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1. Introduction 

I n  t h i s  p a p e r  we  shal l  o b t a i n  a l inea r  p r e d i c t o r  for  a m u l t i v a r i a t e  d i s c r e t e  p a r a -  

m e t e r  s t a t i o n a r y  s t o c h a s t i c  p roces s  (S.P.)  h a v i n g  a s p e c t r a l  d e n s i t y  m a t r i x  F ' ,  t h e  e igen-  

va lue s  of w h i c h  are  b o u n d e d  a b o v e  a n d  a w a y  f r o m  zero.  To g e t  t h i s  we  sha l l  de-  

(i) This paper, like Par t  I [12], contains the research we carried out at  the Indian Statistical 
Institute,  Calcutta, during 1955-56, along with some simplifications resulting from later work. We 
would again like to thank the authorities for the excellent facilities placed at our disposal, and Dr. 
G. KALLIANPUR for valuable discussions. 

Since writing this paper we have learned tha t  some of our results in Par t  I have been du- 
plicated by It. HELSON and D. LOWDENSLAOER, cf. their paper, "Prediction theory and Fourier series 
in several variables", to be published in this volume of Acta Mathematica. We regret that  no reference 
was made to this fact in Par t  I. In a recent note [Prec. Nat. Acad. Sci., U.S.A.,  Vol. 43 (I957) pp. 
898-992] M. ROSENBLATT has derived Theorem 7.10 proved by us in Par t  I, but his derivation is 
based on an incorrect 1emma. To rectify this one would have to go through the steps followed in 
our Par t  2. 
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velop a coordinate-free algori thm for determining the generating /unction(1) of such a 

process. I n  the course of. this development  we shall obtain an expression for the 

prediction error matr ix  G with lag 1 in terms of F ' ,  thereby clearing up an  im- 

por tan t  lacuna in the theory  (cf. [12, Sec. 8]). We shall extensively use the theory  

of mult ivariate  processes developed in our previous paper [12], and adhere to the 

notat ion followed therein. Numerical  references prefixed by I are to this paper. 

I n  Sec. 2 we shall enunciate the prediction problem for a q-variate s ta t ionary 

process, and show how it can be tackled by  the solution of a system of linear equa- 

tions. This involves matr ix inversion. A computat ional ly  more efficient approach will 

be shown to depend on the delicate problem of determining the generating /unction 

of the process. This is difficult for q > 1 on account  of the non-commuta t iv i ty  of 

matr ix  multiplication. In  Sec. 3 we shall describe the genesis of our algori thm for 

accomplishing this from Wiener 's  original idea of using successive al ternating pro- 

jections in Hilbert  space [11]. I n  Sec. 4 we shall show tha t  if F is the spectral 

distr ibution function of a q-variate, regular, full-rank process ( f n ) ~  [I, Sec. 6], then 

thc  class L2, r of q• matrix-valued functions, which are square-integrable with 

respect to  the (matricial) spectral measure F is isomorphic to  the space ~r162 spanned 

by  the random vector-valued functions fk, - co </c < ~ .  In  Sec. 5 we shall introduce 

the boundedness condition mentioned in the previous paragraph,  and show tha t  the 

sum of manifolds ~ G (f-k) then becomes topologically closed and therefore identical 
0 

to the present and past  of I0, tha t  the reciprocal of the generat ing funct ion of the 

process has a Fourier  series wi thout  negative frequencies, and tha t  the linear pre- 

diction with lead v is given in the t ime-domain by  a unique infinite series ~ E~k f-k 
0 

converging in-the-mean, where the matr ix  coefficients E,,k depend on the Fourier  

coefficients of the generating function and its reciprocal. I n  Sec. 6 we shall establish 

(rigorously) the algori thm ment ioned in Sec. 3 for get t ing the generating funct ion 

and its reciprocal under the boundedness condition, and derive an  expression for the 

linear predictor and the prediction error matrix in terms of the  spectral density; we 

shall thereby complete the  solution of the prediction problem. I n  Sec. 7 we shall 

show tha t  the boundedness assumption is fulfilled whenever the spectral densi ty  is 

est imated from correlation matrices, which are themselves computed  from time-series 

(1) By this we mean the function c]~ = ~ Ak G �89 e ki0 of [12, 7.8] in which the coefficients A k 
0 

and I~ are as in the Wold Decomposition [12, 6.11]. F6r a regular, full-rank S.P. see Def. 2.6 below. 
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observations,  i.e. in a large number  of practical cases. Final ly  in See. 8 we shall 

show how the ideas introduced in Sees. 3 and 6 lead to  a general /actorization pro- 

cedure valid even when the matr ix  to  be factored is not  hermit ian-valued.  We shall 

also show tha t  in the hermit ian case the faetorizat ion so obtained is unique up to 

a constant  uni ta ry  factor. 

The rest of this section will be devoted to  recalling some necessary par ts  of the  

theory  developed in [I] and to introducing supplementary  material  of an ancil lary 

nature.  We shall first explain our  notation.  

N o t a t i o n .  As an [I], bold /ace letters A, B, etc. will denote q• matrices with 

complex entries a~j, b~j, etc., and bold /ace letters F, G, etc. will denote /unctions whose 

values are such matrices. The symbols 3, A, * will be reserved /or the trace, determinant 

and adjoint o/ matrices. ~ will stand /or a space having a Borel /ield o/ subsets over 

which is de/ined a probability measure P. Bold /ace letters x, y etc. will re/er to q- 

dimensional column vectors with complex components x~, y~, etc., and bold /ace letters 

f, g, etc. to (random) /unctions defined over the space ~,  whose values are such vec- 

tors. tL 2 will designate the set o/ such /unctions f with components /(i) such that 

] l / ( t ) ( co ) ]~dP(w)<~ ,  [I, 5.1]. For f, gE~z ,  (f, g) will denote the Gramian matrix 
f~ 

[(/(i~, gO~)]. ~ (r will denote the (closed) subspaee spanned by the /unctions r 

/or j EJ, linear combinations being taken with matrix coe//icients [I, 5.6], and (f] lSt) 

the orthogonal projection o/ f on the subspace ~ [I, 5.9]. The letters C, D+, D_ will 

re/er to the sets I z] = 1, [z [<  1, 1 < ]zl~< c~ o/ the extended complex plane. 

Next ,  we recall [I, 3.2] t ha t  the q• matrices with complex entries form a 

Banach algebra under  the usual algebraic operations and either the Banach or 

Euclidean norms : 

l.l 

I t  follows of course tha t  

lAx[ I [A IB =l'u'b" ]xl I 
x.O / 

I A I E = { r ( A A * ' } � 8 9  ~[a,,12} ' "  
|ffil jffil J 

(1.1) 

t.2 IA+B[~<]A[+[B[, [ABI<IAIIBI 

1.3 I A*I=IAi (either norm). 

But  we also have the following inequali ty.  

either norm) (1.2) 

(1.3) 
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t.~ L~,~MA. IABI~ < IAI~IBI~, IAI~IBI~. 
t Proo[. Let a~ . . . . .  aQ be the rows of A and b 1 . . . . .  b a the columns of B. 

denoting by a~ bi the (i, i)th entry of A B, we hawe 

Then 

q q 

lABIa= ~E X la;b;I ~. 
i = l  i = 1  

(1) 

t 
Now A bj is the column vector (a~ bs . . . . .  aq bj). Hence 

q 

i = l  

From (1) we therefore get 
q 

IABI~<IAI~ 2 Ib, l~=lAl~ IAI~, 
j = l  

i.e. IABI~<IAIBIBI~. (2) 

Since by (1.3) IABIE=IB*A*I~,  and by (2,) and (1.3) 

IB* A* IE~<IB*IBIA* I~=IBI~IAI~, 

we get IABI~<IAI~IBI.. (Q.E.D.) 

We shall also need the following simple properties of hermitian matrices, which 

we shall not, however, prove. 

Nota t lon.  I~ A, B are hermitian, we shall write A-<B or BNA to mean that B - A  

is non-negative. 

t .5  LE~MA.  I /  2, # are the 

matrix H, then 

(a) ~t I < H < / ~  I. 

(b) ]H i~=max  {];tl, I~1}- 

smallest and largest eigenvalues o/ a hermitian 

~--~H-I B = # - 2, provided / x + 2 > 0 .  (c) # + 

(d) 2AA* < A H A *  < # A A * .  

To turn to matrix-valued functions we recall [I, 3.4, 3.5] that  for ~>~ 1 the set 
27t 

L~ of functions F = [[,j] on C such that  each [~j is measurable and f [[~j (e '~ I ~ d 0 < 
0 

is a Banach space under the usual operations and the norm 
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2?f 

0 

L 2 is moreover a Hilbert space under these operations and the inner product 

2y~ 

1 f (1.6) t .6  ((F, G)) = ~ v {F (e '~ G* (e'~ d O, 
0 

the corresponding norm [[ H being the same as [[2: 

2 ~  

. 7  . 7 >  
o 

The set L~ of functions F on C with meamrable and essentially bounded entries is 

a Banach algebra under the usual operations and the norm 

t .8  [F [oo = ess. 1.u.b. [F (e '~ Is. (1.8) 

I t  remains a Banach algebra, if in the last relation we take the Banach norm in- 

stead of the Euclidian. 

The Lebeegue integral of a matrix-valued function F is the matrix obtained by 

integrating each entry of F [I, 3.6]. Some simple properties of this integral are listed 

in the next  two lemmas, the proofs of which are obvious. 

i . 9  LEMMA. (a) I f  FELl ,  then 

2 ~  2 r~ 

0 0 

(either norm). 

(b) I /  FGLs, and is non-negativz hermitiaa valued a.e., then 

2 ~  

f F (e ~~ d 0 is non- 
0 

negative hermitian. 

(c) F EL I implies v F 6 L  r The converse holds, provided that the values o[ F are 

non-negative hermitian a.e., and its entries are measurable [unctions. 

t . i 0  LEMI~A. (Schwarz inequality). I [  F, GEL2, then 

(a) FG e LI 
2 ~  2 ~  

I1  dO E (b) <lF"l,< flF(e'O)l l (e'~ 
~ Y r  j 

o o 

 lJ-IIGI). 
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Proo/. (a) follows from I, 3.5(a), and (b) from 1.9(a), (1.2) and the ordinary 

Schwarz inequality. (Q.E.D.) 

A simple application of Lemma 1.4 yields: 

1.11 LEMMA. F E L  2 and GEL~ implies F G E L  2, and 

IIFGII <IIFII'/, 

where IIFII is as in (1.7), and i = e s s .  1.u.b. [F(e ~~ 
0~<0~2~ 

We recall the Riesz-Fischer Theorem I, 3.9 (b), 

1,12 

I, with either norm. 

which asserts that  

(An)_~r162 is the sequence o/ Fourier 
o o  

/unction in L2, i/  and only i/  

coe//icients o/ a}  

( 1 . 1 2 )  

For FEL 2 with Fourier coefficients A~ we have 

1 . t 3  

2~  

1 / F* ~ F(e go ) (e ~~ 

IIFII = 

the Parseval relations I, 3.9 (c): 

A k A : , ]  
- ~  (1.13) 

I / 
An important consequence of (1.12) is that  if An is the nth Fourier coefficient 

of a function in L2, and the sequence (Bn)_~or is composed of An's and zeros, then 

Bn is also the nth Fourier coefficient of a function in L~. This suggests a departure 

from I, 3.10 in the u~age of the subscripts + ,  - for functions in Lv when p>~2: 

O+ 0 -  t .14 DEFINITION.  (a) For p>~ 1, L$,  Lp , L ; ,  Lp will denote the subsets o/ 

all /unctions in L ,  whose n-th Fourier eoe//icients vanish /or n ~ 0, n <  O, n >~O, n >0, 

respectively. 

(b) I /  F E L~, where p >12, and has Fourier coe//icients Ak, -- c~ < k < c~, then F+, 

Fo+, F_, Fo- will denote the/unctions in L +2, L2~ L~, L ~ , whose n-th Fourier coe//icients 

are A n /or n > O, n >1 O, n < O, n <~ O, respectively (and zero /or the remaining n). F o will 

denote the constant /unction with value A o. 

