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Introduction

For any set X we denote by A(X) the linear measure () of X and by A (X,) the
linear measure of the projection of X onto a line perpendicular to the direction 6. We
write u(X) for the greatest lower bound of A (X,) taken over all directions §. We shall
consider three classes of planar sets, namely measurable sets, connected sets, and arcs.
For each class we shall find the upper bound of the ratio u(X)/A (X).

For the class of measurable sets the result is connected with the properties of regular
and irregular sets and is a consequence of the properties of these sets established by
Besicovitch. For the class of connected sets and for the class of arcs p(X) is the minimal
width of the convex cover of X or its convex hull as it is sometimes called. The problem
of the relationship between this function and A (X) is one between a set and its convex
cover. There are of course a large number of such properties and a further result of this
type is given in Section 5.

An interesting feature of this problem is the difficulty of determining completely the
class of extremal figures. For the class of measurable sets the upper bound of x(X)/A (X)
is never attained, but we give examples to show that the upper bound which we establish
is in fact the least upper bound. On the other hand both the upper bounds for the class of
connected sets and for the class of arcs are attained; in the first class by a set eomposed of

three equal segments equally inclined to one another and in the second case by an arc

* Editor’s note.—This paper was received on January 4, 1957. Without our knowledge it has
appeared during 1957 as part of the book Problems in Euclidean Space, London 1957, by the same
author.

(1) Hausdorff one.dimensional measure. See [1], where it is referred to as Carathéodory measure.
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composed of four linear segments and two circular arcs (which will be specified more
exactly later). To simplify the proofs we shall consider in both cases the subclasses of
connected sets or of arcs whose convex covers are polygons with at most n vertices. Since,
in fact, one extremal figure for the class of arcs is not of this nature we have no hope, by
this means, of specifying all the extremal figures. But even for the case of connected sets
when the only known extremal figure is of this kind I have not been able to specify com-
pletely all the extremal figures. Some further remarks about this point will be given later
(see Section 6).

The actual results proved in the following paragraphs are

(i) for any measurable set E with A (E) >0,

2
u(B)< Z A(B),
(ii) for any connected set E
p(E) <3A(E),
(iii) for any simple arc E
w(E)<A(E)/(sec a +2 tan a + 7 — 4 —2x)
where « and § are defined by
4+ sin ¢ =4 cos? /(1 + 4 cos? &)
and tan =4 sec a.

The results proved in Section 5 are stated in that paragraph. I am indebted to the referee
for suggesting simplifications of some of the properties established in Section 3.

§1. E any measurable plane set of finite positive linear measure

We can write £ = E, U E, where E, is a regular and E, an irregular set (see [1],
p- 304). Further E, = E; U E;’ where A(E;)=0 and E; is a measurable subset of the
union of an enumerable infinity of rectifiable arcs (see [1], pp. 324 and 304). Another
property that we require is that the projection of an irregular set is of zero measure in
almost all directions (see [2], p. 357). Since we do not require many other properties of
regular and irregular sets I shall not give their definitions nor the derivation of the prop-
erties stated above. They can be found in the papers [1] and [2].

Write P (X, 0) for the set which is the projection of X in the direction §. The following

lemmas are needed.
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LemMA 1. [P (E4, 0)] depends continuously on 6.

Let A, be a sequence of ares each of finite linear measure such that U 4,2 E; and
i=

let ¢, be a sequence of positive numbers decreasing to zero. For eachi integer ¢ there exists
a closed subset F; of E; and a positive integer N, such that

Ny
AF)>AE)—& AFN 'UIA;) >A(F)—&.
P

The set A,N F; is a closed subset of the arc A4; and its complement in 4; is an at most
enumerable infinity of open subintervals of 4, say B, B, ... These subintervals of 4,
are open relative to 4; and there may of course be only a finite number of them. We can

choose an integer M, ; such that

1
A( kguﬁBik) < ZV,-&' .

The complement of IEJMBﬂc in A, consists of a finite number of arcs or points, say 4, ...,
k<M

A, ,, where & depends on both ¢ and j. We omit the points in this set and rename the set

L
of all these arcs for all j from 1 to N, as C,, Oy, ..., Op,. Write C for U O}, then if H denotes
j=1

the set of points omitted in renaming the 4; , as C;, we have

CUH>Fin U 4, ()

1<i<Ng

O—F‘C U U Bjk. (2)

1SNy kMg

From (2) it follows that"

AC—F)<eg. 3)
Hence A(C— Ey) +A(E; —C) <3¢,
Thus  |AIP(BL, 6)] —A[P(C, 0)]] <3, 4)

But A[P(C, 0)] depends continuously on 8, and (4) shows that A[P(E;, 0)] is the
uniform limit of a sequence of continuous functions. Thus A[P(E1, 6)] is continuous and

the lemma is proved.

2n

Lemma 2. [A[P(Ey, 6)]d0 <4A(EY).
0

Asin lemma 1 there is a sequence of sets {C,} each of which is a union of a finite number
of rectifiable arcs and such that A[P(C,, )] tends to A[P(E;,0)] uniformly in § and
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A (C)) tends to A (E;). Thus we need only prove Lemma 2 when E; is a union of a finite
number of rectifiable arcs. Clearly this case will follow if we can establish the inequality
for one arc. But we can approximate to an arc A by a polygonal line R such that, given
€ >0 every point of 4 is within a distance } ¢ of some point of R and A (R) <A (4). Then
A[P(R,0)] =A[P(4, 0)] —¢ and it is sufficient to prove the inequality for a polygonal
line. Finally this case will follow if the inequality is true for a single segment. But the
truth of the inequality in this last case is easily verified. The lemma is proved.

In the next Lemma we need to consider the relationship between the set E; and the
union of an enumerable infinity of rectifiable arcs of which E; is a measurable subset.
There are of course many such sets of arcs. We select one 4 and call the ares of which
it is the union 4,, 4,, ... Let p be a point of E; lying on arc 4, of 4. The densities of 4,
and of E; N A; at p are defined to be

A AT ) o A B A0 Clp, 1)

r>0 27 r—>0 2r

respectively, when these limits exist where C—(p,T) is the closed set of points whose distance
from p is less than or equal to 7. It is known that at almost all(l) points p of A4, the first
density exists and is equal to unity and at almost all points p of E; N 4, the second density
exists and is equal to unity (see [1], p. 303-304). Further, since A, is a rectifiable arc it
is known that at almost all points of it there is a tangent to it. Thus finally at almost all
points p of Ei, the densities of 4; and Ej N 4, are unity and the tangent to A, exists.
There is of course a certain ambiguity in this since p may belong to more than one arc 4.
But in this case we simply select one 4, corresponding to each p and consider this arc 4;
associated with p throughout what follows. The tangent to p will be denoted by ¢(p) and
any point p of E; with the above properties will be called an R-point.

Lemma 3. Either

(a) almost all points of Ej lie on one straight line or

(b) there are two R-points of E1, say p,, p, such that p, does not lie on t(p,) and p,
does not lie on t(p,).

If (a) is false we can select an R-point of Ej, ¢, and a second R-point ¢, that does not
lie on t{g,). If ¢; does not lie on (¢,) then ¢,, ¢, have the properties required. If ¢, lies on
t(g,) we select, if possible, a third R-point ¢, not on ¢(g,) nor ¢(g,). Now £(g,) cannot contain
both ¢, and g, since if it did ¢, would lie on g¢,¢,, i.e. ¢(¢,). Thus one of the pairs ¢, ¢, or

13 (4 .
(*) “almost all” means “all but a set of zero linear measure”,
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¢39s has the required properties. If we cannot select a point such as g, then almost all of
E; lies on ¢(g,) U t(g,), and there are points of E; other than ¢, or ¢, on each of these lines.
Let ¢, be an R-point of E on ¢(g,) distinet from ¢,. Since #(g,) must coincide with £(g,) we
can take the pair g¢,, g, as the pair p,, p,.

The lemma is proved.

We are now in a position to prove the main result. If A(E,) = § > 0, then for almost
all 6

A[P(E,, 0)] =0. (5)

By Lemma 2 we can choose an angle § such that
, 2 ,
AP (Er, 0)] < (A (1) +9), (6)

and since by Lemma 1 A[P(E;, 6)] is a continuous function of 6 we may suppose that
both (5) and (6) hold for the same value of §. Since A (E;’) =0 we have A[P(Ey,0)] =0
for all . Thus finally

A[P(E, 0)]< iA(E).

If A(E,) =0, and (a) of Lemma 3 holds for E;, then almost all points of ¥ lie on one
straight line and projecting parallel to this line we see that u(E)=0. This implies the
required result.

If A(E,) =0 and (a) of Lemma 3 is false for E; let p, and p, be two R-points of E;
for which (b) holds. We now require the property that if p, an R-point of E; projects onto
the point g of the set P(Ej, ) and the direction of projection is not parallel to (p), then

the set P(E1, 0) has unit density at . We suppose 4 is the arc associated with p, C(p, d)
is the closed dise centre p and radius 6 (as above), and write I(g, 6) for the linear closed
interval perpendicular to the direction of projection with ¢ as mid-point and of length 24.
Given a positive number ¢ we can find a positive number §, such that
AB 0 4inCp, ) >(1—¢)20 )
AAinC(p, 8))y<(l1+¢)26
for all 6<d,. Now write AF for A4,n C(p, §), then
A[P(BL N AL, 0)N (g, 8)1>A[P (45, 0)nI(g, 8)] - A[P(AF—E1, 0)n1(g, 0)), (8)
and AP (4} —Ei, 0)n 1(g, )< A4~ E)) n C(p, 0)]<4ed (9)

5~ 665064 MActa mathematice. 99. Imprimé le 19 avril 1958
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if '6<dy. But if d is sufficiently small, say d<d,, then

P4}, 0)>1(g, 9).
Thus from (8) and (9)

A[P(ELN AL, 6)n1(g, 8)]>26(1—2¢)
for 4 <min (8,, d,). Since obviously o
A[P(ELn A, 6)n I(g, 0)]<24,

it follows that g is a point of unit density of P (&, ).

