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1. Introduction

In this paper we shall obtain a linear predictor for a multivariate discrete para-
meter stationary stochastic process (S.P.) having a spectral density matrix F’, the eigen-

values of which are bounded above and away from zero. To get this we shall de-

(1) This paper, like Part I [12], contains the research we carried out at the Indian Statistical
Institute, Calcutta, during 1935-56, along with some simplifications resulting from later work. We
would again like to thank the authorities for the excellent facilities placed at our disposal, and Dr.
G. Karrianeur for valuable discussions.

Since writing this paper we have learned that some of our results in Part I have been du-
plicated by H. Herson and D. LoWDENSLAGER, cf. their paper, ‘‘Prediction theory and Fourier series
in several variables”, to be published in this volume of Acta Mathematica. We regret: that no reference
was made to this fact in Part I. In a recent note [Proc. Nat. Acad. Sci., U.S.A., Vol. 43 (1957) pp.
898-992] M. RoOSENBLATT has derived Theorem 7.10 proved by us in Part I, but his derivation is
based on an incorrect lemma. To rectify this one would have to go through the steps followed in
our Part I.
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velop a coordinate-free algorithm for determining the generating function(!) of such a
process. In the course of this development we shall obtain an expression for the
prediction error matrix G with lag 1 in terms of F’, thereby clearing up an im-
portant lacuna in the theory (cf. [12, Sec. 8]). We shall extensively use the theory
of multivariate processes developed in our previous paper [12], and adhere to the
notation followed therein. Numerical references prefixed by I are to this paper.

In Sec. 2 we shall enunciate the prediction problem for a g-variate stationary
process, and show how it can be tackled by the solution of a system of linear equa-
tions. This involves matrix inversion. A computationally more efficient approach will
be shown to depend on the delicate problem of determining the generating function
of the process. This is difficult for ¢>1 on account of the non-commutativity of
matrix multiplication. In Sec. 3 we shall describe the genesis of our algorithm for
accomplishing this from Wiener’s original idea of using successive alternating pro-
jections in Hilbert space [11]. In Sec. 4 we shall show that if F is the spectral
distribution function of a g-variate, regular, full-rank process (f,)%, [I, Sec. 6], then
the class Ly r of g¢xg matrix-valued functions, which are square-integrable with
respect to the (matricial) spectral measure F is isomorphic to the space M, spanned
by the random vector-valued functions f,, — co <k< oo. In Sec. 5 we shall introduce

the boundedness condition mentioned in the previous paragraph, and show that the
sum of manifolds > & (f_,) then becomes topologically closed and therefore identical
0

to the present and past of f,, that the reciprocal of the generating function of the

process has a Fourier series without negative frequencies, and that the linear pre-
o0

diction with lead » is given in the time-domain by a unique infinite series > E,, f_,
0

converging in-the-mean, where the matrix coefficients E,; depend on the Fourier
coefficients of the generating function and its reciprocal. In Sec. 6 we shall establish
(rigorously) the algorithm mentioned in Sec. 3 for getting the generating function
and its reciprocal under the boundedness condition, and derive an expression for the
linear predictor and the prediction error matriz in terms of the spectral density; we
shall thereby complete the solution of the prediction problem. In Sec. 7 we shall
show that the boundedness assumption is fulfilled whenever the spectral density is

estimated from correlation matrices, which are themselves computed from time-series

L
(1) By this we mean the function ® = > A, GEF0 of [12, 7.8] in which the coefficients Ay
[

and G are as in the Wold Decomposition [12, 6.11]. For a regular, full-rank S.P. see Def. 2.6 below.
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observations, i.e. in a large number of practical cases. Finally in Sec. 8 we shall
show how the ideas introduced in Secs. 3 and 6 lead to a general factorization pro-
cedure valid even when the matrix to be factored is not hermitian-valued. We shall
also show that in the hermitian case the factorization so obtained is unique up to
a constant unitary factor.

The rest of this section will be devoted to recalling some necessary parts of the
theory developed in [I] and to introducing supplementary material of an ancillary
nature. We shall first explain our notation.

Notation. As an [I], bold face letters A, B, etc. will denote qxq matrices with
complex entries a,, by, etc., and bold face letters F, @, etc. will denote functions whose
values are such matrices. The symbols T, A, * will be reserved for the trace, determinant
and adjoint of matrices. Q will stand for a space having a Borel field of subsets over
which 1is defined o probability measure P. Bold face letters x, y etc. will refer to g-
dimensional column vectors with complex components x;, y;, etc., and bold face letters
f, g, etc. to (random) functions defined over the space Q, whose values are such vec-

tors. L, will designate the set of such functions T with components [ such that

_“f(i) (@)PdP(w)< oo, [I, 5.1]. For t, g€L, (£, g will denote the Gramian matrix
Q

[(fD, g'M)]. ©(py)se; will denote the (closed) subspace spanned by the functions ;€ L,,
for j€J, linear combinations being taken with matrixz coefficients [I, 5.6], and (| 11)
the orthogonal projection of t on the subspace Wi [I, 5.9]. The letters C, D,, D_ will
refer to the sets |z|=1, |z|<1, 1<|z|< oo of the extended complex plane.

Next, we recall [I, 3.2] that the ¢xgq matrices with complex entries form a

Banach algebra under the wusual algebraic operations and either the Banach or
Euclidean norms:

B |Ax] 1
[Alz=1u.b. ] i

11 x=+0 , i (1.1)
|A|E={T(AA*)}&={21 EJ%IZ} .J

It follows of course that
1.2 [A+B|<|A|+|B], |AB|<|A||B| (either norm) (1.2)
1.3 IA*|=|A| (either norm). (1.3)

But we also have the following inequality.
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1.4 LeMMa. [AB|z <|A|z|B|s |A]z[Bls
Proof. Let ai, ..., a, be the rows of A and b, ..., b, the columns of B. Then
denoting by a;b; the (i, j)th entry of AB, we hawe

] Q
|[AB[E=2 2 |aib ™ (1)
i1 41
Now Ab, is the column vector (a;b;, ..., agh;). Hence

Q
2 [auh; = Ab; [P <|A 5 |bs [
i=1

From (1) we therefore get

Q
[ABE<|A]R 2 b =|AB|AlE,
i=1

ie. |[AB|z<|Als|Blz. (2)
Since by (1.3) |AB|;=|B*A*|;, and by (2) and (1.3)

|B* A% o <|B*|5[A* [z =|B[s]Alz,
we get |AB|E<|A|E|B|B. (Q.E.D.)

We shall also need the following simple properties of hermitian matrices, which

we shall not, however, prove.

Notation. If A, B are hermitian, we shall write A<B or B> A to mean that B— A
18 non-negative.

1.5 Lemma. If A, p are the smallest and largest eigenvalues of a hermitian
matriz H, then

(a) AI<H<pL

() [H]p=max {4], [ul}.

i = ;’i;—i, provided u+1>0.

(d) AAA*<AHA*<puAA™

© |raH-

To turn to matrix-valued functions we recall [I, 3.4, 3.5] that for §>1 the set
2n

Ls; of functions F=[f;] on C such that each f,; is measurable and f | £ () ]°d o< o
0

is a Banach space under the usual operations and the norm
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2n
(L 0y g9 5.
IFIa—{MJlF(e")IEde,"

L, is moreover a Hilbert space under these operations and the inner product

2n
18 (@ @)= [ < F e @t @y ao, (16
¢
the corresponding norm || || being the same as | |,:
2n
(F T\ 1 i0y |2 '
1.7 IF)=V®F)= {5~ | [FE)[Edo} =[F],. (L7)
9 :

The set L, of functions ¥ on € with measurable and essentially bounded entries is

a Banach algebra under the usual operations and the norm

1.8 |F|w =ess. Lu.b. |F(e')|z. (1.8)
0<o<2n

It remains a Banach algebra, if in the last relation we take the Banach norm in-
stead of the Euclidian.

The Lebesque integral of a matrix-valued function F is the matrix obtained by
integrating each entry of F [I, 3.6]. Some simple properties of this integral are listed

in the next two lemmas, the proofs of which are obvious.

1.9 LEMma. (a) If FEL,, then

2n

2n
fF(e"’)d()l< [|F(ei")|d0 (either morm).
0 °

2n

(b) If FEL,, and is non-negative hermitian valued a.e., then fF(e"’)dB 18 non-

0
negative hermitian.

(¢) FEL, implies TFEL,. The converse holds, provided that the values of F are

non-negative hermitian a.e., and its entries are measurable functions.

1.10 LEMmMA. (Schwarz inequality). If F, GEL,, then
(a) FGE€EL,

2n 2n

(b) ,zi fF(e“’)G(e”)de} <|FGII<ifIF<e‘°>|EIG(e"’)|Ed0<||F||-IIGH-
n(_) E 27!0
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Proof. (a) follows from I, 3.5(a), and (b) from 1.9(a), (1.2) and the ordinary
Schwarz inequality. (Q.E.D.)
A simple application of Lemma 1.4 yields:

111 LEmMma. F€EL, and GEL, implies FGEL,, and
IF&|<||F|- M,

where ||F|| is as in (1.7), and M =ess. Lub. |F (¢')|, with either norm.
0<0<2x

We recall the Riesz-Fischer Theorem 1, 3.9 (b), which asserts that

(A) % 18 the sequence of Fourier coefficients of a

1.42 L . Lz . (1.12)
function in L,, if and only if > |A,|z< co.
For FEL, with Fourier coefficients A, we have the Parseval relations 1, 3.9 (c):
2n
1 ; ; Z
Tf F(9)F* (%) do= 3 AL A%,
1.13 Ty oo (1.13)

1P - 5 1A

An important consequence of (1.12) is that if A, is the nth Fourier coefficient
of a function in L, and the sequence (B,)”, is composed of A,’s and zeros, then
B, is also the nth Fourier coefficient of a function in L, This suggests a departure

from I, 3.10 in the urage of the subscripts +, — for functions in L, when p>2:

1.14 DEFINiTION. (a) For p>1, L}, L, L,, Ly will denote the subsets of
all functions in L, whose n-th Fourier coefficients vanish for n<0, n<0, n>0, n>0,
respectively.

