whitehead [7] proved the following powerful theorem:

Given a set of words W,, ..., W, in the generators of F,, if the sum L of the
lengths of these words can be diminished by applying automorphisms of F, to the
generators, then it can also be diminished by applying an automorphism of a pre-
assigned finite set of automorphisms (the so-called T'-transformations defined below).

The group A4, is of importance for Dehn’s “isomorphism problem” of group theory
{Dehn, [1]). Its most significant application is furnished by Grushko’s theorem (see
Kurosh [2] and B. H. Neumann [3]) which shows the following: given a minimal set
of n generators of a group G which is a free product of a finite number of its
subgroups H,(¢=1, ..., r). one can apply a transformation 4 of 4, to the generators
a; of G such that each of the resulting elements 4 (a,) belong to an H,. The theorem
of Whitehead and the theorem of Grushko have been used by Shenitzer {5] to devise
tests for the free decomposability of groups with a single defining relation.

Whitehead uses difficult topological methods in proving his results. In the case
where n=3, a purely algebraic derivation of his theorems has been given by the
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author.(!) The present paper contains an algebraic proof of the full Whitehead theorem

and of some extensions and applications.

2. Definitions and notation

G will denote the free group F,=F(a,, ..., a,) on = generators.

W will denote the inverse of the element W of G.

Superscripts ¢ and e’ will denote +1 or —1.

a->ab will mean that under the automorphism in question the image of the
element a of G is the element ab of G.

A permutation a;—af, (1, k=1, ..., n) will be denoted by p.

A simple automorphism or ¢-transformation, ¢, is an automorphism of G of the
form a,—(af af')°, ar—~ay, k=1, i+j, i and j fixed but arbitrary.

A T-transformation is the following automorphism of G: let a, b, ¢, z denote
fixed subsets of the generators of G and let d be a generator or the inverse of a
generator, such that the sets a, b, ¢, d° are disjoint and the set (a, b, ¢, z) contains

every generator a; of G just once. Then

a—>ad
b—>db
c—~>dcd

2—>Z

is a T-transformation for every such subdivision of the generators.
The product 7,7, of two T-transformations, with T, (a;)=v;(ay, .., a,) =¥, (@),

Ty (a;) =wi(a), Ty Ty (a;)=v;(w,(a), ..., w,(a)), will be given in the form

a—ad
b—>db
c—>dcd
a’'—a'd
v—d' b’

L¢'—~d ¢’ d

with the appropriate subdivisions (@, ...) and (a’, ...) of the generators of @, and

with the statements z—z, and 2’—2' omitted.

() E. 8. Rapaport, On a theorem of J. H. C. Whitehead, Ph, D. thesis, New York University,
1955 (unpublished), sponsored by Professor Wilhelm Magnus, whose valuable aid in preparing the
present paper is gratefully acknowleged.
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L (w) will denote the length L of the element w=w/(a,, ... a,) of G, defined as
the sum of the absolute values of the exponents of the generators appearing in w.
L(1)=0.

L(w,, ..., w,) equals the sum of the lengths of the elements w,, ..., wy, by
definition.

W is minimal ¢ when L (t (W))=L (W) for every ¢.

A is a level transformation on w if L (4 (w))=L (w).

A is a level transformation if L (4 (w))=L (w) for all the elements w in G.

A, =A,, if the automorphisms 4, and 4, of G map the generator a; on the same
element of G for every 1. '

A;~ A4, is defined in section 6.

The element, or word, w of G modulo inner automorphisms is called the cyclic
word w.

The special symbols s, s, z(xy), 3 (zy), (xyz) are defined in section 4.1; A4 (3)
T (s) in section 4.2.

An active generator under a 7-transformation, 7', is a generator of G whose
image under 7' is not of length 1, hence is not that generator itself.

A multiplier under 7' is the generator by which the active generators or their

inverses are multiplied under 7.

3. Resulis

The key result is theorem 1 below, proved in sections 4-9. Section 10 contains
some consequences of theorem 1. Section 11 contains some applications of the method
of proof used in sections 4-9.

Before stating theorem 1, I shall put it in graphic form for easy survey. Let

a line between two points

/”z
[o SRS o

w, Wy W,

mean that the words w, and w, of @ are connected by a T-transformation: w, =T (w,),
where in the first diagram L (w,)=L (w,), while in the second, L (w,)> L (w;). Then
the theorem asserts that if
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wy

length of W, « = = — =~ =«

length of wy ~—

Wy Wy Wo

Wy
.

then there exists a product T, T,_, ... T, = B of T-transformations such that B (w,)=w,

and the diagram for B (below) never touches the line “length of w,”’ except at w,
in case L (w,)=L (w,).

lengthof e e e e e e e e e e e e e -

Wo

TagorEM 1. Let A=T,T,, or A=3T, such that
(1) L (T, wy) > L (wy),
(2) L(Awy)<L(Tyw,),

where w, is a cyclic word in G. Then there exists a factorization B=DB; ... B, of A
such that for every intermediate word wy =B, ... B, (wy), h<k, L (ws)<L(T,w,) — “B
is direct” — where the B, are T-transformations or level transformations.

CoroLLARY: If w, stands for a set of m words, the theorem is true.

To prove theorem 1 a means is found to characterize (generic) words w, which
satisfy the hypotheses above, in such a way that the properties required by the
conclusion of the theorem are seen to be possessed by these words w, A properly

chosen “syllable representation” of w,, introduced in the sequel, leads to such a
characterization.

4. Syllables and syllable representation

4.1. The word syllable will stand for a string of letters, but never a single
letter, and a rule (or restriction) as to what letters may not precede or succeed it.

To give a preliminary example, (ryz) U designates the string of letters xyz — but
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not W also — whenever zyz is not followed by u in a given sequence of letters
cab ... xyz ... d; (xyz) designates the string of letters wyz regardless of what follows
it. In these examples, the fact that no symbol stands in front of the parentheses
means that any symbol is allowed to precede the syllable.

