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Introduction 

F o r  a n y  set  X we denote  by A ( X )  the  l inear  measure( l )  of X and  by  A(X0) the  

l inear  measure  of the  p ro jec t ion  of X onto a hne perpendicu la r  to  the  di rect ion 0. W e  

wri te  /~ (X) for the  grea tes t  lower bound  of A (Xo) t aken  over  al l  d i rect ions 0. We shall  

consider  th ree  classes of p l ana r  sets, n a m e l y  measurab le  sets, connected  sets, and  arcs.  

F o r  each class we shall  f ind the  upper  bound  of the  ra t io  lu ( X ) / A  (X). 

F o r  the  class of measurab le  sets the  resul t  is connected  wi th  the  proper t ies  of regular  

and  i r regular  sets and  is a consequence of the  proper t ies  of these sets es tab l i shed  b y  

Besicovi tch.  F o r  the  class of connected  sets and  for the  class of arcs ;u (X) is the  min ima l  

w id th  of the  convex cover of X or i ts convex hull  as i t  is somet imes  called. The p rob lem 

of the  re la t ionship  be tween this  funct ion and  A (X) is one be tween a set and  its convex 

cover. T h e r e ' a r e  of course a large number  of such proper t ies  and  a fu r the r  resul t  of th is  

t ype  is g iven in Sect ion 5. 

An  in teres t ing  fea ture  of this  p rob lem is the  d i f f icu l ty  of de te rmin ing  comple te ly  the  

class of ex t r ema l  figures. F o r  the  class of measurab le  sets the  upper  bound  of # ( X ) / A  (X) 

is never  a t t a ined ,  bu t  we give examples  to  show t h a t  the  upper  bound  which we es tabl ish  

is in fact  the  least  upper  bound.  On the  o ther  hand  bo th  the  upper  bounds  for the  class of 

connected  sets and  for the  class of arcs  are  a t t a ined ;  in the  f irst  class b y  a set  composed of 

three  equal  segments  equa l ly  incl ined to  one ano ther  and  in the  second c a s e  b y  an  arc  

* Editor 's  no te . - -Th i s  paper was received on January 4, 1957. Without our knowledge it has 
appeared during 1957 as part of the book Problems in  Euclidean Space, London 1957, by the same 
author. 

(1) Hausdorff one.dimensional measure. See [1], where it is referred to as Carath6odory measure. 
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composed of four linear segments and two circular arcs (which will be specified more 

exact ly later). To simplify the proofs we shall consider in both  cases the subclasses of 

connected sets or of arcs whose convex covers are polygons with at  m o s t  n vertices. Since, 

in fact, one cxtremal  figure for the class of arcs is not  of this nature  we have no hope, by  

this means, of specifying all the extremal figures. Bu t  even for the case of connected sets 

when the only known extremal figure is of this kind I have not  been able to specify com- 

pletely all the extremal figures. Some fur ther  remarks about  this point  will be given later 

(see Section 6). 

The actual  results proved in the following paragraphs  are 

(i) for any  measurable set E with A (E) > 0, 

(ii) for any  connected set E 

/~ (E) < 2 A(E),  
Y~ 

/~ (E) ~< �89 (E), 

(iii) for any  simple arc E 

F~(E) ~<A(E)/(sec ~ + 2 tan  cr § - 4 f l  - 2 a )  

where ~ and fl are defined by  

�89 § sin a = 4 cos ~ a/(1 § 4 cos 2 a) 

and tan  fl = �89 see a. 

The results proved in Section 5 are s tated in tha t  paragraph.  I am indebted to the referee 

for suggesting simplifications of some of the properties established in Section 3. 

w 1. E any measurable plane set of  finite positive linear measure 

We can write E = E 1 U E 2 where E I is a regular and E 2 an irregular set (see [1], 

p. 304). Fur ther  E 1 = El  0 E~' where A (El') = 0 and El  is a measurable subset of the 

union of an enumerable infinity of rectifiable arcs (see [1], pp. 324 and 304). Another  

proper ty  tha t  we require is t ha t  the projection of an irregular set is of zero measure in 

almost  all directions (see [2], p. 357). Since we do not  require m a n y  other  properties of 

regular and irregular sets I shall not  give their definitions nor  the derivation of the prop- 

erties s ta ted above. They  can be found in the papers [1] and [2]. 

Wri te  P ( X ,  O) for the set which is the projection of X in the direction 0. The following 

lemmas are needed. 
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LEMMA 1. [P (E~, 0)] depends continuously on O. 

Let A~ be a sequence of arcs each of finite linear measure such tha t  5 A i D E~ and 
i = l  

let ~ be a sequence of positive numbers decreasing to zero. For each integer i there exists 

a closed subset Fi  of E~ and a positive integer N~ such tha t  

A(F~) > A(E~) - el 
Ni 

A(F~ n U As) > A (F~) - e~. 
./=I 

The set A s fl F~ is a closed subset of the arc As and its complement in As is an at  most 

enumerable infinity of open subintervals of As say Bs,1,  Bs ,2 ,  . . .  These subintervals of As 

are open relative to As and there may  of course be only a finite number of them. We can 

choose an integer M~. s such tha t  

1 
A( U Bs~)< - -  

k~Mi] Ni e i~ 

The complement of U Bs~ in A s consists of a finite number of arcs or points, say AS.l, ..., 
l ~ k < M i j  

As h, where h depends on both i and ?'. We omit  the points in this set and rename the set 
L i 

of all these arcs for all ] from 1 to N~ as Ci, C~ . . . . .  Cr.~. Write C for U Ct, then if H denotes 
1=1 

the set of points omitted in renaming the As.k as Cl, we have 

From (2) it follows t h a t  

C U H D F ~ N  U As, (1) 
1~1_<N t 

C - F ~ c  U U Bs~. (2) 
I<:I<_N t k>.Mtj  

A (C - F,) < e,. (3) 

Hence A(C - E~) +A(E~ - C) < 3~,. 

Thus I A[P(E~, 0)] - A [ P ( C ,  0)][ < 3 e,. (4) 

But  A [P(C, 0)] depends continuously on 0, and (4) shows that  A[P(E~,  0)] is the 

uniform limit of a sequence of continuous functions. Thus A[P(E~,  0)] is continuous and 

the lemma is proved. 

2~ 

LEMMA 2. fA  [P (E~ -< ' , O)]dO-~.4A(E1). 
: 0 

As in lemma I there is a sequence of sets {C~) each of which is a union of a finite number 

of rectifiable arcs and such tha t  A[P(Ct, 0)] tends to A[P(E~,  0)] uniformly in 0 and 
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A (Ct) tends to A (E~). Thus we need only prove Lemma 2 when E~ is a union of a finite 

number  of rectifiable arcs. Clearly this case will follow if we can establish the inequali ty 

for one are. But  we can approximate  to an arc .4 by a polygonal  line R such that ,  given 

e > 0 every point  of .4 is within a distance �89 e of some point  of R and A (R) ~<A (A). Then 

A [P(R,  0)] >~A[P(A, 0)] - e  and it is sufficient to  prove the inequali ty for a polygonal  

line. Finally this case will follow if the inequali ty is t rue for a single segment. But  the 

t ru th  of the inequali ty i n  this last case is easily verified. The lemma is proved. 

I n  the next  Lemma we need to consider the relationship between the set E~ and the 

union of an enumerable infinity of rectifiable arcs of which E~ is a measurable subset. 

There are of course m a n y  such sets of arcs. We select one A and call the arcs of which 

it is the union A1, A s . . . .  Let  p be a point  of E~ lying on arc Al of A. The densities of A t 

and of E~ n At at  p are defined to be 

lim A (A~ N C (p, r)) lira A (E~ N At n C (p, r)) 
T-,0 2 r  ,-,0 2 r  

respectively, when these limits exist where C (p, r) is the closed set of points whose distance 

from p is less than  or equal to r. I t  is known tha t  at  almost  all(1) points p of A~ the first  

densi ty exists and is equal to un i ty  and at  almost  all points p of E~ n A t the second densi ty 

exists and is equal to un i ty  (see [1], p. 303-304). Further ,  since A t is a rectifiable arc it 

is known tha t  at  almost  all points of it there is a tangent  to it. Thus finally at  a lmost  all 

points p of E~, the densities of At and E~ N At are un i ty  and the tangent  to  A~ exists. 

There is of course a certain ambigui ty  in this since p m a y  belong to more than  one arc A 4. 

But  in this case we simply select one A~ corresponding to each p and consider this arc At 

associated with p th roughout  what  follows. The tangent  to p will be denoted by  t (p) and 

any  point  p of E~ with the above properties will be called an R-point.  

LEMMA 3. Either 

(a) almost all points o/ E~ lie on one straight line or 

(b) there are two R-points o/ E~, say Pl, P~, such that p~ does not lie on t (Pl) and Pl 

does not lie on t (P2). 

I f  (a) is false we can select an R-point  of E~, ql and a second R-point  q2 tha t  does not  

lie on t (ql). I f  ql does not  lie on t (q~) then ql, q~ have the properties required. I f  ql lies on 

t (q2) we select, if possible, a thi rd  R-point  qa not  on t (ql) nor t (q2). Now t (qa) cannot  contain 

both  ql and q2 since if it did q3 would lie on qlq~, i.e. t(q~). Thus one of the pairs qlq3 or 

(x) "almost all" means "all but a set of zero linear measure". 
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q2qa has the required properties. I f  we cannot select a point such as qa then almost all of 

E~ lies on t (ql) U t (q~), and there are points of E1 other than  ql or q2 on each of these lines. 

Let  q4 be an R-point of E on t(ql) distinct from ql. Since f(q4) must  coincide with t(ql) we 

can take the pair q2, q4 as the pair Pl, P2- 

The lemma is proved. 

We are now in a position to prove the main result. I f  A(E~) = (~ > 0, then for almost 

all 0 

A [P(E~, 0)] = 0. (5) 

By Lemma 2 we can choose an angle 0 such tha t  

A [P (El ,  0)] < 2_ (h  (El) + 8), (6) 

and since by Lemma 1 A [P(E~, 0)] is a continuous function of 0 we may  suppose tha t  

both (5) and (6) hold for the same value of 0. Since A (El ' )  = 0 we have A [P(E~', 0)] = 0 

for all 0. Thus finally 

[P (E, 0)] < _2 A (E). A 

If  A (E2) = 0, and (a) of Lemma 3 holds for E~, then almost all points of E lie on one 

straight line and projecting parallel to this line we see t ha t / u (E)  --0.  This implies the 

required result. 

I f  A (E2) = 0 and (a) of Lemma 3 is false for E~ let Pl and p~ be two R-points of E1 

for which (b) holds. We now require the property tha t  if p, an R-point of E~ projects onto 

the point q of the set P(EI, O) and the direction of projection is not parallel to t(p), then 

the set P(E~, O) has unit density at  q. We suppose A, is the arc associated with p, C(p, 8) 
is the closed disc centre p and radius ($ (as above), and write l(q, 8) for the linear closed 

interval perpendicular to the direction of projection with q as mid-point and of length 2 8. 

Given a positive number e we can find a positive number  80 such tha t  

A(E~ flA, n c(p, 5)) >(I -D28 (7) 

A(A~ N C(p, ~))< (I +e)25 

for all 8<  80. Now write A* for A, n C(p, 8), then 

A [P (E; N A*, 0) N I (q, 8)]/> A [P (A*, 0) N I (q, 8)] - A [P (A~ - E~, 0) N I (q, 6)], (8) 

and A [ P ( A * - E ; ,  O)N I(q, 8)]~< A [ ( A ~ -  E;) N C(p, 8 ) ] < 4 e ~  (9) 

5 - 665064 )4cta mathematica.  99. Imprim~ le 19 avri l  1958 
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if '~ < 50. But if (~ is sufficiently small, say ~ < 51, then 

P(A*, O)~I (q, ~). 