(b) If FEL,, where p>=2, and has Fourier coefficients A, — oo <k< oo, then F,,
Fo., F_, Fo_ will denote the functions in L3, L3*, Lz, L3~, whose n-th Fourier coefficients
are A, for n>0, n>0, n<0, n<0, respectively (and zero for the remaining n). F, will

denote the constant function with value A,
From this definition and the relations (1.12), (1.13) we readily get the follow-

ing lemma.

1.45 LEMMA. (a) The sets Li, L3, Ly, L3~ are (closed) subspaces of the Hil-
bert space L,, and Ly L Ly, L3* L Ls.
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(b) If FEF,, then
(1) F=F_+F,+F, =F,_+F,=F_+F,.
2 IFIF = [ F_ [P+ TP+ 1FL P = [ For [P+ LN = JIF_I+ || Fo |
3 NF AL 1 Foull, IE_l, 1Fo_]] < [|F|I-
(4) B = (F)_, (F.)'=(F",.

Another fact we will require, which is well known, is stated in the next lemma.

1.16 LEMMA. The bounded linear operators B on the Banach space L, into
stself form a Banach algebra B under the usual operations and the Banach norm

Cgp B[
R ]

Finally we will need the following simple results on the Gramians of random

vector-valued functions in 2,, the proofs of which are immediate from I, 5.8, 5.9.
147 LEMMA. (a) If W is o subspace of &, and 1=(1| M) (cf. I, 5.9), then for
all gemM
f—g 1—g)>({E-1 1-1).

(b) If Bt=clos. l{ m,, where each M, is a subsqace and M, ,2 M, then
(f| 1) = lim (] 911,,).

2. The prediction problem

Let (f,)%. be a g¢-ple stationary S.P. and let 9,=& (1), be the present and
past of f,, [I, sec. 6]. Then we define the linear prediction of £, with lead n by

f,=,|m,), [I, 5.9]. Since I,€Mt,, it will follow that

2.1 1, (0)=1im. §A§N>L, (@), n>0, 2.1)
N-soo =0
where the A{" are certain (non-unique) ¢xgq matrices.

Now for a fixed w in the probability space Q the values x;,=1;(w), — o0 <j< o0
constitute a multiple time series or in Doob’s terminology a sample function of the
S.P. (1,)°. The components of the past values X_;, >0, of such a time series can
be found from observation. Hence if the matrices A{" can be determined, we can

evaluate the sum occurring in (2.1), and for sufficiently large N, treat it as an
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approximation to the linear prediction §n=fn (w) of the value X, of this time series
at the future time n. Hence an important problem in prediction is to determine
the A{™, ‘

In the Wiener-Kolmogorov theory the quantities supposed to be known or given
in terms of which the A{™ are to be determined are the correlation matrices I', = (f,, {,),
I, (6.1)]. This theory has its basis in the case in which the shift operator of the
process is generated by a measure-preserving transformation of the probability space
Q onto itself. We shall show in Sec. 7 how under the assumption of ergodicity, the
T, may be estimated from time series data. Alternatively, it may be possible in
certain cases to hypothesize the values of I', from a theoretical study of the process
without recourse to sampling. We may therefore formulate the prediction problem

as follows.

2.2 Prediction Problem. Let (£,)°, be a g-ple stationary S.P. with a given,
known covariance sequence (I',)*,, and let U, be the present and past of §,. To de-
termine

(i) the gxq matrices A{Y in the formula (2.1) for the prediction fn of £, with lead n,
(ii) the prediction error matrix for lead n:

-~

Gn = (fn - ‘fns fn - fn)

Seemingly the easiest way of solving this problem is by an extension of the
method of undetermined coefficients. Since f, = (f,| ¥,), we may choose the A{"™ so that

N

> AL =(1,]S(E ), n>0.

=0

Then by 1.17 (b), the A{™ will satisfy (2.1). Also [I, 5.8 (b)]

N
f,— SAME, 11,1, .., fy.

=0

Hence for each k=0, ..., N,

N N
0= ( Z Ag'N) f—j - fm f—k:) = Z AE'N) (f—i’ f—k) - (fm ka):
j=0

=0

N

i.e. Z A(/N) I‘k_,=rn+k, ’C=0, ooy N-

=0
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This system of N +1 equations in the N+ 1 unknown matrices A", j=0, ..., N,

is equivalent to a single matrix equation, which in block notation may be written
[AGY... AGQY] I.‘o...I'rN =[T,... Tl )]

Y
In this the first factor on the left and the term on the right are ¢x(¥N+1)¢q

matrices, and the second factor on the left is a (N +1)¢x (N +1)¢ matrix, which
we shall denote by I'. If I' is invertible, we get

[A§V .. A =[T, ... Tyl [ro r_N]*l (2)
ry T,
from which the unknowns A{™ can be found. We shall now show that I' is in-

vertible, if the S.P. (1,), has full rank, cf. [I, Sec. 6, p. 136].
Let B, ..., By be any ¢xq matrices and consider the ¢x(N -+1)¢ matrix

B= [BO’ cee s BN]'

A simple calculation shows that

BT'B*=[B,...B,] [Ijo ...I‘__N] [B_;,'] l
r,..r, lls )
N N N N i
-3 > B,rj_kB:=(2ij,, B, fk).J
=0 k=0 [ 0

Now take By to be invertible. Then

1

N N-
%Bf f;‘:Bzv(f1\7+ % By Blfi):BN(fN—g)’

where g is in ¥iy_;, the past of fy. Hence from (3)

BrB*:BN(fN‘"g: fv—g)Bx. (4)
Now by 1.17 (a)

(y—g ty—g) > (Iy—fy, ty— ) =G,

where fN=(fN]mN4) and G is the prediction error matrix with lag 1. Since for a
full-rank process (f,)%., A (G)>0 by definition, therefore [I, 3.11 (c)]

A(fy—g, txn—g)>0.
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Since By is invertible, it follows from (4) that so is BT'B* and therefore also T
For a full-rank process the desired matrix coefficients can therefore be obtained
from (2).

This method of solving the prediction problem involves matrix—inversion and
is therefore unsuitable as a computational technique except where the matrices are
small, i.e. where ¢ is small, very short segments of the past are used, and large
prediction errors tolerated. To arrive at a more accurate and efficient computational
procedure we have, as often happens, to appeal to more advanced and refined ana-
lytical theory; in the present instance to the representability of a relgular S.P. as
a one-sided moving average, and the factorizability of its spectral density {1, Sec. 6, 7].

To recall this theory, let (f,)°, be a g¢-ple regular, full-rank process, let (h;)%,
be its normalised innovation process [I, 5.12], and G its prediction error matrix
for lag 1. Then by I, 6.12

2.3 f,= > Ch,_x, Ce=(fy h_y), C=VG. (2.3)
k=0

By I, 6.13 (b) the remote past Wi_, is {0}, and so by I, 6.10 (b), 1, is also the
present and past of h,. Hence from I, 5.11 (¢) and I, 5.12 (b)

fn = (fni mo) = z Ck hn——k
k=n

n-—-

1
2.4 f,—1,=> Ch,_, : (2.4)

k=0

~ ~ n-1
G,=(d,—1,1,—1)=> C.Ck.
k=0

To solve the Prediction Problem we have only to determine the matrices C; and the
random functions h,. Now by I, 7.7 and I, 7.10 (A), if ¥’ is the spectral density
function of the process, then

F (%) = (e'%) - B* (), a.e ]
D ()= > Cref e LI*
k=0
2.5

L (0)=VG (which is non-negative hermitian) [ (2.5)
2n

A{®, (0)}* =exp [;—nf log A {F' (¢'%)} d@] .
b
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2.6 DEFINITION. We shall call ® = 3 C,e"® € 13", where the C; are as in (2.4),
k=0
generating function of the S.P.

If in some way we can determine the generating function € or its Fourier
coefficients C, the only unknowns left in (2.4) would be the random functions h,.
The task before us is therefore to devise a constructive or algorithmic method for
finding @ or the coefficients €. To see the difficulties in finding this, take g=1,
i.e. suppose that F’ is complex-valued. Its factorization can then be effected as in
the proof of I, 2.8. We first obtain the Fourier coefficients a, of log F’ (¢!°). (1) We

then compute the Fourier coefficients C, of the factor @ from the equation
o0 n
> Cp ¥ =exp (%a0+2anz"),
0 1

by expanding the R.H.S. and equating coefficients of like powers of z. By the Uni-
queness Theorem I, 2.9 the C, so determined will be the desired coefficients. (2)
This method will not, however, work for ¢>1, since matrix multiplication is non-

commutative and the exponential law

exp (A+B)=exp A-exp B
breaks down.

The problem of determining the generating function thus presents fresh diffi-
culties when ¢>1. In Sec. 6 we shall give an algorithmic solution of the problem,
valid under a condition of boundedness 5.1, the significance of which will be dis-
cussed in Sec. 7. But to get the form of this algorithm we will have to reverse
the shift from the time-domain to the frequency-domain made in passing from (2.4)
to (2.5), and to find the €, from the equations C,=(f,, h_,)=(f, h,), £>0, after

expressing h, linearly in terms of the f_, by alternating projections (Sec. 3). In

(1) In practice we can find the logarithm from tables or by a cam or analogué computer, and
get its Fourier coefficients by a harmonic analyser.

(*) For g=1 the method of factoring usually followed in communication engineering, and con-
fined mainly to the continuous parameter case, is to approximate to ” by a rational function, and
to determine the zeros and poles of the latter by numerical solution of polynomial equations. The
zoros and poles in D, are then separated from those in D_, and the factors @, ®* isolated. Cf.
Wiener [10, 2.03] and Bode and Shannon [2].

This method is motivated by the fact that only filters having rational transfer functions in the
frequency domain can be synthesised out of lumped passive elements. As long as we rely on analogue
computers to do the prediction, this fact is crucial. But it ceases to be relevant if the computation
is to be carried out digitally, as would be more accurate and otherwise more appropriate in the dis-
crete parameter case, since it would obviate the necessity of interpolating. In digital computation it
would be more natural to follow our method of factoring than that of rational approximation.