Let w=xyz be a cyclic word in @, so that x is successor to 2. Then I shall
say that the symbol (ryz)(zx) is a product of the (overlapping) syllables (xyz) and
(zx) and represents w. The product (ry) (yz) (zx) also represents w.

The product s,s, of the syllables s, and s, is defined when s, ends with the
first symbol in s, read from left to right, and multiplication is juxtaposition. (The
word represented by s, s, contains this joining symbol of s, and s, just once.)

A word may have several such representations, but any representation in terms
of a given set of syllables must conform to the given restrictions on the elements s
of the set. If, for example, one has the syllables s, =(xy)3, sa=(zy2), 8;=(2z), and
84=(y2), then w==xyz is represented by s,s; but not by s,s,s,.

The reason for introducing a syllable representation is briefly as follows:

first, it turns out that it is possible to represent the (generic) word w, uniquely
in terms of a certain set S of syllables in such a way that the change of length of
w, under given T, or A=T,T, equal the sum of the changes of length of the con-
stituent syllables of w, — with ‘“‘change of length of s’ suitably defined and com-
putable; )

secondly, the two hypotheses of the theorem become conditions, in the form of
inequalities, on the number of times certain of the syllables must occur in wg;

finally, these inequalities can be used to find a set of automorphisms containing
B of the theorem.

At this point the following, rather trivial, yet necessarily sketchy example can
be given. Let a, ¢, d be fixed generators of @, w, an element of G, and A=T,T,
the automorphism given by T,:a—ac, Ty:a—da (all other generators remaining un-
changed under A4). Then, A'=T,T, clearly equals A. Let

&= (a c-)ili 8g= (az)il: 83 = (uv), 8= (Ja‘)il, 8= (ya)ily

where y, u, v, z run through all generators and their inverses except that s, =s; for
t=+4 and that s;+1, every .

Let N, be the number of times s, occurs in w,, and M, the number of times
8 occurs in 7T, (wy) =w,, when w, and w, are reduced (do not contain segments gg).

Suppose that
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(i) L(Tywy)—~L(wg)=N,—N,,
(i) L(Awy)—L(w)=—-M,+M,.

If now the hypotheses (1) and (2) of theorem 1 hold for w, and A, then

(1) N,—N,>0,
2) —M,+M;<0.

It can be shown that under (i) and (ii), N,=M,, M =N, and L (T,w,) — L (wy) =
=N;—N,. But then the last difference is equal or less than 0, so that T, (w,) is
not longer than w,; consequently A4’ is direct, that is, 4" is a solution B of the
theorem.

4.2. Next, the change of length of a syllable under an automorphism has to
be defined. Let s be a syllable, s=a,a, ... a;, where the symbols stand for, not nec-
essarily distinet, generators or their inverses; let s be reduced. Let 7 be a T-trans-
formation. The image under T of every generator a is of the form UaV, reduced.
The words U, V may have lengths 0. Then the image of s under 7' can be written
as Uya, V,Uza, V, ... U;a; V;, unreduced. Define 7' (s) by

T@)=T(ay ... ay=0a, V,Uya,V, ... Uja; (mod 1)=W, (mod 1), *

so that 7T (s) is given by the word W, on the right hand side after it has been
reduced. This word is the image of s under T' with U, and V, left off. For example,
if s=ab, T:b—>bc, then T (s§)=ab. If T (s) is a syllable, then 7" (7T (s)) is defined.
Syllables will be used as the building blocks of a cyclic word; in the latter every
symbol has predecessors and successors; thus s will have a predecessor in w,, hence
U, will have one in 7 (w,) unreduced; these predecessors will end respectively with
a; and U,a;. Therefore, U, will appear just once in the product of the T (s, in-
tended to represent T (w,). Similarly for V;. This shows that if w, is represented by
the product [T s, of a subset of a set S of syllables s, then, with this definition of

§C Wy
T (), the product [] W, is defined and represents a (generally unreduced) form of

sC w,
T (w,).

4.3. Next, a set § of syllables must be found which is capable to represent
every group element uniquely and satisfies requirements that will justify the use the
set is put to. This use will consist in replacing w, by its representation []s; in
calculations of length and changes of length under certain products 7,7,. The re-
quirements can be read off the Wbrding of the theorem as follows:
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K
Suppose A=T,T, and A'=J[T| given and that T =B, is claimed for each
1
1<k (section 3). If for the moment X stands for any one of the automorphisms
T, 4, TIT:, r=1,2, then [[s; can replace w, in calculations of changes of length
i

L (Xw,)— L (w,) if the condition (assuming X (s;) defined)

L(Xw)—Lw)=L(X( Il s))-L( Il )= > LX ()= 2 L(s) (O
5;C W, s;Cw, s;Cw, s;C W

is satisfied. A method of constructing such a set is given in my doctoral dissertation
(see section 1 of the present paper) for G=F,; the method takes its departure from
the 15 pairs of symbols xzy=+1 that can be built out of generators and their in-
verses. It is seen there that the construction can be carried out for any G'=F,
provided only that the set of all such pairs can be written down explicitly. In order
to utilize this fact, I shall, in sections 5 and 6, ‘“standardize’ the generators and the
automorphisms 7, T, in a way that will allow writing down the complete set of pairs
needed for (indeterminate) n< oo as well as the construction of a single set S og
syllables usable for each of the suitably chosen representatives of the equivalence

classes of section 6.

4.4. Suppose that a set S of syllables has the property of affording unique
syllable representation for every element of G and that for a certain set (T') of T'-

transformations

every T\ (s) in the set T,(S) has the same terminal symbols as does s; (©)
that is s;=(xay) implies T (s;) = (xfy) reduced.
By means of the lemma below I shall show that (C’) implies (C), for X =T or T' T\,
where 7T is any 7T-transformation. Then if such a set § is given, together with (T'),
(C")y is a means of verifying (C).