From this definition and the relations (1.12), (1.13) we readily get the follow- 

ing lemma. 

t .15 L~MMA. (a) The sets L +2, L ~ , L~, L ~ are (closed) subspaces o/ the Hil- 

bert space L2, and L +2 I L  ~ , L ~ _T L~. 



(b) I] FEF~, then 

(1) 

(2) 

(3) 

(4) 

M U L T I V A R I A T E  S T O C H A S T I C  P R O C E S S E S  

F = F _ + F o + F  + = F o _ + F  + = F +Fo+. 

IIFll ~ = IIF_II~+IIFolI~+IIF+II ~ = IIFo_II~+IIF+II ~ = I l r _ l l ~ +  IlVo+lL 

IIr+ll, IIFo+ll, llr_ll, [[Fo_[I < Ilrll. 
(F+)* = (F*)_, ( F ) *  = (F*)+ .  

99 

Another fact we will require, which is well known, is stated in the next lemma. 

i . t 6  LE~MA. The bounded linear operators ~ on the Banach space L 2 into 

itsel] form a Banach algebra ~ under the usual operations and the Banach norm 

I ~ l =  1.u.b. II ~(F)II. 
~.o IIvll 

Finally we will need the following simple results on the Gramians of random 

vector-valued functions in 22, the proofs of which are immediate from I, 5.8, 5.9. 

t .~7 LEM~A. (a) I[ Yft is a subspace of fz2and f = ( f l ~ )  (c[. I, 5.9), then /or 

all gE ~1~ 

( f - g ,  f - g ) >  ( f - f ,  f - f ) .  

I /  ~1t = elos. 5 ~1t,, where each ~1t, is a subsqace and ~l~nA_i~ ~1~., then 
1 

(fl 1~It) = lim (fl ~ . ) .  
n.-.}oo 

(b) 

2. The prediction problem 

Let (fn)?~ be a q-ple stationary S.P. and let Hto=~(fk)~ be the present and 

past of re, [I, see. 6]. Then we define the linear prediction o] f,  with lead n by 

~. = If. l ine),  [i, 5.9]. Since f ,  E ~o ,  it will follow that  

N 

2 . t  f , (eo)=l . i .m.  ~ A~N)f_j(~o), n > 0 ,  (2.1) 
N---*c~ ]= 0 

where the A~ N) are certain (non-unique) q• matrices. 

Now for a fixed to in the probability space ~ the values xj=fj(to),  - oo < j <  

constitute a multiple time series or in Doob's terminology a sample /unction of the 

S.P. (f,)~or The components of the past values x_t, ] >0,  of such a time series can 

be found from observation. Hence if the matrices A} N) can be determined, we can 

evaluate the sum occurring in (2.1), and for sufficiently large N, treat  it as an 
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A A 
approximation to the linear prediction x , = f n  (ca) of the value x n of this time series 

at the future time n. Hence an important problem in prediction is to determine 

the A~ m. 

In the Wiener-Kolmogorov theory the quantities supposed to be known or given 

in terms of which the A~ N) are to be determined are the correlation matrices r n =  (fn, f0), 

[I, (6.1)]. This theory has its basis in the case in which the shift operator of the 

process is generated by a measure-preserving transformation of the probability space 

onto itself. We shall show in See. 7 how under the assumption of ergodicity, the 

rn  may be estimated from time series data. Alternatively, it may be possible in 

certain cases to hypothesize the values of rn  from a theoretical study of the process 

without recourse to sampling. We may therefore formulate the prediction problem 

as follows. 

2.2 larediet ion P r o b l e m .  Let (fn)~_~ be a q-ple stationary S.P. with a given, 

known covariance sequence (rn)_~r162 and let ~1t o be the present and past of fo- To de- 

termine 

(i) the q• matrices A~ N) in the ]ormula (2.1)/or the prediction fn o/fn with lead n, 

(ii) the prediction error matrix ]or lead n: 

Seemingly the easiest way of solving this problem is by an extension of the 

method of undetermined coefficients. Since fn = (f, ] ~;lI0), we may choose the A~ N) so that  

N 
~. A~ N) f-J = (fn I~  (f-k)~), 

1-0 
n > 0 .  

Then  by 1.17 (b), the A~ N) will satisfy (2.1). Also [I, 5.8 (b)] 

N 

f n - -  ~ A~ N) f - j  -[- fo, f - i  . . . . .  f - -N-  
I=0 

Hence for each k=O . . . . .  N, 

N N 
A<N) '~ f - k )  - -  ( f n ,  f - ~ ) ,  1 ~L_j, 

Yffi0 

N 
i.e. ~. A~ N) rk_j = rn+k, k = 0 . . . . .  h r. 

tffi0 
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This system of N +  1 equations in the N +  1 unknown matrices A~ ~, ~=0  . . . . .  N, 

is equivalent to a sing]e matrix equation, which in block notation may be writ ten 

[A~o~... A~'] [ro ... r_~] -- [r~ ... r~§ (1) 

LI'.... f'o J 

the first factor on the left and the term on the right are q •  

and the second factor on the left is a (N+l)q• matrix, which 

In this 

matrices, 

we shall denote by r .  i f  r is invertible, we get 

[A~0~) .. .  A ~ ) ]  = [rn .. .  r~+~]  j r 0  .. .  r ~,]-~ (2) 

from which the unknowns A~ N) can be found. We shall now show tha t  r is in- 

vertible, if the S.P. ( fn)~ has full rank, cf. [I, Sec. 6, p. 136]. 

Let  B 0 . . . . .  BN be any q• matrices and consider the qx(N+l)q matrix 

B = [Bo . . . . .  B~].  

A simple calculation shows that  

! 
= 5 B , r , _ ~ n * =  Bsf,, Bkf~ �9 

t = o  k = 0  0 

(3) 

Now take BN to  be invertible. Then 

~Bj  f j=BN(fN+ ~-1 1 o o~ B~ Bsf,) =BN(fN--g), 

where g is in ~ItN_I, the past of fN. Hence from (3) 

B r B* = BN ( f N -  g, fN -- g) B ~ .  (4) 

Now by 1.17 (a) 

where f~= (IN[ ~ltg:l) and G is the prediction error matrix with lag 1. Since for a 

full-rank process (fn)-=~r A(G ) > 0  by definition, therefore [I, 3.11 (c)] 

A ( f~ -g ,  fN-g)  >0.  
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Since BN is invertible, it  follows from (4) tha t  so is B rB* and therefore also r .  

For  a full-rank process the desired matrix coefficients can therefore be obtained 

from (2). 

This method of solving the prediction problem involves matrix-inversion and 

is therefore unsuitable as a computational technique except where the matrices are 

small, i.e. where q is small, very  short segments of the past are used, and large 

prediction errors tolerated. To arrive at  a more accurate and efficient computational 

procedure we have, as often happens, to appeal to more advanced and refined ana- 

lytical theory; in the present  instance to the representabili ty of a relgular S.P. as 

a one-sided moving average, and the factorizability of its spectral density [I, Sec. 6, 7]. 

To recall this theory,  let (fn)T~ be a q-ple regular, full-rank process, let (hk)T~ 

be its normalised innovation process [I, 5.12], and G its prediction error matr ix 

for lag 1. Then by I, 6.12 

2.3 f,= ~ Ckh,~_k, Ck=(fo, h_k), Co= VG. (2.3) 
k - 0  

By I, 6.13 (b) the remote past ~t_~ is (0}, and so by I, 6.10 (b), VII o is also the 

present and past of h o. Hence from ], 5.11 (c) and I, 5.12 (b) 

2.4, 

f , = ( f n l m o )  = ~ Ckhn-k 
kfn 

n - 1  

k = 0  

n - 1  

k = 0  

(2.4) 

To solve the Prediction Problem we have only to determine the matrices Ck and the 

random /unctions hk. Now by I, 7.7 and I, 7.10 (A), if F' is the spectral density 

function of the process, then 

2.5 

F' (e t~ = ~ (ei~ �9 ~*  (et~ a.e 

r (e ~0) = ~ Ck e k~O E L ~247 
k=O 

~ + ( 0 ) =  VG (which is non-negative hermitian) 

2n 

A {~+ (0)} 2 = exp ~ log A {F' (e'~ dO �9 

0 

(2.5) 
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2.6 D E F I I ~ I T I O ~ .  We shall call ~ =  ~ Cke k~~ E L ~247 , where the Ce are as in (2.4), 
k ~ O  

genera t ing  funct ion  o/ the S.P. 

If in  some way we can de t e rmine  the  genera t ing  func t ion  O or i ts  Four i e r  

coefficients Ck the only  u n k n o w n s  left  in  (2.4) would be the  r a n d o m  func t ions  hn. 

The  task  before us is therefore to devise a cons t ruc t ive  or a lgori thmic me thod  for 

f inding ~ or the coefficients Ce. To see the  difficulties in f inding this, take q= 1, 

i.e. suppose t h a t  F '  is complex-valued.  I t s  fac tor iza t ion can t hen  be effected as in  

the  proof of I, 2.8. We first  ob ta in  the  Four ie r  coefficients ak of log F'(ei~ We 

then  compute  the  Four ie r  coefficients Ce of the  factor  (P from the  equa t ion  

Ckz k = e x p  �89 0+ a~z ~ , 
0 

by  expand ing  the R.H.S.  and  equa t ing  coefficients of like powers of z. By the Uni -  

queness  Theorem I, 2.9 the Ce so de t e rmined  will be the  desired coefficients. (2) 

This  m e t h o d  will not ,  however,  work for q > 1, since ma t r ix  mul t ip l i ca t ion  is non-  

c o m m u t a t i v e  a n d  the exponent ia l  law 

exp (A + B) = exp A .  exp B 

breaks  down. 

The problem of de t e rmin ing  the  genera t ing  func t ion  thus  presen ts  fresh diffi- 

cult ies when  q >  1. I n  Sec. 6 we shall give an  algori thmic solut ion of the problem,  

val id u n d e r  a condi t ion  of boundedness  5.1, the significance of which will be dis- 

cussed in Sec. 7. B u t  to get the  form of this a lgor i thm we will have to reverse  

the shift from the t ime-domain  to the f requency-domain  made  in passing from (2.4) 

to (2.5), and  to f ind  the C~ from the  equa t ions  Ck=(f0, h_~)=(fk,  h0), k > 0 ,  a f te r  

expressing h 0 l inear ly  in  t e rms  of the f ~  by  a l t e rna t i ng  projec t ions  (See. 3). I n  

(1) In practice we can find the logarithm from tables or by a cam or analogue computer, and 
get its Fourier coefficients by a harmonic analyser. 

(3) For q = 1 the method of factoring usually followed in communication engineering, and con- 
fined mainly to the continuous parameter case, is to approximate to F '  by a rational function, and 
to determine ,the zeros and poles of the latter by numerical solution of polynomial equations. The 
zeros and poles in D+ are then separated from those in D_, and the factors ~, (I)* isolated. Cf. 
Wiener [10, 2.03] and Bode and Shannon [2]. 

This method is motivated by the fact that only filters having rational transfer functions in the 
frequency domain can be synthesised out of lumped passive elements. As long as we rely on analogue 
computers to do the prediction, this fact is crucial. But it ceases to be relevant if the computation 
is to be carried out digitally, as would he more accurate and otherwise more appropriate in the dis- 
crete parameter case, since it would obviate the necessity of interpolating. In digital computation it 
would be more natural to follow our method of factoring than that of rational approximation. 



104 N.  W I E N E R  AND P.  MASANI 

Secs. 5, 6 we shall also show tha t  under  the boundedness condition the Fourier 

coefficients of @ and @-1 can be utilized to get the random functions h,~ of (2.4) 

as well, and thereby to complete the solution of the Prediction Problem. 

3. The al ternating process  

In  this section our approach will be heuristic. We will outline Wiener's idea 

of using successive alternating projections on Hflbert  space in order to derive the 

components of the innovation function in the 2-ple case, and show how when ap- 

proached from an operator-theoretical standpoint  it  suggests a coordinate-free algo- 

r i thm for determining the generating function. 