—
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Secs. 5, 6 we shall also show that under the boundedness condition the Fourier
coefficients of & and ®! can be utilized to get the random functions h_, of (2.4)
as well, and thereby to complete the solution of the Prediction Problem.

3. The alternating process

In this section our approach will be heuristic. We will outline Wiener’s idea
of using successive alternating projections on Hilbert space in order to derive the
components of the innovation function in the 2-ple case, and show how when ap-
proached from an operator-theoretical standpoint it suggests a coordinate-free algo-
rithm for determining the generating function. |

We shall begin with a lemma on the spectral densities of the component pro-

cesses of a multiple process.

3.4 LemMma. (a) Let F=[F,] be a gxq non-negative hermitian matriz-valued
function on C. If FEL, and log AF€L,, then log Fy€L, for 1<i<q.

(b) The component processes of a regular, full rank process are regular.

Proof. (a) Since the values of F are non-negative hermitian, we have AF<

<Fy, ... F,, whence
log AF<log Fy + -+ log Fg,< log Fy+7 (F).
Hence log AF~7(F)<log Fy<Fy a.e.

The extreme terms being in L,, so is the middle term.

(b) If (£,)°, is regular and has full rank, then by I, 7.12 its spectral distri-
bution F is absolutely continuous and log AF €L,. It follows that F, is absolutely
continuous, and by (a) that log Fi,€L,. Hence by I, 7.12 the component process
(f)%-- o is regular. (Q.E.D.)

Now let F'=[F;] be a non-negative hermitian matrix-valued function on C such
that ' €L, and log AF €L,. For notational simplicity we shall suppose that F is
2%x2. By Cramer’s Theorem [3, Theorem 5 (b)] and I, 7.12, ¥’ is the spectral den-
sity of a 2-ple regular, full rank process (f,)*,. If (b,)*, is its normalized innova-
tion process, then, cf. (2.3)-(2.5),

3.2 FI (eiO) — ¢ (em) . ¢# (eiﬂ)’ ¢ (eio) — § Ck ekiﬂ, (3.2)
0
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where @ is the generating function of the process. Here Gy, = (f,, h_;) = (f;, hy). Now

[I, 6.12] hy=VG1 g, where g, is the innovation function of (f,)%., and G = (g,, &,
is its prediction error matrix. Hence '

3.3 Ce=t, V6 g =1, g&) VG, (3.3)

The matrices (§, ), (8 &) involved in this can be calculated, once we have ex-
pressed g, linearly in terms of the f_,. If for instance the coefficients A{" in

N
3.4 g=lim > A1, (3.4)

N> m=0

are known, then we can determine

(B, Bo)=1lim 3 (f, T_,) AQ,
N->00 m=0
since the Fourier coefficients (fy, f_,) =T}, of F’ are known beforehand. Our problem
18 therefore to express g, linearly in terms of f_,, m=0.
Now by 1,(6.8) g,=1,—1, where f,=(f,|#_,), and Mi_, is the past of 1,
Letting M be the past of f@, we have by I, 5.8 (b) (e) and I, 6.5

f& = {1 | clos. (MY, + M3}

and therefore

3.5 g =1 — [ = (19| {clos. (MY +ME)}). (3.5)

Now let (h‘,f’)?f._,o be the normalized innovation process of the simple process
({7 —. Since by 3.1 (b) the latter process is regular, {h$};1_, will be an ortho-
normal basis for the subspace INY). By determining the generating function and
thence solving the Prediction Problem 2.2 for the simple processes (f(,{’)‘,’f__w, =1, 2,
we can determine the random functions hY, and from these obtain (f§|M?N), j=1, 2.
The problem before us is therefore to determine the projection of f§’ on the space
{clos. MY + M)}, given its projections on the spaces MY, and M. So formulated
the problem is seen to rest on the following theorem (von Neumann [9, p. 55]). (})

3.6 THEOREM. (Alternating projections). Let P, P, P be projection operators
on a Hilbert space § onto the subspaces I, M,, M, N IM,. If A, is the n-th term of either
of the sequences

(*) In [11] WIENER proved this theorem, unaware that it was already khown to voN NEUMANN.

8 — 665064 Acta mathematica. 99. Imprimé le 25 avril 1958
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P, P,P, P,P,P, P,P,P,P,
P,, P,P, P,P,P, P,P,P P,

then A,—P strongly (1), as n—>oo,
This at once yields the following corollary, which is really what we need.

3.7 CorROLLARY. With the notation of 3.6, if Q is the projection operator on
 onto the subspace {clos. (M, +IM,)}*, then

(a) Q=I—P1—P2+P1P2+P2P1‘P1P2P1_P2P1P2+"'

the comvergence being in the strong sense;
(b) for all fEML,

QUN=f—P,(y+ P, P;(fy~ P, P, P;(y+ -, j=i

the convergence being with respect to the norm in 9.

We shall apply this corollary, taking $ =2, and M, =IMN?,. We will be able to
use the formula given in (b), which is simpler than that in (a), if f§ £ IM¥,. This
condition, which by the stationarity property will imply that the process {f{}. .
is orthogonal, can be secured by an initial factorization of the diagonal entries of
F’, as we shall now show.

Since F €L, log A¥ €L, and therefore by 3.1, Fj;, log Fi,€L,, it follows by
I, 2.8 that

Fii=|¢:|*, where ¢, €LY, i=1,2. (1)

The Fourier coefficients of ¢; can be found by the method explained in Sec. 2, so

that we may regard ¢,, ¢, as known. Now

A PPt e 1) &
2| | F12/$14: 1 0 ¢,

In this the first and third matrices on the right are in L3 and L, and the one
in the middle, which we shall denote by f, is well defined a.e. on C, Since by (1)
the functions ¢; can vanish almost nowhere on C. If F can be factored, then from
(2) we would get a factorization for F'. Now F does fulfill the conditions of factori-
zability, [I,7.13], viz. Fe€L, and log AF€L,. For since |Fio2<Fi Fro—|d, |2 |ds %,
therefore | Fi,/d, &;|<1. Thus F is in L, and therefore in L,. Also since,

(1) i.e. for each fES:j, IAn (f)—P(f)l» 0, as n— oo, ' | being the norm in 3:)
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log AF = log |$, >+ log |, [* + log AF,
therefore log A F= log AF — (log Fy; + log Fz),

which is in L; by 3.1 (a). Hence there is no loss of generality in assuming, to begin
with, that the diagonal entries of ¥’ are 1.

With this assumption, the component processes (f)%._,, are orthonormal. Hence
f& LMY, and the formula 3.7 (b) can be used to get

g(;) _ f(i) P (f(” 4 Pi Pj (f(z)) _ Pj P Pj (f(l)) + .. j:c: ’l:, (3)

where P; is the projection operator on £, onto the subspace IMY}. Since (f%n)m-y is
an orthogonal basis of this subspace,

P =3 (0, 19 [
" @)
P Pj f ))_ z Z (f(i) (1) (1)”“ (_i)")l(_i)n

and so on. The coefficients involved, viz.
an=(fi0, f6°), bm=(fD, }§°) =G

are the Fourier coefficients of the non-diagonal entries of F, and are therefore known.
From (3) and (4) we get

gf)l)=ff)1)—gf(~23nam+km§:;/1 by Uy — gZZI(mam nbnep @
;%;fgznbm—nan_ppraaq—...’

S (B tn-nbu =333 (B bonn-pby
" P

ZZf(zmam abnpap gbg— -,
P a

+

M 3NV

2 2 1 (5)
9P =15 =3 (% bn +

+
M
s

where all subscripts run from 1 to co.
It would not be permissible to separate the terms in &), from those in %,

in these series. We may do so, however, in their partial sums g§’y consisting of N
terms, so that



108 ' N. WIENER AND P. MASANI
93.)~=f9’+21“—13n {Z bm‘nan"‘zn Z%bm—nawpbn—aaa'*' } ]
m n ¥4

— 2 fan+ 22 an-nbnpay+ -}
m np

L (6)
932.)N= —21‘93" {bm+zzbmfn“n‘pbp+"'}‘*‘ﬁ)m
m n p
+Zf(—23n {Zamﬂlbn‘*‘zzzarn~nbn—m“n—aba+"'}’
m n n pq
or in matrix notation,

gO-N= 1 0 fo'—z 0 [£2% +Z b,,,_nan ]

01 "Wen 0] 10 am, b,
(7)

0 a, b, _,a
ittt iie L
where there are a finite number of terms, depending on N, between each pair of
braces { }, and all subscripts run from 1 to ce. |

The matrix coefficient of f_, in the last expression is what we have denoted
by A in (3.4). These coefficients are thus determined. The desired coefficients C,
can be gotten from the A% as expla,ined earlier, cf. (3.3) and ensuing remarks. (1)
For ¢>2 an analogous method based on g projections can be worked out, but the expres-
sions for the coefficients C, will appear different for different ¢, and will be hard
to handle for large ¢. As it stands, this approach is therefore unsuitable as a com.
putational algorithm.

We shall now indicate how a reinterpretation of the idea underlying this solu-
tion leads to a procedure for finding the generating function which is valid for any
g>2. This is obtained when we try to derive a sequence of operations on the space
of matrix-valued functions of the type used by Masani [6] from the sequence of

alternating projections of ¥, (€2) discussed above. We first note the following lemma.

N
3.8 LEvMma. Jf go= > A, f., —oco<k<oo, and ¥ is the spectral density of

n=0

the SP. (1,)%, then the spectral density G of the process (g.)% s given by

(*) We know that these C; will lead to the factorization of F’, only because we were able to
derive such a factorization beforehand in I, 7.13, by treating F’ as the spectral density of a full rank
process. To prove I, 7.13 we had to make use of the spectral criterion for regularity with full rank
given in I, 7.12. In [11] Wiener attempted to derive this criterion from the expressions (5). Such a
derivation does not seem to be possible. Wiener’s proof is in fact incomplete: convergence difficulties
appear, which become pronounced when the pasts E)JE(}’, 9)2(_2; of the component processes are in-
clined at a zero angle.
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N . N
G (eio) =( z An enio) F/ (ezo) ( z An an)*.
n=0 n=0

Proof. First we have
2n
N . M *
(Z A, Z B.f ) ] (Z Ane’“") F' (') ( > Bme"“’) dé.
N -M

This can be proved in exactly the same way as I, 7.9 (a). It follows that for all
integers k

1 "‘i i
o [ 06 €0~ &)
1]

(3 At 3 A, L)

n=0

1 N *
- Ep [ ( z A e(n k)lﬂ) F/ 10) ( Z nw) 0
0 n-0

=_1_J‘ —kzo( Z A eme F/ io ( % mo)* 9
2n nso )
0

From this the result follows. (Q.E.D.)