Thus from (8) and (9) 

A[P(E~ N A?, O) N I (q, 5)]~>26(1-2e)  

for 6<  min (~o, 61). Since obviously 

A [P(E~ N A*, O) N I(q, ~)] ~<25, 

it follows that  q is a point of unit density of P(E~, 0). 
Now suppose that  the direction of the line joining the two R-points PlP~ of E~ is 00. 

We divide E~ into two sets, E~ formed from those points of E~ whose distance from Pl is 

less than one half the distance of Pl from P2 and E~* defined by E~* = E~ - E~. Then 

since P(E*, 0o) and P(E~*, 00) have a common density point, 

A [ P  (E~, 0o) ] < A [P (E~, 00) ] + A [P (E~*, 0o)]. 

By continuity established in lemma 1 and by lemma 2 applied to E~ and E~* it follows that  

2n 

f A [P(E~, 0)] d 0 < 4 A (E~) + 4 A (E~*) = 4 A (E~). 
0 

Since we have A ( E ) = A  (E;) we conclude that  for some 0 

A [P (E, 0)] < 2 h (E). 
Yg 

Thus in all cases we have 

2 
/~ (E) < ~ A (E). 

Example. We next construct an example to show that  this result is the best possible. 

Let e be a given positive number and n a large positive integer, the actual lower 

bound of which will be specified later. Let M1, M~ . . . . .  M4n be 4n points such that  all 

the lines M~ Mj have different directions. Let Lt be a segment of length 5//4n in a direction 

making an angle 2 zi//4n with a fixed direction, and with mid-point at M~. Choose (~ so 

small that  if we project the segments in any direction at mose ~w, , f  ~h~ ~gements overlap. 
4n 

Denote L; Lt by E. Then 
~ 1  

A [P(E, 0)]1> ~ . \4n  4 n '  
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and since the  expression on the  r ight  hand  side of (10) is periodic in 0 with period z / 2 n  

we m a y  assume'  t h a t  0 ~< 0 ~< ~ / 2 n .  Subst i tu te  those va lue s  of 0 which lie in this range 

and reduce the  r ight  hand  side te rms  to their  least  values, i.e. for 0 < j < n and  2n  ~< j < 3n, 

= 4n, pu t  0 = ~/2n; for n ~ ~ < 2n  and  3n  ~ ~ < 4n  pu t  0 = 0. Then  

2~ 

A [ P ( E , O ) ] ~ - n  ~ ~ c O S ~ n - ~ n = 5  l e o s 2 z t x l d x + o ( 1 ) ,  (11) 
0 

as n - +  c~. Thus  choosing first  n sufficiently large, and  then  points  M 1 . . .  M4n, and  5 we 

have  for all 0 

A [ P ( E ,  0 ) ] > 6 (  2 - e ) .  

Thus  ~t (E) 1> 2 
A (E) zt 

and this shows tha t  the  result  obta ined  is the best  possible. 

(12) 

w 2. Some preliminary results 

I n  the  following two theorems the  containing space is R z. 

THEOREM 3.1. Let T be a closed connected set o// inite linear measure and let H ( T) be 

its convex cover. Then either there is a tree T 1 contained in T such that the convex cover o /T1  

coincides with that o / T ,  or there is a simple closed convex curve K contained in T such that its 

convex cover coincides with that o / T .  

We use H ( X )  to denote  the  convex cover  of the  set X.  

There  is a subset  K of T which is irreducible with respect  to the  three  properties,  

(i) K c~T, 

(ii) H ( K ) = H ( T ) ,  

(iii) K is closed and  connected. 

There certainly exist sets with these three propert ies  since T is one such set .  I f  possible 

form a sequence of sets K ,  such t h a t  each K~ has propert ies  (i), (ii), (iii) and  Kj  is a proper  

subset  of K s if j > i. I f  i t  is only possible to define a finite sequence of such sets then  the  

last  m e m b e r  of the  sequence is  irreducible. I f  the  sequence has infinitely m a n y  members  

it can contain a t  mos t  an  enumerable  infini ty of members(1) (since the  sequence of sets 

(1) The  sequence  Kt  m a y  of course be t r ans f in i t e  b u t  s ince t he  ca rd ina l  is less t h a n  ~] we  can  

a l w a y s  f ind  a n  enumerab l e  sequence  of o rd ina l s  a s  s t a t ed .  
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complementary to K~ in T form a strictly increasing sequence of sets open in T). But  

then N Kt = K* has properties (i) and (iii). We shall show that  it also has property (ii). 
i 

I f  p EH(T) then p EH(K~) and therefore, since K i is connected by Bunt 's  refinement of 

Carath~odory's theorem (see [5]) there exist two points k~, kt' of K~ such that  p is a point 

of the segment k~k[. We can select a subsequence of ordinals n~ such that  for every ?" of the 
I t sequence there exists an i with n~ > j and such that  kn~-> k, and knt-> k .  Then since k i EK~ 

if i > ?" and Kj is closed k U k' EKj, all j. Thus/r U k' EK*. Also p is a point of the segment 

kk'. Hence pEH(K*) and this means that  H(T)cH(K*): since the reverse inclusion is 

trivial (ii) is proved. Clearly K* is irreducible and the statement is proved. 

If K* is a tree we have the desired result. If  K* is not a tree, then there are two points 

Pl, P2 of K such that  two arcs exist ~1, ~ both contained in K* and having in common 

only their end points Pl and p~. (K* is of finite linear measure and therefore both locally 

connected and arc-wise connected.) If  these two arcs lie in Fr  (H(T)) = Fr (H(K*)) then 

they comprise the whole of that  frontier and form a closed convex curve with the properties 

stated in the theorem. Otherwise there is a point say p on them which is an interior point 

of H (T). Let the distance of p from Fr H (T) be ~. 

Now every component of K* - (~1 U ~ )  meets ~1 U ~ in a single point, for if this were 

not the case we could join two distinct points of ~1 t) ~ say p and q by an arc that  lies in 

K* - (~1 U ~) .  This are cannot lie in ~1 U ~ since K* is locally connected, and thus this 

arc contains a subarc meeting ~1 U ~ only at its end points Pl and ql. But this means that  

in K* there are three distinct arcs joining Pl to ql and intersecting only in their end points. 

Then one of these arcs lies in the bounded domain of which the other two form the frontier. 

Denote this open domain by D. K* - D has the same convex cover as K*, is closed con- 

nected and is a proper subset of K*. This is impossible by the irreducibility property of K*. 

Let ~ be a subset of ~1 U ~ contained in C(p, �89 Since K* is irreducible every compo- 

nent of K* - (~1 U ~2) meets Fr H(K*). If  it also meets ~ such a component must have 

linear measure of at least �89 ~. Since K* is of finite linear measure there are at most a finite 

number of such components and hence a subarc ~1 of ~ which is disjoint from K* - (~1 U ~) .  

But then K* - ~ 1  is a closed connected set with the same convex cover as K* (since ~1 is 

interior to this convex cover) and is a proper subset of K*. This is impossible since K* is 

irreducible. 

Thus arcs such as ~1, ~2 do not exist and Theorem 3.1 is proved. 

DEFINITION: A polygonal tree is a tree formed from a finite number of linear segments. 

We always consider such a tree to have a simplicial decomposition into linear segments. So 
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t h a t  if two segments  mee t  t h e y  do so only  in a common end  point ,  and  eve ry  end po in t  

of a segment  is e i the r  an  end po in t  of the  t ree  or an  end po in t  of a t  least  one o ther  segment  

of the  tree.  A po in t  which belongs to  more  t h a n  one segment  of the  t ree  is cal led a s ingular  

po in t  of the  tree.  

THEOREM 3.2. Let / (X)  be an increasing continuous/unction o/ the convex set X ,  i.e. 

X I ~  X 2 implies/(X1) >~ /(X~). Let ff be the class o/connected closed sets o/ f ini te  positive 

linear measure. Let ~ (n) be the subclass o / •  o/those polygonal trees whose convex covers are 

polygons with at most n sides. Then 

sup [(H (T)) = s u p  sup  / (H(P) )  . 
r~z A ( T )  ~ P ~ ( . )  A ( P )  

B y  the  previous  resul t  the re  is a t ree  K conta ined  in T such t h a t  the  convex cover  of K 

coincides wi th  t h a t  of  T, or a s imple closed curve K con ta ined  in T for which the  convex 

covers  of T and  K coincide. 

Le t  kl, k2 . . . . .  kn, be a sequence of po in ts  dense in K and  consider  the  class of po lygona l  

t rees  which conta in  k 1 . . . . .  k . .  Amongs t  these we select one wi th  leas t  l ength  and  denote  

i t  b y  K , .  Then,  w h e t h e r / t :  is a t ree  or  a s imple  closed curve,  

A (K.) ~<A(K) H ( K ) ~ ( J H ( K ~ ) ~ ( H ( K ) )  ~ . 
n 

Thus  g iven  e > 0 there  exis ts  an  in teger  n such t h a t  

/ ( H ( K n ) )  / ( H ( K ) )  

A (K.)  A (K) 

B u t  Kn E ~)(m) for some m, thus  

[(H(T))  sup sup /(H(P)__) >/sup - -  �9 
. P~(.) A ( P )  r~ A ( T )  

The  inequa l i t y  in the  reverse  d i rec t ion  is t r iv ia l .  Thus  the  theorem is proved.  

There  is a s imi lar  resul t  for the  class of arcs.  

THEORE~ 3.3. L e t / ( X )  be an increasing continuous/unction o/ the convex set X .  Let CI 

be the class o/arcs o/finite positive linear measure and .,4(n) be the subclass o/those members 

o / a / o r m e d  ]rom at most n segments. Then 

/ (H(A) )  / (H(A*) )  
sup - -  = s u p  sup  
A~a A ( A )  n A ~A(-) A ( A * )  

The  proof  is omi t ted .  
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w 3. E a closed connected plane set o f  finite positive l inear  measure ,  

DenOte by s (n) the class' of closed connected plane sets ~ which are of finite positive 

linear measure and sUch thag their convex Covers are polygOnS with at most n vertices: 

Since the subclass of I~ (n) contained in a bounded part  of the plane forms a Compact, 

space under the closed-set metric (see [1], p. 316, a n d  [3]) it follows that  there is a member 

T of s (n) such that  
( T )  (E) 

= sup # (13) 
"E,~(n) A (E) 

We shall show that  / x (T)=  �89 This will imply that  for any connected set E 

/x(E) ~< �89 (E), for the general case when the convex cover of E is not a polygon can be 

dealt with by Theorem 2, Section 2. 

Our argument will be such that  we can specify the extremal figures T exactly, in so 

far as T is a member  of some s (n) b u t  not when T is not  a member of some IZ (n), When 

E is composed of three equal segments equally inclined to one another , /x(E)  = �89 (E). 

Thus we ha te  /x(T) ~> �89 (T), (*) 

and our aim in the rest of this paragraph is to show tha t # (T) ~< �89 A (T). One method is 

to assume the contrary,(1) namely that  ~u(T) > �89 (T) and show that  this leads to a con- 

tradiction. I have not followed that  method here because it is not then possible to par- 

ticularize the extremal figures. The method is to use (13) and (*) to establish by variational 

arguments a number of properties of T which will specify it more an d  more exactly Until" 

finally we can assert that  # (T)  < �89 (T). 