We shall begin with a lemma on the spectral densities of the component pro- 

cesses of a multiple process. 

3.~. LEMMA. (a) Let F = [ F , ]  be a q• non.negative hermitian matrix-valued 

function on C. I f  F E L 1 and log A F E L1, then log F ,  E L 1 for 1 ~ i <~ q. 

(b) The coml~onent processes of a regular, full ranlc process are regular. 

Proof. (a) Since the values of F are non-negative hermitian, we have A F ~< 

~< F l l - . .  Fqe, whence 

log A F ~< log F~ +.-- + log Fee ~< log F~ + z (F). 

Hence log A F - T (F) ~ log Ft~ < F~ a.e. 

The extreme terms being in L1, so is the middle term. 

(b) If  (fn)~oo is regular and has full rank, then by  I, 7.12 its spectral distri- 

bution F is absolutely continuous and log A F 'E  L r I t  follows tha t  F~t is absolutely 

continuous, and by (a) tha t  log F~,EL r Hence by  I, 7.12 the component process 
(i(|)~oc /n J . . . . .  is regular. (Q.E.D.) 

Now let F ' =  [F~] be a non-negative hermitian matrix-valued function on C such 

that  F ' E L  1 and log A F ' E L  1. For  notational  simplicity we shall suppose tha t  F is 

2•  By Cramer's Theorem [3, Theorem 5 (b)] and I, 7.12, F '  is the spectral den- 

sity of a 2-ple regular, full rank process (fn)~o. H (hn)~oo is its normalized innova- 

tion process, then, cf. (2.3)-(2.5), 

o o  

~ C e ~ 0 ,  3 .2  F' (e i~ ~) (el~ �9 (]~* (el~ �9 (e i~ = ~ k (3.2) 
0 
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where ~ is the generating function of the process. Here (~ = (f0, h_~)= (f~, ho). Now 

[I, 6.12] h o = ~ .  go, where go is the innovation function of (f~)_~, and G-- (go, go) 

is its prediction error matrix.  Hence 

3.a c .  = (f~, V~ -:~.  g.) = (f~, go) l z d - ' .  (3.3) 

The matrices (f~, go), (go, go) involved in this can be calculated, once we have ex- 

pressed go linearly in terms of the f-m- If for  instance the coefficients A(~ N) in 

N 

a . t  go=l i ra  ~ A ~ f _ .  (3.4) 
N-~oo m=O 

are known, then we can determine 

(fk, go)= lira ~ (fk, f-,,)A~ m*, 
N--~.oo rn~O 

since the Fourier coefficients (fk, f-m)= rk+m of F' are known beforehand. Our problem 

is there[ore to express go linearly in terms o/ f-m, m >~ O. 

Now by i ,  (6.8) go=Io - fo ,  where f0- - ( fo lm-i ) ,  and ~ - 1  is the past of fo. 
Lett ing ~J~)l be the pas t  of ](~), we have by I, 5.8 (b)(e) and I, 6.5 

[~'>= {1<'> I e los. (~<_1> + ~ > ) }  
and therefore 

3 . 5  g~, = 1~ ' > -  ]<o '> = (/<o') I {elos. ( ~ {  + ~irJ~ffi)}'). (3.5) 

Now let (hT))~._, be the normalized innovation process of the simple process 

(]~))~--0r Since by  3.1 (b) the lat ter  process is regular, {h~));_l_~ will be an ortho- 

normal basis for the subspace ~j~(_J~. By  determining the generating function and 

thence solving the Prediction Problem 2.2 for the simple processes (/~))~._~, ~ = 1, 2, 

we can determine the random functions h~ ), and from these obtain (](~)1~)1), ~ = 1, 2. 

The problem before us is therefore to determine the pro~ection of /(o~ on the space 

(clos. (~J~(_l)l+~l~)l)}~, given its pro~ections on the spaces ~)~(l_)l and ~S~)l. So formulated 

the problem is seen to  rest on the following theorem (yon Neumann [9, p. 55]). (1) 

3.6 T H E 0 R E M. (Alternating pro~ections). Let P1, P2, P be pro~ection operators 

on a Hilbert space ~ onto the subspaces ~fJ~l, ~i~z, ~TJ~l N ~z .  I[ A~ is the n.th term o[ either 

o/ the sequences 

(1) In [11] WIENER proved this theorem, unaware that it was already known to vo• NEUMANN. 

8 - 6 6 5 0 6 4  Acta  mathematica.  99.  ] m p r i m ~  le 25  a v r i l  1 9 5 8  
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P1, P2 P1, Px P2 PI, P2 P1 P~ P1 . . . .  

P2, Px P2, P2 PI P~, P1 Pz P1 P2 . . . . .  

then A~-->P strongly(I), as n -+~.  

This a t  once yields the following corollary, which is really what we need. 

3.7 COROLLARY. With the notation of 3.6, i/ Q is the pro~eetion operator on 

~ onto the subspace {elos. (~)~ + ~2)} ' ,  then 

(a) Q = I - P I  - P2 + P1 Pz +/)2 P1 - P1 P2 P1 - Pz P1 P2 + "'" 

the convergence being in the strong sense; 

(b) /or all /E~1I~, 

Q ( / ) = / - P j ( / ) + P ,  P j ( / ) - P j P ,  Pj( /)+. . . ,  j~=i 

the convergence being with respect to the norm in .~. 

We shall apply this corollary, taking ~ = s and ~l~ = ~ ) 1 .  We will be able to 

use the formula given in (b), which is simpler than tha t  in (a), if /~)•  ~J~)l. This 
.ft(i)~ r162 condition, which by  the s ta t ionar i ty  proper ty  will imply tha t  the process tin j ,=  ~r 

is orthogonal, can be secured by an initial factorization of the diagonal entries of 

F',  as we shall now show. 

Since F'EL1, log A F ' E L  1 and therefore by  3.1, F~, log F~EL1, it follows by 

I, 2.8 tha t  

2';,=[r where r  ~ i = 1 , 2 .  (1) 

The Fourier coefficients of ~ can be found by  the method explained in See. 2, so 

tha t  we may  regard r ~b2 as known. Now 

In this the first  and third matrices on the right are in Lo ~ and L ~ , and the one 

in the middle, which we shall denote by 1 ~, is well defined a.e. on C, since by (1) 

the functions r can vanish almost  nowhere on C. If  ~r can be factored, then from 

(2) we would get a faetorization for F'.  Now F does fulfill the conditions of factori- 

zability, [I, 7.13], v i z .  FI lL  1 and log A F f i L  1. For  since IF/~I~<F; ,F~2=Ir  ~ Ir ~, 

therefore I.F[j/qb~ ~j[ ~< 1. Thus F is in L~ and therefore in L 1. Also since, 

(1) i.e. for each ]e,~, [A n (])- P ([) [ -> O, asn~c<),[  [ being the norm in~ .  
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log A F ' =  log 1r log I '~, l '+ log 

log A F = log A F' - (log av~x + log F~) ,  
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which is in L 1 by 3.1 (a). Hence there is no loss of generality in assuming, to begin 

with, tha t  the diagonal entries of F' are 1. 
//(t)~oo With this assumption, the component processes ~/n jn--~ are orthonormal.  Hence 

](o 03_~J~(?l, and the formula 3.7 (b) can be used to get 

•(i) 0 =/(d ) - P~ (/(o ') + P ,  Pj (/(d') - Pj P ,  Ps (1~') + " "  ~ *  i, (3) 

where Pj is the projection operator on ~ onto the subspace 9~)1. Since (/~-J~)~-i is 

an orthogonal basis of this subspace, 

P 1  (] (00) = mr1 ~ (/(t,, /,1)) /~)m / 

P, PJ 
n=l rn=l 

(4) 

and so on. The coefficients involved, viz. 

am = (](m 1), /(o2)), bm = (]~), gl), __ a Iv ] -  --m~ 

are the Fourier  coefficients of the non-diagonal entries of F, and are therefore known. 

From (3) and (4) we get 

g(o 1) =/(o 1) -- '~ ]~-2)m a m  "t- 
m m 

+ 

g(o 2) = [(o 2) - ~ 1~ bm + 
?n 

+ 

~ ]~)mbm-nan-- ~ ~ ~ /(-2)m am-nbn-nav 
n m n p 

5 5 5 5 ]~)m bm_nan_pb~,_qaq . . . .  , 
m n p q 

~ ~ [~)mam_nbn- ~. Z Z [(1-)m bm_nan-nb, 
m n m n p 

m n p q 

(5) 

where all subscripts run from 1 to co. 

I t  would not  be permissible to separate the terms in /~)~ from those in /~)m 

in these series. We may do so, however, in their partial sums g~.)~ consisting of N 

terms, so that  
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gt'.). =/(0 ~' + ~ 1'-"~ {~ b~_ ~ a~ + ~ 5 Y bm-~ ~ - ~  b~_~ ao +.-} 
m n n p q 

- 5 / %  {a~ + 5  5 a~_~b~_~a~+ ...} 
m n p 

o.N= - ~  { b , + ~ b , ~  ,a,_,b,+...)+/'o ~) 
m n p 

+ Z/ff)m {~ am_~b~+ Z Z ~ ar,_~b~ ~ar_qbq +'.;}, 
m n n p q 

or  in m a t r i x  no ta t ion ,  

g o .  / g ~  

(6) 

0m] + m- ~ 

br --m. 

(7) 

whe re  the re  a re  a f in i te  n u m b e r  of t e rms ,  depend ing  on N,  be tween  each pa i r  of 

braces  { }, a n d  al l  s u b s c r i p t s  run  f rom 1 to  ~ .  

The  m a t r i x  coefficient  of f-m in t he  l as t  express ion  is w h a t  we have  d e n o t e d  

b y  A(~ n) in (3.4). These  coefficients a r e  thus  de te rmined .  The  des i r ed  coefficients Ck 

can be g o t t e n  f rom the  A(~ N) as exp la ined  ear l ier ,  cf. (3.3) a n d  ensuing r emarks .  (1) 

F o r  q > 2 an  analogous  m e t h o d  b a s e d  on q p ro jec t ions  can be worked  out ,  b u t  t h e  expres -  

sions for  the  coefficients Ck will  a p p e a r  d i f fe ren t  for d i f ferent  q, a n d  will be h a r d  

to  hand le  for  large  q. As  i t  s t ands ,  th is  a p p r o a c h  is the re fo re  unsu i t ab l e  as  a com- 

p u t a t i o n a l  a lgor i thm.  

W e  shal l  now indica te  how a r e i n t e r p r e t a t i o n  of the  idea  u n d e r l y i n g  this  solu- 

t i on  l eads  to  a p rocedure  for  f inding  the  gene ra t ing  func t ion  which is va l id  for  a n y  

q>~2. This  is ob t a ined  when  we t r y  to  der ive  a sequence of ope ra t ions  on t h e  space 

of m a t r i x - v a l u e d  func t ions  of the  t y p e  used  b y  Masan i  [6] f rom the  sequence of 

a l t e r n a t i n g  p ro jec t ions  of ~ (~)  d iscussed above .  W e  f i r s t  no te  t h e  fol lowing l emma.  

N 

3.8 L w ~ M A .  I ]  gk=  ~ Anlk_ n - r  and  F '  /s the spectral density o~ 
n - - O  

the S.P.  (fn)~r then the spectral density G o/ the process (gk)_~r is given by 

(x) We know that these Ck will lead to the factorization of F',  only because we were able to 
derive such a facterization beforehand in I, 7.13, by treating F '  as the spectral density of a full rank 
process. To prove I, 7.13 we had to make use of the spectral criterion for regularity with full rank 
given in I, 7.12. In [11] Wiener attempted to derive this criterion from the expressions (5). Such a 
derivation does not seem to be possible. Wiener's proof is in fact incomplete: convergence difficulties 
appear, which become pronounced when the pasts ~ ,  ~ of the component processes are in- 
clined at a zero angle. 
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N N 

Proo]. First  we have 

N M 
2~ 

1 N M * 

0 

This can be proved in exactly the same way as I, 7.9 (a). I t  follows that  for all 

integers k 

2xt 

12:t f e-~~ G (e ~~ dO = (gk, go) 
0 

2~  
2 1  N N * 

0 

2~  

if ( 2 ) ( 2 ) *  2~t e ~,o A . e  ~'~ F '(e ~~ Ane ~i~ d0. 
0 

From this the result follows. (Q.E.D.) 