Proceeding heuristically, let us suppose that the expressions between the fcur
braces { } of (6) converge separately as N->oo, so that we can replace g’y by ¢§’,
and take infinitely many terms in each { }. The corresponding matrix version (7)
will then contain g, instead of g, y and there will be infinitely many terms between
the braces {}, which give the matrix coefficient of f_,. Denoting this matrix by
by A, m=>1, and letting A,=1, we get '

8o = ZoAm f--m- (8)
Now since the innovation process (g,)%. of (f,)”. is orthogonal [I, 6.9], therefore
its spectral density has the constant value G =(g,, g,). A heuristic extension of the
last lemma thus suggests that

6= (8 80) =T () F () F* (c9), W ()= > Ane™. o)

m=0
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Now let @ be the generating function of our S.P. Then by (2.5)
F-3& = (/)6 (®V6™)"
Since | A (®)|=VA (F)=0, a.e. we see that @' exists a.e. and
6=(/ed)F (6™ (10)

Now assume that ®1€L". Then from (9), (10) and known uniqueness theorems

(e.g. I, 2.9), it would appear that V6@ and ¥ are equal.

This suggests a further study of the function W. Letting
0 a,
By, o7

3.9 An=—-B,+ Z B.B, .— Z Z Bp Bn—-p B, .+, (3.9)
n np

we find that

where all subscripts run from 1 to co. Hence from (9)

¥ =I—- > B,e™+ > ( > B, B,,,_,,) gm0
me=1

m=1 \n=1

_5 (z 5 B,,B,,-,Bm_,.) ey .

m=1 \n=1 p=1

=1-W, (") + ¥, (%) — ¥; () + -, say.

Now let M=F —1. Then B, will be the mth Fourier coefficient of M for m>0, and
a straightforward calculation shows that with the subscript notation of 1.14 (b),

3.10 ¥.=M_, ¥,=-M_M),, ¥,-= {(M+M)+ M}, . (3.10)
Hence
3.11 ‘I’=I—M++(M+M)+—~{(M+M)+M}++---. (3.11)

Thus W can be derived from the (known) spectral density. From (9) we get G and
thence & =¥ VG.
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To put this derivation on a sound footing we would have to justify the change
in the order of summation made in going from (5) to (8), show that (9) is correct,
that @ 1€L* that VG® =W and that the series (3.11) converges in the mean.
We will follow a different approach. The crucial point that @' €L will be settled
in Sec. 5 under the Boundedness Condition 5.1 on F'. For this we will need the
isomorphism between 9, and the L,-class under spectral weighting, which is established
in the next section. The other unsettled points will then either be circumvented or
disposed of by means of the Boundedness Condition.

4. The L,-class with respect to spectral measure

In this section we shall study the class Lg r of matrix-valued functions which
are square-integrable with respect to the spectral distribution F of a regular full-
rank S.P. (f,)%., and show that it is isomorphic to 1., the subspace of £, spanned
by the vector-valued random functions f,, — co <n < co (ef. I, 5.6). This isomorphism
will be needed in the next two sections. Throughout this section we shall assume
that F is the spectral distribution of a ¢-ple 8.P. (f,)%, of this type. By I,7.12 F
will then be absolutely continuous. We shall therefore define Lo r as the class of all
gxq matriz-valued functions ® on the unit circle C such that ®F ®*€L, on C. For
brevity, however, it will be convenient to sometimes write § instead of e'? for the
arguments of functions in L, r, i.e. to imagine that the domain of these functions
is the closed interval [0, 27] and not the circle C.

From this definition of I, r we readily get the following lemmas, cf. (1.6)
and (1.7).

41 LEMMA. (a) DELy s, if and only if & VF €L,
(b) If ®, WeLyy, then ®F ¥* €L, and

2n

7{® (O)F (0)¥* ()} d6 = (& VF, ¥VF)),

(8]
:z"‘

0
2n

1 _
e f;{:p((a) ¥ (0)®" (0)} d0— || @ VF 1.

1]

(¢) If ®EL, and WEL, r then ®WELy, r; in particular every Laurent poly-

nomial in e with matrixz coefficients is in Lo, 5.
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4.2 LEMMA. L t¢s a Hilbert space under the usual algebraic operations and
the inner product

(@, ¥))r=((@VF', ¥VF)), | (1)
the corresponding morm being

| @lle=V(®. ®)e=]®VF|. @)

Proof. Since L, is a vector space, it follows at once from 4.1 (a) that so is
L, . Also, by (1) (( , ))r has all the properties of an inner product, and by (2)
|| || all the properties of a norm.

To show that Lg r is complete, we let (®,)7 be a Cauchy sequence in Lo, 5.
The equality

“'I’m_q’n”F=”¢mVF“(pn VF”

then shows that (®,VF)Y is a Caucliy sequence in L, and therefore has a limit
in L,. Since by I, 7.12 log A¥ €L, and therefore F’' is invertible a.e., it easily fol-

lows that this limit is of the form & VF'. By 4.1 (a) ®EL; 5. Since, as n—>oo,
| ®,— ®|-=|®,VF — B VF|->0,

we conclude that @,—® in L, ». (Q.E.D.)

In [I] we saw that although the f£,norm | || is important in the stochastic
theory, the corresponding inner product ((, )) is not and has to be replaced by the
Gramian (,), cf. I, (5.2)-5.4. The situation is the same with regard to the norm
Il |l and the inner product ((, ))r of 4.2. What takes the place of the latter in the

stochastic theory is a matrix, analogous to the Gramian, which we shall now define.

4.3 DEFINITION. For &, WEL; » we define the matrix (@,V‘I’)F by
2n
(P, ‘I’)p=2—lﬁf ® (6) F'(0)F* (6)d6.
0

The relation between this and the inner product and norm of 4.2 is given by
44 (@, ¥)r=7 (D, F)r, || ®[lr=V7 (D, D). (4.4)

In view of 4.3 and 4.2 (1), (2) we at once get the following form of the Schwarz

inequalities for Ly r from the corresponding inequalities for L, given in 1.10.
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45 LEMMA (Schwarz inequality). If &, W €Ly r then
(@, ¥)rlz < |2 F¥*|, < [|®||]|'F¥s

We shall now turn to the isomorphism between Lo » and M1, =6 (f,)°,. We

shall use the following notation.

m
Notation. (a) Finite linear combinations S:A.f_, with matriz coefficients A, will

—-n

be denoted by the symbols P (1), Q (%), etc.

(b) If P(f)=13 A,f_, then we shall write P (%)= A, .

We shall show that the correspondence so defined between finite linear combina-
tions of the f_, with matrix coefficients, and Laurent polynomials in ¢ with the
same coefficients can be extended to all random functions in ¥, and all matrix-
valued functions in L, r to yield an isomorphism between these spaces. We need the

following lemmas.

46 Lemua. (B() QN =E, O~
Proof. We have to show that

2n

(Z A, OB, f_k) =-21ﬂ—f (Z A, eﬁo) P (em)(z B, eme) 0.

-m
0

This can be done exactly as in our proof of I, 7.9 (a), if we note that since F is
absolutely continuous

2n
(L= [ 4000 F (@20
0

(QED.)

4.7 Lemma. (a) P, (5}~ in Ui, if and only if there exists a function ® €Ly, 5
such that f’,,—><l> mn Ly 5.
(b) If P,(5)—e, Q,(H) > in M, and &, ¥ correspond to ¢, P as in (a), then

(@, ¥)r= (e, ).
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Proof. (a) By 4.6
(P, () — P, (1), P, ()—P, (1) = (B, —P,, B,— P,

Taking the square root of the trace on each side,

|2 () —P, B[} =|Bn—P, s

Now if P, (f)—®, the L.H.S. approaches 0 as m, n—oco. Hence (f’n)‘,’f’:l is a Cauchy
sequence in Ly r, which by 4.2 is a complete space. The sequence therefore has a limit

® €L, . Working backwards we get the converse.
(b) By 46 ®, (D, Qu (1) =@, Qo).

and by I, 5.7(b), (P,(f), Q,(1))—(ep, ), as n~>oco. To prove (b) we need only
show that

(f)n’ Qn)F*(q): ¥)p, as n—>oco. 1)
Now by 4.5

|®, Qu)r— (@, W)l =|(Bo— @, Qs+ (@, Q—P)rl:
< ”ﬁn_ ® |7 Qn“F"‘ ||l Qn—‘l’”F-

Since ﬁn—>¢, Qn+T in Lg, , the R.H.8.—0, as n—>oo, Thus (1) is established. (Q.E.D.)

4.8 DEFINITION. Let (£,)°, be a regular full-rank S.P. with spectral distribu-
tion F. Then for each <@ €M, we define the corresponding member & €L;, 7 as follows:

(i) if @=P(f), then ¢=ﬁ,

(i) if =1lim P, () in W, then (1) &= lim P, in Ly ;.

We note that to the function f_, in 4, corresponds the function €1 in Ly, p.
It also readily follows that if A is a ¢xg¢ matrix, then to the functions A-P (f),
P(f)+Q (@) in M,, correspond the functions A-f’, f’—l—(’i in Lp r. Also by 4.6
(P (1), Q(f))=(’I\’, Q)F. By a limiting argument these results can be extended to all
functions in ¥, so that if to ¢p, Y € N, correspond the functions &, W €L;, 7, then to
A-@, ¢+ correspond A P, ®+W, and (¢, ) = (P, ¥);. Furthermore, if as is natural
we identify functions @, W €L, » which differ only on subsets of C of zero F-measure,

(!) As just shown in 4.7 the limit on the right will exist if that on the left exists.
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i.e. for which ||® —¥||z=0, then the correspondence from M1, into Ly r is one-one.