Denote the polygon which is the convex cover of T by P. /x  (T) is the minimal width 

of P. A support line of P which is at a distance/x (T) fro m the parallel support line will be 

referred to as a minimal support line. A vertex of P which lies on a minimal support line of 

P will be referred to as a minimal ver tex.  There  are two properties of minimal support 

lines of which we shall make frequent use. 

(A) A pair o f  minimal ~ support' lines is  such' tha t  a t  least one of the lines: meets P i n  

a segment. Otherwise we could give each of the lines ,an equal ro ta t ionabout  the  vertices 

of P through which they passed and reduce the distance apart of the two lines. This would 

contradict the fact tha t ' they  are a pair Of minimal Support lines of P. 

(B) If the lines l 1 and 11 are a pair Of minimal sUpport lines mid ~ee t  P ' i n X  1 aiid ~72 ~ 

respectively, then the projection of X 1 onto 12 by  means' of lines perpendicular ~0 both l~ 

and 12 is a set YI which intersects X2. 

(1) I feel no aversion to this type of argument but  I find it repugnant to have to illustrate a 
hypothetical argument by drawing a diagram which cannot exist! (See Fig. 3 later'.) 
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F o r  if this  were no t  the  case there  would  be a l ine m pe rpend icu la r  to  11 and  t~ sepa- 

r a t ing  X 1 from X 2. Suppose  m meets  11 in L 1 and  l~ in L 2. I f  we give to  l I a ro t a t ion  a b o u t  

L 1 a n d  to  12 an  equal  ro t a t ion  abou t  L~ we should reduce the  d i s tance  be tween the  two 

para l le l  lines. Bu t  since X 1 and  X 2 lie on oppos i te  sides of m we can choose this  ro t a t i on  

to  be in such a sense and  of such a magn i tude  t h a t  the  ro t a t e d  s t r ip  st i l l  conta ins  P .  Bu t  

th is  con t rad ic t s  the  fac t  t h a t  t he  d is tance  a p a r t  of ll and  12 is the  min ima l  wid th  of P .  

W e  shall  l a te r  require  the  following lemma:  i t  is inser ted  here ;[or convenience of reference.  

LEMMA. Let A B C  be a triangle every angle o/which is less than ~ re. Let K be the unique 

point such that / A K B  = / _ B K C  = ~ .CKA = ~ z~. On A B  erect the triangle A D B  which 

is equilateral and such that D lies on the side o / A  B opposite to C, then 

(i) o/al l  connected sets containing A,  B and C the tree/ormed/rom the three segments 

A K ,  BK,  CK, has the least length, 

(ii) the sum o/the lengths A K  + B K  + CK is equal to the length CD. 

Le t  ~ be a connected  set jo in ing A,  B and  C. I f  ~q has inf ini te  l inear  measure  we need 

no t  consider  i t  fur ther .  I f  ~O has  f ini te  l inear  measure  then  i t  conta ins  an  are  ~21 jo ining A 

to B and  an  arc ~ joining A to C. Le t  K 1 be the  las t  po in t  of 71 N ~ on ~ in the  order  A 

to  C. Then  arc A K  1 of ~1 has length  grea te r  t h a n  or equal  to  segment  A K  1 : arc  K1B of 

)p, h a s l e n g t h ' g r e a t e r  t han  or ~ equa l  to t h a t  of segment  K I B  : arc KIG of~] 2 has length  g r e a t e r  

t h a n  0r equal  t0~ tha t  of K~C. T h u s  

A (~q~ ~ > A K I  rk K1B + K1C. 

W e  nex t  consider  a var iab le  po in t  X and  the  funct ion  X A  + X B  + X C  = F(X). (1)  

There  is a posi t ion of X for which F ( X )  a t t a ins  i ts  leas t  value.  L e t  th is  posi t ion be X 0. 

I t  is easy  to  see t h a t  X 0 does not  coincide wi th  a n y  of A or  B or C since each angle  of 

t r i angle  A B C  is less t h a n  ] re. I f  we mo,ve X f r o m  X o in the  di rect ion pe rpend icu la r  t(x 

A X  o then  A X  = A X  o + O(XXo) ~ and  therefore  B X  + C X  = B X  o + C X  o + O(XXo) 2, i.e. 

X X  o is pe rpendicu la r  to  the  in te rna l  bisector  of / BXoC. Thus / AXoC ~ Z_ AX~o B a n d  

s imi lar ly  bo th  these angles are  equal  to  / BXoC., i.e: X o coincides wi th  the  po in t  K.  Thus  

K~A q: K1B + K1C >~ K A  + K B  + K C  

and  (i) is proved.  

To ,p rove  (ii) we, have  ~ A K B ~ / _ A D B  = re so t h a t  A D B K  is a cycl ic  quadr i l a t e ra l  

(see F i g .  1~, A l so  ~ A K D  - fl_ABD~--fxare so the  poin ts  C,: K ,  D a r e  col!inear, and  !we 

(1) Here X A  denotes the length of the segment joining X to A, 
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need only show tha t  K D = A K + K B .  Take E on K D  so tha t  L K E B = L K B E .  

Then, since L E K B  = ~ ~, K E B  is an equilateral triangle and K E  = K B. Since L K B E  

= �89 z~, L K B A  = L EBD.  Hence in triangles A K B ,  DEB,  L K A  B = L E D B  since A D B K  

is a cyclic quadrilateral, A B  = D B  since A B D  is an equilateral triangle, L K B A  = L E B D  

proved above. 

Thus triangle A K B  is congruent to triangle D E B  and 

E D  --- A K .  

Hence A K  + K B  = E D  + K E  = K D  and the proof of (ii) is complete. 

Properties of the extremal figure T 

1. Every vertex o / P  belongs to T. 

2. O] all connected sets containing the vertices o /P ,  T has the least length. 

3. T is a polyqonal tree/ormed/rom a/ini te  number o/linear segments. 

4. Every end-point o / T  and every singular point o / T  is a vertex o /P .  

I f  an end-point t of T was not a vertex of P we could remove from T a small segment 

with one end point a t  t and obtain T I E s  ). Since A ( T ~ ) < A ( T ) ,  and (if the segment 

removed is sufficiently small) T1 contains the vertices of P,  we have a contradiction with 2. 

Thus every end point of T is a vertex of P.  
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Similarly if q is the end point  of the two segments of T, p q, q r and q is not  a vertex of 

P ,  then we can select a point  ql on p q near to q and replace p q, q r by  p q~, qlr to obtain T 1. 

Again T 1 E C(n), A (T1) < A  (T), and we have a contradict ion with 2. 

5. The angle between two adjacent segments o/ T is not less than ~ ~. 

For  if tit 2 and t~t 3 are two adjacent  segments of T and / t l t 2 t  3 < ~ ~ we can replace 

these segments by  a connected set containing tl, t2, t 3 and of less length. By  2 this is im- 

possible. 

6. Every node o / T  is o/ order 3 and is an interior point o / P .  The three segments o/ T 

which abut at a node o/ T are inclined to one another at an angle o /~  ~r. 

This follows immediately  from 5. 

7. T has either 3 or 4 end-points. 

Suppose t h a t  T has r end-points and tha t  ~ is a positive number  less than  the least 

length of a segment of T. Let  T 1 be the subtree of T obtained from T by  removing r 

segments each of length ~ and such tha t  each of these segments has one end point  at  an  

end point  of T and each end point  of T is an  end point  of one of these r segments. Then 

A (T1) : A (T) - r~, 

and since every point  of T is d is tant  at  most  (~ from some point  of T1, 

/~ (T~) ~>/~(T) - 2 5  

(T 1 is not  void because every node of T is a point  of T1, and if T has no nodes it is an 

arc and must  contain at  least two segments for otherwise / ~ ( T ) = 0 ) .  I f  (~ is small the 

convex cover of T 1 has the same number  of vertices as P .  Now if r 1> 5, 

#(T~) ~> # ( T ) - 2 ~  /~(T) (14) 
A ( T I ~  A ( T ) - 5 5  > A ( T ~ '  

since we know tha t  A ( T )  ~ 2#(T) .  Bu t  (14) is in contradict ion with (13). Thus r = 2, 3 or 4. 

I f  r = 2, projection in the direction of the line joining the end points of T shows tha t  

# ( T )  < �89  

in contradict ion with (*). Thus r ~= 2, and proper ty  7 is proved. 

8. I /  T has/our  end points then P is a quadrilateral with these ]our points as vertices. 

I f  P has more than  four vertices then one of them, say p, is no t  an  end-point  of T. 

Let  the two segments p ql, Pq~ of T meet  a t  p and let p '  be a point  on p q~, dis tant  ~ from 
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p. In  T replace p ql, P q2 by, P'ql, P'q2 and remove segments of length: ~ from each end-point 

of T as in 7. We obtain a connected set T 1 with 

A ( T 1 ) < A ( T  ) - 4 ( $  

/~(T~)>~ # ( T ) - 2 5 ,  

a n d  since 

/~(T1) :>/~(T) , 
A (T 1) A (T) 

we again have a contradiction with 13. Thus P has at  most four vertices. But  by 4, P has 

at  least four vertices and these vertices are end-points of T. Proper ty  8 is established. 

9. T has exactly three end-points. 

Otherwise by 7, 8 and 2, P is a quadrilateral and T is the connected set of least length 

joining the vertices of P. In  this case T i s a  polygonal tree with two third-order nodes and 

is formed from five segments. Let  the vertices of P be a, b, c, d (in order round Fr  P) and  

the nodes of T be klk~ with the notation chosen so tha t  the segments of T are ak.1, b k 2, 

c ks, d kl and k2. 
The line through a perpendicular to a/c 1 is a support  line of P. For otherwise 

/ b a k  1 > �89 re (since / d a k  1 <~ ~ re). Suppose / b a k  1 > 1 ~r. Let  a 1 be the foot of the per- 

pendicular from /c 1 to the, line a b .  In  T replace segment a k 1 by the segment a i]c 1 to obtain 

the tree T 1. The convex cover of T 1 contains P and A (T1) < A  (T). Thus we have 

/u (T1) > /~ (T) 

in contradiction with (13). Thus the line through a perpendicular to a k~ is a support  line of P. 

Since clc 2 is parallel to ak~ we have a pair of parallel support  lines, one each through 

a and c. Thus, projecting the polygonal line ak,  k2c perpendicular to ak,  we have 

ak~  § �89 + k2C ~ ( T ) .  (15) 

Similarly, by,projecting blcjcid perpendicular: t o  bk2, 

die I -q- �89 ~- k~b >~ /a(T). (16) 

Adding, we obtain A (T) >i 2# (T). (I7) 

N o w ' s t r i c t  inequality in ~(17) is impossible (by (*)). Thus equality must  hold in (17) 

and therefore  in each of (15) and (16)~ Hence t h e  lines t h r o u g h  a and: c perpendicular to 

a k l a n d  those: through d and b perpendicular to dk i are all minimal support  lines. 
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b 

F i g .  2. 

By property (A) of minimal support,  hnes applied to the pair  of minimal support  lines 

perpendicular to ak  1, one of the  segments ab, ad, bc, ed is perpendicular t o a k  1. Clearly 

this is not true o f  ad and bc since , L d a k  1 and / b c k ~  are both less than ~ re. Thus ei ther  

ab or cd is perpendicular to ak 1. But in an exactly similar way we see from the pair of 

minimal support  lines perpendicular to bk~ tha t  either ab or cd is perpendicular to bk 2. 