Proceeding heuristically, let us suppose that  the expressions between the fcur 

braces { } of (6) converge separately as N-+~o, so tha t  we can replace g(o~.)N by g(~), 

and take infinitely many terms in each ( } .  The corresponding matr ix version (7) 

will then contain go instead of go, N and there will be infinitely many terms between 

the braces { }, which give the matrix coefficient of f-re. Denoting this matrix by 

by Am, m~>l, and letting A o = I  , we get 

go = ~ Amf-m" (8) 
m--0 

Now since the innovation process (gn)_~r of (fn)_~ is orthogonal [I, 6.9], therefore 

its spectral density has the constant value G = (go, go). A heuristic extension of the 

last lemma thus suggests tha t  

G = (go, go) =tII (ei0) F' (e i0) tit* (ei~ tit (e,O) = ~ Am em~O. (9) 
m ~ 0  
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Now let ~ be the generating function of our S.P. Then by (2.5) 

Since I A (@)]= ] / A ~ * 0 ,  a.e. we see tha t  @- '  exists a.e. and 

G = ( ~  cI ~-1) F '  (~/t~ r (10)  

Now assume that  ~ - IEL~ Then from (9), ( 1 0 ) a n d  known uniqueness theorems 

(e.g. I, 2.9), it  would appear that  VG ~ -x  and ~I s are equal. 

This suggests a further s tudy of the function ~I s. Letting 

we find tha t  

3.9 A,,,= - B ~  + ~ B,,B,,,_,,-~ ~ Bp B,,_p B,,,_n + . . . ,  
n n p 

where all subscripts run from 1 to oo. Hence from (9) 

m-1 \ n ~ l  p-1  

= I - i F 1  (e~~ (et~ (e'~ . .- ,  say. 

(3.9) 

3.10  

Hence 

3 . i t  

W 1 = M+, W2 = (M+ M)+, Ws = {(M+M)+ M}+, " " .  (3.10) 

W-- I -  M+ § (M+ M)+ - {(M+ M)+ M}+ + . . . .  (3.11) 

Thus x]F can be derived from the (known) spectral density. From (9) we get G and 

thence ~ = iF-1 ~/-fl. 

Now let M = F ' - I .  Then Bm will be the ruth Fourier coefficient of M for m > 0, and 

a straightforward calculation shows tha t  with the subscript notation of 1.14 (b), 
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TO put  this derivation on a sound footing we would have to justify the change 

in the order of summation made in going from (5) to (8), show tha t  (9) is correct, 

tha t  ~ - I E L  ~ tha t  V G ~ - I = t t  r and  tha t  the series (3.11) converges in the mean. 

We will follow a different approach. The crucial point tha t  ~ - I E L  ~ will be set t led 

in Sec. 5 under the Boundedness Condition 5.1 on F'.  For  this we will need the 

isomorphism between tT~o~ and the L2-class under spectral weighting, which is established 

in the next  section. The other unsett led points will then either be circumvented or 

disposed of by means of the Boundedness Condition. 

4. The L~-class with respect to spectral measure 

In  this section we shall s tudy the class L2 F of matr ix-valued functions which 

are square-integrable with respect to the spectral distribution F of a regular full- 

rank S.P. ( fn )~ ,  and  show tha t  i t  is isomorphic to ~r~or the subspace of ~L 2 spanned 

by the vector-valued random functions fn, - c~ < n < co (cf. I, 5.6). This isomorphism 

will be needed in the next  two sections. Throughout  this section we shall assume 

tha t  F is the spectral distribution of a" q-ple S.P. ( I~ )~  of this type. By I, 7.12 F 

will then be absolutely continuous. We shall therefore define L2, F as the class o /a l l  

q• matrix-valued /unctions ~I~ on the unit circle C such that *I* F' ~* EL 1 on C. For  

brevity,  however, it will be convenient to sometimes write 0 instead of e ~~ for the 

arguments of functions in L2, F, i.e. to imagine tha t  the domain of these functions 

is the closed interval [0, 2g]  and not the circle C. 

From this definition of L2, F we readily get the following lemmas, cf. (1.6) 

and (1.7). 

4.1 LEMMA. (a) ~]~EL2. F, if and only i/ r V ~ E L  2. 

(b) I /  r t~EL2, F, then t i fF ' t i t* E L1, and 

2~ 

1 f ti], 2-~ v (~(O)F ' (O)  (O)}dO=( (~V~ ,  W V ~ ) ) ,  
O 

2 9  

- - - -~ t v  {@ (0) F '  ( 0 ) a "  (0)} dO= ][ VPII'. 
0 

(c) I /  @ELoo and q[tEL2,~ then @tItEL2, F; in particular every Laurent poly- 

nomial in e go with matrix coe//icients is in L2, F. 
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4.2 LEMMA. L~,F is 

the inner product 

a Hilbert space under the usual algebraic operations and 

((+, ,r))F: ((+ V~, ,~ V~)) , (1) 

the corresponding norm being 

II + I1~ = v ( ( + ,  + ) ) ~  = II + V ~  II. (2) 

Proo]. Since L 2 is a vector space, it follows a t  once f rom 4.1 (a) tha t  so is 

L2. p. Also, by  (1) (( , ))F has all the properties of an inner product, and by  (2) 

[[ [IF all the properties of a norm. 

To show tha t  L2. F is complete, we let (~I~n)~ be a Cauchy sequence in L2. F- 

The equality 

then shows tha t  (@~ l / ~ ) r  is a Caucliy sequence in L~, and therefore has a limit 

in L 2. Since by  I,  7.12 log A F ' E L  1 and therefore F '  is invertible a.e., it easily fol- 

lows tha t  this limit is of the form @1/~.  By  4.1 (a) ~EL2,  F. Since, as n--->~, 

we conclude tha t  ~n - ->~  in L2. F. (Q.E.D.) 

In  [I] we saw tha t  although the ~2-norm II II is important  in the stochastic 

theory, the corresponding inner product  (( , )) is not and has to be replaced by the 

Gramian ( , ), cf. I, (5.2)-5.4. The situation is the same with regard to  the norm 

II HF and the inner product  ( ( , ) ) F  of 4.2. Wha t  takes the place of the la t ter  in the 

stochastic theory  is a matr ix,  analogous to the Gramian, which we shall now define. 

4.3 D E F I N I T I O N .  For ~ ,  tFEI~,F we de/ine the matrix (r t]~)F by 

2~ 

0 

The relation between this and the inner product  and norm of 4.2 is given by  

�9 .4 ( ( ~ ,  ~ ) ) F  = �9 (~, w)F, II �9 I1~ = i ~  (~, ~)~, (4.4) 

In  view of 4.3 and 4.2 (1), (2) we a t  once get the following form of the Schwarz 

inequalities for L2. F from the corresponding inequalities for L 2 given in 1.10. 
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r,.5 L~MMA (Schwarz inequality). I /  ~ ,  WEL2. F then 
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We shall now turn to the isomorphism between L2. F and ~1t~ = ~ (fk)_~. We 

shall use the following notation. 

No ta t i on .  (a) Finite linear combinations ~: Ak f-k with matrix coe//icients Ak will 
- n  

be denoted by the symbols P (f), Q (f), etc. 

n n 

(b) I /  P (i) = ~. Ak f-k, then we shall write P (e ~~ = ~ Ak e ~'~ 
-r~ - n  

We shall show tha t  the correspondence so defined between finite linear combina- 

tions of the f-k with matr ix  coefficients, and Laurent  polynomials in e ~a with the 

same coefficients can be extended to all random functions in ~ and all matrix- 

valued functions in L2. F to yield an isomorphism between these spaces. We need the 

following lemmas. 

�9 .e L~MMA. (V (I), Q (/))= (~, ~)~. 
Proo/. We have to show tha t  

2~ 
m n ~ 1 m n 

0 

This can be done exactly as in our proof of I, 7.9 (a), if we note tha t  since F is 

absolutely continuous 

2~ 

( f  j ,  f k ) ~ : - - - - - ~ ;  e ' ( t - k ) ~  ( e ' ~  

o 

(Q.E.D.) 

&.7 LEMMA. (a) Pn(f)--->r 4} in ~too, i/ and only i/there exists a/unction eI~EL2, F 

such that Pn-->~ in L2, F. 

(b) I] Pn (f)-->~, Qn (f)-->dp in ~ILr and ~ ,  v~ correspond to ~ ,  ~ as in (a), then 
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By 4.6 

(Pro (f) - P~  (f),  P ~  (f) - P~ (f))  = (P~  - P~, P~ - P~)F. 

Taking the square root of the trace on each side, 

o o  Now if Pn( f ) -+~,  the L.H.S. approaches 0 as m, n - + ~ .  Hence ( ~)~=1 is a Cauehy 

sequence in L2, v, which by 4.2 is a complete space. The sequence therefore has a limit 

EL2. ~. Working backwards we get the converse. 

(b) By 4.6 (P,, (f), q,, (f))= (Pn, Qn)F, 

and by I, 5.7 (b), 

show that  

Now by 4.5 

(Pn(f), q,(f))-+(~o, ~b), as n-->oo. To prove 

A 

(Pn, Qn)r-->( r tIS)r, a s  n - - > o o .  

(b) we need only 

(1) 

Since P=-->~, {~ _+tlg in L2, F, the R.H.S.->0, as n-+oo. Thus (1) is established. (Q.E.D.) 

4.8 DEFINITION.  Let ( fn )~  be a regular /ull.rank S.P. with spectral distribu- 

tion F. Then /or each r e m ~  we de/ine the corresponding member ~ E Ls, v as/ollows: 

(i) i] r (f), then r  

(ii) i/  r = lim P= (I) in Yl~or then (x) r lim P= in L2. F. 
n-.-~oo ?l . -~oo 

We note that  to the function f-k in moo corresponds the function e k~e I in L2. p. 

I t  also readily follows that  if A is a q• matrix, then to the functions A.P<I),  

P ( f ) + Q ( f )  in ~lt~, correspond the functions A . P ,  P + Q  in L2. v. Also by 4.6 
A 

(P (f), Q (f))= (P, Q)v. By a limiting argument these results can be extended to all 

functions in ~ ,  so that  if to r ~ E m ~  correspond the functions ~ ,  W E L2. F, then to 

A.  ~ ,  q~ + t~ correspond A- ~ ,  ~ + W, and (~, t~) = (@, t]g)~. Furthermore, if as is natural 

we identify functions ~ ,  tit E L2. r which differ only on subsets of C of zero F-measure, 

(1) As just shown in 4.7 the limit on the right will exist if that on the left exists. 
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i.e. for which [[ then  the correst~ondence f rom mor into re. F is one-one. 

We shall now show tha t  this correspondence is onto L o F. We need the  following lemma.  

4.9 L E ~ M A .  Let (f,)T~ and F be as in 4.8, (h,)T~ be the normalised innowdion 

f process o/ (n)-~r and r its generating /unction. Then 

(a) the /unction e-"~~ e~-I ~Le. F, and corresponds to the /unction h ~ ;  

(b) /or any tI/EL2, r, tI~e]bEL2; 

(c) /or any tI~6Le, F, i/ A~ is k-th Fourier coe//icient o/ ~ ,  then as n--->~o 

A~e ~~ ~ - i - ~ W  in the L~,~-norm. 

Proo[. Since h~ ~ Ig~ ,  there is a corresponding m e m b e r  in L.~. ~, say ~t ~. As re- 

marked  in the preceding para,  

2 ~  

] ( kiO e e) J 
0 

F '  (ei~ (ef~ = (e-ki~ tIS)y = (fk, h~) = (f0, h,_k). 