Syllable representation by means of a set S is unique if every combination of
symbols, that is, every word w, can be written in just one way as a product of
syllables from 8; this will hold if every pair of consecutive symbols zy that can be
formed in F,=@, zy=+1, occurs in the set either just once with no restriction on
predecessors or successors, or else just once for each possible choice of the latter
symbols.

The set S given in section 7 affords unique represéntation and satisfies (C') with

respect to every automorphism actually used in computations of length in section 8.
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The verification of this is left to the reader; it is greatly simplified by the lemma

below and the standardization in section 5.

LeMma. Any set S of syllables which can represent all elements of G uniquely
has the property (C) with respect to a single T-transformation, T.
In other words, changes of length in w, under T are just those occurring in the

syllables s; of S, contained in w,, transformed as separate words, albeit by the rule
(*) of section 4.2.

Proof. Take T (w,) unreduced; if a symbol introduced by 7 into w, does not
cancel out as 7 (w,) is reduced, it will appear in just one T (s;); this follows from
the definition of 7' (s;). Thus, all that needs proving is that if the symbol cancels in
T (w,), it cancels in just one T (s;). Let W =T (w,) unreduced; let w, be reduced.

I. If x is a generator, then W contains no segment xzZz. For suppose the

contrary:

W= “ee yxa-:kxz e

Then the portions % and Zx of z#*x were not in w,, and as 7T (2°) =x2° is im-
possible, the symbols 2 were not in wg. Then T (y)=-- yx and T (z) =2z ---, which
is impossible. It follows from this that if s =(--+ &), s;=(£---) and Z cancels in s,,
it cannot cancel in s,.

II. To show that some symbol in s, above cannot cancel some symbdl in s,
one needs to show that in W=--- B .- E ---, where E reduces to the empty word,

L(E)=2 is always true. Suppose

W: cee yixz et UT o

so that £z is not in w,, hence #, say, is not in w, Then T (y)=--- y&, and so &
is the multiplier in 7', y is active in 7T, and so v@Z=2x°%". If now E=+Zx, drop all
pairs x#, Tz in £ and call the result E’. Then E’ is of the form ... 2% ... since

E'=1. If 2Z was in E, then zZ=2% or &z, and so cannot be in E’, hence zz<¢ E.
But then

E: P z(ix)kz e
and because of I. above, k=1, with
W—_—-... zz‘xé...

and Zxdw, Suppose £t wy; then T (2)=--- 2%, T (Z)=x% -, s0 wy="+-+2Z -+, con-

trary to the assumption that w, is reduced. This concludes the proof of the lemma.
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Now let S be a set of syllables satisfying the condition of the lemma and the

condition (C’) with respect to a given T,. Then [] 7T, (s;) is defined and represents
SiCw,

T, (w,), by virtue of the definition of T (s;) for arbitrary 7'; moreover it represents
the reduced word T, (w,), by virtue of (C’), with L (T, (s;))> 2. Hence the set (T', (s;))
is a set of syllables to which the lemma is applicable with respect to any 7'-trans-
formation 7T',; hence S satisfies (C) with respect to 7,T,.

5. Standardization ()

Let T, be given by

a, —>a, ¢ aj, —>C¢a; ¢
Qg —>0y C :
A, >k,
a;, —>Cay, :
a;, ‘96&1: d _>T1 (d)
in F,=F(a;, ...; @&, ...; @k, ...; ¢, d) with ¢ and d° not necessarily distinct. Re-

present a,, symbolically by X, ¥, =a,, for every generator excepting ¢ and d. Then
under 7T, a, =X, ¥,—X, ¥, ¢, which will be written symbolically as {X,—>X,, ¥,~ ¥, ¢},
or equivalently, as {X,—X,, ¥,—7Y,c}. For example, a; =X, ¥, gives {X;—~X;c,
Y,—~>Y; ¢}

Let « range over the set of symbols X,, ¥, for which X,—X,¢, Y;—Y c. Then
a=(Yy, Yy ...; Xy Xip, o5 Xj, o3 Yy, ...). Let B range over all other symbols
X,, Y,. Then T, is given by

a—>xc
T,8—8
d—T, (d).

Similarly, an automorphism 7, with multiplier d° is given by
] o' o d°
ﬂl_)ﬂl

T,
Ic =T, (¢)

where ¢ is the multiplier in 7', and «Uf=a'U "

() The procedure of this section may be interpreted as an embedding of Fy in Fz,_s.
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Set
z=oNa, y =complement of x in a.

z=pnpg, % =complement of z in o'

Then zUyUzUu=aUp, and the sets z, y. u, z, (c, d) are disjoint pairwise. In

their terms

t:x—>xcC bty rx—>xd®
Ti=tityty by y—>ye Ty=ty o by ) byt u—ud®
ltl :d—T, (d) lt2 1e—1T, (c)

where the statement z—>z is omitted for brevity. Any pair T, T; can be so written,
with the proper choice of the sets z, ¥, 2z, u, (¢, d).

The images T, (d) may be de¢, éd, or “both™: éde¢; accordingly let

tigid—dc

by d—cd,
so that #; may equal ¢, t,, or &, t,5, or 1. Similarly for T, (c), with

. e
byyic—>cd

. je
oy ic—>dc.

This result has two consequences. There are now only twelve symbols in F,,
namely x, y, 2z, u, ¢, d and their inverses, and hence a fixed number of syllables of
length 2.(') Thus a fixed set S can be found (section 4.3) for all F,. Furthermore,
the sets x, y, u, 2z, (¢ d) may be taken to stand for an arbitrary fixed partition of
the symbols X, Y;, ¢, d; then every T, T, is a product of certain of the ¢;, j=1,..., 4,

t=1, 2, provided only that 7'; stands for a 7'-transformation.

6. Equivalence classes

Before defining equivalence between automorphisms, it will be convenient to
settle the case (section 3) when 4 =p7T, where p is a permutation of the generators

and their inverses.