Since ak  1 and b k S are not parallel we conclude t h a t  either a b is perpendicula r to  a kl and 

cd is perpendicular to bk2 or ab is perpendicular to bk~ and cd is perpendicular to ck 2. 

The arguments in the two cases a re  the same and we shall consider the first case only. 

Remove from ak  1 a segment of length 6 with end point a t  a and similarly f rom dkl a 

segment of length 5 with end point at  d. Denote the resulting tree by  T~. Then 

A (T1)= A(T) " 2 ~ ,  

~(T~) > ~ ( T )  - ~. 

But this is impossible since it implies a contradiction with (13). 

Thus T has not got four end-points and by 7 m u s t  have exactly three end-points. 

REMARK. T has one node and it is of order three. We shall �9 i t  b y  k and the  

three arcs of T which terminate at k b y  a, fl and ?. �9 the vertices of P on a, fl, ? 

by al, a 2 . . . . .  a~; bl, b 2 . . . . .  b i and Cl, c2, ..., c s where a is a 1 . . . . .  ah, k and this order is the 

order in  which these points l ie  on a.  Similar ly for fl and 0- 
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10. Every vertex o/ P is a minimal vertex. 

Suppose tha t  the vertex p of P is not minimal. If  p is an end-point of T we can remove 

a small segment one of whose end-points is p from T to obtain a subtree T l, for which 

/l(T1) =/~(T), A(T~) < A(T) ,  

which leads to a contradiction with (13). Similarly if p is a point common to two segments 

Pq, Pq2 of T we could move it into a new position p '  on the internal bisector of the angle 

of these two segments in such a way tha t  A (T) is reduced but/~ (T) remains unaltered. 

This again leads to a contradiction with (13). 

I) E F I N I T I O ~ .  Two vertices of P joined by a single segment lying in the frontier 

of P (belonging to T or not) are said to be P-adjacent. Two singular points of T joined 

by a single segment of T are called T-adjacent. 

11. To each pair o/ end-points o / T  say al, b I there corresponds a pair o/ parallel minimal 

support lines 11 and l~ such that l i contains a 1 and l~ contains b r 

Suppose that  this is not the case. Remove length (~ from the segment of T terminating 

a t  a~ and another equal length from the segment of T terminating a t  b~ to obtain the tree 

T r Let the new end-points be a~ in place of a i and b~ in place of bl, and let the convex 

cover of T i be Pr  We shall assume tha t  (~ is a small number. Then by  (13), 

and by construction, 

/~ (T~) /~ (T) (18) 
h (T l) ~< A - ( ~ '  

A (T~) = A (T) - 2 6. (19) 

Since #(T)>~�89  (18) and (19) imply 

(T)  , ,  
# (T1) ~< A - - ~  (l~ (T) - 26) ~</~ (T) - (~. 

Further,  if/~ (T) > �89 A (T), then 

~(T1)  < ~ ( T )  - 6. 

Now by the method of construction of T 1 from T, 

fl(T1) ~>#(T) - ($. 

For of the two lines which form a pair of minimal support  lines of P,  one is a support  l ine 
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of P1 and the other is distant at most 6 from a parallel support line of P~. By the inequality 

for # (T1) proved above it follows that  

/~(T1) : /~ (T)  - 6. 

Thus ,u (T) - �89 A (T) and therefore 

/~ (T1) /~ (T) - 6 = /~ (T) 
A (T1) = A (T) - 2 6 A (T) 

/~(T1) 
Thus T 1 is also an extremal connected set for which A ~ ) I )  assumes its least upper bound. 

The results proved about T apply equally well to T l. 

:By 10 every vertex of P1 is a minimal vertex and since/~(TI) =/~ (T) - 6  any pair of 

minimal support lines of P1 are obtained from a pair of minimal support lines of P by 

keeping one line of the pair fixed and moving the other line a distance 6 into a parallel 

position. There are at most two support lines of P for which the parallel corresponding 

support line of P1 is distant 6, and these are the two lines perpendicular respectively to a 1 a'l 

and to bibS; further this is so only if these lines contain no points of P apart from a 1 and 

bl respectively. Now P1 must have at least two pairs of parallel minimal support lines. For 

otherwise, a small affine contraction orthogonal to the single pair of parallel minimal sup- 

port ~ines would reduce A (T1) without altering/~ (T1). 

Thus the lines through a I and b I perpendicular respectively to ala~ and blb~ are 

minimal support lines of P and contain no points of P apart from a 1 and b 1. Let the line 

through a 1 perpendicular to ala  ~ be m 1 and the parallel support line of P be m~. Let the 

line through b 1 perpendicular to b 1 b'l be m S and the parallel support line be m~. Since every 

vertex of P is a vertex of P1 apart from a 1 and b 1 (assuming that 6 is sufficiently small) it 

follows from 10 that  every vertex of P apart from a 1 and b 1 lies on m~ or m~. 

Denote the rhombus bounded by mlm~m2m~ by R, let its vertices be ABCD in order 

where a I lies on A B  and b 1 on BC. Let ala~ produced meet blb~ produced in s. Let als 

produced meet DC in a~ and bls produced meet AD in b*. Property (B) of minimal 

support lines implies that  a~ is a point of the segment DC and b~' a point of the segment 

AD. Then ala~ and blb~ lie inside R. Thus als and blS contain no vertices of T. (Every 

vertex of T is a vertex of P, see 4.) If a singular point of T lay on als apart from a 1 and 

s, it would have to be a node k. Of the segments of T terminating at k, one has points" 

interior to the quadrilateral a I Bbls. This segment cannot meet a~ B or Bb i since no points 

of P lie on these segments apart from al and b 1. Nor can it terminate in the interior of this 

quadrilateral for such a termination would be a singular point of T, therefore a vertex 
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of P .  Bu t  there are no such vertices of P .  Thus  this segment mus t  meet  segment b 1 s in say 

k l ,  B u t  then segment bls contains a singular point  of T and this singular point  mus t  be 

a node of T. Since T has only one node it follows tha t  it lies at  s. I n  the nota t ion which 

we have adopted s is k. Let  the th i rd  segment of T at  k = s meet  t h e  frontier of R in d. 

B y  a similar a rgument  to t ha t  used above kd is a segment  of T. N o w  the three segments 

kal, kblkd divide R into three domains one of which denoted by  D 1 contains a~ and 

another,  denoted b y  D 2 contains b~. By  proper ty  (B) a~ and b~ are points of P and neither 

a I nor  b I are vertices of R (since they  do not  lie One each on a pair  of parallel minimal 

suppor t  lines of P).  Thus both  D 1 and D~ contain points of T on F r  R other than  d. Since 

T is a tree with one node of order three and since a 1 and b 1 a re  end-points  of T we have a 

contradiction, If  for example  the third end point  of T lay  in D 1 so would the whole of the 

are of T joining this point  to d and would thus have no points in D 2. 

Thus  we are led to a contradiction. The original assumpt ion is false and 11 is proved. 
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R E M A R K. Of  any two parallel support lines of P at least one passes �9 through an  end 

point of T. For if two parallel support lines exist neither of which contains an end-point 

of T we can take two points of the frontier of P one on each of these lines. But then these 

two points divide ,the frontier of P into two arcs one of which must contain two end-points 

of T. Through these two end-points there is then no pair of parallel support lines. This 

contradiction with 11 establishes the above statement. Then the three end-points of 

T, al, b I and cl, divide the frontier of P into three non-overlapping ares which are denoted 

by A (al, bl), A (b l, cl), and A (el, al) where arc A (al, b 0 does not contain e t etc. Then any 

support line to P at a point of A (al, bl) is parallel to a support line of P at c 1 and there 

are similar relations for A (bl, el) and A (el, al)- 

12. The angle between two end-segments o/ T that lie in  the/ront ier  o / P  must  be greater 

than �89 ~. 

For if it were less than or equal to �89 Jr then the removal of segments of length b from 

the two end-segments concerned to produce a new tree T 1 would imply ju (T1) ~> ~u (T) -($ 

and the only directions in which T 1 can have minimal support lines are those orthogonal 

to the end-segments and (when the angle is equal to �89 zr) that  parallel to the bisector of 

the angle between the end-segments. This last case is impossible by (A) and the argument 

of 11 can then be used to establish property 12. 

13. Each o/ the three arcs ~, fl, ? has length less than /~(T) .  

If, for example, A (~) ~>#(T) then from 11 there are a pair of parallel support lines 

to P through the end points of fl U?. Thus 

A (flU ?) > ~ ( T )  

and 

in contradiction with (*). 

A (T) > 2~(T) 

14, I /  a s exists then al, a 2 lies in  the/ront ier  o / P ,  i.e. i / a  1 is not T-adjacent to k then 

al a ~ lies in  the/ront ier  o/ P .  

The points al, a s belong to the frontier of P and thus if ala  2 does not lie in the frontier 

of P it divides P into two non-empty domains. Thus there is a vertex of P on each side of 

the line containing alas. By 1 there are points of T on each side of the line containing ala  ~. 

These points are joined by an arc of T inside P. Since these points tie on opposite sides of 

a la  s this are meets a la  2. But this is not so since there is no node of T on alas, a contradiction 

which establishes 14. 
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15. 1/ three vertices o/ o~, say as, as+l, as+s, are such that as, as+ 1 and as+l, as+ ~ are P-  

adjacent (as well as T adjacent) then asss+ 1 and as+l as+ 2 are tangent to a circle whose 

radius is # ( T )  and whose centre is b 1 or c I. 

The three points ax, bl, c 1 divide the frontier of P into three non-overlapping arcs 

which we shall denote, as before, by A (al, bi)  , A (bl, Ca) and A (c1, al). The three vertices 

asas+las+2 cannot belong to A (blCl), since if they did, the support line parallel to asas+ 1 

would pass through a~ (by the remark after 11) and this implies A (~) ~>/~ (T) in contra- 

diction with 13. Thus asas+l, as+ 2 belong entirely either to A (al, bl) or to A (Cl, al). Suppose 

that  they belong to A (albs). The argument in the alternative case is similar. The support 

line of P parallel to the line asas+l passes through c 1. Thus asas+ 1 is either tangent to the 

circle whose centre is c 1 and radius /~(T), C(Cl,#(T)) ,  or the line containing asas+ 1 lies 

outside this circle. In  the second case select a point a~+l on as+las+ ~ near to as+ 1 such that  

asa~+l lies outside the circle c(cl , /~(T)) .  In  T replace segments asas+l, as+las+2 by a s a ~ + i  , 
i t 

as+las+2. If as+l is not  coincident with as+ 1 the effect is to reduce A (T) without altering 

/~(T). This is impossible by (13). 

Property 15 is proved. 

16. I / t h e  vertex a 2 exists and i / p  is the other vertex o / P  which is P-adjacent to al, then 

either the line through a 1 perpendicular to a la  2 is a min imal  support line o / P  or 

the line containing a l p  is a min imal  support line o / P .  

We assume, without any real loss of generality that  the points a2asp are in the clock- 

wise sense round the frontier of P. Let the class of minimal support lines through a 1 be 

denoted by 7. Any member l of ff together with the line ala  ~ divides the plane into four 

sectors of which one contains k. The angle of this sector is denoted by r (1). 

The set of values •(l) is closed. If  the line containing a l p  is not a minimal support 

line of P and if there is an l of ff with ~b (l) < ~ g, this line 1 meets P in the single point a 1. 