Now suppose that the direction of the line joinihg the two R-points p, p, of E; is 0,.
We divide E; into two sets, EY formed from those points of E; whose distance from p, is
less than one half the distance of p, from p, and Ef* defined by E* = E{ — Ef. Then
since P (Ef, 0;) and P(E1*, 0,) have a common density point,

A[P(B1, 6)1< A[P (BT, )]+ AP (BT, 6,)].

By continuity established in lemma 1 and by lemma 2 applied to By and E7* it follows that
27
[ A[P(EL, 6)]d0 <4 A(E})+4A(BF*) =4 A (By).
0 , :

Since we have A (E)=A (E;) we conclude that for some 6

A[P(E, 8)] < %A(E).
Thus in all cases we have

2
p(B)< - A(B).

. Example. We next construct an example to show that this result is the best possible.
Let ¢ be a given positive number and = a large positive integer, the actual lower
bound of which will be specified later. Let M,, M,, ..., My, be 4n points such that all
the lines M, M ; have different directions. Let L, be a segment of length 6/4n in a direction
making an angle 2 7i/4n with a fixed direction, and with mid-point at M. Choose  so

small that if we project the segments in any direction at most twn nf the segements overlap.

in
Denote U L, by E. Then
=1

4n6
AP, 60> 3

27 )
008(4—”— +0)'—-4——/'-Z: (10)
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and since the expression on the right hand side of (10) is periodic in § with period 7/2n
we may assume that 0 < 6 <z/2n. Substitute those values of 6 which lie in this range
and reduce the right hand side terms to their least values, i.e. for 0 <j <n and 2n <j <3n,
j=4n, put 0 =xn/2n; forn <j <2n and 3n <j <4n put 6 =0. Then

4n-1

, 0 4] 30
AIP(E. 00> £ 5

2n
cos ! i'_ 2¢ =5(f|cos 2nz|dx +o(1)), (11)
2n
= 0

4n

‘as n— oco. Thus choosing first » sufficiently large, and then points M, ... My,, and 6 we
have for all §

A[I"(E,‘e)]>6(§z —8)4 (12)
@ 2
Thus : A(E) = - &,

and this shows that the result obtained is the best possible.

§ 2. Some preliminary results

In the following two theorems the cbnta.ining space is R2.

TrEOREM 3.1. Let T be a closed connected set of finite linear measure and let H(T) be
its convex cover. Then either there is a tree T, contained in T such that the convex cover of T,
coincides with that of T, or there is a simple closed convex curve K coniained in.T such that its
convex cover coincides with that of T.

We use H (X) to denote the convex cover of the set X.
There is a subset K of 7' which is irreducible with respect to the three properties,
i) K<\T, ‘

(ii) H(K)=H(T),

(iii) K is closed and connected.
There certainly exist sets with these three properties since T is one such set. If possible
form a sequence of sets K, such that each K ; has properties (i), (ii), (iii) and K is a proper
subset of K, if j > ¢. If it is only possible to define a finite sequencé of such sets then the
last member of the sequence is irreducible. If the sequence has infinitely many members

it can contain at most an enumerable infinity of members(!) (since the sequence of sets

() The sequence K; may of course be transfinite but since the cardinal is less than R, we can
‘always find an enumerable sequence of ordinals as stated.
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complementary to K, in 7T form a strictly increasing sequence of sets open in T'). But
then O K; = K* has properties (i) and (iii). We shall show that it also has property (ii).
If p€EH(T) then p€H(K,) and therefore, since K; is connected by Bunt’s refinement of
Carathéodory’s theorem (see [5]) there exist two points k;, ki of K, such that p is a point
of the segment k,%;. We can select a subsequence of ordinals 7, such that for every j of the

sequence there exists an ¢ with n, > j and such that &, — k, and Ic;i—> k'. Then since k, €K,

if £ >4 and K, is closed 2 U k' €K, all j. Thus kU ¥’ €K*. Also p is a point of the segment
k%'. Hence peH(K*) and this means that H(T)c H(K*): since the reverse inclusion is
trivial (ii) is proved. Clearly K* is irreducible and the statement is proved.

If K* is a tree we have the desired result. If K* is not a tree, then there are two points
P1, P2 of K such that two arcs exist «,, a, both contained in K* and having in common
only their end points p, and p,. (K* is of finite linear measure and therefore both locally
connected and arc-wise connected.) If these two arcs lie in Fr (H (7)) =Fr (H(K*)) then
they comprise the whole of that frontier and form a closed convex curve with the properties
stated in the theorem. Otherwise there is a point say p on them which is an interior point
of H(T). Let the distance of p from Fr H(T) be é.

Now every component of K* — (a, U &) meets a, U a, in a single point, for if this were

not the case we could join two distinct points of «, U «, say p and ¢ by an arc that lies in

mj. This arc cannot lie in &, U a, since K* is locally connected, and thus this
arc contains a subarc meeting o, U a, only at its end points p, and ¢,. But this means that
in K* there are three distinct arcs joining p, to ¢, and intersecting only in their end points.
Then one of these arcs lies in the bounded domain of which the other two form the frontier.
Denote this open domain by D. K* — D has the same convex cover as K*, is closed con-

nected and is a proper subset of K*. This is impossible by the irreducibility property of K*.

Let 8 be a subset of &, U «, contained in C (p, 48). Since K* is irreducible every compo-
nent of K* — (a; U &) meets Fr H(K*). If it also meets 8 such a component must have
linear measure of at least 4. Since K* is of finite linear measure there are at most a finite
number of such components and hence a subarc f; of 8 which is disjoint from I?tm.
But then K* — 8, is a closed connected set with the same convex cover as K* (since g, is
interior to this convex ecover) and is a proper subset of K*. This is impossible since K* is
irreducible.

Thus ares such as «,, «, do not exist and Theorem 3.1 is proved.

DEerFmviTION: A polygonal tree is a tree formed from a finite number of linear segments.

We always consider such a tree to have a simplicial decomposition into linear segments. So
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that if two segments meet they do so only in a common end point, and every end point
of a segment is either an end point of the tree or an end point of at least one other segment
of the tree. A point which belongs to more than one segment of the tree is called a singular
point of the tree.

TrEOREM 3.2. Let f(X) be an increasing continuous function of the convex set X, i.e.
X2 X, implies f(X,) = [(X,). Let T be the class of connected closed sets of finite positive
linear measure. Let P (n) be the subclass of T of those polygonal trees whose convex covers are
polygons with at most n sides. Then

fH(T) [(H(P))
SPTAM RSP AP

By the previous result there is a tree K contained in 7 such that the convex cover of K
coincides with that of 7', or a simple closed curve K contained in T for which the convex
covers of 7" and K coincide.

Let &y, ks, ..., k,, be a sequence of points dense in K and consider the class of polygonal
trees which contain %,, ..., k,. Amongst these we select one with least length and denote
it by K. Then, whether K is a tree or a simple closed curve,

A(K.)<SA(K) H(E)>UH(K,)>(H(K)).
Thus given &>0 there exists an integer n such that

{H(K,) _ HH(K)) _
AK,) T A(K)

But K, €D (m) for some m, thus

sup sup [EP) _JHD)

WP e AP TR A

The inequality in the reverse direction is trivial. Thus the theorem is proved.

There is a similar result for the class of arcs.

THEOREM 3.3. Let {(X) be an increasing continuous function of the convex set X. Let 4
be the class of arcs of finite positive linear measure and A (n) be the subclass of those members
of A formed from at most n segments. Then

[(H(4)) _ {(H (4*))
e A 4) Sl:pm?:lmn) A(4%)
The proof is omitted.
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§3. E a closed connected plane set of finite positive linear measure

Denote by L(n) the class of closed connected plane sets' which are of finite positive
linear measure and such that their convex covers are polygdns with at most n vertices.
Since the subclass of £(r) contained in a bounded part of the plane forms-a compact
space under the closed-set metric (see [1], p. 316, and [3]) it follows that there is a member

T of (n) such that | |
p(T) _ u(E)
AMT) by A(E) (13)

We shall show that u(7) = 3A(T). This will imply that for any connected set &

u{(E) <31A(E), for the general case when the convex cover of E is not a polygon can be
dealt with by Theorem 2, Section 2.

Our argument will be such that we can specify the extremal figures T exactly, in so

far as T is a member of some £(r) but not when 7' is not a member of some £(n). When

E is composed of three equal segments equally inclined to one another, u(E)=$A (E).
Thus we have w(T) =3 A(T), *

and our aim in the rest of this paragraph is to show that u(7) <} A (7). One method is
to assume the contrary,(!) namely that p(7') >3 A (T)‘ and show that this leads to a con-
tradiction. I have not followed that method here because it is not then possible to par-
ticularize the extremal figures. The method is to use (13) and (* )to estabhsh by var1a.t10na.]
arguments a number of properties of 7' which will specify it more and more exactly until
finally we can assert that u(7T) <3 A (T).