We shall now show that this correspondence is onto Ly r. We need the following lemma.

49 Lemma. Let (£,)°, and F be as in 4.8, (h,)®, be the normalised innovation

process of (1,)7,., and ® its generating function. Then

(a) the function e "0 ® €Ly 5, and corresponds to the function h, € M;
(b) for any WE€Ly, p, WPEL,;
(e) for any WE€Lyp, if Ay is k-th Fourier coefficient of W, then as n—oo

(Z A,cem) &' >W¥ in the Ly p-norm.

Proof. Since h, € 11, there is a corresponding member in Ly, r, say W. As re-
marked in the preceding para,

2n
.é}?;f eikm F (eiﬂ) \I,* (efﬁ) a0 = (e¥ki6 I: ‘II)F = (fk) hn) = (f01 hn—k)'
0

The last term is 0 for k<mn, since in this case h,_, L i, Thus for each k, the func-

tion IV W* has the same kth Fourier coefficient as the function
Z (fo’ hn—k) ekio = e"io Z (foy h_j) eiiB = e"io‘b (810).
k=n i=0

Hence F'¥*=¢"?®, a.e. But by (2.5), F'=®®"* a.e., and since F’ is invertible a.e.,
so is ®. Tt readily follows that W =¢""? @', which shows that e " ® €Ly , and
corresponds to h,.

(b) Let WE€Lsy r. Then by 4.1, ‘I’VETGLz, and therefore I‘I’VF’FEGLI. Now since

F =®d* a.e, we have
VP =t (FF )= (¥ PP W)= | ¥ D[} @)
Thus |W®|%€L, and therefore W P EL,, cf. 1,3.5 (a).

(¢c) Since by (a) @ '€Ly r and > A,e*? is bounded, therefore by 4.1 (c)

S Ae) @71 (¢?) € L, 1.

Next, by 4.2 and (2)



116 N. WIENER AND P. MASANI

(2 ave)am -] -[|[3 aneo-w @) @ vP|

I

H{%Ake"i“—‘l’é} @

éAke’“"—\P@“

Now since A, is the kth Fourier coefficients of ¥ &, the R.H.S.—0, as n—oco. Hence

(Z Ake"“’) & '>W¥ in the norm || || (Q-E.D.)

We are now ready to show that our correspondence is onto Lo r. Let W€Ly 5
and let A, be the kth Fourier coefficient of the function W & €L,, where & is as

in 4.9. Then since > |A |k < oo and the process (hy)”, is orthonormal,

n

> A h_,— some g€EM,,, as n—>oo. (3)
By 4.9 (a) and the fact that the correspondence preserves addition, and multiplication

by matrices, it follows that to the function on the left of (3) corresponds the function

z Ak ekio @-—1 — (z Ak ekie) q)——l

in Lg . By our Definition 4.8 (ii) its limit in Lp r, as n—>oco, corresponds to g. But
by 4.9 (c) this limit is W. Thus ¥ corresponds to g€ ¥,. To sum up, we have the
following theorem.

410 TurorEM. If (1,)%, is a regular full-rank process with spectral distribu-
tion F, then the correspondence defined in 4.8 is an isomorphism on M. onto Ly r, on
the understanding that we identify members of Le, r, which differ on sets of zero F-
measure. More fully, if to <, PEUL, correspond ®, WELy r, then to @+, A
correspond P +¥, AD, and

27
MG ‘F’inz‘l?zf ® () F () ¥* () d6
0

2n
1 10y 1/ T (S0 2
lel=lel -5 [ 1@ )R
0
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An important application of this theorem is the following

411 CorOLLARY. Let (1)%, be a regular full-rank process with spectral dis-

tribution ¥ and generating function ®, and let (1)
Y, (€9 = [ @ ()]0, @7 (€F), »>0.

Then Y,€Ls, r and corresponds to the linear predictor f,,= (£, 11,) under the isomorphism
defined in 4.8.

Proof. Since, cf (2.5), F'=®®* a.e., therefore
Y, ()T (@) Y (€)= [0 @ ()or [ @ ().
This is in L,, since [ "'? ® (¢'%)]y, €L,. Thus Y, €Ly, 5.
Now let C, be the kth Fourier coefficient of &. Then
Y, (€)@ (%) =[e D ()]or = 2 Crr e € L,
, K=0

Hence by 4.9 (¢), as N—oo

N
( > Cpur e"”’) P (%)Y, (¢ in the Ly p-norm.

k=0

It follows that if ¢ is the random function in 9, corresponding to Y, in Ly, r, then
(cf. 4.9 (a)),

N
Z Cv+lch—k—><P, ag N—oo
k=0

But, ef. (2.4), the last sum tends to ‘f\,, as N—>oo, Hence (p=’i\f,. (Q.E.D.)

5. The Boundedness Condition

To progress further we have to assume that the eigenvalues of our spectral
density matrix are essentially bounded above and away from zero. By 1.5 (a) this

assumption may be stated as follows.

5.1. Boundedness Condition. QOur g-ple regular, full-rank S.P. (1,)%. has a
spectral density ¥’ such that

AM<TF () <V, 0<A<A < oo.

(*) Since A @ vanishes almost nowhere on C, (ew) is defined a.e. on C.
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We shall show in this section that this condition entails the following conse-
quences :

(i} L, and Lo r become identical topological spaces.

(i) The sum of (one-dimensional) manifoldski@ (f-x) becomes topologically closed
(cf. I, 5.6 (d)), and therefore identical to 1, the present and past of f,.

(iii) The innovation function h, is expressible as a mean-convergent infinite
o0
series > D, 1_,.
K=o

(iv) If @ is the generating function of the S.P., then & €Ll .

(v) The linear predictor for any lag v is expressible as the sum of a mean-convergent
infinite series > B, 1 ,, where E, is a finite sum of products of the Fourier coeffi-
K=o,

cients of @ and &

5.2 LeMma. If ¥ satifies the condition 5.1, then
(a’) L2.F=L2;
(b) for all dEL,

2 27

A @ (%) ®* () d0 < 27(®, B)p <1 | ® (£ ®* (9 dO (1)
0 0
Alelf <|lelF <22l (2)

() Ly, p-convergence and L,-convergence are equivalent.

Proof. (a) From 5.1
1

1
— -1, a.e.
VA

VAI<VF < VAL, il
Va

1< (VF) <

Hence l/I?, (Vﬁ)_IELw. Hence if ®€L,, then & VF' € L, and therefore by 4.1 (a)
® €L, . Next, if ® €L, 5, then by 4.1 (a) & VF' € L,, and therefore since (VET)“1 €L,
®=®VF (VF) €L, Thus L,—L, .
(b) By 5.1 and 1.5 (d)
I PP < BPF P* < 1'PP*, ae.

Hence, cof. 1.9 (b), their integrals must bear the same relations, i.e. we have (1).

Dividing by 27z and taking traces, we get (2).
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(¢c) Let &,, ® € Ly r=L, The inequalities
Vidle, @l <||@. -2l < Vi |@.- 2l
show that &,—>@® in Lg , if and only if ®,—»® in L,. (QE.D.)

5.3 TuEOREM. Let the spectral density ¥ of a S.P. (8,)%, satisfy the condition
5.1. Then

(a) for all matrices A, ..., A,,
], Z AkAz < (Z Akf—k’ Z Akf-k) < 1' z AkA:;
0 0 0 0
(b) ¢f M, is the present and past of §,, then M,= § S,
0
(¢) if g= ; B.f . € v, then
A3 IR < el < 7 3 B
Proof. (a) Let @ (e'%) = %Ak ¢"®, Then by 5.2 (b)
2z ) ) 2n
A @ () B* () d0 < 27 (®, B)r < 1 [ () D () d 0.
0 0

Now by the Parseval relation (1.13), the integral in the border terms equals

2 § A A% Also by 4.10
@ oG At Sat).
(b) Taking the trace of each term in the inequalities (a) we get
A3 IR SIS A< S A: 3)

Now obviously > & (f_,) = M,. Hence we have only to prove the reverse inclu-
0

sion, i.e. show that given any g€ U1, there exist matrices B, such that
g = %: Bk f—-k7 I
the last series being convergent in the £,morm || || of I,(5.3). Let g€ 1, Then

g= lim g, =~ where g.= > AL ..
n->00 k=0
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For convenience we define A{”=0 for k>n. Then by (3) for all n>=m,
len—glt =1 3 AP - AP L4515 | AP - AP,
It follows that for 0<j<m<n,
8= gal>2 3 [ AL~ AP > 2| AP - AP L. | @

Now the left member of (4) tends to 0, as m, n—>oco., The same must therefore be
true of the right member. Since the space of matrices is complete under the Eu-
clidean norm, we infer that

A"—>B;, as n—>o0, 0<Kj<oo. 5)

Next, let n—>c0 in (2). Then since the series in the middie has only a finite
number of terms, it follows from (5) and (3) that

len—8lP>2 2 1AL —By 3
Z m
>0 3 AP -B) P
k=0

A m
> len 3 Bt
k=0

Since g,~>g as m—>oo, we conclude that > B,f_,—>g as m—co, Thus I.
0

(¢) From (3) we have
AT IBE SIS Bl <a S Bl

Since the sum in the middle approaches g as n—oco, it follows that o%<,:|B,c|?;< oo,
and the inequalities given in (c¢) hold. (Q.E.D.)

Now let (£,)°, be as in 5.1 and let (h,)?, be its normalised innovation process.
Since h, € #1,, it follows by 5.3 (b) (c) that

h,= g D.f_,, g | D |% < oo.