For it cannot coincide with ala  2 since r < �89 g, nor with a l p  since by assumption this 

is not a minimal support line. By (B) the line through a s perpendicular to l must meet P 

in a segment of length /~ (T). But in fact this line meets P in the single point a 1. Thus 

if a l p  is not a minimal support line then for every l of 7, r189 

If ~b {l) > �89 g for all l of ~T then there exists a small positive number e such that 

r (1) > �89 g + e for all 1 of 7. Thus we can rotate ala  2 about a~ in the anti-clockwise sense so 

that  a I becomes a~. Replace ala  2 by a~a 2 to obtain the tree T' .  Now if asp is not a minimal 

support line and if the rotation is sufficiently small I~(T') = #  (T).  But A ( T ' )  = A (T) so 

that  T '  is an extremal figure. By 10 a'l is an extremal vertex of T': but by the construction 

a~ is not an extremal vertex of T' .  
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This cont rad ic t ion  shows t h a t  e i ther  the  line conta in ing  a l p  is a min ima l  suppo r t  

l ine or the  line 1 wi th  r = �89  is a min imal  suppor t  l ine of P .  Thus p r o p e r t y  16 is es- 

tab l i shed .  

17. A n y  two vertices o / P  which are T-adjacent  are also P-adjacent ,  i.e. the points  a l a 2 . . .  a h 

are in  order round the / ron t i e r  o/ P and so are b 1 . . .  b~ and  c a, c 2 . . .  cj. 

By 14 a 1 and  a 2 are  P - a d j a c e n t .  W e  shall  show first  t h a t  a 2 and  a a are  also P-adjacent . (1)  

The  ve r t ex  a a is P - a d j a c e n t  e i ther  to  a 2 or to  a 1. F o r  otherwise the  segment  a~aa s divides  P 

into  two domains  each of which conta ins  ver t ices  of P ,  say  p, q such t h a t  ne i ther  p nor  q 

is a n y  one of al, a 2 or a s. There  is an  arc in T jo ining p to  q. This arc mus t  cu t  aea a which 

therefore  conta ins  a node of T. Bu t  this  is no t  so. 

W e  shall  assume t h a t  a a is P - a d j a c e n t  to a 1 and  show t h a t  this  leads  to a cont radic t ion .  

We assume for defini teness  t h a t  the  order  a2ala  3 r o u n d  the  f ront ier  of P is clockwise. 

Consider the  min ima l  suppor t  l ines t h a t  pass t h rough  a~. We shall  show t h a t  a l a  a is no t  a 

min imal  suppor t  line. Le t  q be the  ve r tex  of P t h a t  is P - a d j a c e n t  and  no t  T - a d j a c e n t  to  

a 2. Le t  a~ be  a po in t  on the  line qa 2 such t h a t  a s lies be tween  a~ and  q, and  le t  T '  be t h e  

t ree  ob ta ined  from T b y  replac ing segments  a l a  2 and  a3a 2 b y  ala~ and  aaa~. Since the  

convex cover of T '  includes P i t  follows from (13) t h a t  A (T') > / A  (T). This in tu rn  is t rue  

f ' for a n y  choice o a2 as descr ibed above  only  if 

/ qa2a3 < A a 2 a 2 a  1. 

B u t  b y  5 / a l a s a 3 > ~ 7 ~  and  therefore  

~_ q a2 a a <~ ~ 7e. 

NOW if a 1 a 3 is a min imal  suppor t  line of P there  is a po in t  of P on the  para l le l  suppo r t  

line inside the  s t r ip  which is bounded  by  the  lines th rough  a 1 and  a a pe rpend icu la r  to  a 1 a a. 

B y  5 again  ~ a s a l a  a ~< �89 r thus,  if we produce  asq to  meet  the  line th rough  a a pe rpend icu la r  

t o  alaa, i t  will do so in a po in t  r on the  same side of ala3 as a 2 (see Fig.  4). Thus  i t  follows 

t h a t  the  lines th rough  poin ts  of segment  a l a  a perpendicu la r  to  a l a  a in tersec t  the  quadr i -  

l a t e ra l  a l a s r a  a in segments  of which the  larges t  has  length  grea te r  t han  or equal  t o / z  (T).  

The largest  segment  (or one of them)  is e i ther  the  perpendicu la r  f rom a2 to  axa 3 or i t  is 

the  segment  aar. I n  the  f irst  case A (a) is g rea te r  t h a n  the  length  of the  segment  a l a  2 

and  is therefore  grea ter  t h a n / z  (T). This  is impossible  b y  13. I n  the  second case we consider  

t r iangle  a2ra a. W e  have  /_a2aar < �89 and  thus  ~.a3a2r + ~ a a r a  s > �89 B u t  we have  

(1) I t  is assumed that such vertices as az, a 3 etc. exist. Otherwise there is nothing to prove. 

6 - 665064  Aeta  mathematiea.  99. Impr im~ le 19 avr i l  1958 
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Fig. 4. 

already seen that  fl~qaea a = / r a t a  a < ~ ,~. Thus La3ra2 > ~ z and hence / aara 2 

> / ' r a 2 a  ~. This implies tha t  aaa2>raa>~#(T) .  Final ly  we again obtain A ( ~ ) > a a a ~  

> #(T) .  By  13 this is impossible. Thus ala  3 is not  a minimal support  line of P.  

But  by  16 this implies tha t  the line perpendicular to ala 2 th rough a I is a minimal 

1 above) suppo r t  line of P.  This line meets P only in the point  a 1 (since J a2ala 3 ~ 3 ~, see 

and thus the line through ala  2 meets P in a segment of length/~ (T), i.e. ala  2 is of length 

at  least a (T). B y  14 this is not  so since it implies tha t  A (~) > u (T). Thus finally aa is not  

P-ad jacen t  to a 1 and a 3 mus t  therefore be P-ad jacen t  to a2. 

Nex t  we suppose tha t  there is a first integer m such tha t  a,~ and am+ 1 are not  P-adjacent .  

Then m ~> 3 and, by  an a rgument  similar to tha t  used for a a above, it can be seen tha t  a~ 

and a~+ 1 are P-adjacent .  The points a 2 . . . . .  a~ all belong to A (a D bl) or to  A (al, Cl), Suppose 

tha t  they  be long  to A (al, bl) then by 15 each segment ala  ~, a2a 3, ~...,'a,~_la,~ is p a r t  of a 

tangent  to the circle centre c I and rad ius /~(T)  and by  (B) the segment am_lain actual ly  

touches this circle. Thus ~am-1 amcl < �89 ft. Since by  5 / am_la~a~+l  >1 ~ ~ and since am+ 1 

and c 1 lie on the same side of am_lain ( they are points of P and amam_l is par t  of a suppor t  

line of P),  it. follows tha t  a~_ 1 and a~+ 1 lie on opposite sides of the line amc 1. Hence a 1 and 

am+r lie on opposite sides of the line a~ c~. Bu t  a~ and cx are both vertices of P .  T h u s  a 1 

and am+ 1 are not  P-adjacent .  

This contradict ion establishes ~the required result. 

18. 1] the vertex a 2 exists and i] the vertices a2alb lp  are in  Order round the /rontier o/ 

P ( i . e .  ~ : a2 a~, a~ b~, b~ p are P-ad~acent), then the line a la  2 is not parallel to the line b lp .  

Remove a small segment of length (~ from ala  2 at  a I and  from the end b 1 o f  the  segment  

of T tha t  terminates  at  b 1. Denote the new tree by  T '  with end points,a~ in place of a 1 

and b~ in place of b~. Now if a~a2 is parallel to  b~p then a n y  pair of parallel support  lines 

of the convex cover of T '  are such tha t  a t  most  one goes through a~ or b~l {except when 
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b 1 and p are T-adjacent,  in which case the pair of parallel lines alag. and blp  are support  

lines of the convex cover of T '  and go through a~ and b~ respectively). But  in any case 

A (T') = A (T) - 2 ~ ,  /~ (T') >/# (T) - 6. 

As in 11 it follows tha t  T '  is an extremal figure, t ha t /~ (T ' )  =/,~(T) - 6  and tha t  the line 

through a~ perpendicular to ala 2 is a minimal support  line of P meeting P in the single 

point a 1. By Property (B) of minima! support  lines the line ala2 meets P in a segment of 

length # (T). Thus the length of ala2 is/~(T) and 

A (a) > ~ ( T )  

in contradiction with 13. 

Thus the assumption tha t  ala  2 is parallel to blp is false and 18 is Proved. 

We next  consider the various cases that  might arise according to the different orders 

of a I . . . .  , ah; bl . . . . .  b~ and cl, . . . ,  cj on the frontier of P, and according as.~, fl, y are formed 

from one segment o~ more than one segment. 

Case I.  Each are ~, fi, ~ is made up o /more  than one segment and the orders a l , : , , ,  ah; 

b x . . . .  b~; c 1 . . . . .  cj on/rontier P are all the same. 

There is no real loss of generality in supposing that  the vertices of P in clockwise 

order are a 1 . . . . .  ah, bl . . . . .  bi, cl . . . . .  cj. The other cases are obtained either by a change of 

notation or by  an argument similar to the following. 

Produce blah to d (see Fig. 5). Then 

/ k a h b l  <~ ~ d a h a h - 1  

for if this was not the case we could replace ah b y  a~ on bla~ such tha t  aa lies between a~ 

and b r and such that  t h e  new tree ob ta ined  from T hy replacing kah and  ah.~ah by ka'a. 

an d ah_la'a has less length t h a n  T (see the argument  i n  17). T h u s  we have 

A kahbl <~ ~ :t 

a n d  f u r t h e r / _  k ah b ~ ~ :~. Since l_ b, k a a = ~ 7~ i t  follows tha t  

k b~ < kaa. 

Similarly ka  h < kcj, kcr < kb,. Thus w e a r e  led to the contradiction 

and this case cannot  occur:. 

ka  h < ka  h 
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Case I I .  Two arcs ~, fl, 7, say o~ and fl, are e a c h / o r m e d / r o m  more than one segment 

and the orders al, . . . ,  aa; b~ . . . .  , b i are such that the sector o/ angle ~ ~ bounded by the hall 

lines containing lcah, kb ~ respectively and terminating at k, is void o/ the  points al, . . . ,  ah_l bl, 

�9 hi_ I. 

B y  an  a rgumen t  of t he  same t y p e  as t h a t  used in Case I we have  L kahbi= 

= ~ k b ~ a h = ~  a n d  fl_kahah i =  ~ k b i b i - 1 = ~ .  Take  k' on cjk d i s t a n t  ~ f rom /c and  

a~, on ahah_1, b[ on b~bi-1 so t h a t  k ' a~  is para l le l  to  kah and  /c'b[ to  /cbi. I n  T 
i t i t r 

replace  cjlc, kah, kbi, ahah-1 bib~-i b y  c j k ,  Ic ah, Ic'b[, ahah i, b~bi-1 to  ob t a in  T ' .  

Then  
A (T')  = A ( T ) -  c$, # ( T ' ) > ~ # ( T ) - � 8 9  

and  b y  an  a r g u m e n t  s imilar  to  t h a t  in 11 T'  is an  ex t remal  figure. Bu t  th is  is no t  

so since, for example ,  a I is no t  a min ima l  ve r t ex  of T ' .  This  case canno t  occur.  
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Case I I I .  One arc, say ~, is a single segment and the other two arcs each contain more 

than one segment. The orders o / b  1 . . . . .  b~ and c I . . . . .  cj are such that all these points belong to 

the sector whose angle is ~ ~ and which is bounded by halprays containing kb i and kcj  respec- 

tively and terminating at k. 