Denote the polygon which is the convex cover of T by P. u(T) is the minimal width
of P. A support line of P which is at a distance u(T') from the parallel support line will be
referred to as a minimal support hne A vertex of P which lies on a minimal support line of
P will be referred to as a minimal vertex There are two propertles of minimal support
lines of which we shall make frequent use.

(A) A pair of minimal support lines is such that at least one of the lines meets P in’
a segment. Otherwise we could give each of the lines an equal rotation:about the vertices
of P through which they passed and reduce the distance apart of the two lines. This would
contradict the fact that they are a palr of minimal support lines of P.

(B) If the lines I, and I, are a pair of minimal support lines and meet P'in X, and X,
respectively, then the projection of X; onto I, by means of lines perpendicular to both I
and [, is a set Y, which intersects X,.

(1) T feel no aversion to this type of argument but I find it repugnant to have to illustrate a
hypothetical argument by drawing a diagram which cannot exist! (See Fig. 3 later.) -
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For if this were not the case there would be a line m perpendicular to I, and I, sepa-
rating X, from X,. Suppose m meets !, in L, and I, in L,. If we give to [, a rotation about
L; and to I, an equal rotation about L, we should reduce the distance between the two
parallel lines. But since X, and X, lie on opposite sides of m we can choose this rotation
to be in such a sense and of such a magnitude that the rotated strip still contains P. But
this contradicts the fact that the distance apart of l1‘ and [/, is the minimal width of P.

We shall later require the following lemmas: it is inserted here for convenience of reference.

Lemma. Let ABC be a triangle every angle of which is less than § n. Let K be the unique
point such that / AKB =/ BKC=,/CKA=%n On AB erect the triangle ADB which
ts equilateral and such that D lies on the side of AB opposzte to C, then

(i) of all connected sets containing A, B and C the tree formed from the three segments
AK, BK, CK, has the least length,
(ii) the sum of the lengths AK + BK + CK is equal to the length CD.

Let ¥ be a connected set joining 4, B and €. If Y has infinite linear measure we need
not consider it further. If Y has finite linear measure then it contains an arc y, joining 4
to B and an arc y, joining 4 to C. Let K, be the last point of y, Ny, on y, in the order 4
to C. Then arc AK, of y, has length greater than or equal to segment AK, :arc K, B of
Vs has length greater than or equal to that of segment K, B : arc K,C of y, has length greatet}
than or equal to'that of K,C. Thus

A(W) > AK, + K,B+ K,C. -

We next consider a arlable pomt X and the functlon XA+ XB+ XO F (X).(v)
There is a position of X for Wthh F(X ) attalns 1ts least value. Let this posmon be X,.
It is easy to see that X, does not coincide with any of 4 or B or C since each angle of
triangle A BC is less than § . If we move X from X, in the direction perpendicular to
AX, then AX =AX + O0(XX,)? and therefore BX + CX = BX,, + CX, + O(XX,)? ie.
XX, is perpendicular to the internal bisector of / BX,C. Thus / AX,C = 'LAX;,B and
similarly both these angles are equal to / BX (., i.e. X, coincides with the point K. Thus

K,A+K,B+K(C>KA+KB+KC

and (i) is proved.
To.prove (ii) we have / AKB + / ADB =an so that ADBK is a cyelic quadrilateral
(see Fig. 1). Also / AKD =/ ABD.=4mn so the points C, K, D are collinear, and -we

() Here X A denotes the length of the segment joining X to 4.
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D
Fig. 1.

need only show that KD=AK+ KB. Take £ on KD so that / KEB= / KBE.
Then, since / EKB =%z, KEB is an equilateral triangle and K& = K B. Since / KBE
=1n, / KBA =/ EBD. Hence intriangles AKB, DEB, / KAB = / EDBsince ADBK
is a cyclic quadrilateral, A B = DB since A BD is an equilateral triangle, / KB4 = / EBD
proved above.

Thus triangle AK B is congruent to triangle DEB and

ED = AK.
Hence AK + KB =ED + KE = KD and the proof of (ii) is complete.

Properties of the extremal figure T
1. Every vertex of P belongs to T.
2. Of all connected sets containing the vertices of P, T has the least length.
3. T i3 a polygonal tree formed from a finite number of linear segments.
4. Every end-point of T and every singular point of T is a vertex of P.

If an end-point ¢ of T' was not a vertex of P we could remove from 7' a small segment
with one end point at ¢ and obtain 7, € £(n). Since A (T;) <A (T), and (if the segment
removed is sufficiently small) 7T, contains the vertices of P, we have a contradiction with 2.

Thus every end point of T is a vertex of P.
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Similarly if ¢ is the end point of the two segments of 7', pq, ¢ r and ¢ is not a vertex of
P, then we can select a point ¢, on pq near to ¢ and replace pgq, gr by pg,, ¢, to obtain 7T',.
Again T, €L (n), A(T,) <A (T), and we have a contradiction with 2.

5. The angle between two adjacent segments of T' is not less than % 7.

For if t,t, and t,¢t; are two adjacent segments of T and /t,¢,t, < % 7z we can replace
these segments by a connected set containing #,, ¢, {; and of less length. By 2 this is im-
possible.

6. Every node of T is of order 3 and is an interior point of P. The three segments of T

whach abut at a node of T are inclined to one another at an angle of £ 7.

This follows immediately from 5.
7. T has either 3 or 4 end-points.

Suppose that T has r end-points and that J is a positive number less than the least
length of a segment of 7. Let 7', be the subtree of 7' obtained from T by removing r
segments each of length J and such that each of these segments has one end point at an

end point of 7' and each end point of 7' is an end point of one of these r segments. Then
A(T)=A(T)—r$,

and since every point of 7' is distant at most § from some point of 7',
p(Ty) = pu(T)— 26

(T, is not void because every node of T is a point of T';, and if T has no nodes it is an
arc and must contain at least two segments for otherwise u(7)=0). If ¢ is small the

convex cover of 7', has the same number of vertices as P. Now if r > 5,

pll) _ p(1)-26  pu(T)
AT) = A(M)—56 ~ A(T)

(14)

since we know that A (T) <2u(T'). But (14) is in contradiction with (13). Thusr =2, 3 or 4.
If r =2, projection in the direction of the line joining the end points of 7' shows that

w(T) <3 A(T)
in contradiction with (*). Thus 7=+ 2, and property 7 is proved.

8. If T has four end points then P is a quadrilateral with these four points as vertices.

If P has more than four vertices then one of them, say p, is not an end-point of 7'.

Let the two segments p ¢, pq, of T meet at p and let p’ be a point on pg,, distant 8 from



66 H. G. EGGLESTON -

p. In T replace pg,; pg, by.p'qy, p'q, and remove segments of length:§ from each end-point
of T as in 7. We obtain a connected .set T'; with

A(T)<A(T)—-46
p(Ty) = u (T) 26,
and  since

p(Ty) _ p(T)
ATy~ AT

we again have a contradiction with 13. Thus P has at most four vertices. But by 4, P has

at least four vertices and these vertices are end-points of 7'. Property 8 is established.

9. T has exactly three end-points.
Otherwise by 7, 8 and 2, P is a quadrilateral and 7" is the connected set of least length

joining the vertices of P. In this case 7' is.a polygonal tree with two third-order nodes and
is fofméd frém five segments. Let the vertices of P be a, b, ¢, d (in order round Fr P) and.
the nodes of 7T !b‘e‘ ki k, Withlt}vle notation chosen so that the segments of T are ak,, bk,,
chy, Ay and kyky.

The line through @ perpendicular to ak, is a support line of P. For otherwise
/bak,>1x (since /dak, <1m). Suppose /bak, >1n. Let a, be the foot of the per-
pendicular from %, to the line ab. In 7T replace segment ak, by the segment.a, k, to obtain
the tree T,. The convex cover of 7, contains P and A (7T,) <A (T). Thus we have

u(Ty) _ p(T)

ATY) ~ A(T)

E AN

in contradiction with (13). Thus the line through a perpendicular to a &, is a support line of P.
Since ck, is parallel to ak, we have a pair of parallel support lines, one each through

a and c¢. Thus, projecting the polyg(jnal line ak,kyc perpendicular to ak, we have
aky + 3kiky + ke = p(T). ~(15)
Similarly, by projecting bk,k; d perpendicular to bk,
dky + Ykiks + kb= pu(T). (16)
Adding, we obtain ‘ ATyz2u(T). 7y
Now 'strict inequality in {17) is impossible (by (*)). Thus equality must ‘hold in (17)

and therefore in each of (15) and (16). Hence the lines through @ and ¢ perpendicular to

ak;-and those through d and b perpendicular-to dk; are all minimal support lines.
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b

Fig. 2.

