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Introduction

The classical Hodge-de Rham theorem for Riemannian manifolds establishes an iso-
morphism between the de Rham cohomology groups and the groups of harmonic forms
living on the manifold. This may be restated in the following way: if y is a given closed
form on the manifold, then there exists a unique harmonic form which differs from y by
an exact form.

Since a harmonic 1-form describes an incompressible potential fluid flow, the Hodge—
de Rham theorem, in this case, can be expressed in the following form for compact mani-
folds: there exists a unique incompressible potential flow having prescribed periods (that
is, prescribed circulation around the handles).

The stationary flow of a compressible fluid is described by a quasi-linear second order
partial differential equation of divergence type. The equation is elliptic or hyperbolic
depending upon whether the flow is subsonic or supersonic. Bers has conjectured the exist-
ence of a compressible subsonic flow on a Riemannian manifold having prescribed periods.

Our main theorem establishes existence and uniqueness for a certain non-linear, non-
regular global problem on a Riemannian n-manifold. The problem is suggested by the clas-
sical framework of gas dynamics and its solution gives an affirmative answer to Bers’
conjecture,

In the Hilbert space L2(M) of 1-forms with square integrable coefficients, the collec-
tion of harmonic 1-forms (locally, w =d¢ where A¢=0 for the Laplace-Beltrami operator
A) spans a b, dimensional subspace H (b, =dim HY(M, R)=dimension of first cohomology
group of M over the reals = first Betti number of M). Roughly speaking, the content of our
main theorem can be described as follows: the collection of 1-forms w such that locally

(*) The first author was partially supported by NSF Grant GP-8754. The second was partially
supported by NSF Grant GP-8556.
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o =d¢, A ,¢ =0 for a (non linear) operator A , of “gas dynamics type”’, spans a b,-dimensional
manifold G< L2(M). There is a natural projection map n: G— H. If the equation is regular
(cf. § 1.2) then 7t is bijective. If it is admissible but not regular (cf. § 1.2—this is the case
for the classical gas dynamics equation in Euclidean space) then 7 is injective but not sur-
jective. In fact the image 7(() is a bounded star shaped subdomain of H.

In this way a non-linear analogue of the Hodge decomposition theorem for 1-forms is
established. A “weak” decomposition theorem is also obtained for p-forms in the regular
case.

In section 1, we formulate the problem and state the main theorem. Section 2 contains
motivation from classical gas dynamics. In section 3, these ideas are formulated for an
arbitrary manifold, and the ‘‘duality” between a certain conjugate problem and the non-
linear Hodge-de Rham theorem for 1-forms is established. In section 4, we prove the con-
jugate theorem using variational techniques first introduced in the classical case by Shiff-

man [7]. The appendix contains a new proof of Hodge’s theorem for harmonic p-forms.

The authors wish to extend their gratitude to Lipman Bers for suggesting this area of
research and for several very helpful conversations. Our long association with him remains

a most rewarding experience.

1. Preliminaries

1.1. We consider an orientable Riemannian manifold M of dimension n. Let Q” be the
space of p-forms on M with coefficients of class Ct. The inner product on the tangent space
at each point x € M induces a (pointwise) inner product on Q* which we denote by @*(w, »);
we write Q°(w) for @°(w, w).

Let d: Q?—>QP+ be exterior differentiation and x: Q?—~("? the canonical isomor-
phism between these spaces satisfying (x)2=(—1)**+?, Set § = (—1)"?*"+lxd+ so that §
is & map of Q7 into Q71 Tt can be verified that w A *¥ =@?(w, v)dV where we have written
dV for the n-form 1. For w€Q! we can write o =w,;dz’ in terms of local coordinates
x!, ..., 2" If g;; are the components of the metric tensor in these coordinates one can show
that QY(w)=g¢"w,;w;. (We are observing the standard summation convention.)