I n  th is  case the  ver t ices  b 1 a n d  c 1 a r e  P - a d j a c e n t .  

W e  r e m a r k  f irst  t h a t  the  line bib 2 meets  the  line clc~ a t  a po in t  d which lies on the  

same side of blc 1 as k and  tha t ,  of the  four sectors in to  which the  lines bib 2 and  ctc ~ divide  

the  plane,  the  sector  conta in ing  k has an  angle  grea te r  t h a n  or equal  to  ~ g (from 12). 

B y  the  a rgumen t  in 15 the  pe rpend icu la r  d i s tance  from c I to  bib 2 is equal  to  # ( T )  and  

so is t h a t  f rom b 1 to  clc ~. Thus  in t r iangle  dblc  1, / b t d c  I > ~ ~ a n d  A d b l c  I = / d c l b  ~ < ~ z~. 

B u t  th is  implies  t h a t  the  d i s tance  f rom d to  blc I is less t h a n  # (T). Since this  is impossible  

th is  case cannot  occur. 

Case I V. One arc, say ~, is a single segment and the other two arcs are not single segments. 

The vertices b I . . . . .  b~, c 1 . . . . .  cj are in  order on the/ront ier  o / P .  

Ei the r  t he  th ree  pai rs  al ,  cj; Cl, b~; bi, a I are  P - a d j a c e n t  or the  th ree  pai rs  al ,  cl; cj, bl; 

b~, a I are  P - a d j a c e n t .  W e  suppose t h a t  the  f irst  a l t e rna t ive  holds: the  a rgumen t  when 

the  second a l t e rna t ive  holds is the  same wi th  b's and  c's in terchanged.  
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Any line through cj that  supports P apart  from a 1 c I and r ct is parallel to another 

support line of P that  meets P in the single point b 1. By (A) it follows that  no such line 

can be a minimal support line of P. If now a 1 cj were not a minimal support line of P we 

could replace cj on cjcs_ 1 by c~ lying between cj and cj_ 1. In T replace segments kcj, cr Cj_l, 

by kc~, c~cj_ 1. The effect is to obtain a tree T, with A (T1) < A(T),/x(T1) = # ( T ) .  This is 

impossible and thus alc j is a minimal support line of P. Similarly clb ~ is a minimal support 

line of P.  

Produce clb ~ in both directions to meet alc j produced in c and alb 1 produced in i t. 

Now each of the angles e al l  t, alite, ale [ is not greater than �89 ~t. For, since Clb ~ is a 

minimal support line and the parallel support line through a x meets P in the single point 

a I (otherwise we should have A (fl) > ~ ( T )  in contradiction with (13)) it follows from (B) 

that  the perpendicular from a 1 to eit intersects the segment btc 1 and therefore 

/ a l e / <  �89 / a l / e < � 8 9  

Also by 18, bib ~ is not parallel to al e and thus, by a similar argument, the perpendicular 

from b I to ale meets segment alcj, thus 

/__/ale<~ �89 

By 5 L k c l C t _ l > ~ g  a n d  b y  th  e argument used in Cas e I ~alclk<~ ~eCtct_l .  

Thus / _ a l c j k < ~ g ,  a n d  this implies f rom triangle a l k c  t t h a t  / _ e a l k > ~ g .  Also 

/ ,  kbt e <. ~$ :~. 

Project the polygonal line al, k, bt in the direction of Clb~. We have 

alk  -4- �89 b~ >~ la(T). 

Project the polygonal hne c 1, c 2 . . . . .  c s, k ,  b~, b t _  ~ . . . . .  b i in the direction a l b  ~. We have 

k c j  -~- . . .  -~ C2C, 1 "~- k b t sin L k bia 1 + btbi, 1 + :.. §  ~ >~ # ( T), 

Now if kb~ > kai ,  then /_kbia 1 < ~ 7r, and on addingthe above inequalities ~e  obtain 

A (T)> 2~(T) 

in contradiction with (*). Thus kb~ ~< ka 1. 

B u t  in triangle kcjb~ 

/ k b i c j <  / k b t e < ~ ,  /_.kcjbt+ Lkb~c j= �89  
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t a !  

d' 

/ I,1 

Fig. 7. 

t 

b~ 

Thus  J_ k bi cj ~ / k  c~ bt, 

and  this  implies t h a t  kcj ~< kb~. �9 

Simi la r ly  k a 1 ~ k 6j. 

Thus ka 1 < kb~ 

a n d  we have  a contradic t ion .  

This  case cannot  occur. 

Case V. Two o/the arcs are single segments andOne is composed o/more than one segment. 

W e  assume wi thou t  a n y  loss of genera l i ty  t h a t  the  arc a is the  on ly  arc  wi th  more  

t h a n  one segment  and  t h a t  the  poin ts  ahah_l, ~.., a l, b 1, cl are in the  clockwise order  round  

the  f ront ier  of P (see Fig.  7). ~ 

As in the  previous  case, cla~ is a min imal  suppor t  line a n d  the  perpendicu la r  d i s tance  

f rom b 1 to c~a~ is # ( T ) .  We  show first  t h a t  alb ~ is a min ima l  suppor t  l ine of P .  B y  16 if 
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th is  is no t  the  case the  line t h rough  a 1 pe rpend icu la r  to a la  ~ is a min imal  suppor t  line. I t  

cannot  therefore  coincide wi th  a lb 1 and  mus t  meet  P in the  single po in t  a~. B y  p r o p e r t y  

(B) the  line a l a  2 meets  P in a segment  of length  # ( T ) ,  i.e. the  length  of segment  a la  2 is 

/~ ( T ) . T h i s  is in con t rad ic t ion  wi th  13. Thus alb 1 is a min ima l  suppor t  line of P .  

The pe rpend icu la r  d is tances  of b I and  c 1 f rom ahc 1 and  alb 1 respec t ive ly  are  bo th  

equa l  to  # (T). Thus  / a n C l b  x = / a  lb lc  r If  these angles are  less t h a n  �89 ~ the  pe rpend icu la r  

d i s tance  of a 1 f rom blc 1 is less t h a n / ~ ( T ) .  This  is no t  so. I f  these angles are equal  to  �89 g,  

t hen  a 1 m u s t  be the  th i rd  angle of an  equi la te ra l  t r iangle  a l b l C  1. There  are  then  no o ther  

ver t ices  a 2 . . . . .  a h. This  case is considered la te r  (see Case VI).  Thus  in fact  

/ a h C l b  1 = / _a lb lC  1 > �89 ~.  

Since the  pe rpend icu la r  d i s t ance  from a 1 to  bxc 1 is g rea te r  t h a n  or  equal  to  t h a t  of c 1 f rom 

a l  b~ we have  

a l  bl >/c lbl .  

On alb  1 le t  t be such t h a t  tb 1 = clb 1. Le t  a~, t' be the  ref lect ions of al ,  t in anc I respec- 

t ive ly .  On a~ c t erect  the  equi la te ra l  t r i angle  whose th i rd  ve r t ex  d '  lies on the  side of a~ c 1 

oppos i te  to  bl, and  on c1$' erect  the  equ i la te ra l  t r i ang le  whose t h i r d  ve r t ex  s '  lies on the  

side of t ' c ,  opposi te  to  b 1. Le t  s and  d be the  ref lect ions of s' and  d' respec t ive ly  in ahc 1. 

Then  b y  the  l e m m a  

A (T)  >~ d 'b  1. 

Le t  d'b 1 meet  line ahc 1 in e. Now, since / t b l c  1 > �89 7r and  bit  = bic I we have  

/ C l t b l =  / t C l b l  < ~ .  

Therefore  b I is a po in t  of the  equi la te ra l  t r iangle  c~ts. The  vec tor  sd  is equal  to  t he  vec to r  

ta  I r o t a t e d  in t he  clockwise sense t h rough  an  angle  of 1 a g.  Since / a a c l b  I = / a l b l c  ~ > ~ 7~ 

i t  follows t h a t  the  pe rpend icu la r  d i s tance  of d f rom ahc 1 is g rea te r  t h a n  t h a t  of s f rom 

abel, and  since b 1 is a p o i n t  of t r iangle  ClSt , th is  las t  d i s t ance  is g rea te r  t h a n / ~  (T). Thus  

Since ble >~#(T)  we have  

de > / t ( T ) .  

A (T)  >1 bid'  = ble + ed > 2 #  (T) .  

This is in  con t rad ic t ion  wi th  {*). 

This case canno t  occur.  
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Case V I .  Each are ~, fl, 7 is a single segment. 

On the  largest side of a t, b 1, el, say o n  blCl ,  erect the equilateral triangle whose th i rd  

vertex d lies on the side of blc 1 opposite to a 1. Triangle blCld has area greater than  or 

equal to t h a t  of triangle alblc 1. Thus the perpendicular distance of d f rom blc 1 is greater  

than  or equal to t ha t  of a I f rom blcp I f  alblC 1 is not  equilateral we have 

A (T)  = aid  > 2#(T) .  

This is in contradict ion with (*). Thus a l b l C  1 is equilateral. 

This concludes the proof t h a t / x ( T )  ~< �89 A (T) and tha t  the only extremal  figure whose 

convex cover  is a polygon is formed from three equal equally inclined segments. 

w 4. E is a s imple a rc  

Let  A(~) be the class of all simple polygonal  arcs of uni t  length composed of at  mos t  

n segments. Define K by  

K = (see ~ + 2 t an  a + ~t - 4fl - 2 a), 

where �89 + sin a = 4 cos ~ zr + 4 cos ~ a) 

and tan  fl = �89 sec :~. 

By  Theorem 3 of Section 2 it is sufficient to show tha t  for any  member  E of A(~) 

1 
q > ~ K .  
~ ( E )  

1 
Wri te  inf - -  = 3. 

~A(~)~ (E) 

By the arguments  used by  P. A. P. Moran [6] there is a member  T of A(,) for which 

~(T) =~-~. 

We shall assume tha t  K > v (31) 

and show t h a t  this assumption leads to a contradiction. The method  is similar to t h a t  

used in Section 3 in t h a t  it depends upon appropria te ly  chosen variations of T. 

Denote the polygon which is the convex cover of T by  P ,  and  let the end points of the  

segments of T be tl, t~ . . . .  , tn in order. 
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1. The points common to two segments o / T  and the two end-points o~ T are vertices o / P .  

0bviousi  Cf. Section 3.4. 

2, Every vertex o] P is either a point common to two segments o] T or is anend-point  o/ T. 

Obviousi Cf. Section 3.1/ 

3. The polygon P subtends an angle o /not  more than �89 rc at each end point o / T .  

B y  the same a rgumen t  as t ha t  used in Section 3.14, t 1 and  t 2 are P-ad jacen t .  Suppos e 

t h a t  t h is the other  ver tex  of P P -ad jacen t  to tl. I f / t 2 t l t  a > �89 ~ let t; be a poin~ on the  line 

th~ such tha t  t I lies between tl and tn ' and  / t ~ t l t h  >~ �89 ~: I n  T replace segment  tzt~ b y  seg- 

m e n t  t2t ~. We Suppose t h a t  t~ is so close to t 1 t h a t  the  new connected se~; T '  is an  arc. Then 

A ( T ' )  < A ( T ) ,  /~(T')  ~ / z (T ) .  

i S n e e  T E A(n) we have  a contradict ion with  the min ima l  p rope r ty  of T. Hence /_  t~tlt h <<. �89 ~. 