(*) Among all pairs one may form here, the 8 pairs a @ stay invariant under all T, T, or else
aa=1; the 16 pairs ab, where a and b range over z, ¥, z, u, never occur; similarly for the following:
16 pairs @b, 16 pairs & a or d¥ a, 16 pairs ac® or ad®. Finally, the 16 pairs @b are generators,
hence not syllables. The remaining pairs are the following and their inverses: 2§, x4, y @, 2%, ¥ %,
wz, xct, yct, uct, 2%, ce, dd, xdf, ydf, ud®, z2d°, cdf, éd e=+1.
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For every BT there is a T-transformation 7" such that 7T =1T"p. To show
this, designate] by ¢ the multiplier in 7, =T, say c=af and let (af, c¢) denote the

image of af under 7. Then (¢, ¢)=c and the set (af, c), =4, ..., n, defines T. Let p

be given by ai—>af, ¢, j=1, ... n; in particular let a;" =d and d—>c. Then
p T P
a;—>af —(af’, ¢)—(a;, d)
p T p
d—c—c—d.

Thus, 57 p:ai—(a, d), with a;j =d—(d, d). The set (af, d) defines a single T-trans-
formation 7" =3Tp; hence pT=T"p.

A permutation is a level transformation, so that T"p is direct (section 3).

It follows also that pT,T,p=(pT,p) (T, p)=T>T:, which can be expressed
by saying that 7,T, and T;7T; differ by nomenclature. The rest of the discussion
of theorem 1 will concern forms T,7T,+73T.

Two automorphisms A,, 4, will be called equivalent, 4,~A4,, if for 4,=
=TT, ..T,

Ay =PC Ty Cry Ty ... T1 Cop

where p is a permutation and the C; are inner automorphisms.

Since on cyclic words inner automorphisms are the identity transformation, the
proof of theorem 1 is identical for automorphisms differing only by these. Conjuga-
tion of A, by a permutation amounts to a change of nomenclature: if B is direct
(section 3) for A, then pBp=DB'is direct for 4,=P A, p. Thus it suffices to carry
the proof for one element of an equivalence class.

The following shows that every equivalence class of the forms T, 7T, is already
generated by t,,, t,, I3, fay, fop, Pa3 Of section 5.

Suppose T, contained t,,:t-—>éd, and A=T,T,. Then T,(d)=cd or édc. Let
C:a;—>ca;¢ for every generator a;, so that A~CA=T;T;, where under T either
d—>dé or d—>d. If the latter holds, then C A does not contain t,,; if the former holds,
then let p be the permutation ¢->é—>c, and let A" =pCAp=T, T;. Then A~ 4"
and under T the image of d is dc. Hence A is equivalent to a product of two
T-transformations in which ¢, does not occur.

Suppose in A=T,T, t, does not occur but t,: c—>d®c does. Then T, (c)=d°c
or dfcd?. Let C:a;—>d°a,d® for every generator a;. As before, A~CA=T,T; and
Ty (c)=cd® or ¢. Since C leaves d fixed and since CA=CT,T,=(CT, T,, we have
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Ty=T,, T;=CT, so that t,, does not occur in C' 4. Hence A is equivalent to a
product of two T-transformations in which ¢, and ¢,, do not occur.

It follows that the theorem needs proving only for forms 7,7, generated by
4, ¢=1,2; j=1, 2, 3. This is done in section 8.

7. The set S

The symbol (Im) will stand for the pairs (Im) and (Im)”!, that is (Im)=(Im)*".

The symbol (Im)® will abbreviate the collection of all pairs (!m) not followed
by the symbols &, §, d, or d, that is (Im)@=(Im)E, (Im)y, (Im)d°).

Since x (or y, ete.) is a set of symbols X, Y; (section 5), the statement ‘“z is

9

void” is clear. In a set of syllables containing the symbol x, whenever in the auto-
morphism under discussion the set z is void, one merely drops all syllables containing
z. Similarly, if in the automorphism under discussion ¢=d or ¢=d, one drops all
syllables containjﬁg, say, d; for then d is void.

With. these conventions, the following is a set § usable in all computations nec-
essary to prove theorem 1.

Pairs of the form (Ak)* and (RA°), h, k: =, y, 2, u, do not appear in § (section 5),

and will, when necessary, be referred to as s,

8 =(dd) 814=(x %) 837 =(ycd) 849=(uc)@
8y = (22) 85 =(xéd) S5 =(ycy) 8y = (ud)
83 = (zcd) 8= (2 d) 839=(yc) @ 8 =(ué)
8y =(zcd) 8,=(y2) 83 =(ycd) 843=(ud)
8 = (xcy) 819=1(uZ) 831 = (yd) 840=(ccd)
8 =(xcF) $19=(2c@) 830 = (y %) 8= (ccd)
8 =(xc)@ 890 =(zcd) 833 =(y¢d) 8= (cc)@
8 =(zd) 8y =(zcd) 899 = (Y €8) 8y =(dcd)
8y =(z §) 83 =(2c9) 835 =(yCw) 815=(dcd)
810=(x @) 8y3=(2¢Z) 836 = (y&d) 8= (dcd)
8, = (xcd) 8y =(2d) 83, =(yd) 850=(dcd)
85 = (&) 895=(2¢) 833 = (ucd) s=(dc)a
8;3=(2¢¢) 806 = (2d) 839 = (ucd) 850 =(dc)@.