Since [I, 6.12] h,=U"h,, where U is the shift operator of the process (f,)”,, we get
the following result.
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5.4 CoroLLARY. If (h,)%, is the normalised innovation process of a S.P. (£,)%

having a spectral density which satisfies the condition 5.1, then there exist matrices D,
such that

h,= ZDkfn—ka ZIDkl%‘<°°-
k=0 0
Now let & be the generating function of such a process. We know that & €L{",

cf. (2.5). Under the boundedness condition, the equality & &* =F' shows that dell.
Next, the equality (®')*® '=(F')"! shows that ® '€L,. We shall now show that

® el

Since the series for h, given in 5.4 converges in the £,-sense [I, (5.3)], it
follows by Theorem 4.10 that z::D,c ¢"® tends to the function in L r corresponding
to hy€ M. By 4.9 (a) this function is ® . Since by 5.2 the Ly, r- and L,-topologies
are equivalent we see that

n
ng @ in the Ly-norm || ||

0

Thus > D, e is the Fourier series of @71, i.e. ® ' €L3*. Since, as already remarked,
0

& '€L,, we conclude that &' e L%,

We may sum up these results as follows.

5.5 TEEorREM. If (i) (£,)%% i3 a g-ple S.P. with a spectral density solisfying
the Boundedness Condition 5.1,

(i) (h,)=, s tts normalised innovation process,

(iti) ® is its generating funciion,

then

(a) &, dell,

(b) h,= %Dk f,_., where D, is the k-th Fourier coefficient of ®7.

We now turn to the linear predictor. From (2.4) and 5.5 (b),

5.6 f,= S Cuinh,  he= > Dt »>0. (5.6)

n=0 j=0

Substituting from the second equation of (5.6) into the first, and heuristically inter-
changing the order of summation, we get

= k=

~ 0 00 o0 k
f', = nzsoCanZnD—n+k f—k = ZO ("gocw-n Dk—n) fox.

9 — 665064 Acta mathematica. 99. Tmprimé le 25 avril 1958
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Rather than justify this change in the order of summation, we shall show directly

that the series on the right converges in £, to the function f,:

5.7 THEOREM. If the process (£,)7°, has a spectral density ¥ satisfying the
Boundedness Condition 5.1 and the generating function ®, then for v>0

[\t

~
f,=
K

k
E,,kf,k, where Epk= Zocp+nDk~ny

1t

&
C;, D, being the j-th Fourier coefficients of ®, @ '. The prediction-error matriz for lag
v &8 given, cf. (2.4), by
. r-1
G, =2 C.Cr.
n=0
Proof. We have
0 } R X y—1
[e-—viﬁé (eiﬂ)]0+ — ZOCI"FI{ ek:8=e—v16 {@(etﬁ) _ ZOCIC eki&}.
k= k=
This is in L%, since cf. 5.5 (a) each term inside { } is in L,. Also, ® '€LY ; hence
Yv (ew) — [e—vw & (eiﬂ)]o+ @—1 (em) € Lgo+

By the Convolution Rule I, 3.9 (d), the kth Fourier coefficient of Y, is easily seen
to be E for k>0 (and of course, zero for k<0). Thus as N—co

N
> B, e”°>Y, () in the Ly-norm.
k=0

But in view of the Boundedness Condition, L, and Ly r are the same topological
space. Hence as N—>oo,

N N
> B, €Y, (€% in the Lq, p-norm.
k=0

Since by Corollary 4.11, f, in Wi, corresponds to Y, in Lg, 5, it follows (cf. 4.8) that

‘ k%ﬂ E.. f_k—;f‘,,, as N—co,
(QED.) »

We thus get the prediction f, as the sum of a series converging in-the-mean.
The sequence (E,;)i%o, where E,; is as in 5.7, is the matricial weighting function in
the time-domain in the discrete parameter case. It involves the Fourier coefficients
of &, ®! alone.

If our aim is to perform the computations digitally, the expressions for 'f, and
G, given in 5.7 could themselves be used. If, however, the prediction is to be done by
an analogue computer, then we must shift from the time-domain to the frequency-

domain. Now as shown in 4.11 and in the proof of 5.7, the function
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5.8 Y, (%) =[e "0 D ()], - B () (5.8)

is in Ly (=1Le ) and corresponds to the prediction ﬁe M,. Hence Y, is the matricial
frequency-response or transfer-function of the electric filter for which the response will
be the prediction f,, (w) when the past part (f,(w))®. of the multiple time-series
(f, (@))% i3 fed in as input.

We should mention here a lacuna in prediction theory, which is present even for

the case q=1, viz. the absence of a spectral characterization of processes for which

the expression for fv given in 5.7 is valid in the usual £,-sense. As 5.7 shows, the
Boundedness Condition is certainly sufficient, but it seems the weaker conditions
F', "'€L, should suffice. For g=1 Kolmogorov [5, Theorem 24] has shown that
these conditions characterise processes, which are non-deterministic with regard to
both past and future, i.e. for which f, ¢ & (f),.,. Another unsettled question pertains
to the case when the series expansion in 5.7 is not valid when convergence is taken in
the usual £,-sense. Does this expansion become valid when convergence is interpreted
in some more subtile summability sense? (Cf. Doob [4, p. 564, Sec. 2].). We shall
not discuss these questions in this paper.

6. Determination of the generating function and the linear predictor

In this section we shall express the generating function of a S.P. (f,)%, satis-
fying the Boundedness Condition 5.1 in terms of the spectral density F’ by following
an iterative procedure of the type discussed heuristically in Sec. 3. We shall then
derive computable expressions for the linear predictor and the prediction error matrix.

By 1.5 (¢) the Boundedness Condition 5.1 implies that

<u<1.

g A+A

l 2 F (ef%) —1

A+A

Now let F'=2F /(A +1) and f,=~V2/(i’ + 2)f,. Then F’ will be the spectral density
of the process (i,,)i"w. The generating functions of (f;)i"w and (f,)%,, will be connected by the

relation @ = J/2/(1’+ 1) ®. In determining the generating function of a process satis-

fying 5.1 there is therefore no loss of generality in making the following assumption.

6.1 AssumerionN. (£,)%. is a regular, full-rank process with spectral density
F' =1+M, where .
p=ess. Lub. |M(e®) |z <1.

0<0<2n
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The iterative scheme (3.10) now suggests the study of the operator P defined
as follows.

6.2 DEFINITION. For all ®EL,, P(P)=(PM),.

Since for @ €L, and ME€L, we have ® M € L,, this definition makes sense. Some
easily established properties of 3 are stated below.

6.3 LEMMA. (a) P is in the Banach-algebra B of 1.16; more fully, it is a
bounded linear operator on L, into Li and [B|<u<1, (u as in 6.1).
(b) If § ts the unit of B, then F+ P is invertible and

RERURERED PR R CR

where the last series converges absolutely in B, being in fact dominated by the convergent

geometric series . u¥.

(c) LA =M, PO)=M.M),, PO ={M.M).M},,
and so on.
@ B M| <p*Ve.

In view of 6.3 (b) the following definition makes sense.

6.4. DEFINITION. Let ‘I’-——(3+iB)‘l(I)=§0(—1)k§Bk(l)-

The last series is absolutely convergent in the L,-norm, since by 6.3 (d)
3w mi<va p<e
By 6.3 (c) and the fact that L3* is closed we have

6.5 W=1-M, +(MM), —{M,M),M}, +- €L*. (6.5)

The function W is thus derivable from the spectral density by an iterative method.
We shall now show that the generating function @ of our S.P. and its innovation
matrix & are easily obtainable from W¥.

6.6 THEOREM. (a) ¥=V/G® !, (b) ¥F ¥*=6.

Proof. Since the S.P. (1,)%, satisfies the Assumption 6.1, it certainly satisfies
the Boundedness Condition 5.1. Hence by Theorem 5.5 (a) ® ' €LY SL,. The func-
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tio;l /G @ ! thus lies in the domain of . We shall show that
F+P) (Ve@ =1L M

Since by 6.3 (b) §+ P is one-one, it will follow from (1) and 6.4 that VG& =,
and therefore (cf. (2.5)) that
YPY=/6GP - BP (P VG=G.

To prove (1) we note that by (2.5) <I>(0)=VG. Since VG @' € LY, therefore

T (0)=T and hence - _
Ve l=1+(/GP®Y,. (2)

Now since F' =& &*, therefore

V6@ '+ (V6P H)M=/6D 'F=/6®* € L] .
Hence V6@, +{(/GD H)M}, =0,
ie. by (2) S+P) (V6@ ) =V6d '+ {(VG2 )M}, =1.
This establishes (1). (Q.E.D.)

The prediction error matrix G, and thence the generating function ®-¥ 6,
are therefore expressible in terms of the spectral density F'. Somewhat different ex-
pressions for G- and & can be obtained as follows. Since M* =M, we have from (6.5)
and 1.15 (b) (4),

6.7 Wr=1-M_+(MM.)_ - {MMM_)_}_+-- € LY. (6.7)
Now let
6.8 x=F¥*. (6.8)

By Theorem 6.6, x =¥ 16 =® VG € LY. Since &, = /G, it follows that y,= G ; whence
% =@ Vy, Thus

6.9 COROLLARY. Let % be defined as in (6.8) and (6.7). Then

6=% ®=x0x").
We shall now express the linear predictor and prediction error matrix in terms
of W.
Sinee by (2.5) and. Theorem 5.5 (a), ®, ® '€ L%, it follows from Theorem 6.6
that ¥, W' €L, Let
W () = ?Ake"”’, Wl () =

Bk ekio

o[vls‘
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From (6.5) we find that A;=1I and for m>0

6.10 Ap=-Tu+ 2Thlnn— 2 2T, T 0 at -, (6.10)
n n p

where T'; is the kth Fourier coefficient of M and all subscripts run from 1 to oc.

The coefficients A, are thus determinable. (*) The coefficients B, can be found from

the recurrence relations

—

A,B,=1=B,4,
A,B,+A,B,=0=B,A,+B,A,
A,B,+A,B,+A,B,—0=B,A,+B, A, +B,A,

6.11 (6.11)

Since A,=1T matrix inversion will not be encountered in finding the B,.
Now let €y, D, be the kth Fourier coefficients of @, & ' €LY . Then by Theorem

6.6 Ak=VGDk, B,.=C, VG, Hence by Theorem 5.7

k k
Epk =nzo Coin Di_n =nZOBu+n Avn
y—1 v—-1
n= n=0
G may be evaluated from the formula G =W F’'W*. Since G is constant we may take
instead the average:

2n
6.12 G= %r f W () F’ (%) W™ () d 0. (6.12)
(1]

We may sum up these results as follows.