4. There are parallel support lines o/ P,  one through each o/ the end points tl, tn o / T .  

This is an immedia te  consequence of 3. 

5. Let t~ be a vertex o/ P which ~ not an end point o / T ,  such that o/ the vertices tt-1, t~+l 

at most one, say tt-1, is P-adjacent to ti. Let tj be the other vertex o / P  P-adjacent to tt 

then 

/_t~+lt~tj+ /__t~_lt~t~<~. 

On the line tjtt let  p be a point  such t h a t  t~ lies be tween p and  tj. Then  if 

/ / t t + l t i t j ' ~ - z / t i - l t t t t > g ,  i t  follows t h a t  

Ltt+lt~tt> / t i - l t ~ p .  

But  if we move  t~ along t~p towards  p through a small dis tance to the  position t~, and  in 

T replace segments  t~_ltt, t~ t~+ 1 by  t~_l t~, t~ t~+ 1 respectively,  we obta in  a new m e m b e r  T '  

of A(~) for which 

A ( T ' )  < A ( T ) ,  /x(T')  ~>/x(T). 

This is impossible because of the ex t remal  p rope r ty  of T. Thus  5 is established. 

~j6. I t  is possible to f ind two vertices o / T  say t~, tj, i < ], with the/ollowiug properties. 

(a) t~ and t j  are P-adjacent. 

(b) The support l ine o / P  parallel to tttj, other than the line t~t) itsel/, meets P in 

a vertex t h with i < h < j. 
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Consider two vertices for which (a) is t rue (there are such vertices). 

Denote  by  T(i ,  j) the subarc tit j of T and by  K(i ,  j ) t h e  set of points  of intersection 

of the line joining ti to  tj with suppor t  lines of P tha t  pass th rough  some vertex t k of T (i, j) 

other  t h a n  ti or tj. I f  ti, tj do not  satisfy (a) we define K(i ,  j) to  be the void set. 

I f  K(i ,  j) is non-void and unbounded  then tt, t~ sa t i s fy  (b). We shall assume t h a t  

e a c h  non-void K(i ,  j) i s  bounded and  show tha t  this assumption leads to  a contradiction. 

I f  ti, tj are P-ad jacen t  i < j ,  then distinct consecutive members  of tt+l . . . . .  t~_ 1 are 

also P -ad jacen t  (if there are any). For  if for example tk was not  P -ad jacen t  to tk+ 1 then  

the segment tk tk+l would divide P into two domains. Of these domains one mus t  contain 

b o t h  t, and tr since they  are P-adjacent .  The other  domain contains a vertex t r with either 

r <.k or r > k + 1 .  I f  r < k, T(r,  i) which joins tr t o  t,, cuts tk t,+l. This is no t  so since T 

is an  are. Similarly we cannot  have r > k • 1 and in fact  tk and  tk+ x are P-adjacent .  

I t  follows tha t  two members  of ti+l . . . . .  tj_ 1 which are no t  T-adjacent  are also no t  

P-adjacent .  For  if there were two such members  say th and  t,, h < g, then,  in the sequence 

th, th+l, . . . ,  t~-l, to, th, each consecutive pair is P -ad jacen t  and thus the segments tath.l, ... 

tg_ 1 tg, tgt~ would comprise the whole of the frontier of P. This is not  so since t, belongs 

to the frontier of P and to none of these segments. Thus since K (9, g + 1) is void for all 

g we see t h a t  K (g, h) is void for all g, h satisfying i ~< g < h ~< j except g - i, h = j. 

I f  K (i, j).is non-void and bounded  it is a closed segment. For  it is the union of segments 

one corresponding to each tk with i < k < ?" and tk t~.~ is a support  line of P and thus intersects 

t, t) in a point  belonging to the segment corresponding to tk and to the segment corresponding 

to tk.x. Thus  these segments abut  to form one segment. 

The end points tl, t= of T are each end points of exact ly one segment say K(1,  il) 

and K(?'I, n) respectively since tit  2 and t n _ l t  n a r e  P-ad jacen t  pairs. Now an end point  

e of K(i ,  j) other  than t 1 or t= lies on titj and on a support  line th rough  tk, i < k < j .  This 

support  line must  pass through a second vertex tz of P or e would not  be an end point  of 

K (i, j). I f  i < 1 < j then tk and te are T-adjacent ,  i.e. l = k - 1 or k + 1 bu t  then this again 

contradicts  the fact  t ha t  e is an end point  of K(i ,  j). Thus either 1 < i < k or k < j < I. 

Suppose the former. Then K (1, k) is not  void ; ' i t  contains e. N o w  no three of the segments 

K (i, j) can meet, for if they  did it would imply tha t  three support  lines of P would be 

concurrent.  Also no two segments K (i, j), K (g, h) can meet  except possibly at  end points  

of each. For  if they  did each of the segments K (i, j), K (g, h) would be on support  lines 

of P and since there are at  most  two support  lines th rough  any  one point  the line containing 

K (g, h) would be a line used in the definition of K (i, j), i.e. it would meet  P in a vertex tk 

with i < k < j. But  any  non-end point  of K (i, j) lies on a support  line of P tha t  meets P 

exclusively in points of T (i, j). Thus i ~< g < h <~ j and as remarked above this implies 
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t ha t  K(g,  h) is void. Thus K(g,  h} meets K(i ,  j) in an end point  of K(i ,  ~). Similarly this 

end point  is an end point  of K(g,  h). 

I t  follows tha t  the union of all the non-void sets K(i ,  i) contains a simple arc joining 

t 1 to t n. 

By  4 there are two parallel support  lines of P ,  one each th rough  t I and t n. Denote the 

open strip bounded by  these support  lines by  U. We m a y  assume tha t  t 1 and  t= are not  

P-ad jacen t  for if they  are then (b) obviously holds with i = 1, ?" = n. 

The line tit  n divides the frontier of P into two arcs which are disjoint except  for the 

fact  t ha t  they  both  have t 1 and tn as end points. Denote these two arcs by  X 1 and X~. 

Of the two P-ad jacen t  vertices t~ t, i < ./, either both belong to X 1 or bo th  to X~ or one is t x 

or tn and in a ny  case the segment  t~ tj of the frontier of P is contained in X 1 or X2. I f  t~ t~ 

is contained in X 1 and K(i ,  i) is non-void then all vertices tk, i < k < i, belong to X~ and 

vice-versa. I n  any  case the pa r t  of the line t~ tj contained in U is separated from tk by  

tit  ~. Thus no par t  of the line tt tj in U can belong to  K( i ,  ]), for such a point  is joined to tk 

by  a segment which on the one hand  is contained in U and  on the other  cannot  meet  the 

par t  of t ltn contained in U. 

Hence K (i, i) f] U = ~b. 

Bu t  U separates t 1 f rom t~ and K( i ,  i) joins t x to t~ thus for some pair i, ~ K( i ,  i) f] 

U ~= 4- This contradict ion shows tha t  for some i, ~ K( i ,  i) is unbounded  and (b) holds. 

We can now complete the proof of the inequali ty ~ ~> K by  considering two possible 

cases and by  showing tha t  in each case the assumption (31) leads to a contradiction. 

Case I.  There is a pair o/integers i, ~ such that t~ tj satis]y 6 and one o / t t ,  tj is not an 

end point o] T.  

Suppose for definiteness t h a t  1 ~< i < ] < n. Let  tk, i < k < i, be the vertex of P a t  

which a support  line is parallel to  t~ tj. 

I f  / tk tjt~ <<. �88 ze 

the  length of the segment  t~tj is a t  least I~/~(T),  and  since tha t  of t~t~ is a t  least 

/z (T) we see tha t  

A (T) 1> (1 + I/2)/~ (T); 

since calculation shows tha t  

1 1 1 
/~(T)=->- > 

K 2 - 2 8 '  

we have A (T) > 1. 
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By our  original assumpt ion this is no t  so. Thus  Ltk t i t~>�88  

Since, by  5 

A6t j t i+a+ At j - l t j t j+l  < ~  

and ~tj- l t j6>~ ~_tktjt~> ~ ~, 

we have / tj-1 tjtj+l <~ ] ~r. 

85 

Now construct  a new arc from T by  removing a segment of length 5 from the end 

of tn_lt,, at  t~ and moving tj along the internal bisector of/_tj_it~ tj+, a distance (~ to t5 and 

replacing segments tj_lts, tj t~+ 1 by  tj_lt ~ and t5 tj+ 1. I f  5 is small we do in fact  obtain a new 

arc. We denote it by  T1. Then since there are not  two parallel support  lines of P th rough  

tj and tn(1) we have 

Also 

~(T~) ~> ~ ( T )  - 6. 

37~ 
A ( T 0 ~ < A ( T ) - 5 - 2 5  cos ~-~ +0(52) .  

But  these inequalities imply, if ~ is small, 

/~ (T~) # (T) 

A (T~) A (T) 

and this is impossible by  the extremal proper ty  of T. 

This case cannot  occur. 

Case I I .  The only pair o/integers i, j / o r  which t,, t~ satis/y 6 are i = 1 and j = n. 

I n  this case t,, t~ are P-ad jacen t  and this implies t ha t  the whole are T lies in the 

frontier of P .  Let  t~ be the vertex of T, 1 < k < n, at  which there is a support  line parallel 

to t i t  n. 

Denote  the common par t  of the two circular discs whose centres are t 1 and t~ and 

whose radii are /~(T)  by  D. The par t  of D on the same side of tit  ~ as t k is contained in P .  

Denote it by  D1. Denote the convex cover of tl, tk, t~ and D, by  P1 and the length of the 

frontier of P1 excluding the segment t lQ by  X (P0.  

(1) If there were, each subare T(i,  It), T(k, ]), T(?',n) of T would be of length greater than or 
equal to ~u (T). Hence 

A(T)~ 3~(T)> 1, 

a contradiction since A (T) = 1. 
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Ua 
Ul 

t l  

Fig. 8. 

t n 

Steiner symmetr isa t ion about  the perpendicular bisector of t i t  ~ shows tha t  X(P1) 

is least when t k lies on the perpendicular bisector of t i t  n. Also X(P1) is least when the 

distance of t k f rom t i t  ~ i s /u (T) .  Denote this position of t k b y  x a n d  the cor responding  

convex cover of tl, x, t~, D1 by  P2. Let  the points of contact  of the lines of support  from 

x to  D 1 be Ul a n d  u~ and  those from t 1 and tn  t o b e  a 1 and a~ respectively where the po in t  

u 1 is on the  same side of the perpendicular  bisector of t 1 as is t 1. Denote the length of the 

f ron t ie r  of Pz excluding t 1 tn b y  L and  let t ing y be the mid-point  of tlt~ (see Fig.  8). 

Suppose the points t l a lU lXunan t  n are in order on the frontier of Pc. 

If, (~ is a small positive number  a n d  we m o v e  t~ along t~tn a d is tance  (~ to t~ and t~ 

a long tnt 1 a distance (~ to  t '  .... and then form P '  ' ' . . . .  2 and L '  from h, t~, :x in  exact ly the same way 

tha t  P2 and L were formed from tl, t~, x, we have 

L ' = L +  28  sin / _ y x u ~ - - 4 5  sin / an t l t~  + O ( 5  ), 

since, to within a term in 0 (5) the effect is to translate un, a n by ~ in the sens e tlt~ Parallel 

to  t i t  ~ and u 1, a 1 by  an equal amoun t  in the opposite sense. Thus L is least when. either 

2 
(i) X, tl, t n are all d is tant  V3/~(T) from one another,  or 
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(ii) tl, t n are d i s t an t /~ (T)  f rom one another ,  o r  

(iii) sin / _ y x u n  = 2 sin / a n t l t  ~. 