The  last  t e rm is 0 for /c < n, since in this case h~_k • ~lI o. Thus  for each/c,  the  func- 

t ion F '  tI/* has the same /cth Fourier  coefficient as the funct ion 

oo 

(fo, h._k) e ki~ = e "i~ ~ (fo, h i )  e s~~ = e "~~ ~ (e~~ 
kffin j=O 

Hence  F '  W* = e  "~~ r  a.e. Bu t  b y  (2.5), F ' =  ~ *  a.e., and  since F '  is invert ible  a.e., 

so is ~ .  I t  readi ly  follows t h a t  W = e - " ~ ~ 1 6 2  -1, which shows t h a t  e -n~~ F, and  

corresponds to hn. 

(b) Le t  W e L2. F. Then  by  4.1, W l / ~  E L 2, and therefore I W V ~  I~ E L 1. Now since 

F '  = ~ ~* ,  a.e., we have  

(2) 

Thus  ] t Y ~ I ~ E L  1 and  therefore W ~ E L 2 ,  ef. I ,  3.5 (a). 
n 

(c) Since by  (a) ~ - l e L 2 ,  F and  ~ A ~ e  k~~ is bounded,  therefore by  4.1 (c) 
- n  

n 

hk  ekiO) ~--1 (eiO) ~ L2" F. 
- n  

Next ,  by  4.2 and  (2) 
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- n  

Now since Ak is the kth Fourier coefficients of tIS~, the R.H.S.--~0, as n-->~.  Hence 

(~nAkek~~ in the norm ll llF. (Q.E.D.) 

We are now ready to show that  our correspondence is onto L2, F. Let  tit EL2, p 

and let Ak be the ]cth Fourier coefficient of the function W ~  EL 2, where ~ is as 

in 4.9. Then since ~ f a k i r <  ~ and the process (hk)~  is orthonormal, 
- o r  

n 

~Akh_k--> some gE~ltcr as n--->c~. (3) 
- n  

By 4.9 (a) and the fact that  the correspondence preserves addition, and multiplication 

by matrices, it follows that  to the function on the left of (3)corresponds the function 

Ak ektO cI~-i = Ak ekiO ~-1  
- n  

in L~, F- By our Definition 4.8 (ii) its limit in L2. ~, as n-->~, corresponds to g. But  

by 4.9 (c) this limit is W. Thus W corresponds to g E 11t~. To sum up, we have the 

following theorem. 

4.10 T~EOR~,M. I /  (fn)_~ is a regular full.rank process with spectral distribu- 

tion F, then the correspondence defined in 4.8 is an isomorphism on ~1t~ onto L2. F, on 

the understanding that we identify members o/ L2, F, which differ on sets of zero F- 

measure. More fully, if to tp, ~E~l t~  correspond t~,tISEL2. F, then to ~ §  Atp  

correspond ~ § t~, A t]~, and 

2~  

(~, ~ ) =  (~,  W ) F = ~ f  t~(ei~176176 

0 

2 g  

1 f l r  (e,0) l/~ (e~0) 12 d 0. 
0 
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An impor t an t  appl icat ion of this theorem is the  following 

4 . t i  COROLLARY.  Let (fn)_~ be a regular /ull-ranlc process with spectral dis- 

tribution F and generating/unction ~]~, and let (1) 

u (do) = [e-~o ~ (eiO)]o+ ~ - 1  (do), ~ > 0. 

Then Y~eL2. F and corresponds to the linear predictor f~ = (f~] ~ o ) u n d e r  the isomorphism 

de/ined in 4.8. 

Proo/. Since, cf (2.5), F ' = ~ *  a.e., therefore 

Yv (d ~ F' (e ~~ u  (e '~ = [e -~t~ ~ (d~247 [e -~'~ 4 ,  (dO)]o * . 

This is in L 1, since [e-'~~ r (e~~ e L  2. Thus  Y~eLe. F. 

Now let Ck be the  kth Fourier  coefficient of ~ .  Then  

Y~ (e ~~ r (e i~ = [e -~~ r (d~247 = ~ (~v~k ek~~ L~. 
k=0  

Hence  by  4.9 (c), as N-->c~ 

( c e ~=~o ~+k } (I~, 1 (eiO)-->Y~ (e '~ in the L2, F-norm. 

I t  follows t h a t  if ~o is the  r andom funct ion in t ~  corresponding to Y~ in L2, F, then  

(cf. 4.9 (a)), 
N 

C ~ + k h - k - ~ ,  as N--->~ 
k=0 

But ,  cf. (2.4), the  last  sum tends  to ~ as N-->c~. Hence  ~o=f~. (Q.E.D.) 

5. The Boundedness Condition 

To progress fu r ther  we have  to assume t h a t  the eigenvalues of our  spectral  

dens i ty  ma t r ix  are essentially bounded above  and  a w a y  f rom zero. B y  1.5 ( a ) t h i s  

assumpt ion  m a y  be s ta ted  as follows. 

5.1. B o m a d e d n e s s  C o n d i t i o n .  Our q-pie regular, /uU-ranb S.P. (fn)-~ has a 

spectral density F' such that 

2I~,F'(e~~ 0 < 2 - ~ 2  < o ~ .  

(1) Since A r vanishes almost nowhere on C, r a-1 (e t0) is defined a.e. on C. 
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We shall show in this section that  this condition entails the following conse- 

quences : 

(i) L 2 and L2,p become identical topological spaces. 

(ii) The sum of (one-dimensional) manifolds ~_ ~ (f-k) becomes topologically closed 
k - 0  

(ef. I, 5.6 (d)), and therefore identical to ,~t 0 the present and past  of fo. 

(iii) The innovation function h o is expressible as a mean;convergent infinite 

series ~ D ef_k. 
k - 0  

(iv) If ~ is the generating function of the S.P., then ~ - I c L ~ - .  

(v) The linear predictor for any lag v is expressible as the sum of a mean-convergent 

infinite series ~ E ~ f  k, where E,.k is a finite sum of products of the Fourier coeffi- 
k = 0  

cients of ~ and ~-1.  

5.2 LEMMA. I[ F' sati/ies the condition 5.1, then 

(a) L~,F=L2; 

(b) /or all OEL2, 

2:t 2~t 

f ~ (e i~ ~*  (e i~ d 0 < 2 ~ (q~, ~ ) e  < 2' f q~ (d ~) ~ *  (d ~ d 0 
0 0 

~l la' l l  ~ < Ila'll% < z Ila'll~; 

(~) 

(2) 

(c) L2, e-convergence and L2-convergence are equivalent. 

Proo/. (a) From 5.1 

1 l i ' 
a . e .  

Hence l,/~, ( I /~ ) - IEL~ .  Hence if ~ E L 2 ,  then ~ l / F ' f i L 2  and therefore by 4.1 (a) 

E L2. F. Next, if r fi L2, F, then by 4.1 (a) ~ 1/~ E L 2, and therefore since (I/~) =1 E L~, 

@ = ~ 1 / ~  (I/F~) -a EL 2. Thus L~=L~,e. 

(b) By 5.1 and 1.5 (d) 

2 @ r  -< ~ F ' r  -< 2 'q~r  a.e. 

Hence, cf. 1.9 (b), their integrals must bear the same relations, i.e. we have (1). 

Dividing by 2~ and taking traces, we get (2). 
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(c) Let 4~, 4 E L~, F= L~. The inequalities 

W .ll+ -+ll < < VZ.II+ -+I[ 

show that  4 ~ - + 4  in L+=.F if and only if 4 ~ - + 4  in L 2. (Q.E.D.) 

5.3 T ~ E O R E ~ .  Let the spectral density F' o/ a S.P. ( fn)~  satis/y the condition 

5.1. Then 

(a) /or all matrices A o . . . . .  A~, 

(b) i/ !Tt o is the present and past o/fo, then l'r~ o ~ ~ ~ (Lk); 
0 

(e) i[ g =  ~ B~f-k E ~r~ o, then 
0 

0 0 

Proo/. (a) Let 4 (e i~ = ~ Ak e ki~ Then by 5.2 (b) 
0 

2 ~  2~  

4 f 4 (e ~~ 4 "  (go) d 0 <: 2 ~z (4 ,  4 )F  "( 4' f 4 (e *~ 4 "  (e '~ d 0. 
0 0 

Now by the Parseval relation (1.13), the integral in the border terms equals 

2~  ~ AkA~. Also by 4.10 
0 

(b) Taking the trace of each term in the inequalities (a) we get 

n 

4 IA I <II o5 A f-kll:<4' I A I%. (31 
0 0 

Now obviously ~ ~ (f-k)~ tllo. Hence we have only to prove the reverse inclu- 
0 

sion, i.e. show that  given any g E i'go, there exist matrices Bk such that  

g= ~ Bkf-k, I 
0 

the last series being convergent in the g.2-norm [I [I of I, (5.3). Let  g e BI o. Then 

g =  lira gk, where gk= ~ A~n)f_,. 
n-+oo  k = 0  
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For  convenience we define A~ n) = 0  for k > n. Then by  (3) for all n ~  m, 

n n 

Hg,,,-g,~il'=ll~o(Ar)-A~"))f_,,ll~>~ ~ o l A  <m> a~) ~ = k - - ~  k E .  

I t  follows tha t  for 0 ~< i < m ~< n, 

i n  

Now the left member  of (4) tends to 0, as m, n-->oo. The same must  therefore be 

true of the right member.  Since the space of matrices is complete under the Eu- 

clidean norm, we infer tha t  

A~n)-->B. as n--> oo, 0 < i <  o~. (5) 

Next,  let n-->c~ in (4). Then since the series in the middle has only a finite 

number  of terms, i t  follows from (5) and (3) t ha t  

rn  

~ ,  ~o~ ,~ - B,,) g-,~ll ~ 

k=O 

Since gm-->g as m-->oo, we conclude t ha t  ~ Bkf_k--->g as m- ->~ .  Thus I.  
0 

(c) From (3) we have 

~o [B~I~<H~o B~f-klls<~t' o ~ IBk]~" 

Since the sum in the middle approaches g as n-->oo, it follows tha t  ~ ]Bkl~< o o  
0 

and the inequalities given in (e) hold. (Q.E.D.) 

Now let (f~)_~ be as in 5.1 and let (hn)T ~ be its normalised innovation process. 

Since h 0 E BI 0, i t  follows by  5.3 (b) (c) tha t  

0 0 

Since [I, 6.12] h~ = U ~ ho, where U is the shift operator of the process ( fn )~ ,  we get 

the following result. 
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5.4 COROLr, ARY. I /  (hn)_~ is the normalised innovation process o /a  S.P. (fn)_~ 

having a spectral density which satisfies the condition 5.1, then there exist matrices Dk 

such that 

k=O 0 

Now let ~ be the generating function of such a process. We know that ~ E L ~247 

cf. (2.5). Under the boundedness condition, the equality ~ ~* = F' shows tha~ ~ E L~.  

Next, the equality (~-1)*~-1=(F ' ) -1  shows that ~ - I E L ~ .  We shall now show that 
- 1  0+ EL~.  

Since the series for h o given in 5.4 converges in the /L2-sense [I, (5.3)], it 

follows by Theorem 4.10 that ~ Dee ~~ tends to the function in I~.p corresponding 
O 

to hoe ~t~. By 4.9 (a) this function is ~-1.  Since by 5.2 the L~,F-and L~-topologies 

are equivalent we see that 

1)~e~ '~  -~ in the L~-~orm II II. 
0 

Thus ~I )ke  k~~ is the Fourier series of ~-1, i.e. ~ - I E  L~ +. Since, as already remarked, 
0 

~-~ E L~, we conclude that ~-~ EL~~ 

We may sum up these results as follows. 