By property: (A) of minimal support. lines applied to the ‘pair of minimal support lines
perpendicular to ak;, one of the segments ab, ad, bc, ed is perpendicular to ak,. Clearly
this is not true of ad and be¢ since - /. dak, and / bek, are both less than § 5. Thus either
ab or ¢d is perpendicular to ak,. But in an exactly similar way we see from the pair of
minimal support lines perpendicular t',o"‘blc2 that either ab or cd is perpendicular to bk,.
Since ak, and bk, are not parallel we cdnclude tha;t‘éither ab is perpendicular to ak, and
cd is perpendicular to bk, or ab is perpendicular to bk, and cd is perpehdjéular to ck2
The arguments in the two cases are the s@mé and we shall consider the first case only.
Remove from ak, a segment of length  with end point at a and similarly from dk, a
segment of length ¢ with end point at d. Denote the resulting tree by 7';. Then

A(Ty) = A(T) —26,
u(Ty) >u(T) ~ 6.

But this is impossible since it implies a contradiction with (13).

Thus 7' has not got four end-poiﬁts and by 7 must have exactly three end-points.

REMARK. 7T has one node and it is of order three. We shall denote it by & and the
three arcs of 7' which terminate at £ by «, # and y. Denote the vertices of P on «, §, y
by ay, @, ..., @y; by, by, ..., b; and ¢y, €5, ..., ¢; Where a is @, ..., a,, k and this order is the

order in which these. points lie.on «. Similarly. for 8 and .



68 H. G. EGGLESTON

10. Every vertex of P is a minimal vertex.
Suppose that the vertex p of P is not minimal. If p is an end-point of T we can remove
a small segment one of whose end-points is p from 7' to obtain a subtree T, for which

p(Ty) = p(T), A(Ty) < A(T),

which leads to a contradiction with (13). Similarly' if p is a point common to two segments
Pq, pqs of T we could move it into a new position p’ on the internal bisector of the angle
of these two segments in such a way that A (7') is reduced but x(7) remains unaltered.
This again leads to a contradiction with (13).

DeriNITION. Two vertices of P joined by a single segment lying in the frontier
of P (belonging to 7' or not) are said to be P-adjacent. Two singular points of 7' joined
by a single segment of 7 are called T'-adjacent.

11. To each pair of end-points of T say a,, by there corresponds a pair of parallel minimal
support lines I, and 1, such that 1, contains a, and 1, contains b;.

Suppose that this is not the case. Remove length 8 from the segment of 7' terminating
at @, and another equal length from the segment of 7' terminating at b, to obtain the tree
T,. Let the new end-points be a; in place of @, and b; in place of b,, and let the convex

cover of T, be P;. We shall assume that ¢ is a small number. Then by (13),

2Ty < AChN (18)
ATy  A(T)

and by construction,

A(T)) —A(T)-26. (19)

Since u(T)=4A(T), (18) and (19) imply

T
p(< D A m-20<um -o.

Further, if u(7T) > 1 A(T), then
p(Ty) <p(T) = 8.

Now by the method of construction of T, from T,
() > u(T) = 6.

For of the two lines which form a pair of minimal support lines of P, one is a support line



ON THE PROJECTION OF A PLANE SET OF FINITE LINEAR MEASURE 69

of P, and the other is distant at most J from a parallel support line of P,. By the inequality
for u(T,) proved above it follows that

p(Ty) =p(T) = 6.
Thus u(T)=%A(T) and therefore

p(Ty)  wl-6 p@)

AT)  AT)—-28  A(T)

u(Ty)
ATY)

The results proved about 7 apply equally well to 7.

Thus 7, is also an extremal connected set for which

assumes its least upper bound.

By 10 every vertex of P, is a minimal vertex and since u(7T,) = u(T) — 6 any pair of
minimal support lines of P, are obtained from a pair of minimal support lines of P by
keeping one line of the pair fixed and moving the other line a distance § into a parallel
position. There are at most two support lines of P for which the parallel corresponding
support line of P, is distant d, and these are the two lines perpendicular respectively to a, ay
and to b,b;; further this is so only if these lines contain no points of P apart from a, and
b, respectively. Now P, must have at least two pairs of parallel minimal support lines. For
otherwise, a small affine contraction orthogonal to the single pair of parallel minimal sup-
port lines would reduce A (7',) without altering u(7',).

Thus the lines through e, and b, perpendicular respectively to a,a; and b,b; are
minimal support lines of P and contain no points of P apart from a, and b,. Let the line
through @, perpendicular to a,a; be m, and the parallel support line of P be m;. Let the
line through b, perpendicular to b;b; be m, and the parallel support line be ms. Since every
vertex of P is a vertex of P, apart from a, and b; (assuming that ¢ is sufficiently small) it
follows from 10 that every vertex of P apart from a, and b, lies on m; or ms.

Denote the rhombus bounded by m, mem,m; by R, let its vertices be ABCD in order
where a, lies on AB and b, on BC. Let a,a; produced meet b, b; produced in s. Let a,s
produced meet DC in a} and b;s produced meet 4D in bf. Property (B) of minimal
support lines implies that af is a point of the segment DC and b a point of the segment
AD. Then a,af and b,b7 lie inside R. Thus a,s and b,s contain no vertices of 7'. (Every
vertex of 7' is a vertex of P, see 4.) If a singular point of 7' lay on a,s apart from a, and
s, it would have to be a node k. Of the segments of T terminating at k, one has points’
interior to the quadrilateral a, Bb,s. This segment cannot meet a, B or Bb; since no points
of P lie on these segments apart from a, and b,. Nor can it terminate in the interior of this

quadrilateral for such a termination would be a singular point of 7, therefore a vertex
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of P. But there are no such vertices of P. Thus this segment must meet segment b, s'in say
k,. But then segment b,s contains a singular point of 7 and this singular point must be
a node of 7. Since T has only one node it follows that it lies at s. In the notation which
we have adopted s is k. Let the third segment of T at k =s meet the frontier of B in d.
By a similar argument to that used above kd is a segment of 7. Now the three segments
ka,, kb, kd divide R into three domains one of which denoted by D, contains af and
another, denoted by D, contains-bf. By property (B) af and b7 are points of P and neither
a, nor b, are vertices of R (since they do not lie one each on a pair of parallel minimal
support lines of P). Thus both D, and D, contain points of T on Fr R other than d. Since
T is a tree with one node of order three and since @, and b, are end-points of 7' we have a
contradiction. If for example the third end point of 7' lay in D, so would the whole of the
arc of 7T joining this point to d and would thus have no points in D,.

Thus we are led to a contradiction. The original assumption is false and 11 is proved.
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‘REMARK. Of any two parallel support lines of P at least one passes throughan end
point of T. For if two parallel support lines exist neither of which contains an end-point
of T' we can take two points of the frontier of P one on each of these lines. But then these
two points divide the frontier of P into two arcs one of which must contain two end-points
of T. Through these two end-points there is then no pair of parallel support lines. This
contradiction with 11 establishes the above statement. Then the three end-points of
T, a;, b, and c;, divide the frontier of P into three non-overlapping arcs which are denoted
by 4 (ay, by), A(by, ¢;), and A4 (c;, @) where arc 4 (a,, b;) does not contain ¢, etc. Then any
support line to P at a point of A (ay, b;) is parallel to a support line of P at ¢, and there
are similar relations for 4 (b, ¢,) and 4 (¢, a,).

12. The angle between two end-segments of T that lie in the frontier of P must be gredter
than % 5. .

For if it were less than or equal to } z then the removal of segments of length d from

the two end-segments concerned to produce a new tree 7', would imply u(7,) =2 u(T) — 6

and the only directions in which 7', can have minimal support lines are those orthogonal

to the end-segments and (when the angle is equal to } ) that paréllel to the bisector of

the angle between the end-segments. This last case is impossible by (A) and the argument
of 11 can then be used to establish property 12.

13. Each of the three arcs o, f3, v has length less than u(T).

If, for example, A («)>pu(7T) then from 11 there are a pair of parallel support lines
to P thrdugh the end points of § U y. Thus

A(Buy)>u(T)
and A(T) > 2u(T)

in contradiction with (*).

14. If a, exisis then a,, a, lies.in the frontier of P. i.e. if a, is not T-adjacent to k then
a, a, lies in the frontier of P.

The points a,, a, belong to the frontier of P and thus if a, a, does not lie in the frontier
of P it divides P into two non-empty domains. Thus there is a vertex of P on each side of
the line containing a, a,. By 1 there are points of 7' on each side of the line containing a,a,.
These points are joined by an are of 7' inside P. Since these points lie on opposite sides of

@y @, this arc meets a,a,. But this is not so since there is no node of 7 on &, a,, a contradiction
which establishes 14.
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15. If three vertices of a, say ag, ag,,, a,,,, are such that ag, a,,, and a,,,, a,,_, are P-
adjacent (as well as T adjacent) then a,s, ., and a,,,a,, , are tangent to a circle whose

radius s w(T') and whose cenire is b, or ¢;.

The three points a,, by, ¢, divide the frontier of P into three non-overlapping arcs
which we shall denote, as before, by 4 (a,, b;), 4 (b, ¢;) and 4 (c,, a;). The three vertices
AsQsyy Gy s cannot belong to A (b,c,), since if they did, the support line parallel to a,a,,
would pass through a, (by the remark after 11) and this implies A (&) = u(7) in contra-
diction with 13. Thus a,a,_,, a,,, belong entirely either to A4 (a,, b,) or to 4 (c,, a,). Suppose
that they belong to A4 (a,5,). The argument in the alternative case is similar. The support
line of P parallel to the line a,a,,, passes through c,. Thus a.a,,, is either tangent to the
circle whose centre is ¢, and radius u(T), c(c;, u(T)), or the line containing a,a,,, lies
outside this circle. In the second case select a point a;.; on a 1135, DEAr to a,,, such that
aa, +1 lies outside the circle c(c,, #(T)). In T replace segments a,a,,,, @, %5 by @,0s,,,
@sy10s,5. I g, is not coincident with a,,, the effect is to reduce A (T') without altering
p(T). This is impossible by (13).