The following observation will be used in section 8. Let each symbol in the set
(z, ¥, %, 2, ¢, d) stand for a fixed subset of the symbols X,, Y, (section 5) and
define the form 7T,7T;. Let T, T, be given by
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T, y—->yc; T,:u—ud.
=z

Then no symbol X; or Y, is active in both T;, hence one can write y''=zUy and
Ty :y"'—>y" ¢, Ty :u—ud, with T{'=T, so that T,T,=T: T; identically. This can

be expressed by saying: T, 7T, is of the form T3 Ty
The results gotten so far may be summed up so: if 7} is a product of a subset
of the automorphisms #,,, &,, %4, t=1, 2, with =z, y, 2, %, ¢, d fixed but arbitrary sets
of symbols X, Y; (section 5), it suffices to prove theorem 1 for 7,7, acting on any
word w, satisfying the hypotheses (1) and (2) of the theorem. It is permissible to

replace w, by its representation J] s, s;< S above, in computations of changes of
S Cw,

length under such 7; and T,T,.

8. Computations

The following device is the key to demonstrating that if 4 and w, satisfy the
hypotheses (1) and (2) of theorem 1, then a proposed A4’ has the properties of B
in the theorem.

If T: z—xc, then T and the (cyclic) word ¢z =w =1l ;= (x §Z) (Zx) = 8,53 8, cannot
satisfy hypothesis (1), for T (xéz)=x%=T (w) is shorter than w. For this 7', sy is’
a reduction syllable, that is L (1'sy)— L (s,3) = —1<0, and the word w contains re-
duction syllables in excess of increase syllables under 7'.

In general, if L(Ts)—L(s)=k, and z; stands for the (indeterminate) number
of times s; occurs in w, then L(Two)—L(w0)=§kix,=I — R, where I sums the
positive, — R the negative terms. If 4=7,7T, and w, satisfy (1) and (2), then
I-R=r>0 for T, and I-R<r for A.

Suppose now that S is usable for 7, T;=A’, that A'~ A4, and T (w,)=W is
at least as long as T, (w,). Then I—R>r for T; is a third inequality, with known
coefficients, in the x,. If adding these three inequalities gives a contradiction, then
W is shorter than 7, (w,) and so A’ is direct.

For convenience, in the sequel z; will be abbreviated to i.

0.1. Products of t;,, ty,.

y—>ye _ ,, [u—>ud s
A{ =A { ; A =T, T,.
u—>ud y—>yc

If y, or u, or both be void, there is nothing to prove. The following shows that the
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assumption T (w,) is longer than w, gives a contradiction. The result holds whether
d is void or not (section 7), that is whether ¢=d* or not.
By hypothesis (1), for T}, I-R=r>0, or I=R+r:

174+27+29+430+31+324+37=224+334+34+35+36+r. (1)
By hypothesis (2), for 4, R+r>=1:

22+33+344+36+434+7>
=174+184-27+294+30+31+37+384+39 +401-41442+2(32). (2)

For Ty, I>R:
18+ 32 + 35 + 38 + 39 + 40 4 41 -+ 42 > 43, 3)

Adding these three inequalities gives 0>0, a contradiction.

0.2. Products of ¢, t,,, iy
T—>xC
A y—yc; A=tytpty.

x<xd

-If x is void there is nothing to prove; if ¥ or d is void the result below still
holds. If the assumption (3) below that ¢, (w,) is longer than w, gives a contradiction,
then ¢, ¢, is left to investigate, which is of the form 0.1. (section 7) and can be

made direct.

24+3+4+7+8+16+17+274+29+30+31+37=11+13+15+22+23+33+34+36+7r (1)

2(2+3+4+6+7+8+16)+ \

2
5+9+12+17+27+29+30+31+37/ @

2(15)+22+33+34+36+r>{

2+3+4+5+7+8+9+16>11+12+13+ 14415, 3)

Adding these three inequalities gives 0>2(11-+13)+ 12+ 23, which contradicts the

fact that ;>0 for every s.

0.3. Products of £, t;,, ty, ta.

x—>xc u—ud

y—>yc z—>xcC
4 L :

z>zd y—>yc

u—>ud A zx—>zxd
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If z (or ) is void, A is of the form 0.1 (or 0.2). Whether or not y is void, the
result below holds.

If t,,: x—xc does not lengthen w,, then A%, is left to investigate and this is
of the form 0.1; thus one may assume the contrary; this is done under (3) below.
If ¢1: w—>ud does not lengthen w,, then A’f;; is left, which is of the form 0.2; the

contrary is assumed under (4) below.

24+3+45+7+84+10+16+17 (11+13+14+15+22+ }

_ 1
+27429+30+31+32+37 |23 +33+34+35+36+7 @

2(15)+14+22—l—33+}>

+34+36+43 41
>{2(2+3+4+6+7+8+10+16+32)+5+9+10+12+17+} (2)
118 +27+29+30+31 +37-+ 38+ 39 +40 +41 +42
24+3+4+5+7+8+9+10+16>11+12+13+14+15 (3)
10+14+18+32+35+38+39+40+41+42>43 )

Adding these inequalities gives 0>2 (11 +12+ 13)+ 23, a contradiction.
In the rest of the computations, if d is void, then every automorphism under

discussion is of a form already treated. Hence it is now assumed that c=d°.

1.14. Products of t,,, t,, ty.

c—>cd
y—=>yc
u—>ud ,
ASc—cd =4’ s A'=T,T,.
y—yd
u—>ud
y—>yc

If ¢ is not active, A4 is of the form 0.1. ¥ y, or u, or both be void, then either
there is nothing to prove, or the results below still hold. Assume neither void. If

Ty does not lengthen w,, A’ is direct. In (3) below the contrary is assumed.
174274294+ 30+31432+37=22+33+34+35+36+r (1)

21+224-334+36+43+494+50+7r>

>{2(17+29+30+31+39+45)+18+20

2
+25+27+28+30+32+404+41+46447+48 @

11 - 665064 Acta mathematica. 99. Imprimé le 26 avril 1958
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17+18+20+25+28+29+31+34+35
40:41146:47:48:2 (3;)+?:)+:5) +} 72 ST+ 43449450 ®

Adding these gives 0>0, a contradiction.