Let L%, be the completion with respect to the norm ||, =(fx @ A *@)V/? of the sub-

space of Qr consisting of p-forms having compact carrier. The associated inner product is
(w,7) =J OA*Y = f Q@ (w,v)dV.
M M

Let Q*=Qrn L%,. A p-form w€QP is closed if dw =0 and coclosed if w =0. If E, is the

closure in L%, of exact forms, w =dy with » € Q?-1 and having compact carrier, and Ej is the
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closure of coexact forms, w =dv with »€Q”+! and having compact carrier, then it is easily
verified using Stoke’s theorem that E3*, the orthogonal complement in L2 of E}, is the Lj

closure of closed forms.

1.2. Definitions. A map o: M x B— R is said to be admissible if there exist constants
0<a,<oco and 0 <k<oco such that, on the interval 0 <a<a,
(i) oz, a)6C*™ inx
olx, ) €C'** ina

(i) %<o‘<k

g (ac®(x, a))> 0.

(iii) a

Definition. @, the least upper bound over all a, for which conditions (i), (ii), and (iii)

hold, is called the sonic value of o.

Definition. A map o: M x R— R is said to be regular if it is admissible with @, = co and,

in addition, there exists a constant 0 <k, < co such that for 0<a < oo

. 1 @ 2
(iv) k—l < P (ac (=, a)) < k.

Definition. w €€2” is said to be o-subsonic if for any compact subdomain D= M
sup @7 (w) <Qo,

where @, is the sonic value.

Remark. If ¢ is regular then every w €Q? is ¢-subsonic.

1.3. We now state the main result.

NoN-REGULAR THEOREM. Let M be compact, y € BT+ be given, and o admissible.
Then there is a constant ¢, such that for each t, 0 <t <t,, there exists a unique w, € Q! satisfying

(i) dw,=0

(i) dgw, =0 (¢ =0(, Q" (wy)))

(i) w,—ty€ B, and is exact if y€QL

(iv) w; is g-subsonic

(v) lim (max Q%(w,)) = Q,.

t->tp zeM
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REGULAR THEOREM. If p is regular, then the above results hold for t,=oco (i.e.,
for arbitrary ty) and without the assumption that M is compact.

Remark. The Regular Theorem includes the linear case where ¢'is a strictly positive
function of x alone; g =1 corresponds to the classical Hodge theorem.

1.4. For p>1, our methods give the following

THEOREM. Let y € E}* be given and suppose that g is regular. Then there exists a unique
w € L%, such that o is a weak solution of

(i) do=0
(i) dpw=0
(ili) w—y€EE,
To show that o is differentiable and to obtain the estimate necessary to extend the
theorem to admissible g requires a DeGiorgi type theorem for elliptic systems (compare

§ 4.3). Such a result is not known for the above system and is not true for arbitrary elliptic
systems.

II. Gas dynamics in R*

2.1. In R", the stationary potential flow of a compressible fluid is described by an
equation for the velocity potential $(x) of the flow. The velocity vector of the flow is V¢ and
the speed of the flow is given by g=[V¢|*.

The density p >0 of the flow is assumed to be a given function of @ =¢2. It follows from
the equations of motion and continuity, and from Bernoulli’s law that ¢ is a solution of the
non-linear equation

52 (eg“—b)=0, 0= 0@ ()

i 5—112‘ 3%‘

The character of the flow depends on the Mach number M which is defined by

—9 ,
w=-"22y).
e
The flow is called subsonic if M <1, sonic if M =1, and supersonic if M > 1. Since
>0 and

1 '
l—M’=€—) (e+2Qg"),

the flow is subsonic if and only if
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4

0 (Qe®) >0. (@)

On the other hand, equation (1) will be elliptic if and only if the matrix

(o026 2 )

oxt oa
is positive definite. A calculation shows that there are two distinct eigenvalues, namely

A

Il

0+20'Q
do= .=l =p.

This, together with the fact that p is strictly positive, shows that (1) is elliptic if and
only if {2) holds, or the flow is subsonie.