In  the  th i rd  case wr i t e /~  f o r  ~ _ x t l u  n ~ / _ y x t  i (this equal i ty  is because x y  = t l u  ~ -~ 

/~(T)), and  ~ for / a ~ t l t  n. Then  calculating t z t  ~ in two different ways  we have,  

Thus  

Also 

where ~ " / u n t l a  ~. T h u s  b y  (iii) 

Bu t  f rom tr iangle x y t  z we have  

t z t  . = t za  n see :r = lu (T )  see ~, 

t z t  ~ = 2 x y t an  ~ = 2/~ (T) tan  8- 

tan  fl~ = �89 sec ~, 

/ _ y x u  n = / u ~ t l y  = ~  + a 

sin (~ + ~) = 2 sin ~. 

~-~enee, 

Subst i tu t ing for fl f rom (32) we have  

�89 + s i n  ac = 

/~- -}~-  (fl +~ +~). 

cos 2 fl = 2 sin ~ . ,  

4 cos ~ a 
1 § 4 c o s  z 

(32 )  

(33) 

Also L = (2 t an  ~ § 2r  + 2 t an  fl)ju (T) 

= (2 tan  a § see :c+ze - 4/~ - 2 a)/~ (T).  

Calculation shows tha t  in the th i rd  case L = 2.273/~ (T) app rox ima te ly  and tha t  in 

(i) L = 2  "309/~(T), in (ii) L = 2 . 2 8 / ~ ( T ) .  Thus L is least in the third ease, a n d  we have  

proved tha t  

A (T )  ~ L ~ K f ~ ( T )  > 1 

But  th i s  is not  so b y  assumption.  T h u s  (31) leads to a contradict ion in all  eases and  m u s t  

itself b e false.  

Thus the required inequal i ty  is established. 
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w 5. Further problems 

There are many other problems of the same type as those considered in Section 3 

and Section 4. If  T is any connected set of finite linear measure and ](X) an increasing 

functional of the convex set X, then the number 

/(H(T)) 
- 

(where H(T) is the convex cover of T) conveys certain information about the relationship 

between a connected set and its convex cover. Examples of the function /(X) are the area 

of X, the inradius of X, the circumradius of X, the perimeter of X,  the diameter of X, 

the moment of inertia of X about its centroid, etc. Of these some lead only to trivial 

results, either because an extremal figure is obvious or because the ratio / (H(T) ) /A  (T) 
is not an invariant under similarity transformation. 

We consider here the case when/ (X)  is the square root of the area of X. This problem 

can be replaced by another one as follows. Consider a finite set of n points in R 2, say the 

set E. Let A be the area of the convex cover of E. What  is the least measure of any con- 

nected set which contains E, expressed in terms of A and n? We shall show that  

A(K)>~2[A(n-1)tanT~/(2(n-1))]�89 n>3,  

A (K) >~ 2 [A 1/3 ]�89 n = 3. 

(34) 

(35) 

Since as n-+co the right-hand side of (34) decreases to (2 zrA)�89 it follows that  #r calculated 

for / equal to the square root of the area is (2 7r)-�89 (making use of Theorem 3.2). In  turn 

1 
the fact that  #I  = ( ~ j ~  implies a result of P. A. P. Moran, who proved a conjecture of 

S. Ulam, namely that the convex cover of an arc of unit length has area less than or equal 

to �89 zr. This result is best possible since equality is attained when the arc is a semi-circle; 

whether this is the only extremal curve is not known. The results given in (34) and (35) 

are also best possible. In  (34) equality is attained when E is a set of consecutive vertices 

of a regular 2 ( n -  1) - g o n  and K is the arc joining them. In  35 equality holds when E 

is the set of vertices of an equilateral triangle and K is formed from three equal segments 

inclined at an angle of ~ zr with one another. 

The proof of (34) and (35) is quite simple. As in Section 3 let s (n) be the class of 

closed connected plane sets which are of finite positive linear measure and whose convex 

covers are polygons with at  most n vertices. Denote the area of the convex cover of T 

by A (T). Write 
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[A (T)]~ 
Kn = sup 

r~(n) A (T) 

89 

I t  is not  difficult to  prove tha t  there is a member  To of s (n) for which 

Kn = [A (Tg)]t 
A (To) 

There m a y  be more than  one such member  of C (n). I f  there is we select one whose convex 

cover has the least possible number  of vertices. Denote this set by  T* and  the convex 

cover of T* by  P*. 

As in the problem considered in Section 3, T* is a polygonal  tree and  is a connected 

set of the least possible measure containing the vertices of P*. E v e r y  end point  of T* is 

a vertex of P* and every node of T* is an interior point  of P*. 

Next ,  the segment joining any  two end-points of T* lies in the frontier of P*. For  

suppose tha t  these were two end points Pl, P2 of T* such t h a t  the segment PiPs met  the 

interior of P*. Let  Plq, and P~q2 be the segments of T* which terminate  at  Pl and P2 

respectively. Take points p~ on line Plql dis tant  x I from Pl, where x 1 is positive if p~ lies 

between Pl and ql, and negative otherwise, and p~ on line P~q2 dis tant  x~ f rom p~. Bo th  

x 1 and x 2 are not  greater than  the least length of segments Plql and P2q2. I n  T* replace 

Plql by  P~ql and p~q~ by  p~q~. Denote the new polygonal  tree by  T*(x 1, xz) and its area 

by  A (x 1, x~). Now if x 1 > 0 is small, 

A (T* (x 1, - xl) ) = A (T*). 

Thus A (x I, - Xl) ~< A (T*). But  if A (x l, - Xl) < A (T*), then A ( - x 1, x 1) > A (T*). This is 

impossible. Hence 

A (Xl,  - -371)  = A  ( T * ) .  

We increase x I until  either p~ p~ lies in the frontier of P* or p~ coincides with ql. This is 

possible. I n  each case we obtain an extremal figure whose convex cover has less vertices 

than  P*.  This is impossible by  the choice of P*. Thus every segment joining two end 

points of T* lies in the frontier of P*. 

Thus T* has either three end points or two end points. I f  T* has three end points 

the segments joining them in pairs lie in the frontier of P*; thus P* is a triangle and T* 

is formed from three segments inclined to one another  at  an angle of ~ z~. I f  T* has two 

end points  it is an arc and must  lie entirely in the frontier of P*. 

Consider the first alternative. Let  the lengths of the three segments be l 1, l~, l a. Then  

7 - 665064 Aeta  mathematiea.  99. Imprim~ le 25 avri l  1958 
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i (T*) = ~ W3 �9 (/112 ~-/2/3 ~-/3/1) 

= [ 2  ( A  ( T * ) ]  ~ - (/2 - / ~ ) ~  - (1,  - l~) ~ - (l~ - 1 ~ ) ~ ] / 8  V 3  

< [A (T*)]V4 V3. 

Thus (35) (and a fortiori (34)) is true in this case. 

Consider the second alternative. Let the arc T* be P IP 2 . . .  Pk where each Pl is a 

vertex of P*. Then segment P~P~+I is of equal length to segment P~-lPi i = 2, . . . ,  k - 1. 

For otherwise we can symmetrize the triangle Pt-lPtP~+I about the perpendicular bisector 

of segment Pt-lP~+I to reduce A(T*) without affecting A (T*). This is impossible because 

of the extremal property of T*. 

Consider next the second alternative. If  P" has only three vertices, then T* is the 

sum of the lengths of the two shortest sides of P*. Since T* is the connected set of least 

length that  contains the vertices of P*, this implies that  one of the angles of P* is at least 

g and T* is the two sides adjacent to this angle. But then A (T*) can be increased without 

altering A (T*) by rotating one of these sides relative to the other until they form an 

angle equal to �89 g. By the extremal property of T* this is impossible. Thus P* has at  

least four vertices. We consider any four consecutive vertices of T*, say Pl, P2, Pa, P4, for 

definiteness. We shall show tha t  P2P3 is parallel to PIP4, and thus, since PlP~ and PaPa are 

segments of equal length, that  / P l T 2 P 3  = LP2PsPa. If  now P2P3 is not parallel to PIP4, 

suppose that  P3 is nearer to PiP4 than is p~. Let the line through P3 parallel to the line 

Pl P4 cut the segment PiP2 in p~. Symmetrize the trapezium Pl P~ Pa P4 about the perpendicular 

bisector of PiP4 to obtain the trapezium * * * * PiP2 P3 P4" On  construct a P2 P3 Pe P3 triangle t * * 

congruent to and similarly situated to p21v~iv ~. Now since P3 is nearer to PiP4 than is P2, 

we have fl-P2PlP4 > LPsP4Pl  and thus * * / t p 2  P3 > / P ~ P l P 4 .  I t  follows that p~ is an interior 

�9 t * point of the convex cover of Pl, t, Pa, P4. In T* we replace PIP2, P2P3, PaP4 by pl t, Ps, 

P'P4. The effect is to reduce N (T*) and to increase A (T*); since however the new polygonal 

tree still is a member of /:(n), we have a contradiction with the extremal property of T*. 

I t  follows tha t  all the angles Pt-lP~T~+I are equal, i = 2 . . . . .  k - 1, and therefore that  all 

the points Pl . . . . .  Pk lie on a circle, say C. NOwplpk is a diameter of C, for if f_PlP2Pk ~: 12 ~z 

we could increase the area of triangle P2P~ k by a suitable small rotation of PiP2 about p~. 

This is not so by the extremal property of T*. Thus PlP~ is a diameter of C. Direct calcula- 

tion now leads to (34). 

w 6. Remarks 

Although the arguments used in the three preceding paragraphs are both long and 

complicated, they do not completely solve the problems concerned. They fail to characterize 
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completely the extremal figures. In each case we are able to give one extremal figure but 

out methods are such that  we are unable to say whether or not the figure is unique. Our 

method is to classify some of the possible figures into classes which are not difficult to deal 

with and then to obtain the final result by an approximation argument. In  Section 4 it 

is not surprising that  we are unable to define all the extremal figures, since the one which 

we actually specify does not belong to any of the classes that  we argue with, its convex 

cover is not a polygon. In Section 3 the extremal figure belongs to all these classes and 

is almost certainly unique. The methods used here are by no means exhausted. There 

are many other possible variations available and it may be possible to establish the unique- 

ness of the extremal set without using any really new ideas. 

The argument in Section 3 could have been substantially simplified by the assumption 

/~(T) > �89 (T) instead of #(T)~> �89 (T). For the two key steps in the argument are to 

show that  T has 3 end points and that  every two end points lie on a pair of minimal support 

lines. Now (14) implies that T has at most 3 end points (if we assume/~ (T) > �89 A (T)) and 

the arguments given in 9 and 10 are unnecessary. Similarly (18) and (19) together imply 

the second key property of T without the complicated succeeding argument in 13. But 

of course such a procedure abandons any hope of finding all the extremal figures. 

There are many other problems similar to those solved here. For example, we can 

consider the analogues of the problem of Section 1, 3, 4, 5 in R 3. The analogues of Section 5 

in R 3 (i.e. to find the largest volume of the convex cover of a connected set of given length) 

are particularly interesting. The case when the connected set is restricted to be an arc, 

that  is to say, the three dimensional analogues of Ulam's conjecture, has not been solved. 

I t  is likely that the solution is a certain equi-angular spiral (see Egervs [4]), and, that  

unlike the situation in R e , the solution of the connected set problem does not imply that 

of the arc problem. 
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