Property 15 is proved.

16. If the vertex a, exists and if p is the other vertex of P which is P-adjacent to a,, then
either the line through a, perpendicular to a,a, s a mintmal support line of P or

the line containing a,p is a minimal support line of P.

We assume, without any real loss of generality that the points a,a,p are in the clock-
wise sense round the frontier of P. Let the class of minimal support lines through a, be
denoted by J. Any member ! of T together with the line @, a, divides the plane into four
sectors of which one contains k. The angle of this sector is denoted by ¢ (1).

The set of values ¢(l) is closed. If the line containing @, p is not a minimal support
line of P and if there is an ! of J with ¢(l) <} =, this line ! meets P in the single point a,.
For it cannot coincide with a,a, since ¢(I) <} 7, nor with a,p since by assumption this
is not a minimal support line. By (B) the line through a, perpendicular to I must meet P
in a segment of length u (7). But in fact this line meets P in the single point a,. Thus
if a;p is not a minimal support line then for every I of T, ¢() > } n.

It ¢(l)>4n for all I of T then there exists a small positive number ¢ such that
¢(l) >4 x +¢ for alllof J. Thus we can rotate a,a, about a, in the anti-clockwise sense so
that @, becomes a;. Replace a,a, by a;a, to obtain the tree 7. Now if a, p is not a minimal
support line and if the rotation is sufficiently small u(7”) = u(T). But A(7") = A(T) so
that 7" is an extremal figure. By 10 a; is an extremal vertex of 7": but by the construction

r .
a; 1s not an extremal vertex of 7.
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This contradiction shows that either the line containing a,p is a minimal support
line or the line ! with ¢(I) = § z is a minimal support line of P. Thus property 16 is es-
tablished.

17. Any two vertices of P which are T-adjacent are also P-adjacent, i.e. the poinis a,a, ... a,

are in order round the frontier of P and so are b, ... b, and ¢y, ¢y ... C;.

By 14 a, and a, are P-adjacent. We shall show first that a, and a, are also P-adjacent.(*)
The vertex a; is P-adjacent either to a, or to a,. For otherwise the segment aza, divides P
into two domains each of which contains vertices of P, say p, ¢ such that neither p nor ¢
is any one of a,, @, or a,. There is an arc in 7T joining p to g. This arc must cut a,a; which
therefore contains a node of 7'. But this is not so.

We shall assume that as is P-adjacent to a, and show that this leads to a contradiction.

We assume for definiteness that the order a,a,a; round the frontier of P is clockwise.
Consider the minimal support lines that pass through a,. We shall show that a,q, is not a
minimal support line. Let ¢ be the vertex of P that is P-adjacent and not 7T-adjacent to
a,. Let a; be a point on the line ga, such that a, lies between a; and ¢, and let 7" be the
tree obtained from 7T by replacing segments a,a, and aja, by a,a; and aya,. Since the
convex cover of 7" includes P it follows from (13) that A (7”) = A (T'). This in turn is true

for any choice of a; as described above only if
[ Qa0 < /[ a30,0, .

But by 5 /a,0,a,> %7 and therefore
£qaya3< §m.

Now if a,a; is a minimal support line of P there is a point of P on the parallel support
line inside the strip which is bounded by the lines through a, and a, perpendicular to a, a;.
By 5 again / a,a,a, < 17; thus, if we produce a,q to meet the line through a; perpendicular
to a,a,, it will do so in a point r on the same side of a,a, as a, (see Fig. 4). Fhus it follows
that the lines through points of segment a,a; perpendicular to a,a, intersect the quadri-
lateral @, a,ra; in segments of which the largest has length greater than or equal to u (7).
The largest segment (or one of them) is either the perpendicular from a, to a,a, or it is
the segment a,7. In the first case A () is greater than the length of the segment a,a,
and is therefore greater than u (7). This is impossible by 13. In the second case we consider

triangle a,ra;. We have /a,a;7 <}z and thus /aya,r + /agra, > 3 x. But we have

(1) It is assumed that such vertices as a,, a; ete. exist. Otherwise there is nothing to prove.

6 — 665064 Acta mathematica. 99. Imprimé le 19 avril 1958



74 . H. ¢. EGGLESTON

’
ag ~
. -

Fig. 4.

already seen that /qaya;= Lrazas <1 7. Thus Lagraz >1x and hence /ayra,
>/ ra,a,. This implies that aga, >ra3 z‘u( T). Flnally we again obtain A(oc) > Gy
>ﬂ(T) By 13 this is 1mposs1b1e Thus a,a, is not a minimal support line of P.

~ But by 16 this implies that the line perpendlcular to a,a, through al is a minimal
support line of P. This line meets P only in the point a, (since Lazal a; < n, see above)
and thus the linie through a,a, meets P in a segment of length u(7), i.e. a1a2 is of length
at least u(7T'). By 14 this is not so since it implies that A () > u(T). Thus finally a3 is not
P-adjacent to a, and d3 Taust therefore be P-adjacent to dz‘.

Next we suppose that there is a first integer m such that a,, and a,,,, are not P-adjacent.
Then m > 3 and, by an argument similar to that used for a, above, it can be seen that a,
and a,,,, are P-adjacent. The points d,, ..., @, all belong to 4 (a,, b,) or to 4 (a;, ¢,). Suppose
that they belong to 4 (a,, b;) then by 15 each segment Uy gy Bolligy s vy Ay Uy I8 part of a
tangent to the circle centre ¢, and radius u(7) and by (B) the segment a,,_,a,, actually
touches this circle. Thus / a,,_; a,¢, <3} x. Since by 5 / a,_18,a,,, = % 7 and since a,,,,
and ¢, lie. on the same side of a,,_,a, (they are points of P and a,,a,,_, is part of a support
line of P), it follows that a,,_, and @, lie on opposite sides of the line a,,¢;. Hence a, and
@y lie on opposite sides of the line anc,. But a, and ¢, are both vertices of P. Thus a,
and a,,,,.are not P-adjacent.

This contradiction establishes the required result.

18. If the vertex ay exists and if the vertices a;a,0,p are mn order round the frontwr of

P (z e. a2a,, a,b,, b, p are P- adyacent), then the line a,a, 18 not pamllel to the line blp

‘Remove a small segment of length 6 from a, a, at a, and from the end b, of the segment
of T' that terminates at b,. Denote the new tree hy 7" with end points,a; in place of a,
and b; in place of b,. Now if a,a, is parallel to b,p then any pair of parallel support lines
of the convex cover of T' are such that at most one goes through a; or b; (except. when
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b, and p are T-adjacent, in which case the pair of parallel lines a,a, and b, p are support

lines of the convex cover of 7" and go through a; and b; respectively). But in any case
AT)=A(T)-26, ‘u(T)zu(T)-0.

As in 11 it follows that 7" is an extremal figure, that u(7') = ¢ (T) — 6 and that the line
through a, perpendicular to a,a, is"a minimal support; line of P meeting P in the single
point a,. By Property (B) of minimal support lines the line @,a, meets P in a segment of
length 4 (7). Thus the length of a,a, is u(7) and

A(x)>p (T)
in contradiction with 13.

Thus the assumption that a,a, is parallel to b,p is false and 18 is proved.

We next consider the various cases that might arise according to the different orders
of ay, ..., a, by, ..., b;and ¢y, ..., c; on the frontier of P, and accordingv as.a, B, y are formed
from one segment or. more than one segment. :

Case 1. Each arc o, B, v is made up of more than one segment and the orders a,, ..., Gy;
by, ... b ¢ ..., ¢; on frontier P are all the same.

There is no real loss of generality in supposing that the vertices of P in clockwise
order are a,, ..., @, by, ..., b;, ¢, ..., ¢;. The other cases are obtained either by a change of
notation or by an argument similar to the following.

Produce b,a, to d (see Fig. 5). Then

Lkah b1< Ldahah_l

for if this was not the case we could replace a, by.a), on b,a, such that a, lies between a,
and b, and such.that the new tree obtained from 7' by replacing ka, and a,_ja, by kap.
and a,_,ap has less length than 7' (see the argument in 17).. Thus we have

Lkapb < g
and further / ka,b, <} zv. Since / b,ka, =3 x it follows that
o kb, < kay.
Similarly ka, < ke;, kc; <kb;. Thus we are led to the contradiction

kah < kah.

and this case‘cannot occur:
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Case 11. Two arcs a, B, y, say « and B, are each formed from more than one segment

., b, are such that the sector of angle % m bounded by the half

and the orders a,, ..., an; by, ..
cees Qg by,

lines containing ka,, kb, respectively and terminating at k, is void of the points a,,

co by
By an argument of the same type as that used in Case 1 we have /ka,b;~
= /kba,=%m and /kana, = / kbb,.,=3m Take k' on ¢k distant 6 from k and

@h, ON @yan_,, b on bb_, so that k'a, is parallel to ka, and k'b; to kb. In T
"an, k'b], apa,_1, bibi_y to obtain 1.

replace ¢k, ka, kb, apa,_, bb,_; by ¢k,
Then
AT)=AT)-96, p(T)zp(T)—36

and by an argument similar to that in 11 7" is an extremal figure. But this is not

so since, for example, a, is not a minimal vertex of 7". This case cannot occur.
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d

Case I111. One arc, say a, is a single segment and the other two arcs each contain more
than one segment. The orders of by, ..., b, and ¢, ..., ¢; are such that all these points belong to
the sector whose angle is & 7w and which is bounded by half-rays containing kb; and kc; respec-
tively and terminating at k.