6.13 THEOREM. Let the q-ple stationary S.P. satisfy Assumption 6.1. Then for
>0,

A ) k )
f” = (f”l mO) =k=§(:) Erk f—k, Evlc = nZOBv+n Alc—n

1

6= -1, 1-1)- > B. 6B,
k=0
where Ay, B, (the Fourier coefficients of the function ¥ of (6.5) and ¥™') and G are
given by (6.10), (6.11) and (6.12).
We thus have an explicit method of computing the weighting factors E, in the

time-domain. It easily follows from (5.8) and Theorem 6.6 that the corresponding

transfer-function in the frequency-domain can be expressed in the form

(1) Since F'=I+M, we obviously have To=(t,, t,) —I and I'n=(I,, 1,), n+0.
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6.14 Y, (€°) = [e70 W1 (£9)]y, W (). (6.14)

Since for purposes of prediction the Assumption 6.1 is no stronger than the Boun-
dedness Condition 5.1, we have solved the Prediction Problem 2.2 and the correspond-

ing problem in the frequency-domain for processes satisfying the latter condition.

7. Estimation of the spectral density

In this section we shall consider the computation of the spectral density function
of a g¢-ple, regular, full-rank S.P. (f,)*, from its correlation matrices I',, which in
turn are to be derived from time series observations in the past. We shall show that
on account of the errors inherent in all observation and estimation such an empiric-
ally determined spectral density will satisfy the Boundedness Condition 5.1. This
condition will thus be fulfilled in many practical cases of prediction.

Suppose that the correlation matrices I', have been obtained and we wish to
estimate the spectral density F. In practice we will know the values of only a finite
number of I',. A natural approach would therefore be to take the Cesaro partial
sums of the Fourier series of F:

74 Fy(e) = Nil (l—lﬂ) I, e (7.1)

n=—N+1 N

as estimates of F. This has the merit that as N—oco, Fy(¢9)—>F (), a.e., as follows
from a trivial matricial extension of the Fejer-Lebesgue Theorem. Also by a simple
rearrangement of terms we get

) 1 N N
P =k 5 3 1, 000
N jSéa
1 N N xib
= g, 3 e f),
N (721 ! IZ:I *
so that
7.2 Fy (€% is non-negative hermitian for 0<6<2m. (7.2)

Since every Laurent polynomial in e

with matrix coefficients is bounded, we see that
every such estimate Fy will be bounded above.

When we take into account not only the evaluation of the spectral density from
the 2N —1 correlation matrices I', with |»| <N, but also the derivation of these matrices
from empirical data on time series, we find that each estimate Fy is also bounded
away from zero, in the sense that its eigenvalues are bounded away from 0. To see
this we shall first discuss a way of estimating the matrix coefficient (1—|n|/N)T,

of e™® in the Cesaro partial sum (7.1). Since I'_,=T7%, it suffices to take 0<n<JN.
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The past values x_,=f_,(w), k>0, of particular time series of the S.P. ()%,

can be found from observation. From the record of these observations for the ith

and jth components:
D =1% ), %=1 (w), k>0, 1<4,j<q - (1)

we can compute the one-sided time-average

L 1 N-1 ; -

Y@, g, w)=Nk§n (o) Y% (w), 0<n<N, (2)
in which the number of terms is N —n, and therefore depends on the lead n. (Since
0<n<N, each sum will have at least one term.) The reason for this choise of the
number of terms is to make the expected value of 93" (s, j, w) equal to the (4, )th

entry of the desired matrix (1—-=/N)T',:

¥ 1 N-1 ; n .
Ny (7 - @ gy _ (1"
fyn (7/5 B a))dP((U) N kgn (fn—k; /—k) (1 N) yn:
9
where V1= (f?, ) is the (i, j)th entry of I',. Putting T (w) = Y[V (3, §, w)], it follows
that

T = f T4 () dP (@) = (1 —ff;) T, 3)
Q

We must now evaluate the expected value f(nN’ in (3). In the Wiener-Kolmogorov
prediction theory the shift operator U of the S.P. (f,)%, is generated by a measure-
preserving transformation 7' on the probability space Q onto itself (cf. Doob [4, p.
461-464]). In this case

[k (@) = (U* 1) (0) = f2 (T* w). 4)

In the light of the theorems of von Neumann [8] and Oxtoby and Ulam [7],
which assert roughly that every measure-preserving transformation can be resolved
into ergodic components, and that nearly all continuous measure-preserving trans-
formations are ergodic, we may take the transformation 7 in (4) to be ergodic.
Since every function /@ is in &,, it follows from (2) that the entries of the random
matrix-valued function T are in L, on Q. Hence by a trivial matricial extension
of Birkhoff’'s Ergodic Theorem [1], for almost all w

lim v—-ll- 1 TV () + TP (T )+ - + TP (T w)} =T, (5)

Now from (2) and (4) we find that for 0<u <y,
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Ny e e e 1 T
VLT e) =5 2 il (T o) f5(T o)
4Y k=n
1 N-1 . R
z]\*rkz ﬁf),k,,,,(w)-f(f)k,”(w)
c=n
AN+l-p

= 2 fia(w) [0 (o).

F=nip

This average thus extends only into the past, and is therefore computable from the
observed values (1) of the component time series of the process. Consequently, the
average with »+1 terms on the L.H.S. of (5) is also computable from such observed
values. For sufficiently large » we may take this average as an approximation(!) to
the expected value T, ie. by (3) to the desired matrix (1 —n/N)T,. We thus have
a method of approximating to these matrices by using data collected from time
series observations.

Now in measuring the values of a time series, random instrumental errors will

be inevitable, so that the result of measurement will be

g, () =1, (0) + @ (w), (6)

@, (w) being the ‘“noise” or disturbance caused by measurement. We may assume
that the conditions of measurement are kept constant, and that the errors are mutu-

ally independent. It will then follow that (e¢,)*. is a g-ple white noise process, i.e.

((Pm’ ‘Pn) =Ymn A, (7)

where A is a fixed matrix. To obtain A we note that a measurement of the vector
x,=f,(w) consists actually of ¢ simple measurements, one for each component. The
measurement of the ith component will involve an error qS‘,’} (w) of absolute value 4;,
say. These errors being independent, we will have

(7, $9) = [ 65 () 7 () d P () = 0,y 4,
which shows that “

N is a diagonal matriz with positive entries. (8)

Finally, since the errors of measurement will be independent of the size of the

measured quantity, we will have

(fr, @) =0, — oo <m,n< oo, 9)

(*) In this paper we will not discuss the difficult question of the mode of approximation nor
the question as to how large » must be taken in order to secure a given degree of approximation.
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From (6), (7) and (9), we get
I‘;,,,n = (8m> &)= (£, £) + 6mnA =Tyt 6mnA’ (10)

which shows that the actually observed process (g,)°. is stationary. Since in any
p:actical case the correlation matrices computed from time series data will be the
I.=(g, g) and not the T,=(f,, f,), the empirically derived spectral density will
not be Fy as given in (7.1) but rather (cf. (10))

N-1

Gy ()= 2 ( —%) T, e

n=-N+1

N-1
= > (1 —m) T, e™+A

n=-N+1 N

FN (eie) + A.

By (7.2) Gy(e®) > A, and hence by (8) the eigenvalues of Gy are bounded away
from zero.

Thus the empirically derived spectral density will not only be bounded above
but also bounded away from zero, in the sense that its eigenvalues will be bounded
away from zero. Denoting this spectral density by F instead of Fy or Gy, we may
by 1.5 (a) restate its boundedness property in the form 5.1, and sum up the pre-

ceeding discussion as in the next theorem.

7.3 THEOREM. On account of errors of observation and estimation, any estimate
of the spectral density of a regular full rank S.P., derived from its correlation matrices,
which are obtained by averaging time series data, will satisfy the Boundedness Condi-
tion 5.1.

There are physical processes in which periodicities, though imperfect, are so
marked that it is untenable to postulate regularity, and it becomes convenient to
admit non-absolutely continuous spectral distributions. In such cases the foregoing
considerations will not of course apply. Cases are also conceivable in which we may
be able to hypothesize the values of the correlation matrices I', from a theoretical
study of the process without recourse to sampling. If the hypothetical T, do not
die down with sufficient rapidity as n— + oo, the foregoing remarks would again
be inapplicable.

8. A general factorization algorithm

In this section we shall show how the iterative method developed in Sec. 6 to

get the generating function can be generalized to solve the following problem.
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8.1. Factorization Problem. Given a ¢xq(1) matriz-valued function F on C
such that F €L, and log |AF|€L,, to find functions ®,, ®, on C with the properties

F (@)=, () B, ("), ae. (1)
®, €Ly, P, €Ly (2)
1 2n
8@ ) - exp |5z [ 10818 ey 1a0)]. ®)
0

We shall solve this proplem under the
8.2 AssumprioN. F(f)=I+M(), |M(®)|z<u<l, ae.

Our method will work in different settings, e.g. when C is replaced by an an-
nulus 4, and F by a matrix-valued function holomorphic on 4, and with suitable
restrictions even for functions whose values are operators on an infinite-dimensional
space, cf. [6]; but we shall confine ourselves here to the version given in 8.1. Such fac-
torization problems have no bearing on prediction theory except when F is hermitian-

valued, but are important in other branches of analysis, cf. [6, Sec. 1].

8.3 DerinIiTION. With any function M €L, we associate two operators on L, de-
fined by
B, (@)=(@M)., P_(®)=M®)_., PEL,

Some easily established properties of these operators are stated in the next
lemma.

84 Lemma. (a) P, P_ are in the Banach algebra B of 1.16; more fully, they
are bounded linear operators on L, into L3, Lg, respectively, and

|B|, |B-|<u, where p=ess. Lub. |M(e) 5.