5.5 THEOREm. I /  (i) (f~)_~ is a q-pie S.P. with a spectral density satis]ying 

the Boundedness Condition 5.1, 

(h~)_~ is its normalised innovation process, 

is its generating /unction, 

(ii) 

(iii) 

then 

(a) 

(b) 

O§ ~ ,  ~-1 E L~,  

hn = ~ De fn_k, where Dk is the k-th Fourier coe//icient o/ ~-1 .  
0 

We now turn to the linear predictor. From (2.4) and 5.5 (b), 

5.6 f ,=  ~ C,+~h-n, hn= ~ D,f~_,, v>0.  (5.6) 
n = O  j=O 

Substituting from the second equation of (5.6) into the first, and heuristically inter- 

changing the order of summation, we get 

) 
: n ~ O  k = n  k ~ O  

9 - 6 6 5 0 6 4  A e t a  m a t h v m a t i e a .  99. I m p r i m ~  le 25  a v r i 1 1 9 5 8  
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Rather than justify this change in the order of summation, we shall show directly 

tha t  the series on the right converges in ~C~ to the function f'~: 

5.7 THEOR~.~. I /  the process (f=)_~r has a spectral density F' satis/ying the 

Boundedness Condition 5.1 and the generating /unction ~ ,  then /or v > 0  

f~= ~ E,~f k, where E ~ =  ~ C~+~Dk_,, 
k=0 n~0  

Cs, D~ being the ]-th Fourier coe/ficients o/ ~ ,  ~-1. The prediction-error matrix /or lag 

v is given, e[. (2.4), by 

C* 
n=O 

Proo/. We have 

[e-~to~I~ (ei~ = ~ C~+k e kiO e - r i o  { ~I)(ei0) - -  r - I  
k=O k~O 

This is in L ~ ,  since cf. 5.5 (a) each term inside ( ~ is in Loo. Also, ~-~  E L ~ ; hence 

0+ u (e g~ = [e -'~~ @ (e~~247 @-~ (e g~ e L ~ .  

By the Convolution Rule I, 3.9 (d), the kth Fourier coefficient of Y~ is easily seen 

to be E,~ for /c~>0 (and of course, zero for k <  0). Thus as N-->oo 

N 
k~=o Eva ekt~ (e ta) in the L2-norm. 

But in view of the Boundedness Condition, L 2 and L~.F are the same topological 

space. Hence as N-->oo, 
N 

k~oE,,,~ ekt~ (e iO) in the L2, F-norm. 

Since by Corollary 4.11, fv in ~lt~ corresponds to Y~ in L2. F, it  follows (cf. 4.8) tha t  

N 

kffi0 
(Q.E.D.) 

We thus get the prediction f, as the sum of a series converging in-the-mean. 

The sequence (E~)~=0, where Ev~ is as in 5.7, is the matricial weighting /unction in 

the time-domain in the discrete parameter case. I t  involves the Fourier coefficients 

of @, ~ - I  alone. 

If our aim is to perform the computations digitally, the expressions for f ,  and 

G~ given in 5.7 could themselves be used. If, however, the prediction is to be done by 

an analogue computer, then we must shift from the time-domain to the frequency- 

domain. Now as shown in 4.11 and in the proof of 5.7, the function 
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5.8 Y~(d ~ = [e-~~ cI, (d~ ~ ~ (d ~ (5.8) 

is in L 2 (=  Lo, p) and corresponds to the prediction f~ E .rlt~. Hence Y~ is the matricial 

/requency.response or trans[er-/unction of the electric filter for which the response will 

be the prediction f~(w) when the past part (F~(o)))~ of the multiple time-series 

(f,~(w))T~ is fed in as input. 

We should mention here a lacuna in prediction theory, which is present even for 

the case q=  1, viz. the absence of a spectral characterization of processes for which 

the expression for f'~ given in 5.7 is valid in the usual /s As 5.7 shows, the 

Boundedness Condition is certainly sufficient, but  it seems the weaker conditions 

F', F '-1 EL 1 should suffice. For q = l  Kolmo.gorov [5, Theorem 24] has shown that  

these conditions eharacterise processes, which are non-deterministic with regard to 

both past and [uture, i.e. for which f~ r ~ (fk)k.n. Another unsettled question pertains 

to the case when the series expansion in 5.7 is not valid when convergence is taken in 

the usual /L2-sense. Does this expansion become valid when convergence is interpreted 

in some more subtile summability sense? (Cf. Doob [4, p. 564, Sec. 2].). We shall 

not discuss these questions in this paper. 

6. Determination of the generating function and the linear predictor 

In this section we shall express the generating function of a S.P. (In)T~ satis- 

fying the Boundedness Condition 5.1 in terms of the spectral density F' by following 

an iterative procedure of the type discussed heuristically in See. 3. We shall then 

derive computable expressions for the linear predictor and the prediction error matrix. 

By 1.5 (c) the Boundedness Condition 5.1 implies tha t  

I 2 , ~o I J"--J" ~ F ( e ) - I  < w ~ . , < 1 .  
s 2 + i t  

Now let F ' = 2 F ' / ( 2 ' §  and f~= 1/2/(2 ' +2)f~. Then 1~' will be the spectral density 

~ ~ The generating functions of (f~)~oo and ( fn )~  will be connected by the of the process (f~)_~. 

relation ~ = V2/(2' + 2 ) ~ .  In determining the generating function of a process satis- 

fying 5.1 there is therefore no loss of generality in making the following assumption. 

f 0 r  6. i  ASSt r~PTION.  (n ) -~  is a regular, /ul!-rank process with spectral density 

F' = I + M, where 
/~ = ess. 1.u.b. I M (do)]s < 1. 

0~0~2  r~ 
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The iterative scheme (3.10) now suggests the study of the operator ~ defined 

as follows. 

6.2 D E F I N I T I O N .  For all cIaEL2, ~(r162 

Since for ~ E L 2 and M E L~r we have ~ M E L 2, this definition makes sense. Some 

easily established properties of ~ are stated below. 

6.3 LEMMA. (a) ~ is in the Banaeh-algebra ~ o/ 1.16; more /ully, it is a 

bounded linear operator on L 2 into L~ and [ ~ [ ~ < # < 1 ,  (/~ as in 6.1). 

(b) I] 3 is the unit o/ ~ ,  then 3 §  is invertible and 

(3  + ~ ) - 1  = 3 -- ~ + ~ 2  -- ~ 3  + . . . ,  

where the last series converges absolutely in ~ ,  being in /act dominated by the convergent 

geometric series ~ #k. 

(I) = M+, ~2 (I) = (M+M)+, ?~a (I) = ((M+M)+M}+, (c) 
and so on. 

(a) II ( )II 

In view of 6.3 (b) the following definition makes sense. 

6 . 4 .  DEFINITION. Let W = ( 3 + ~ ) - I ( I ) =  ~ ( - 1 ) k ~ ( I ) .  
k~0 

The last series is absolutely convergent in the L2-norm, since by 6.3 (d) 

[ l~( I ) l l  < ~ o # ~ <  o~ �9 
k=O = 

By 6.3 (c) and the fact tha t  L2 ~ is closed we have 

6.5 W = I - M +  + (M+M)+ - {(M+M)+M}. + -.. E L2 ~ (6.5) 

The function W is thus derivable from the spectral density by an iterative method. 

We shall now show that  the generating function ~ of our S.P. and its innovation 

matrix G are easily obtainable from W. 

6.6 THEOREM. (a) W = V G @  -I, (b) WF' t I ' t*=G.  

Proo/. Since the S.P. (f,,)~oo satisfies the Assumption 6.1, it certainly satisfies 

the Boundedness Condition 5.1. Hence by Theorem 5.5 (a) ~-IEL~___L~. The rune- 
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tion I /G~  -1 thus lies in the domain of ~.  We shall show that  

(5 + ~)  (VG r a-1) = I. (1) 

Since by 6.3 (b) ~ + ~  is one-one, it will follow from (1) and 6.4 that  l / G ~ - l = t t  t, 

and therefore (cf. (2.5)) that  

tit F, ~it, = V~ ~ - 1 .  ~ ~ , .  (~-1),  I/G= G. 

To prove (1) we note that  by (2.5) ~ ( 0 ) =  ]/G. Since I /G~  -1 E L~ ,  therefore 

I /G~  -1 (0) = I and hence 
t /G~- I  = I +  (VG ~-1)~. (2) 

:Now since F ' =  r r therefore 

V G ~ - I + ( V G ~ - I ) M  = I / G ~ - I F  ' =  V ~ r  e i ~ . 

Hence (]/G ~ 1)t + {(~/G r 1) M}+ = O, 

i.e. by (2) (~ + ~) (VGr 1) = V~0-1  + {(V60-1) M}+ = I. 

This  establishes (1). (Q.E.D.) 

The prediction error matrix G, and thence the generating function O=W-11/G, 

are therefore expressible in terms of the spectral density F'. Somewhat different ex- 

pressions f o r ( ]  and ~ can be obtained as follows. Since M*=M, we have from (6.5) 

and 1.15 (b) (4), 

W * = I - M _ + ( M M _ ) _ - { M ( M M _ )  } _ + . . - e  L ~ (6.7) 6.7 

Now let 

6.8 X = F' tit*. (6.8) 

By Theorem 6.6, X = tIS-1G = ~ 1/G e L ~ .  Since ~o = I/G, it  follows that  X0 = G ; whence 

X = ~ VX0. Thus 

6.9 COROLLARY. Let X be de/ined as in (6.8) and (6.7). Then 

G=Xo, r =X (t/Xol). 

We shall now express the linear predictor and prediction error matrix in terms 

of W. 

Since by (2.5) and Theorem 5.5 (a), ~ ,  ~ 1 EL0+, it follows from Theorem 6.6 
0+ that  ~ ,  ~ - I E L ~ .  Let 

(e,O / :  l(e O / 
o o 
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F r o m  (6.5) we find t h a t  A o = I  and  for m > 0  

o . l o  Am = -- r :  + Y r'. r : _ .  - ~ 5 r~ r ' .  ~ r : .  + . . ,  
/t 7t ~0 

(6.10) 

where r ;  is the  kth Fourier  coefficient of M and all subscripts  run  f rom 1 to oo. 

The  coefficients Ak are thus  determinable .  (1) The  coefficients B~ can be found f rom 

the  recurrence relat ions 

A o B o = I  = B o A  o ] / 

A o B 1 + i ~  1 B o = 0 = B o A x + ]]1 A o [ (6.11 6 . t l  ) 
AoB 2 + A 1 B  I + A 2 B  o = 0 = B o A  2 + B  1A I + B 2 A  0 1 
. . . . . . . . . . . . . . . . . . . . . . . .  j 

Sinee A o = I ma t r ix  inversion will not  be encountered in finding the  Bk. 

E L ~ .  Then  by  Theorem Now let Ck, Dk be the kth Fourier  coefficients of cI~, 1 o+ 

6.6 A k =  VGDk, B~= Ck l / ~  i. Hence  by  Theorem 5.7 

k k 

E.,, = y c . , ,  O , . , ,  = Y B.+,, X,~_~ 
n = 0  n = 0  

v 1 ~ - 1  

G , =  5 C~C* = Z B n G B * .  
n = 0  ~ = 0  

G m a y  be eva lua ted  f rom the formula  G = W F '  W*. Since G is cons tant  we m a y  take  

ins tead the  average :  
2~  

6.9.2 G --- 12x f tIt (e'~ F '  (e ~~ tit* (e '~ d 0. (6.12) 

0 

We m a y  sum up  these results  as follows. 

6 . i 3  T H E O R E M .  Let the q-ple stationary S.P. satis/y Assumption 6.1. Then /or 

v > O ,  

k = 0  n = 0  

v - 1  

G,, = (f,, - f,,, f , , - f ' , , )= ~ B,~GB*, 
k = O  

where Ak, Bk (the Fourier coe//icients o/ the /unction W o/ (6.5) and W -1) and G are 

given by (6.10), (6.11) and (6.12). 