In this case the vertices b; and ¢, -are P-adjacent.

We remark first that the line b,b, meets the line ¢, ¢, at a point d which lies on the
same side of b,¢; as k and that, of the four sectors into which the lines b, b, and ¢, ¢, divide
the plane, the sector containing £ has an angle greater than or equal to } =z (from 12).
By the argument in 15 the perpendicular distance from ¢, to b,b, is equal to u(7) and
so is that from b, to ¢, ;. Thus in triangle db,c,, / b, de, > mand /db,c, = /de b, <3}
But this implies that the distance from d to b, c; is less than y (7). Since this is impossible
this case cannot occur.

Case IV. One arc, say a, is a single segment and the other two arcs are not single segments.
The vertices by, ..., b, ¢y, ..., ¢; are in order on the frontier of P.

Either the three pairs a,, ¢;; ¢;, by; by, @, are P-adjacent or the three pairs a,, ¢;; ¢;, b;;
b, a, are P-adjacent. We suppose that the first alternative holds: the argument when

the second alternative holds is the same with b’s and ¢’s interchanged.
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Any line through ¢, that supports P apart from a,c; and ¢,_,¢; is parallel to another
support line of P that meets P in the single point b,. By (A) it follows that no such line
can be a minimal support line of P. If now a,c¢; were not a minimal support line of P we
could replace ¢, on ¢, ¢,_; by ¢; lying between c; and ¢, ;. In T replace segments kc¢;, ¢; ¢;_y,
by kcj, cjc,_;. The effect is to obtain a tree T, with A (T) < A(T), u(T,) = u(T). This is
impossible and thus a, ¢, is a minimal support line of P. Similarly ¢, b, is a minimal support
line of P.

Produce ¢, b; in both directions to meet a,¢, produced in e and a,b; produced in f.

Now each of the angles e a,f, a,fe, a,ef is not greater than } . For, since c,b; is a
minimal support line and the parallel support line through @, meets P in the single point
a, (otherwise we should have A (8) > u(T) in contradiction with (13)) it follows from (B)

that the perpendicular from a, to ef intersects the segment b,c, and therefore
lajef<im, safe<im.

Also by 18, b, b, is not parallel to a,¢ and thus, by a similar argument, the perpendicular

from b, to a,e meets segment a, c;, thus
Zfae<im.

By 5 fkcje;1>%m . and by the argument used in Case I /aycik< /ecjey 1.
Thus /a,c;k<}a, and. this implies from. triangle a,kc; that /ea,k>jn. Also
Lkbe<im. '

Project the polygonal line a,, k, b, in the direction of ¢,b;. We have

ak+3kb, = p(T).
Project the polygonal line ¢y, ¢y, ..., ¢; &k, by, by_y, ..., by in the vdirection a,b,. We have
key+ .. teye, Hhbysin £ kbiay +bbyy + ...+ bby = u(T).
Now if kb, > kaj, then / kbja, < } x, and on adding the above inequalities we obtain
A(T)>2u(T)

in contradiction with (*). Thus kb, < ka,.

‘But in triangle keb,

Lkbi0j< Llcb,e<%n, ch;bg"l' Lkbﬂ);:%ﬂ.
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¥

Fig. 7.
Thus ,Lkbi6j<vék0;;bi,
and this implies that ke, <kb,. -
Similarly ka, <kc,.
Thus ka, <kb

and we have a contradiction.

This case cannot occur.

Case V. Two of the arcs are single segments and one is composed of more than one segment,

We assume without any loss of generality that the arc « is the only arc- with more
than one segment and that the points a,@,_,, ..., a;, b;, ¢, are in the clockwise order round
the frontier of P (see Fig. 7). |

As in the previous case, ¢, @, is a minimal support line and the perpéndicular distance

from b, to c,a, is u(7T). We show first that a,b, is a minimal support line of P. By 16 if
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this is not the case the line through a, perpendicular to a,a, is a minimal support line. It
cannot therefore coincide with a,b, and must meet P in the single point a,. By property
(B) the line a,a, meets P in a segment of length u(7), i.e. the length of segment a,a, is
p(T).-This is in contradiction with 13. Thus a, b, is a minimal support line of P.

The perpendicular distances of b, and ¢, from a,c¢, and a,b, respectively are both
equal to u (7). Thus / a,c, b, = / a,b,¢,. If these angles are less than 4 7 the perpendicular
distance of a, from b, ¢, is less than u(T'). This is not so. If these angles are equal to § =,
then @, must be the third angle of an equilateral triangle a,b,¢,. There are then no other

vertices d,, ..., a,. This case is considered later (see Case VI). Thus in fact
Janc b= /abie,>%m.

Since the perpendicular distance from @, to b, ¢, is greater than or equal to that of ¢, from

a,b, we have

a,b; = ¢, b,.

On a,b, let t be such that tb, = ¢, b,. Let a1, ¢’ be the reflections of a,, ¢ in a,c, respec-
tively. On ajc, erect the equilateral triangle whose third vertex d’ lies on the side of a;¢,
opposite to b;, and on ¢, ¢’ erect the equilateral triangle whose third vertex s’ lies on the
side of #'¢, opposite to b,. Let s and d be the reflections of s" and d’ respectively in a;c,.
Then by the lemma

A(T)=d'b,.
Let d’b; meet line a,c, in e. Now, since /tb,¢, > % 7 and b,¢ = b,¢, we have
Jethy=steby<im

Therefore b, is a point of the equilateral triangle c,¢s. The vector sd is equal to the vector
t_c.t1 rotated in the clockwise sense through an angle of 1 #. Since / a,¢,b, = /a,b,¢,>%n
it follows that the perpendicular distance of d from a,c, is greater than that of s from
a,¢,, and since b, is a point of triangle c,s¢, this last distance is greater than u (7). Thus
de>pu(T).
Since bye 2 u(T) we have
A(T)>2b,d' =be+ed>2u(T).

This is in contradiction with (*).

This case cannot occur.
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Case VI. Each are a, 3, y is a single segment.

On the largest side of a,, by, ¢, say on b,¢,, erect the equilateral triangle whose third
vertex d lies on the side of b,c; opposite to a,. Triangle b ¢, d has area greater than or
equal to that of triangle ,b,¢,. Thus the perpendicular distance of 4 from b, ¢, is greater

than or equal to that of @, from b,¢,. If a,b, ¢; is not equilateral we have
A(T)=a,d>2u(T).

This is in contradiction with (*). Thus a,b,¢, is equilateral.
This concludes the proof that u(7) < 3 A (T') and that the only extremal figure whose

convex cover is a polygon is formed from three equal equally inclined segments.

§4. E is a simple arc

Let A, be the class of all simple polygonal arcs of unit length composed of at most
n segments. Define K by

K=(ecat2tana+x—4p—2a),
where 4 +sin « =4 cos? /(1 + 4 cos? @)

and tan § = % sec a.

By Theorem 3 of Section 2 it is sufficient to show that for any member E of A,

—— >K.
k) >

Write inf L =1.
Eedgpyp (B)

By the arguments used by P. A. P. Moran [6] there is a member T of A, for which
w(T)y=1"1

We shall assume that K>z (31)

and show that this assumption leads to a contradiction. The method is similar to that
used in Section 3 in that it depends upon appropriately chosen variations of 7.

Denote the polygon which is the convex cover of T’ by P, and let the end points of the
segments of 7' be ¢, t,, ..., {, in order.
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1. The points common to two segments of T and the two end-points of T are vertices of P.
Obvious: Cf. Section 3.4.

2, Every vertex of P is either a point: common to two. segments of T or is-an-end-point of 1.

Obvious: 'Cf. Section 3.1.

3. The polygon P subtends an angle of not more than % & at each end point of T.

By the same argument as that used in Section 3.14, ¢, and ¢, are P-adjacent. Suppose
that ¢, is the other vertex of P P-aﬂjacent tot, If /tytit, >4 mlebt; bea poinﬁ oh the line
tyt, such that ¢, lies between ¢ and ¢, and tht{ t, > } 7. In T replace segment t;t, by seg-
ment {,t;. We suppose that ¢; is so close to #, that the new connected set 7" is an arc. Then

A(T) <A(T), p(T')Zup(T).

Since 7€ A(x, we have a contradiction with the minimal property of 7'. Hence / t,t,t, < } 7.

4. There are parallel support lines of P, one through each of the end points t,, t, of T.

This is an immediate consequence of 3.

5. Let t; be a vertex of P which s not an end point of T, such that of the vertices t,_y, t,,,

at most one, say t,_,, is P-adjacent to t,. Let t; be the other vertex of P P-adjacent to t,
then

Ltﬂ.ltitj'l‘ Lti—l Lt <m.

On the line tj4 let p be a point such that & lies between p and ¢;. Then if
Ltt+1titj+ Lttt >m, it follows that

YA m) ttt;> Lti—ltip-

But if we move #; along ¢,p towards p through a small distance to the position #, and in

T replace segments #,_,t,, ¢;¢,,, by t,_1 ¢, ¢ ¢, , respectively, we obtain a new member 7"
of A, for which

AT)y<AT), w(T")zp(D).
This is impossible because of the extremal property of 7. Thus 5 is established.
., 6. It is possible to find two vertices of T say t,, t,, i< j, with the following properties.