0<0<2

(b) If 3 is the unit of B, then J+ B, J—P- are invertible and
(3+Pa) T =F - P+ P,

where the last series is absolutely convergent in B, being in fact dominated by the con-

vergent geometric series X pF.

(c) Bt (@)= {P2(®)- M}, P2 (P)={M- P (B)}_.

(@) B M=M,, B @O=MM),, B @OH={MM,M},,
B-M=M_, B2O=MM.)_, B [O={MMM)}, ..

(*) Not necessarily hermitian.,
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() B2 @, 1B @] <pVe.
The following definition therefore makes sense.
85 Derivirion. () o, =(F+P)7 D, Foo=@+$)" M.
(b) G—Wo, (I+M)%o_.

We shall now prove the crucial result that the function G is constant-valued,
the constant being an invertible matrix. This will be done by considering the Fourier
series of G. We shall first show that G €L;, and therefore has such a series.

8.6 LEMMA. (a) Wo, =I-P,@M+PE @)~ € LYY,

Yo =I-P_O+P2(I)—--- €LY,
the infinite series being absolutely convergent in the norm of Ly, cf. (1.7).
(b) GEL,.

Proof. (a) The series expansions obviously follow from the last definition, and
the expansions given in 8.4. Since the ranges of ., P_ are included in L3, Ls, and
these are (closed) subspaces of L,, it follows from the expansions that Wy, €L3* and

W, €L3". Also these series converge absolutely in the Ly,-norm, since by 8.4 (e)
% IR M| <Vg- EO:,u"< oo,

(b) follows from (a), since I+ M€L,. (Q.E.D.)

8.7 THEOREM. (a) (I+M)Wo_ =1+ (MW, ), € L3",
W, I+M) =1+ (o, M) € L.
(b) G=const.=1+(MWy_), =1+ (¥o.M),.
(¢) I+M, W,,, Wy are invertible a.e. on C, and (I+M)'€L,.
(d) & is invertible.
Proof. (a) Since I+M € L, and W, €L,, therefore (I+M)W,_ € L,. Also by

1.15 (b) (1) and 8.3
T+ M)W, =W, + (M%) +(M¥ ).

=(F+B.) (o) +(M¥p_)os.

By 8.5 (a), the first term on the right is I. This gives the first relation in (a). The

second is proved similarly.
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(b) By 85 (b) G=W,, I+M)¥,.. Now W, €L}, and as just shown
(I+M)¥,_ €L3*; hence by the Convolution Rule [I, 3.9 (d)] G €L}*. But we also
know that Wy, (I+M), Wo_ €L3"; hence G €L{". It follows that all the Fourier coef-
ficients of @, except the O™ vanish, ie. G =const.

Next, since the range of P, is included in, LJ, therefore by 8.6 (a) (Wo,),=1.
We may accordingly write Wy, =I1+W,, where W, €L;. This fact together with the
first equality in (a) entail that

G=Wo, I+ M)W, =W, {I+(M%¥o_)o:}.
T+, + ([+W,) (MW )o.
=I4+%¥,+ M%) )o. + ¥, M%Pp.)o-.

Since G is a constant, it follows that
G=G,=1+(MW¥,.),.
The other expression for G is proved similarly.

(¢) By Assumption 8.2, I+M is in the Banach-algebra L, at a distance u less
than 1 from I. Hence it is invertible, and the function (I-I—M)'IELW Next, since
¥, €LY', it follows from I, 3.13 (a) that AW, €Hyy on D,. Also, Wy, (0)=1I, and
therefore A {¥,. (0)} =0. Hence by the Riesz—Nevanlinna Theorem [I, 2.7], its radial
limit can vanish almost nowhere on (. Hence W, is invertible a.e. on C. By an

inversion z'=1/z of D. onto D,, we can show that the same is the case with the

function ¥,_.
(d) By 8.5 (b), G=,, () {I+M(c'%)} W,_ (%), a.e. Taking a 6 for which all
the three factors on the right are invertible, we see that G is invertible. (Q.E.D.)

In view of 8.7 (¢) we may invert the equation 8.5 (b) to get
I+M=%¥G¥;!, a.e.

We shall now show that inverses W;!, Ws! are themselves in L3*, L3, respectively,

so that we have a factorization of the desired kind.
8.8 LEMmMA. (a) Wo!={I+ MW, ).}G " €L
(b) Wol={I+(FuM) }6* € L.
Proof. (a) By 8.7 (a) and 8.5 (b)
Yo, I+ MWy )o,} 6 ' =W, - I+ M)W, -G 1=GG =L
Since our matrices are finite dimensional, we conclude that

‘P(;: = {I + (M "Po_)(”} G—l.
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From the constancy of G, it at once follows that the function on the right is
in L3*.
(b) is proved similarly. (Q.E.D.)

We shall next prove the following relations.

2n
89 LEMMA. (a) flog |A{%o. (€9} |dO = 0.
0

2n
(b) [log |A{®o_ (¢*)}]|d6 = .
0

2n

() [log |A{I+M(e)}|d0=1log | A (G)].
[

Proof. (a) As noted in the proof of 8.7 (c) AWy, € Hy, on D, and A {¥,,(0)}=1.
Hence by I, 2.6 (c) (2).

2n

0=1log | A {W,, (0)}|<%J log | A {Wo. (¢°)}|d6. 1

0

Since by 8.8 Wl € Ld*, we get in exactly the same way

2n

1 ;
0=1log | A {¥5!(0)}|< ﬂf log |A {5} (€9)}]|d 0,
(]

27
ie. 0>$J log | A {Wo. (€°)}|d6. (2)
0

From (1) and (2) we get the desired equality.
(b) can be established in the same way after an inversion 2z’ =1/z of D_ onto D,.
(¢) From 8.5 (b)

|A6)|=]|AWo, |- |AQ+M)|-|AFo_|, ae.
Taking logarithms and integrating over [0, 2x], it follows from the constancy of G
and the equalities (a) and (b) that
2n
27-log |A(6)|= [log A|{I+M(*)}|d0.
v

(Q.E.D.)
To sum up, we have proved the following theorem.

8.10 THEOREM. If (i) the function ME€L, on C, and

u=ess. Lub. |[M(¢9)|z<1.
0<0<2n
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(ii) Wy, =I-M, + (M, M), - {(M. M), M}, +---
W, =1—M_+(MM_)_—{MMM_)} +--,
so that, G being defined as in 8.5 (b), we have
Yol {I+(M¥ )oi} G Y, Wol={I+(Wo.M)_}G!
then (a) Wo., WoleLd, W, , Wilell,
(b) I+M(%) =W GW:l (") ae.,

2

() |A(G)|=exp [—;—nf log IA{I-*—M(e"’)}]dO] .
s

Now let VG be any square root of G. Then letting o, =¥} Ve, ®,=V6¥?
we get a solution of Factorization Problem 8.1 under the Assumption 8.2. We shall
now show that when the values of M are hermitian this solution reduces to the
one obtained in Sec. 6. Let M=M"* on C. Then by 1.15 (b) (4),

(B (@) = {(®M),}" = {(®M)*}. = MD*)_ = B_(B").
By induction it readily follows that
{P: @M} =P (D,
whence by 8.6 (a) W§, =%,.. Hence G=,, (I+ M)W, is non-negative hermitian, in
fact positive definite since it is invertible. Letting @y, =¥} VG, where VG is now

the unique positive definite square-root of @, the equality 8.10 (b) becomes

I+ M () = By, (') - BF, (¢, a.e.
Inverting, we get

{I+M (%)} =B () Bot (€9), aee.
Since I+ME€L,, and by 8.7 (¢), (I+M) '€L,, it follows that ®,,, ®;}! € L. Since
Py, =Wl VG, ®5l=(/G)'W,,, we conclude from 8.10 (a) that &y, ®;l €LY . We
also note that &, (0)=F;!(0) VG =V6. Writing ¥, & instead of Wo,, ¥y, we get

the following theorem.

8.11 THEOREM. If (i) the function M €L, and has hermitian values, and

p=ess. Lub. |M()|5<1,

0<0<2 7

(ii) ¥=I-M,+MM), - {M, M), M}, +--,
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(iii) (1) G= (%) {I+ M%)} W (%)=L (FM), ae.
(iv) d-¥1'Vq,
then (a) B, B €L, and ®, (0) is positive definite.

(b) T4+M(e%) =D () B* (') a.e.

2n

() A{®.(0)}>=exp [%f log A {I+M (')} dﬂ]
H

The “existence part” of this theorem is, of course, subsumed in our I, 7.13,
but whereas the proof of the latter is indirect and non-constructive, we now have
explicit expressions for the factors. We shall now show that two solutions & of the
Factorization Problem 8.1 with F non-negative hermitian-valued, which are such

that @, @ '€LJ" can differ only by a constant unitary factor.
812 UNIQUENESS THEOREM. If
(i) $ I, W ¥lell on C.
(ii) P (%) B* (%) =W (%) - P* (¢'%) ae.
then there exists a wnitary matriz Uy such that
P (=W ()0, ae. (1)
Further Uy=1 if either P, (0), W, (0) are equal, or they are positive definite.
Proof. By (i) the functions
U=¥'®, U'=0'¥W (2)
are defined a.e. on C. Next, by (ii)
U=¥'®=W" (@) '= (@ '¥) =UH"
Hence U, U™ are unitary-valued on C and so are in L. ’ (3)

Since by (i) W', ® and &', ¥ are in L}*, therefore by the Convolution Rule
[I, 3.9(d)], U, U are in LY*. From (3) we conclude that U, U' €LY . It follows

that if U(e%)= > A, e™ then
0

U ) =U* ()= > ATe ™ € L.
[0

(1) Cf. 8.5.(b) and 8.7 (b).
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Since U'€LY, we conclude that A, =0, for n>0, and Af=A;t, i.e. A, is a unitary
matrix U,. Thus the function U is constant-valued. The desired result (1) now follows
from (2).

It is clear from (i) and (1) that

D, (z)=W¥,(z)-U,, z€D,.
@’ (2)=Us¥i'(2), z€D..

Taking 2=0 and noting that Y. (0) is invertible, we get the remaining results.
(QED.)
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