1.2. Products of all #;=14,,.

x—>xC

y—=>yc

AJ z—>xd =ty (I A) =ty A"; 8y x—2d.

u—>ud

c—>cd

If x is void, A is of the form 1.1. If ¢ is not active, 4 is of the form 0.3. If «
or y or both be void, the results below still hold. Assume neither void. Now, 4’ is
of the form 1.1 and is not direct by hypothesis; if A’(w,) is not longer than
T, (w,), then (on the pattern of 1.1, and by section 7) 4’= A", where

c—>cd

u—>ud

a7 gy,

y—yd

T—>xc

y—=>yc

and A" is direct, so that Ty (w,) is not longer than w, Then ¢, T} is left to
investigate, which is of the form 0.2. Under (3) below the contrary is assumed:
A’ (wy) is longer than w,=T, (w,).

If for t,,: x—>xc, ¢, (w,) is not longer than w,, then A, is left to investigate,
which is of the form 1.1; under (4) below the contrary is assumed.

2+3+4+7+8+10+16+17+} {ll+l3+14+15+22+23+ )

27+29+304 31432+ 37 33+34+35+36+r

3(2+7+16+30)+4(4)+2(3+5+10+17+29+ (
}> 31+39+45)+6+8+9+18+20+25+27+28+ @)
32+40+41+46+47+48 '

3(4+30)+2(2+7+16+17+
20+31+39+45)+3+5+6+ 10+ 11+15+21+22+23+33+36+

>
12418420425+ 27 + 28+ 32 + 43 +49 45047
404+ 41-+46+47 448

13+ 14 +2(15)+ 21 + 22 +
33+36+43+49+50+7

3)
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24+3+4+5+7+8+9+104+16>11+12+13+ 14+ 15+ 23 (4)

Adding the last three inequalities gives 0>2(11), a contradiction.

2. Products of all ¢;=1,,.

r—>xc U—>uUC
x—>zd
y—>yc u—>ud
N YYce
Aid—>dc=A4 =A"3 x—>xd
—-dc¢
rz—>xd d—dc¢
u—>ud
u—>ud y—>yc

where A’ =TTy T and A" =T Ty Ty .

If u is void, A" is of the form 1.1. (As soon as the symbols d and ¢ are ex-
changed and section 7 is considered this becomes apparent.) Since 1.1. can be made
direct in such a way that no intermediate word is longer than w,, this case is
already taken care of. Similarly for the other symbols. Thus, one may assume that
u, etc. are not void. By the same token, T}  (w,) may be assumed longer than wy;
this is done under (3) below; also 7T (w,) may be assumed not shorter than w,; this

is done under (4) below.

1+2+4+7+10+16+17+26+} {11+l3+14+21+22+23+33+34+

1
29+304+31+324-43+47+52 35+38+444+50+r M)

3(10)+2(2+4+6+7+16+32+43)+
143+5+9+12+15+17+18+26+29+  (2)

30+314+-39+40+41+42+47452

8+14+21+22+33+34+}>
2(38) +44 + 50 +r g

10+18+32+35+41+42+43>14+38+39+40 (3)
24+3+44+54+206)+7+9+10+11+12+13+14+15+16+23>8 (4)

Adding these gives 0>2(39+40), a contradiction.

This takes care of all categories save 3: products of all ¢, The fact that in
every case a direct automorphism B was found with the property that no inter-
mediate word is longer than w, will be used in 3. below.

Because the cases 3. require a great many inequalities, the following simplifying
device is used. The set S so far used is large because it is usable for every case;
but smaller sets suffice for just one category. A set usable for 3. alone, of fewest
possible syllables, will be given. They will be devided into subsets as indicated by
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the numbering, and in the computations the number of times s; occurs in w, will

be designated by 7.

The symbol a stands for each symbol in the set (#, ¢, d°); the symbol & for

each in (7, d).

89=(80:) =((xed), (yed), (decd), (dc)b, (yd), (ué), (zd))
8;=(s5) = ((zd), (x2), (xc)@)

8= (8)=((yd), (dd), (y2), (d2), (z®@), (yc)a, (dc)a)
83=(8g) =((c), (ycy) (dcy), (ue)@, (cd), (c2), (&), (ud), (uZ), (cc)@)

84=(xc?)
85=(s5:) = (ug), (ud))
86 = (8g:) = ((ccd), (ucd))

87=(87) = ((déd), (d¢Z), (ccd), (uck), (z¢§), (yéd))
85 =(8g:) = ((z €d), (x22), (ccy), (ucy))

89 = (891) = ((yCJ)’ (dC(Z), (Z’d))

3.1. Products containing ¢,, and t,;, with e= +1.

[ oo x—>xC
y—>yc
—>yc
y—=y ddec
d—dc
A d~A c—cd
c—>c
d z—>zxd
z—>x
i u—>ud
U—>u
) lg—~>dgd

where ¢ runs through =z, y, u, z, ¢. Moreover, 4 equals

AII

u—>uc
d—dc

r—>xcC

y—yc; A" =T5 T, Ty.

c—>cd

z—>xd

| u—uc

z—>xC
y—>yc
d—dc

r—>xd

z—>xd

¢ —>dc
y—>yd

z—zd

T—>xcC
y—>yc
d—dc
z—>zd

c—>dc

| y—>yd
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Set A'=T3T;T, and A*=T;T; Ty, where Tt=T, Ts=t z—>zd; also T}=T),,
Ty=t :z—zd.

The computation below gives the same result if any subset of (z, y, u, 2) is
void. If ¢ or d is void, A4 reverts to a form discussed before. Similarly for 3.2, where
e= — 1. Assume therefore that none of the sets are void.

The product T3 7% is equivalent to the form 2. (exchanging the letters ¢ and d,
and setting x and y void in 2. makes this apparent), which can be made direct in
such a way that no intermediate word is longer than the first word. Thus if 7' (w,)
is shorter than w,=1T, (w,), then 4" either is direct or can be made direct. Under
(3) below the contrary is assumed. ’

The product T:7T; is of the form 2. (with u made void in 2.), so it can be
made direct in same manner. Thus if Ty 7, (w,) is shorter than w,, then A’ either
is direct or can be made so. Under (4) below the contrary is assumed. The same holds
for T3 T%, so it is assumed under (5) below that 75 77 (w,) is not shorter than w,.