2.2. A particular example is furnished by polytropic flow for which

—1 \Yo-»
e= (1 _-2—2_ Q) ’

where 9 >1 is the adiabatic constant.

In this case,

and hence, the flow is subsonic whenever the flow speed @ is less than the sonic value

Q- (;%)

In the classical theory of gas dynamics, it is generally assumed that o behaves like

the density of a polytropic gas; namely, there are constants k and @, such that

(i) 0<%<Q(Q)<k<oo for @<@,
a4
aQ
4
aQ

(ii) (Qe®)>0 for Q<Q,

(iii) (Qe)—~>0 as Q-@Q,
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The classical problem in the plane is to show the existence of smooth subsonic flows
past an obstacle for a range 0 <@ <@, of prescribed speeds @ at co. If @ is too large at in-
finity, then no subsonic flow exists.

This problem was solved independently by Bers [2] and Shiffman [7]. A more detailed
description of the physical situation may be found in Bers’ book [1].

III. Gas dynamics on a manifold

3.1. Let M be a Riemannian manifold of dimension » and ¢ an admissible map g:
M x R—R. A form w€Q? is closed if dw =0 and coclosed if dw=0. We will say that w is
p-coclosed if dpw =0 (o =p(z, @*(w))).

Definition. A form w €Q? is said to be g-harmonic if it is closed and g-coclosed for some
admissible . If, in addition, it is g-subsonic (with the same g) then it is said to be subsonic
o-harmonic.

If M is compact and p is regular then, by the remark in § 1.2, any p-harmonic form is
necessarily subsonic p-harmonic. Observe also that a 1-harmonic form is a harmonic form
in the sense of Hodge [4]. Letting §,=p 'dp one can define a generalized Laplace-Beltrami
operator

Ap=dd,+6,d (1)

and, in the same way as for harmonic forms, one obtains the

PROPOSITION. If w€QP is p-harmonic then it satisfies A, =0. If M is compact then

a solution of A ,w =0 is p-harmonic.

1
Proof. The second statement is obtained by observing that (gw, A,w) = P (| dow |[2 +
¢ ||dw]|* and recalling that o >0.

The connection between p-harmonic 1-forms and solutions to the gas dynamics equa-

tion is given by the following:
ProrositioN. If w is p-harmonic then, locally, w =d¢ where $ €0 satisfies

do dé = 0. (2)

In local coordinates «l, ..., 2" equation (2) has the form

1 9 08\ _
—V;a;,(l/.‘;g e ) 0, (3)
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where g,; is the given metric tensor on M and g=det (g,,). If M is flat we can choose ortho-

normal coordinates and (3) reduces to the classical gas dynamics equation

AR

3.2. We can now give a simple statement of the regular and non-regular theorems of
§ 1.3 under the assumption that y is closed: Let M be a Riemannian manifold (not necessarily
compact) and ¢ regular. Given a closed 1-form y there exists a p-harmonic w €Q such that w —y
1s exact. If ¢ is not assumed to be regular, one cannot expect to find subsonic solutions for
arbitrary y (i.e., with arbitrary periods). In fact max @(w) on a curve must be large if the
corresponding period is assumed large. Therefore, in analogy with the classical (plane) case,
one obtains subsonic solutions for a range of closed differentials ty, 0<t<#,. Let y be a
closed 1-form on a compact Riemannian manifold M and let o be an admissible map of
M x B— R. There exists a number t,>0 and a family of subsonic p-harmonic 1-forms w, such
that w,—ty is exact for 0<t<t, and supen @ (w)—~>Q, as t—1, (Q, is the sonic value,
defined in § 1.2).

3.3. Rather than consider the regular and non-regular problems directly we turn to

“conjugate’ problems (which we formulate in § 3.4).