We thus  have  an explicit  me thod  of comput ing  the  weighting factors  E~k in the  

t ime-domain.  I t  easily follows f rom (5.8) and  Theorem 6.6 t h a t  the  corresponding 

t ransfer - funct ion in the  f requency-domain  can be expressed in the  fo rm 

(1) Since F' = I + M, we obviously have ro = (fo, to) - i and r'n = ([ n, fo), n * 0. 
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6.14 ](~ (e ~~ = [e -~~ tt '-1 (e~~ ~I s (ei~ (6.14) 

Since for purposes of prediction the ~ssumption 6.1 is no stronger than the Boun- 

dedness Condition 5.1, we have solved the Prediction Problem 2.2 and the correspond- 

ing problem in the frequency-domain for processes satisfying the lat ter  condition. 

7. Estimation of the spectral density 

In  this section we shall consider the computation of the spectral density function 

of a q-pie, regular, full-rank S.P. (fn)_~ from its correlation matrices rn,  which in 

turn are to be derived from time series observations in the past.  We shall show tha t  

on account of the errors inherent in all observation and estimation such an empiric- 

ally determined spectral density will satisfy the Boundedness Condition 5.1. This 

condition will thus be fulfilled in many  practical cases of prediction. 

Suppose tha t  the correlation matrices rn  have been obtained and we wish to 

estimate the spectral density F. In  practice we will know the values of only a finite 

number  of r~. A natural  approach would therefore be to take the Cesaro partial  

sums of the Fourier series of F:  

7.~ ~N(eiO)~nf~_~+i(1--[;)rnentO (7.1) 

as estimates of F. This has the merit  tha t  as N-->oo, FN(ei~176 a.e., as follows 

from a trivial matrieial extension of the Fejer-Lebesgue Theorem. Also by  a simple 

rearrangement of terms we get 

FN(e i~  Z Z rJ-k e'(j-k)~ 
j=l  k=l 

N 
so tha t  

7.2 FN (e i~ is non-negative hermitian /or 0 ~< 0 ~ 2 7e. (7.2) 

Since every Laurent  polynomial in e ~~ with matr ix  coefficients is bounded, we see tha t  

every such estimate FN will be bounded above. 

When we take into account not only the evaluation of the spectral density from 

the 2 N - 1 correlation matrices r ,  with I n I < N, but  also the derivation of these matrices 

from empirical data  on t ime series, we find tha t  each estimate FN is also bounded 

away from zero, in the sense tha t  its eigenvalues are bounded away from 0. To see 

this we shall first discuss a way of estimating the matr ix  coefficient ( 1 - ] n l / N ) r ~  

of e n~~ in the Cesaro partial sum (7.1). Since r_.=r: ,  it suffices to take 0 ~ < n < N .  
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The past values X_k=f_k(eo), k>O, of particular t ime series of the S.P. ( f n ) ~  

can be found from observation. From the record of these observations for the i th 

and j th  components:  

x% =/~)~ (~), x (" -'(J) -k--l-k(O~), k>~O, l<.i,j<~q (1) 

we can compute the one-sided time-average 

l N-1 
~N)(i,],O~)=~ ~. /~)-k(e0)/g)k(~0), 0 < n < N ,  (2) 

k=n 

in which the number  of terms is N - n ,  and therefore depends on the lead n. (Since 

O~ n < N ,  each sum will have a t  least one term.) The reason for this choise of the 

number  of terms is to make the expected value of ~(n N) (i, ], ~o) equal to the (i, ~)th 

entry of the desired matr ix  ( 1 - n / N ) r n :  

f l N-1 ( ~ )  ~'~N)(i,j,o~)dP(co) = ~  ~.. ([~-k, /r 1 -  ~ ,  
kffin 

where ~'~ = ([~),/~])) is the (i, ])th entry  of rn. Put t ing  r ~  N) (w) = ~[~N) (i, ], m)], i t  follows 

tha t  

f~ 

We must  now evaluate the expeeted value r ~  N~ in (3). In  the Wiener-Kolmogorov 

prediction theory the shift operator  U of the S.P. ( fn )~  is generated by  a measure- 

preserving transformation T on the probabil i ty space ~ onto itself (of. Doob [4, p. 

461-464]). In  this ease 

/(i) '~o' - (U~: /~)) (co) =/~) (Tk w). (4) n + k ~  ] - -  

In  the light of the theorems of von Neumann [8] and Oxtoby and Ulam [7], 

which assert  roughly tha t  every measure-preserving transformation can be resolved 

into ergodie components, and tha t  nearly all continuous measure-preserving trans- 

formations are ergodic, we may  take the t ransformation T in ( 4 ) t o  be ergodic. 

Since every function /~) is in ~2, i t  follows from (2) tha t  the entries of the random 

matr ix-valued function r(n N) are in L 1 on ~). Hence by a trivial matricial  extension 

of Birkhoff 's Ergodic Theorem [1], for almost all eo 

lim 1 1 {r(nN) (co) + r(~ N) (T -1 co) + . . .  + r(~ N) (T -~ w)} = r--(~ N). (5) 

Now from (2) and (4) we find tha t  for 0~</~ ~<v, 
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] N1 
[(~i)_k(T "o))./(S~(T "'o~) y~;x:) (i, j, T "o,) = ~ k~.:=, 

1 . v l  
= ~ t;:% ,, (~)" 1% ,, (~)  N ~ k = n  

A'+I / ,  

Z /~%. (~o)./~. (o~). 
2 = n + p  

This average  thus  ex tends  only  in to  the  pas t ,  and  is therefore  computab le  f rom t h e  

obse rved  values (1) of the  componen t  t ime series of the  process.  Consequent ly ,  t he  

average wi th  v +  1 t e rms  on the L.H.S.  of (5) is also compu tab l e  from such o b s e r v e d  

values.  F o r  suff ic ient ly  large v we m a y  t ake  th is  average  as  an a p p r o x i m a t i o n ( l )  t o  

the  expec ted  value r(,; \), i.e. by  (3) to the  des i red  m a t r i x  ( 1 - n / A ' ) r ~ .  We thus  h a v e  

a m e t h o d  of a p p r o x i m a t i n g  to these ma t r i ces  b y  using d a t a  col lected from t i m e  

series observa t ions .  

Now in measur ing  the  values  of a t ime series, r andom i n s t r u m e n t a l  e r rors  will 

be inevi tab le ,  so t h a t  the  resu l t  of m e a s u r e m e n t  will be 

gn (co) = fn (o)) + r  (to) ,  ( 6 )  

q~(r being the  "noise"  or  d i s tu rbance  caused b y  measurement .  We m a y  a s sume  

t h a t  the  condit ions of measu remen t  are  k e p t  cons tan t ,  a n d  t h a t  the  er rors  a re  m u t u -  

a l ly  independen t .  I t  will then  follow t h a t  (q~)?r is a q-ple white noise process, i.e. 

(q~m, q~,~)=y,,~A, (7) 

where A is a f ixed ma t r i x .  To ob ta in  A we note  t h a t  a m e a s u r e m e n t  of the  v e c t o r  

x~= f,~((o) consis ts  ac tua l ly  of q s imple measurement s ,  one for each component .  The  

measu remen t  of the  i t h  component  will involve an  e r ror  r of abso lu te  value  ),i, 

say. These er rors  being independen t ,  we will have  

(~b(~), ~b~ )) = f r ~b~ ) (w) d P (to) = 5~j- A~, 

which shows t h a t  

F ina l ly ,  since the  

measu red  quan t i t y ,  we will have  

A is a diagonal matrix with positive entries. (8) 

e r rors  of m e a s u r e m e n t  will be independen t  of the  size of t he  

(fro, r = O, - -  ~ < m ,  n < c ~ .  ( 9 )  

(1) In this paper we will not discuss the difficult question of the mode of approximation nor 
the question as to how large v must be taken in order to secure a given degree of approximation. 
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From (6), (7) and (9), we get 

r~, n = (gin, g , )=  (fro, f~) + ~ A  = rm-n + ~m~A, (10) 

which shows that  the actually observed process (gn)_~r is stationary. Since in any 

p:actical case the correlation matrices computed from time series data will be the 

r '~=(g~, go) and not the rn=( fn ,  f0), the empirically derived spectral density will 

not  be FN as given in (7.1) but  rather  (cf. (10)) 

G~ (e '~ = ~ 1 - r'n e ~'~ 
n = - N +  1 

= Y. 1 -  r . e  "~~ 
n = - N +  1 

= F~ (d ~ + A. 

By (7.2) GN(d ~ ~ A, and hence by (8) the eigenvalues of GN are bounded away 

from zero. 

Thus the empirically derived spectral density will not  only be bounded above 

but  also bounded away from zero, in the sense tha t  its eigenvalues will be bounded 

away from zero. Denoting this spectral density by F instead of FN or Gm we may 

by 1.5 (a) restate its boundedness proper ty  in the form 5.1, and sum up the pre- 

eeeding discussion as in the next  theorem. 

7.3 THEOREM. On account o/ errors o/ observation and estimation, any estimate 

o/ the spectral density o/ a regular /ull rank S.P., derived /rom its correlation matrices, 

which are obtained by averaging time series data, will satis/y the Boundedness Condi- 

tion 5.1. 

There are physical processes in which periodicities, though imperfect, are so 

marked tha t  it is untenable to postulate regularity, and it  becomes convenient to 

admit  non-absolutely continuous spectral distributions. In such cases the foregoing 

considerations will not  of course apply. Cases are also conceivable in which we may 

be able to hypothesize the values of the correlation matrices rn  from a theoretical 

s tudy of the process without recourse to sampling. If the hypothetical r ,  do not 

die down with sufficient rapidity as n--> _+ co, the foregoing remarks would again 

be inapplicable. 

8. A general factorization algorithm 

In this section we shall show how the iterative method developed in Sec. 6 to 

get the generating function can be generalized to solve the following problem. 
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8.1. F a c t o r i z a t i o n  P r o b l e m .  Given a q• matrix-valued /unction F on C 

such that F EL 1 and l o g [ A F ] E 5 1 ,  to /ind /unctions ~1, ~2 on C with the properties 

F (d e) = ~ 1  (e'~ ~ (ei~ a.e. (1) 

~i e L ~ ~2 e L ~ (2) 

2~ 

['f ] exp l o g l A { F ( e ' ~  . (3) 
0 

We shall solve this proplem under the 

8 . 2  ASSUMPTION.  F ( e i ~ 1 7 6  ] M ( e ' ~  a.e. 

Our method will work in different settings, e.g. when C is replaced by an an- 

nulus A, and F by  a matr ix-valued function holomorphic on A, and with suitable 

restrictions even for functions whose values are operators on an infinite-dimensional 

space, cf. [6] ; but we shall confine ourselves here to the version given in 8.1. Such fac- 

torization problems have no bearing on prediction theory except when F is hermitian- 

valued, but  are impor tant  in other branches of analysis, cf. [6, Sec. 1]. 

8.3 D E F I N I T I O N .  With any /unction M ELo~ we associate two operators on L 2 de- 

lined by 
~+(cI,)=(cI, M)+, ~_(~)=(Mcl,)_, ~ e L  2. 

Some easily established properties of these operators are stated in the next 

lemma. 

8.4 LEMMA. (a) ~+,  ~_  are in the Banach algebra ~ o~ 1.16; more /ully, they 

are bounded linear operators on L 2 into L~, L~, respectively, and 

]~+1, [~-[  <l ~, where # = e s s .  l.u.b. [M(e '~ 
0~<0~<2 n 

(b) I /  3 is the unit o/ ~ ,  then 3+%+,  3 - ~ -  are invertible and 

where the last series is absolutely convergent in ~ ,  being in /act dominated by the con- 

vergent geometric series Z #~. 

(c) = -- { M .  

(d) ~+ (I) = M+, ~2+ (I) = (M+M)+, ~3+ (I) = {(M+M)+M}+ . . . .  

~ _  (I) = M_, ~ _  (I) = (MM_)_, ~ (I) = {M (MM_)_} . . . . .  

(1) Not necessarily hermitian. 
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(e) II  (I)ll, =/q. 
The following definition therefore makes sense. 

8 . 5  DEFINITION. (a) L I S o + = ( ~ - F ~ + ) - l ( I ) ,  g 0 _ = ( ~ - F ~ - ) - l ( I ) .  

(b) G = g o .  (I + M) g o - .  