Set T°% x—sxec, d->dc. If T°(w,) is shorter than w;, then AT° is left to in-
vestigate, which is of the form 1.1. Under (6) below the contrary is assumed.

Let C be a conjugation of every symbol, except d, by d, and €’ a conjugation
of every symbol, except ¢, by c¢. Since conjugations are the identity transformation
on cyclic words, I=R (see beginning of section 8) for C' and (’. This is what the
equalities (7) and (8) below state.

14+2+5=6+7+8+r 1)
2(6+7+8+7r)=2(L+2+5) 1’
3(6+7+8+7)=3(1+2+5) 1)

2(6)+7+9+r>3(1)+2(2+4)+3+5 (2)

Combining (1’) and (2) gives

5+9>1+4+3+74+r4+2(4+8), or (29
6+9>2+3+8+2(1+4) 2"
1+ (2—25) + 34+ 38+ 39> 07 + 61 4 (7 — 74) + (8 — 84) +r 3)
01+02+03+2+25+37+4+ ’
}26—}-71+72+,75+76+83+84+93+r (4)
5+2(1+31)
05+1+124+2+234+244+36+
}209+6+71+73+74+76+8+r )
39+5482
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06 +1+22+24+25+27+33+ )

>02+6+7+81+82+91+r (6)
37 +4+52+75+76 J
01+ 03+ 06 +24 + 27 + 33 + 52 +
N }=04+09+11+21+35+38+76+81 )
6-+72+9+92
07 +35 + 36 + 61 + 73+ 83 = 04 + 05 + 13 + 26 + 27 + 34. (8)

Adding (1), (2'), (2"} and (3) to (8) gives 0=>2r+ ---, where the right hand side
is at least as large as r, contrary to the definition of r. Thus, one of the auto-

morphisms above is direct or can be made direct by previous results.

3.2. Products containing ¢, and #,, with e= —1.

r—>zxC
x—>xC
y—>yc x—>xC
—>yc
vy d—dc c—>d—¢
d—dc .
A ~ A"y x—xd = A*{d—~éd
x—=>xd
u—>ud y—>yc
u—>ud
c—>cd 2—>zd
| c—>cd
| g—~dgd

where g runs through z, y, 2, u, c.

Set A*=T;Ts P*TY, t:x—xc, and ' :x—>xd. Then T; Ti is equivalent to the
form 2. and can be made direct; thus if « is void A* can be made direct. If x is
not void but ¢(w,) is shorter than w, =T, (w,), then {4 is left to investigate, which
is equivalent to having z void. Assume then that #(w,) is not shorter than w;; this
gives the inequality (3) below.

Similarly, if #' 4 (w,) is shorter than w,;, i A is left to investigate, in which x
is void. Assuming the contrary gives the inequality (4) below.

The results below remain the same if any subset of (u, y, z) is void.
1+2+5=6+7+8+r (1)

2(01)+1+2(12+13+2—-21 —22 +3—35—38) +
35+ 38+7+2(81)+r> (01) ( ) @)
2(4)+5+9

01+1+25+37+4+93>02+03+73+74+81+82+r 3)

01.+02+03-|—2(12+13+23+24+26+27)+}>{35+38+71+72+75+76+ @)

25+3—-35—-37-384+4+5+91+92 81+82+r

Adding (2), (3) and (4) gives 0>r+ 26+ 27+ 2(82), contrary to the definition of r.

Thus 4" is or can be made direct by previous results.
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9. Corollary

The corollary to theorem 1 states (section 3) that w, may stand for a set of
words (wy,, Wyg, ..., Wyn). This is seen as follows.

Let a; denote a generator of F,=G' and let g denote a new symbol. Let w,
stand for the set of words above from a free group on any number of generators,
finite or not, and suppose that n of these generators occur in w, denote them by
a, =1, ...,n, and let g be a, , in the group. It is no loss of generality in what
follows to consider only the free subgroup G=F(a,, ..., a,, 9).

Form the cyclic word

Wo=wp gWea JWo3 g --. Won g

in G. Then the theorem holds for W, in G. It will be seen to hold for w, in F,=¢",
and hence in any free group.

The direct automorphism B that takes W, into A (W,) =4 (wyg ... Werg) =
=(Awy g - Awg-g-...) has the following property: the image under B of an active
generator differs from its image under 4 at most by a conjugation by a word w
composed of multipliers in A. In particular, B(g)=wg®, and for any T% in B,
T (9) = wi g B

If w is the empty word, w=1, then B is an automorphism of G’, and the cor-
ollary is true, provided that also w,=1 for every k. Otherwise there is a smallest
number k, with w;, =1, and hence of length 1: T} (g) =wy g, and wi is a generator.
Set T*: g—>wigwy, ai~>Wra;wy, =1, ..., n; the product T* T}, =T is a single 7-
transformation. Replacing T by T in B gives another direct transformation of W,
into 4 (W, but one with fewer factors that act on g. As B is a finite product of
T-transformations, repetition of this procedure yields a direct transformation equi-
valent to B and with w,=1. This transformation will be an element of the auto-

morphism group of ', hence the corollary.

10. Some consequences of theorem 1
THEOREM 2. If w, is a set of elements and A is an automorphism of the free
group G, A (w,)=w, then there exist T-transformations B;, i=1, ..., k, I:E[B,=A, such
that every set of words Il_r[B, (wy), r<k, is at most as long as max (L (w,), L (w)).
Proof. Suppose, for definiteness, that L (w)<L (w,). Let T, ... T, be a repre-

g
sentation of 4 in terms of 7T-transformations, with intermediate words [ T, (w,) = w,.
1
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Let w,- be a longest intermediate word such that L (wy_1) <L (w,) or L(wyi1)<
L(wy); L(wy)=L. Applying the corollary to wg._1, Wy, w,-+1 and using the direct
transformation B so obtained to replace Ty 1Ty in A yields T ... B ... T,=A4,
with intermediate (sets of) words of length at most L, but fewer longest ones than
before. A finite number of these steps leads to the goal.