ProrosiTiON. Let p: M x R—>R be admissible. There exists a map u: M x R— R,
called the conjugate of o, such that, at each point x,

(i) w@ P(row))e(@(w)) =1, w€Q?
) w(@PW)o(@P(xuwv)) =1, »eQ P
(i) o s admissible with sonic value Q, if and only if u is admissible with sonic value
Ql‘ il QQQZ(QQ)‘
(iv) o is regular if and only if u is regular.

Proof. Let b=f(a)=ap*a). The admissibility condition db/da>0 on the interval

0 <a <@, ensures that the function f has a single valued inverse f-1. Let

p(b) = 1jgof~Y(b) = 1/o(a). (4)
Since a =b/p%*(a) we can write
a = [-1(b) = bu2(b). ()

Conclusion (i) follows by setting b=@Q"?(xpw) in (4). Since Q"7 (xow)=@"(ow)=
Q" ()% (Q"(w)) = f(@*(w)) we obtain a =Q"(w). Conclusion (ii) follows by setting a = @”(* u»)
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in (4) and using (5) to obtain b =" ?(»). To obtain (iii) we observe that for all z, ki <g(a) <
k; < co on the interval 0<a <a, if and only if k' <u(b) <k, <co on the interval 0 <b < b, =
fla,). The smoothness conditions on these corresponding intervals are easily verified.
Moreover, (d/da) (ag*(a)) = (db/da)>0 if and only if (d/db) (bu?(b)) = (da/db)>0 on cor-
responding intervals. The results of (iii) for @,=@,=cc together with ky < (dbjda) <
ky< oo if and only if k5! < (da/db) <k, < co give statement (iv).

COoROLLARY. The map 40: @ +pw establishes a 1 —1 correspondence between the o-sub-
sonic forms in QP with the u-subsonic forms in Q7. Moreover, the map ,u: Q"2 QP defi-

ned by v—(— 1)"?+P % yy is the inverse of .0:

(+0) 0 (xp) = (xt) 0 (s0) = identity.

Remark. We will see that the above correspondence is, in fact, between subsonic
o-harmonic forms and subsonic y-harmonic forms.
3.4. The results of § 3.3 enable us to obtain solutions of the “p-harmonic’ problems

of § 3.2 from solutions of the following conjugate problems:

NoN-REGULAR CoNJUGATE THEOREM. Let M be compact, y € ET+ be given, and u
admissible. Then there is a constant t, such that for each t, 0<t<t,, there exists a unique
1, € Q"1 such that

(i) dy,=0
(i) dur,=0 (u=plz, Q"))
(i) xur,+(—1)"ty€E,
(iv) 1w, is u-subsonic
(v) lim (max Q" ()= Qu-
t>ty xeM

)
i)

(The essential difference from the theorems in § 1.3 is in condition (iii).)

REGULAR CoNJUGATE THEOREM. If u is regular, then the above results hold for
t,=co (i.e., for arbitrary ty) and without the assumption that M is compact.

These theorems will be proved in section IV.

Let, now, ¢ be regular and u the conjugate of g. Let » be the n —1 form obtained from
the regular conjugate theorem with this u and a given y € Ef+. Then it is easily verified
that @ =,uv=(—1)" *up is closed, g-coclosed and satisfies w —y € E,, so that w is the 1-
form satisfying the conclusions of the regular theorem (§ 1.3) for ¢ and y. Only the state-
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ment that w is g-coclosed is not immediately clear. But by the corollary in § 3.3, since w is

the image of » under the map ,u, we have

* 0w = (40) © (sut)y="»
and dv=0.

If now, g is assumed only to be admissible, let »,, 0 <t <%, be the family of u-subsonic
elements of "1 obtained from the non-regular conjugate theorem. Letting w,=( —1)"+
=¥, we obtain a family of g-subsonic elements of Q! satisfying conclusions (i)-(v) of the
non-regular theorem (cf. § 1.3).

Corresponding statements hold with ¢ and u interchanged. Thus we obtain

ProrosiTioN. There exists a one to one correspondence between the solutions of the reg-
ular (non-regular) problem and the solutions of the reqular conjugate (non-regular conjugate)
problem.