(a) t; and t; are P-adjacent.

(b) The support line of P parallel to t,t,, other than the line t,t; itself, meets P in
a vertex t, with 1 <h <j.
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Consider two vertices for which (a) is true (there are such vertices).

Denote by T'(i, §) the subare t,¢; of T and by K (¢, ) the set of points of intersection
of the line joining ¢; to ¢; with support lines of P that pass through some vertex ¢, of T'(z, j)
other than ¢, or ;. If ¢, ¢; do not satisfy (a) we define K (7, j) to be the void set.

If K (i, j) is non-void and unbounded then f,, ¢, satisfy (b). We shall assume that
‘each non-void K{i, ) is bounded and show that this assumption leads to a contradiction.

If ¢, t; are P-adjacent ¢ <, then distinet consecutive members of ¢, ..., ¢;_, are
also P-adjacent (if there are any). For if for example ¢, was not P-adjacent to #,,; then
the segment #, f,,,, would divide P into two domains. Of these domains one must contain
both.t; and ¢; since they are P-adjacent. The other domain contains a vertex ¢, with either
r<korr>k+1 X r <k, T(r, %) which joins ¢, to t,, cuts # #..,. This is not so since T'
is an are. Similarly we cannot have r >k + 1 and in fact ¢, and £, are P-adjacent.

It follows that two members of #;,,, ..., ¢, , which are not T-adjacent are also not
P-adjacent. For if there were two such members say ¢, and ¢,, A <g, then, in the sequence
by thpis s s Bpiqytys By, €ach consecutive pair is P-adjacent and thus the segments ,8,,;, ...
£,y g t,t, would comprise the whole of the frontier of P. This is not so since ¢; belongs
to the frontier of P and to none of these segments, Thus since K (g, g + 1) is void for all
g we see that K (g, h) is void for all g, h satisfying ¢ <g <h <j except ¢ =1, b =j.

If K (4, j)is non-void and bounded it is a closed segment. For it is the union of segments
one corresponding to each ¢, with ¢ < & <jand ¢, f,,, is a support line of P and thus intersects
£; t;1n a point belonging to the segment corresponding to £, and to the segment eorrespbnding
to t,,,. Thus these segments abut to form one segment.

The end points ¢;,¢, of T are each end points of exactly one segment say K (1, i,)
and K (j,, n) respectively since ¢, and t, ¢, are P-adjacent pairs. Now an end point
eof K{i, j) other than iy or t, lies on £;t; and on a supporﬁ line through b, 1<k< ;; This
support line must pass through a second vertex ¢, of P or e would not be an end poirit of
K (4, 7). If + <1< then #, and {, are T-adjacent, i.e. =% —1 or k + 1 but then this again
contradicts the fact that e is an end point of K (s, j). Thus either I <i <k or k<j <l
Suppose the former. Then K (I, k) is not void; it contains e. Now no three of the segments
K (i, j) can meet, for if they did it would imply that three support lines of P would be
concurrent. Also no two segments K (3, §), K (g, k) can meet except possibly at end points
of each. For if they did each of the segments K (4, j), K (g, ») would be on support lines
of P and since there are at most two support lines through any one point the line containing
K (g, h) would be a line used in the définitidn of K (¢, §), i.e. it would meet P in a vertex i,
with ¢ <k <. But any non-end point of K (4, §) lies on a support line of P that meets P
exclusively in points of T (¢, 7). Thus ¢ <g <h <j and as remarked above this implies
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that K (g, k) is void. Thus K (g, b} meets K (i, j) in an end point of K (¢, §). Similarly this
end point is an end point of K (g, A).

It follows that the union of all the non-void sets K (¢, j) contains a simple arc joining
£, to t,.

By 4 there are two parallel support lines of P, one each through ¢, and ¢,. Denote the
open strip bounded by these support lines by U. We may assume that ¢, and ¢, are not
P-adjacent for if they are then (b) obviously holds with 2 =1, §j =n.

The line ¢,t, divides the frontier of P into two arcs which are disjoint except for the
fact that they both have ¢, and ¢, as end points. Denote these two arcs by X, and X,.
Of the two P-adjacent vertices i, ¢, © <7, either both belong to X; or both to X, or one is {;
or , and in any case the segment ¢, t; of the frontier of P is contained in X; or X,. If ¢, ¢,
is contained in X, and K (7, j) is non-void then all vertices {,, + <k <j, belong to X, and
vice-versa. In any case the part of the line ¢;¢; contained in U is separated from f, by
t,t,. Thus no part of the line #,¢; in U can belong to K (3, j), for such a point is joined to #,
by a segment which on the one hand is contained in U and on the other cannot meet the

part of ¢,¢, contained in U.

Hence K@, j))nU=4¢.

But U separates t; from t, and K (¢, §) joins ¢, to ¢, thus for some pair ¢, j K (3, §) N
U = ¢. This contradiction shows that for some ¢, j K (4, §) is unbounded and (b) holds.

We can now complete the proof of the inequality v > K by considering two possible
cases and by showing that in each case the assumption (31) leads to a contradiction.

Case I. There is a pair of integers i, j such that t;t; satisfy 6 and one of t;, t; is not an
end point of T,

Suppose for definiteness that 1 <7 <j<n. Let ¢, ¢ <k <j, be the vertex of P at

which a support line is parallel to ¢;¢;.
If L tr tj < ;}n

the length of the segment #,¢; is at least V2 #(T), and since that of £t is at least
p#(T) we see that

A(T) = (1+V2)u(T);

since calculation shows that

we have A(T)>1.
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By our original assumption this is not so. Thus /48> 4.

Since, by 5
Lttt + Ltiatitin <7
and Ltttz S tit> o,
we have Lttt <3

Now construct a new arc from T' by removing a segment of length ¢ from the end
of t, ,t, at t, and moving ¢; along the internal bisector of / ¢;_,t,¢;., a distance d to t; and
replacing segments £, ¢, ¢, ¢, by ¢, ;¢; and t;¢,,,. If 6 is small we do in fact obtain a new
arc. We denote it by T',. Then since there are not two parallel support lines of P through
t; and ¢,(') we have

p(Ty) =z p(T) - 6.
, 3n 2
Also ATY<SAT)-0-26 COST6—+O(5 ).
But these inequalities imply, if § is small,

uly) (1)

AT) A

and this is impossible by the extremal property of T'.

This case cannot occur.

Case I1. The only pair of integers 1, j for which t,,t; satisfy 6 are t =1 and j = n.

In this case t,,t, are P-adjacent and this implies that the whole arc T lies in the
frontier of P. Let t, be the vertex of 7,1 <k < n, at which there is a support line parallel
to 4, ¢,.

Denote the common part of the two circular discs whose centres are ¢, and ¢, and
whose radii are u(7') by D. The part of D on the same side of t,t, as ¢, is contained in P.
Denote it by D;. Denote the convex cover of t;, &, ¢, and D, by P, and the length of the
frontier of P, excluding the segment ¢,¢, by X (P,).

(1) If there were, each subare 7T (4, k), T(k, 7), T (j,n) of T would be of length greater than or
equal to u (7). Hence

AT)=3p(T)> 1,

a contradiction since A (7')=1.
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y

Fig. 8.

Steiner symmetrisation about the perpendicular bisector of #;¢, shows that X(P,)
is least when ¢, lies on the perpendicular bisector of ¢,t,. Also X (P;) is least when the
distance of ¢, from £,¢, is u (7). Denote this position of #, by x and the corresponding
convex cover of ¢, z,t,, D; by P,. Let the points of contact of the lines of support from
z to D, be %, and u, and those from ¢, and f, to be a, and a, respectively where the point
%, is on the same side of the perpendicular bisector of ¢, as is ¢;. Dehpte the length of the
frontier of P, excluding ¢; ¢, by L and letting y be the mid-point of ¢¢, (see Fig. 8).

Suppose the points ¢, a,u,zu, a,t, are in order on the frontier of P,.

. If.4 is a small positive number and we move ¢, along ¢ ¢, a distance  to t; and ¢,
along ¢, t, a distance 9 to f, and then form P; and L’ from {1, t,,  in exactly the same way

that P, and L were ‘flormed from ¢,, t,, z, we have
L'=L+28sin /yxu,—46sin /azt t,+0(d),

since. to within a term in o0(9) the effect is to translate u,, a, by 4 in the sense t: t:: parallel

to ¢, and u,, @, by an equal amount in the opposite sense. Thus L is least when. either

. . 2 .
(i) =, ¢, t, are all distant —= u(7') from one another, or

V3
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(ii) ¢,, ¢, are distant x(7") from one another, or
(iii) sin /yzu, =2sin /a,tt,.

In the third case write g for /=t u, = / yxt, (this equality is because zy = ¢, u, =
u(T)), and « for / a,tt,. Then calculating t,t, in two different ways we have,

bt, =ta, sec a =u(T) sec a,
tht,=2xytan 8 =2u(T) tan S.
Thus tan B.= 4 sec a. (32)
Also Lyizu,‘t=4u,,t1y=¢+oz
where ¢ ="/ w,t,a,. Thus by (iii)
sin (¢ + &) =2 sin «.
But from triangle zyt; we have
B=tn—(f+atd).
Hence, cos 2 f=2sin a."
Substituting for f from (32) we have

4 cos? x

jt+sinoag= —vw———-
B0 - 1+4cos?a

(33)

Also L=(2tan a +2¢ + 2 tan f)u(T)
=(2tano +seca-t+mx —48 — 2a)u(T).