In particular, an automorphism B can be found for which there exist numbers
k' <h' <k, such that the lengths of the intermediate words W, under B are mono-
tone decreasing from 1 to A"/, are unchanged from A" to &', and are monotone in-
creasing from A&’ to k. This result implies theorem 3 of Whitehead [7]; which states
that if w, and A (w,) are minimal 7' then they can be transformed into each other

by level T-transformations.

THEOREM 3. Words minimal relative to all single T-transformations are minimal
relative to any automorphism.
Otherwise the automorphism B of theorem 1 would fail to exist for some factor

T,T, of such an automorphism.

TEEorREM 4. If w, and w, are minimal and are connected by an automorphism,
then they comtain the same number of distinct gemerators; moreover, if k;; s the number
of times ai occurs in wj, =1, ..., n, =1, 2, then the sets of numbers (ki) and (ki)

differ by a permutation of the subscripts 1.

Proof. By theorems 2 and 3 the (sets of) words w; are connected by level 7'-
transformations, 7", and possibly permutations. The effect of such 7" is to move the
multiplier in 7" from some places of occurrence to others with a change of sign.

This, as well as a permutation, leaves the set of numbers (k,;) unchanged.

TaEOREM 5. If w,=A (w,) ts minimal, then the number of distinct generators
tn w;, can be diminished by applying a transformation if and only if w, has fewer
distinct generators than does w,.

This follows from the two preceding results.

THEOREM 6. If w contains a; or G; for every i, wc G=F (a,, ...) and is minimal,
then A (w) contains, for arbitrary A, a; or @ for every 1.
For suppose w,=A4 (w) did not contain af; then w=A4 (w,;) would contain more

distinct generators than w,; this would contradict theorem 5.
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11. Some applications of the syllable method

Let (b, ..., b, @)= (b, a’), a’ =bf, denote any non-empty subset of the symbols
ay, Gy, Qg, Qgy ..., Ay, G,; let z run through all those «f not equal to b, or @,
t=1, ..., k, as well as the identity element 1. Let wc G=F(a,, ..., a,); denote by

(b;@’) the number of times the symbol b; is followed by @' in w plus the number
of times b, is preceded by a’ in w; denote by (b;z) the corresponding number summed
over all values of z. (A symbol is followed by 1 in w if it is the terminal symbol,

and is preceded by 1 if it is the initial symbol there.)

TrEEOREM 7. The word w is minimal if and only if the relation

S 0a) <3 02) ")

i

holds for every set (b, a') in G.
Proof. The automorphism b—ba’ is a T-transformation whose effect is to replace
each element b, of the set (b) by b,a’. When b;a’ occurs in w, the symbol a’ in-
troduced by this 7' into b;@’ cancels against @’; for an occurrence of b;z there is no
cancellation. The excluded values for z yield the combinations & 6, and b,a’; in the
latter there is cancellation, in the former there is no change under 7. Thus the con-
dition (*) states that the number of cancellations must not exceed the number of
new symbols introduced by 7. This condition is clearly necessary. Its sufficiehcy
to make w minimal 7', for any 7T-transformation, 7' follows from the lemma of sec-
tion 4.4. It follows now from theorem 3 that under the hypotheses above w is

minimal.

THEOREM 8. “T-transformation” cannot be replaced by “‘simple, or, t-transforma-

tion”” in theorem 1.

Proof. The relation (*) of theorem 7, stated for simple automorphisms ¢, for

G=1F (a,, a,, a;) is of the form
(@y)<(z2) **)

since now (b, ..., by, a’)=(b, a’) = (b, &'), or, briefly, (zy).

A word in G satisfying this condition for every pair (z, y), where 2%, y* are
generators, is minimal ¢.

Let v and » run through every symbol in G having exponent +1, and set
a=a,, b=n,, c=a, in G. Then G has an element which satisfies (**) for every pair

(xz, y) as well as the condition

(@ac)+bé)>(av)+ (bu)
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(for notation see the introduction to this section), which contradicts one of the
relations (*).
This element is

w=>babéacbccbcdcbbabbcdcabé

of length 24 and is minimal ¢ but is reducible under the T-transformation 7": a—ac,
b—be.

It may be noted that in F, every 7T-transformation is a f-transformation, and
since w(a, b, ¢) above is the shortest word in F, having this property, it is also

shortest possible in any free group.

THEOREM 9. If the word T (w) tis longer then w, then TT (w) ts longer than
T (w). More precisely, L(Tw)— L (w)=r>0 tmplies L (T*w)—L(Tw)=>r.
Proof. Let the inequality sign in the relation (*) of theorem 7 be replaced by

a true inequality for a fixed set (b, a'):
Z (ba')< ; (b 2)

and let it hold for the word w< @ (qa,, ..., a,). Then under the T-transformation
T: b—ba’, i=1, ..., k, T (w) is longer than w.
In T (w)y=w,, b;a’ and its inverse occur more often than b,v=050,4" and its in-

verse, for all b; combined, so

¢Z(b a’)<iZ(b,-a’) in T (w).

Clearly, the set (b, Q') contains the set (b;d@’) of consecutive symbols, and so for the
number of their respective occurrences, also written as (b;@') and (b;@): (b,a’) < (b, a');

since z was to take on the value o’ too, (b;a’) < (b;z); hence

12 ;@) < ; (b;a')< iz (bja’)< 2 (b;2) in T (w).

Moreover, the difference between the two extremal sums in the last inequality is
seen to be at least as great as that derivable from the first inequality above; hence

if the latter be >0, the former is at least equal to r.
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