We shall now prove the crucial result tha t  the function t] is constant-valued, 

the constant being an invertible matr ix.  This will be done by considering the Fourier 

series of G. We shall first  show tha t  (] E L 1, and therefore has such a series. 

8.6 LEMMA. (a) g o + = I - ~ + ( I ) + ~ . ( I )  E L  ~ . . . .  2 

g o -  = I - ~_  (I) + ~2  (I) . . . .  E L ~ 

the in/inite series being absolutely convergent in the norm o/ L~, c/. (1,7). 

(b) (] E L~. 

Proo/. (a) The series expansions obviously follow from the last  definition, and 

the expansions given in 8.4. Since the ranges of ~+,  ~_  are included in L +~, Lf ,  and 

these are (closed) subspaces of L 2, i t  follows from the expansions tha t  g0+ E L e+ and 

~]Fo-E L ~ Also these series converge absolutely in the L2-norm, since by  8.4 (e) 

0 0 

(b) follows from (a), since I + M  E L~. (Q.E.D.) 

8.7 T H ~ 0 R ~ M .  (a) ( I + M ) g o _ = I + ( M g o - ) o +  E L ~ 

g o + ( I + M ) = I +  (go+M)o- E L ~ 

(b) G =cons t .  = I + (M go-)o = I + (go+M)o. 

(c) I + M, go+, go-  are invertible a.e. on C, and (I + M) 1 E Lor 

(d) G is invertible. 

Proo[. (a) Since I + M  E L~ and g o - E L  2, therefore ( I + M )  go_ E L2. Also by 

1.15 (b) (1) and 8.3 

(I + M) go-  = g o  - + (M g o -  ) - + (M Wo - )o+ 

= (5 + ilL) (go-)  + (M go-)o§ 

By 8.5 (a), the first  term on the right is I. This gives the first relation in (a). The 

second is proved similarly. 
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(b) By 8.5(b) G=Wo+( I+M)  Wo_. Now tIso+EL~ +, and as just  shown 
0+. (I + M) tIso_ E L2 , hence by the Convolution Rule [I, 3.9 (d)] G E L1 ~ But  we also 

know tha t  lifo+ ( I+M),  Wo-EL~ hence G E L ~ I t  follows that  all the Fourier coef- 

ficients of G, except the 0 TM vanish, i.e. G =  const. 

Next,  since the range of ~+ is included in, L~, therefore by 8.6 (a) (~ISo+)o=I. 

We may accordingly write tISo. =I+~IS+, where W+ E L +3. This fact together with the 

first equality in (a) entail tha t  

G=Wo+ (I + M)Wo_ =Wo+ ( I +  (MWo-)o+}. 

= I + W +  + (I+W+) (MWo)o§ 

= I + W §  + (MWo-)o§ +W+ (M Wo-)o+. 

Since G is a constant, it follows that  

G = G o = I §  (M tl'to_)o . 

The other expression for G is proved similarly. 

(c) By Assumption 8.2, I + M  is in the Banaeh-algebra L~ at  a distance ,u less 

than 1 from I. Hence it  is invertible, and the function ( I + M ) - I E L ~ .  Next, since 

Wo+ EL ~ it follows from I, 3.13 (a) tha t  AWo+ EH2/q on D+. Also, W0+(0)=I,  and 

therefore A {W0+ (0)} * 0 .  Hence by the Riesz-Nevanlinna Theorem [I, 2.7], its radial 

]imit can vanish almost nowhere on C. Hence Wo+ is invertible a.e. on C. By an 

inversion z'= 1/z of D_ onto D+, we can show that  the same is the case with the 

function tIto . 

(d) By 8.5 (b), G = W0+ (e t~ {I + M (et~ Wo- (d~ a.e. Taking a 0 for which all 

the three factors on the right are invertible, we see tha t  G is invertible. (Q.E.D.) 

In view of 8.7 (e) we may invert the equation 8.5 (b) to get 

I + M = W~ ~ G Wo_ 1, a.e. 

We shall now show tha t  inverses ~I]o+ 1, IIS~_l are themselves in L2,~ L o-~ , respectively, 

so tha t  we have a factorization of the desired kind. 

8.8 LEMMA. (a) ~ISo+l={IT(MtISo_)o+}O -1 E L ~ 

(b) Wo~=(I+(Wo+M)o_}G -1 E L~ - .  

Proo/. (a) By  8.7 (a) and 8.5 (b) 

Wo+ (I  + (M Wo-)o+) G -1 = ~o§ (I + M) Wo-- G -1 = G G -~ = I. 

Since our matrices are finite dimensional, we conclude tha t  

W ~  = (I q- (M Wo-)o+} G -~. 
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From the constancy of (]-1, it at  once follows that  the function on the right is 

in L~ +. 

(b) is proved similarly. (Q.E.D.) 

We shall next prove the following relations. 

2~ 

8.9 LEMMA. (a) floglA{Wo~(e*~ = 0 .  
0 

2n 

(b) f log  I A { ~ o _ ( ~ ' o ) } l d O  = o. 
0 

2n 

(c) f log  ]A{ t+M(e '~  IA(6)I .  
0 

Proo]. (a) As noted in the proof of 8.7 (c) AlIt0+ E H21q on D+ and A {~It0+(0)} = 1. 

Hence by I, 2.6 (c) ( 2 )  
2n 

o = log I~ {SVo+ (o)} I < ! ~ log I A {~o+ (r I dO. (1) 
2 g J  

0 

Since by 8.8 ~It6+ 1 E o+ L2 , we get in exactly the same way 

2n 

If o = log [ ~ {~'~ (o)} I < ~ log [ A {~ ,~  (r I d O, 

0 

2~ 

i.e. 0 >/~_1 r log ] A {Wo+ (e'~ ] d 0. (2) 
2 u J  

0 

From (1) and (2) we get the desired equality. 

(b) can be established in the same way after an inversion z' = 1/z of D_ onto D+. 

(e) From 8.5 (b) 

[ A ( 6 ) I = [ A S V o + I - [ A 0 + M ) I . I A ~ o _  [, a . e .  

Taking logarithms and integrating over [0, 2~], it follows from the constancy of fi 

and the equalities (a) and (b) that  
2~ 

2 ~ .  log ] A (6)I = f log A ] {I + M (e'~ I d 0. 
0 

(Q.E.D.) 

To sum up, we have proved the following theorem. 

8 . 1 0  T H E O R E M .  I /  (i) the ]unction M fi Loo on C, and 

/~ = ess.  1.u.b: I M (e i~ Is < 1. 
0~<e~<2~ 
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(ii) ttto+ = I -  M+ + (M+M)+ - {(M+M)+M}+ +--- 

Wo- - - I - M _  + (MM_)_ - {M (MM_)_}_ + ..., 

so that, G being defined as in 8.5 (b), we have 

tirol = {I + (M Wo-)o+} G -~, ~tt~- 1 = {I + (Wo+M)o_} G -x 

then (a) tI'to+, tIto-+l E o+ L2 , It/0_ , W() 1 E L2~ 

(b) I + M (e l~ = tIJ~ol (e '~ G W~_ 1 (e '~ a.e., 

Now let 

135 

(c) 

2?$ 

0 

]/(~ be any square root of G. Then letting O 1 =lIJo+~ ~ ,  O 2 = ~f(~tIS~_~ 

we get a solution of Factorization Problem. 8.1 under the Assumption 8.2. We shall 

now show tha t  when the values of M are hermitian this solution reduces to the 

one obtained in Sec. 6. Let M=M* on C. Then by 1.15 (b) (4), 

{?~+(O)}* = {(OM)+}* = {(O M)*}_ = (M O*)_ = ~ - ( O * ) .  

By induction it readily follows that  

{ ~  (I)}* = ~_ (I), 

whence by 8.6 (a) ~I~+ =tYo_. Hence G=Wo+ (I+M)W~+ is non-negative hermitian, in 

fact positive definite since i t  is invertible. Letting 00+ = WS+ ~ VG, where ~/G is now 

the unique positive definite square-root of G, the equality 8.10 (b) becomes 

I + M (e t~ = 00+ (et~ �9 0*+ (e~~ a.e. 

Inverting, we get 

{I + M (e*~ -1 = { I ~ ;  1 (e t~  �9 {I~o I (et~ a.e. 

Since I + M E L ~  and by 8.7 (c), ( I + M ) - I E L ~ ,  i t  follows that  Oo+, O~+~ELor Since 

00+ = t]ffo-+l VG, O~1 = (VG)-ltISo+, we conclude from 8.10 (a) that  Oo+, Oo+~E i~~ We 

also note that  00+ (0)= Wo+ ~ (0)VG= ~/G. Writing ~I j, �9 instead of ~IJo+, 00+ we get 

the following theorem. 

8 . t l  THEOREM. 

(ii) 

I /  (i) the /unction M E L~ and has hermitian values, and 

# = ess. 1.u.b. I 1~I (e ~~ IB < 1, 
O~<O~2rE 

W = I -  M+ + (M+M)+ - {(M+M)+M}+ + . . . ,  
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(iii) (x) G = tiff (e~O) (I  + M (e~~ tit* (e ~~ = I+ (tit M)o, a .e .  

(iv) @ = W-11/~,  

then ( a )  {I ~, {I ~ - 1  E o+ L:r and ~+ (0) is positive definite. 

(b) I + M ( e  i ~ 1 7 6  . ~ * ( e  i~ a.e. 

(c) A(*+(O)}2=exp  [:--~ f log A(I+M(ei~ 
o 

The "exis tence  p a r t "  of this theorem is, of course, subsumed  in our  I ,  7.13, 

bu t  whereas  the proof  of the la t te r  is indirect  and  non-const ruct ive ,  we now have  

explicit  expressions for  the  factors .  We shall now show t h a t  two solutions ~ of the  

Fac tor iza t ion  P rob lem 8.1 with F non-negat ive  hermi t ian-valued ,  which are such 

t h a t  ~ ,  ~ - I E L  ~ can differ only b y  a cons tan t  un i t a ry  factor .  

8 . i 2  U N I Q U E N E S S  T H E O R E M .  I [  

(i) cI~, cI }-1, ~I .?, II/-1 ~ L  O+ on C. 

(ii) ~ (e i~ ~ *  (e i~ = W (et~ �9 rig* (e i~ a.e. 

then there exists a unitary matrix U o such that 

cIa (d~ = tI/(et~ Uo a.e. (1) 

Further U o = I i/ either ~+ (0), ~]g+ (0) are equal, or they are positive definite. 

Proo]. B y  (i) the funct ions 

U = W -1 ~ ,  U-1 = ~ - 1 W  (2) 

are  defined a.e. on C. Next ,  b y  (ii) 

U = I.I.?-I r  = ~[./* (r  - 1  = ( r  * = ( u - l )  * .  

Hence U, U -1 are unitary-valued on C and so are in L~.  (3) 

Since by  (i) W -I ,  ~ and  ~ - 1 ,  tiff are in o+ L2 , therefore by  the  Convolut ion Rule 

[I, 3.9 (d)], U, U -1 are in L ~ F r o m  (3) we conclude t h a t  U, U-1E o+ L~o. I t  follows 

t h a t  ff U(e  ~~ = ~ An e n~~ then  
o 

U - l ( e i ~  *~ "~. A*e  -m~ E o- = ?t Loo �9 
o 

(1) Cf. 8.5 (b) and  8.7 (b). 
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0§ Since U - 1 E L ~  , we conclude t h a t  A ~ = 0 ,  for  n > 0 ,  and  A ~ = A o  1, i.e. A 0 is a un i t a ry  

m a t r i x  U 0. Thus  the funct ion U is cons tant -va lued .  The  desired resul t  (1) now follows 

f rom (2). 

I t  is clear  f rom (i) and  (1) t h a t  

~+(z)  = tY§ �9 U0, zeD§ 

CI3+ 1 (2:) = U~ l~JT1 (Z), 2: e D + .  

Taking  z = 0  and not ing t h a t  ~F+ (0) is invert ible ,  we get the remaining results.  

(Q.E.D.) 
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