Calculation shows that in thé third case L =2.273 u(T) approximately and that in
(i) L =2.309 u(T), in (i) L =2.28 u(T). Thus L is least in the third case, and we have
proved that

A(T)2L>EKu(T)>1

But this is not so by assumption. Thus (31) leads to a contradiction in all cases and must,
itself be false..

Thus the required inequality is established.
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§ 5. Further problems

There are many other problems of the same type as those considered in Section 3
and Section 4. If 7 is any connected set of finite linear measure and f(X) an increasing

functional of the convex set X, then the number

fHT)) _
S‘;P'?&W =M

(where H (T) is the convex cover of T') conveys certain information about the relationship
between a connected set and its convex cover. Examples of the function f(X) are the area
of X, the inradius of X, the circumradius of X, the perimeter of X, the diameter of X,
the moment of inertia of X about its centroid, etc. Of these some lead only to trivial
results, either because an extremal figure is obvious or because the ratio f(H (T))/A(T)
is not an invariant under similarity transformation.

We consider here the case when f(X) is the square root of the area of X. This problem
can be replaced by another one as follows. Consider a finite set of » points in R2, say the
set I. Let A be the area of the convex cover of E. What is the least measure of any con-

nected set which contains E, expressed in terms of 4 and n? We shall show that
A(K)>2[A(n—1) tan 7/(2(n—1))} n>3, (34)
AK)=2[4V3]} n=3. (35)

Since as n—>oo the right-hand side of (34) decreases to (2 m4)}, it follows that u, calculated

for f equal to the square root of the area is (27)"* (making use of Theorem 3.2). In turn

the fact that u, = ; implies a result of P. A. P. Moran, who proved a conjecture of

1
(2n)
S. Ulam, namely that the convex cover of an arc of unit length has area less than or equal
to 4 m. This result is best possible since equality is attained when the arc is a semi-circle;
whether this is the only extremal curve is not known. The results given in (34) and (35)
are also best possible. In (34) equality is attained when E is a set of consecutive vertices
of a regular 2(n — 1) ~gon and K is the arc joining them. In 35 equality holds when E
is the set of vertices of an equilateral triangle and K is formed from three equal segments
inclined at an angle of ¢ = with one another.

The proof of (34) and (35) is quite simple. As in Section 3 let £(n) be the class of
closed connected plane sets which are of finite positive linear measure and whose convex
covers are polygons with at most n vertices. Denote the area of the convex cover of T
by 4(T). Write
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AT
Kn=sup AT

It is not difficult to prove that there is a member T, of C(r) for which

[4(Ty)]*
K= 20,
A(Ty)

There may be more than one such member of L£(r). If there is we select one whose convex
cover has the least possible number of vertices. Denote this set by 7 and the convex
cover of T by P*.

As in the problem considered in Section 3, 7™ is a polygonal tree and is a connected
set of the least possible measure containing the vertices of P*. Every end point of 7™ is
a vertex of P* and every node of 7™ is an interior point of P*.

Next, the segment joining any two end-points of 7™ lies in the frontier of P*. For
suppose that these were two end points p,, p, of T* such that the segment p,p, met the
interior of P*. Let p,q, and p,q, be the segments of 7™ which terminate at p, and p,
respectively. Take points p; on line p,q, distant x, from p,, where z, is positive if p; lies
between p, and g¢;, and negative otherwise, and p; on line p,q, distant z, from p,. Both
x, and z, are not greater than the least length of segments p,q, and p,g,. In T™ replace
P14, by p1g; and p,g, by p.q,. Denote the new polygonal tree by T (x,, z,) and its area
by A (x, z3). Now if x; > 0 is small,

A(T* (g, — )= A(T).

Thus A4 (z;, ~ ;) < A(T*). But if A(x,, —,) < A(T*), then A(— 2z, 2;) > A(T™"). This is
impossible. Hence
Az, — ;) =A(T*).

We increase z, until either p;p, lies in the frontier of P* or p; coincides with ¢,. This is
possible. In each case we obtain an extremal figure whose convex cover has less vertices
than P*. This is impossible by the choice of P*. Thus every segment joining two end
points of 7™ lies in the frontier of P*.

Thus 7" has either three end points or two end points. If 7* has three end points
the segments joining them in pairs lie in the frontier of P*; thus P* is a triangle and 7™
is formed from three segments inclined to one another at an angle of $z. If T* has two
end points it is an arc and must lie entirely in the frontier of P*.

Consider the first alternative. Let the lengths of the three segments be I, l,, l;. Then

7 - 665064 Acta mathematica. 99. Imprimé le 25 avril 1958
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AT =3V3 (Ll + 1,1+ 1,1)

=[2 (A (TP = (b~ L,)* — (4 — L)* ~ (I, — 1)?]/8 /3
< [A(THTE/4V3.

Thus (35) (and a fortiori (34)) is true in this case.

Consider the second alternative. Let the arc 7* be p;p, ... p, where each p, is a
vertex of P*. Then segment p,p,,, is of equal length to segment p,_,p; i =2,..,k—1.
For otherwise we can symmetrize the triangle p,_,p;p,,, about the perpendicular bisector
of segment p,_; p, ; to reduce A (7T™) without affecting A (T*). This is impossible because
of the extremal property of 7.

Consider next the second alternative. If P” has only three vertices, then 7™ is the
sum of the lengths of the two shortest sides of P*. Since 7™ is the connected set of least
length that contains the vertices of P*, this implies that one of the angles of P* is at least
$ 7w and T" is the two sides adjacent to this angle. But then 4 (™) can be increased without
altering A (T*) by rotating one of these sides relative to the other until they form an
angle equal to {x. By the extremal property of 7™ this is impossible. Thus P* has at
least four vertices. We consider any four consecutive vertices of 7™, say p,, s, Py, Ps» fOr
definiteness. We shall show that p,p, is parallel to p, p,, and thus, since p, p, and p;p, are
segments of equal length, that / p,p,p; = / paps P4 If now p,p;, is not parallel to p, p,,
suppose that p; is nearer to p,p, than is p,. Let the line through p, parallel to the line
P1 P4 cut the segment p, p, in p;. Symmetrize the trapezium p, pz p, p, about the perpendicular
bisector of p,p, to obtain the trapezium p, ps psps. On p; ps construct a triangle ¢p; p;
congruent to and similarly situated to p,p,p;. Now since p; is nearer to p, p, than is p,,
we have / p,p,p, > / P3P,y and thus / ip; p; > / p; P, p,. It follows that p; is an interior
point of the convex cover of p,, ¢, p;, p,. In T we replace P, Dy, Py D3, PsPy bY Dit, EP3,
P53 ps. The effect is to reduce N (7*) and to increase 4 (T™); since however the new polygonal
tree still is a member of £(n), we have a contradiction with the extremal property of 7.
It follows that all the angles p,_;p;p;,, are equal, i =2, ...,k — 1, and therefore that all
the points p,, ..., p, lie on a circle, say C. Now p, p, is a diameter of C, for if / p, pop,= 4 n
we could increase the area of triangle p,p, k by a suitable small rotation of p, p, about p,.

This is not so by the extremal property of T*. Thus p, p, is a diameter of C. Direct calcula-
tion now leads to (34).

§ 6. Remarks

Although the arguments used in the three preceding paragraphs are both long and
complicated, they do not completely solve the problems concerned. They fail to characterize
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completely the extremal figures. In each case we are able to give one extremal figure but
out methods are such that we are unable to say whether or not the figure is unique. Our
method is to classify some of the possible figures into classes which are not difficult to deal
with and then to obtain the final result by an approximation argument. In Section 4 it
is not surprising that we are unable to define all the extremal figures, since the one which
we actually specify does not belong to any of the classes that we argue with, its convex
cover is not a polygon. In Section 3 the extremal figure belongs to all these classes and
is almost certainly unique. The methods used here are by no means exhausted. There
are many other possible variations available and it may be possible to establish the unique-
ness of the extremal set without using any really new ideas.

The argument in Section 3 could have been substantially simplified by the assumption
pu(T) > % A(T) instead of u(T) > 4 A(T). For the two key steps in the argument are to
show that 7 has 3 end points and that every two end points lie on a pair of minimal support
lines. Now (14) implies that 7" has at most 3 end points (if we assume g (7') > 3 A (T)) and
the arguments given in 9 and 10 are unnecessary. Similarly (18) and (19) together imply
the second key property of 7' without the complicated succeeding argument in 13. But
of course such a procedure abandons any hope of finding all the extremal figures.

There are many other problems similar to those solved here. For example, we can
consider the analogues of the problem of Section 1, 3, 4, 5 in R®. The analogues of Section 5
in R? (i.e. to find the largest volume of the convex cover of a connected set of given length)
are particularly interesting. The case when the connected set is restricted to be an arc,
that is to say, the three dimensional analogues of Ulam’s conjecture, has not been solved.
It is likely that the solution is a certain equi-angular spiral (see Egervary [4]), and, that
unlike the situation in R?2, the solution of the connected set problem does not imply that

of the arc problem.
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