IV. Solution of the conjugate problem

The variational method of proof in the plane case is due to Max Shiffman [7]. We shall
follow his technique of first solving the regular conjugate problem and then obtaining the

solution of the non-regular problem from the estimates in the regular case.

4.1. The regular case. For v= 73, ., da"... du*1, @" ' (v) = Q' (*v) =g"»», For brev-

ity, we shall henceforth write @(») for the *“pointwise norm” Q" (») of an n — 1 form .

Let F(z,v) = {§® u(x, §) d¢, where € M. Then (8/ov;) F(x,v) = u(x, Q) 8Q[év,, i =1,...,n and

F(x,0)=0. At every point € M, F is a convex function of v,,...,, if and only if the
matrix

(Frp) = (M —82&+ gadal

ov, o, av, ov ) —(#Qif"ﬂ Qin)

is positive definite (where we have written u’ for du/oQ, @, for oQ/ov; and @, for
*Qfov,0v,=24¢"). Since the eigenvalues of a symmetric matrix are invariant under an
orthogonal coordinate transformation, and since at a fized point x€ M, the matrix g, can
be diagonalized by such a transformation, we may assume that the coordinates z',...,,z"
are such that at the point x

=29

so that @;(») =2¢"», (no summation) and @,,=2g¢" is zero if 1= j.

LEmMMA 4.1. A symmetric matriz A with characteristic polynomial P(A) always satis-
fies P(— c0)= + oo, A is positive definite if and only if P(0)> 0 and dP(4)/dA <0 for 1<0.
5— 702902 Acta mathematica. 125. Imprimé le 18 Septembre 1970.
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Proof. Trivial. The conclusion of the lemma implies, of course, that P(1) >0 for 1<0.
Let A be an n x » matrix and r an integer <n. An 7 x r submatrix of 4 formed by the
rows 4, <i, <... <t, and the columns 7, <... <3, will be called a distinguished submatriz of

order 7.

TrrorEM 4.1. If u>0,(d/dQ)Qu*(Q) >0 and Q,=0 for i=j then the matriz A = (uQ,,
+ 4’ Q, Q) is positive definite. In particular, the hypotheses are satisfied if u is regular.

Proof. We will show that any distinguished submatrix 4, of order r is positive definite
if all distinguished submatrices of order r —1 are positive definite. Let P (1) =det (4,—A11).

Then for 4 <0,
d

— = — ‘ )]
da Pr(l) jglP(r—l(l)<0

since the PP, (1) are determinants of distinguished submatrices of order r—1, hence all
positive for A<0 by the induction hypothesis. Moreover, by elementary matrix manipula-

tion, we can obtain the following recursion relation:

r-1
P,(0)=det 4, = uQ,, Py_;(0) + ﬂ'/‘r—lggkljl Quo P1(0) =@y +/"’Q%,

where P, ;=det 4, , and A4,_, is the matrix obtained from 4, by omitting the rth row

and the rth column. This recursion relation is satisfied by

POy =pHut2p 2,6"%) 11 Que

If ' >0 then P, (0)> 0. If 4’ <0, then since

n
2 9"}

j=1

<

r
2
2 979
i=1

and recalling that u+u'>} 19”7 =u+ 24’ @ >0, we again obtain P, (0)>0.
This last argument also shows that all distinguished submatrices of order 1 are positive
definite and the proof of the theorem is complete.

4.4. The extremal. We assume in this section that u is regular. Then the function ¥

defined in 4.1 satisfies the following set of conditions:

F(t, ..., 2" vy, ..., v,) EC3** 0 <a <1, in each of its arguments
My (¥, v) < f F(zx,v)dV < M,(v,v)
M

m1|f|2<va'§i§;<M1|§I2’ (4)

where my, my, My and M, are positive constants.
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Let I(v)=f Fz,v)dV =2 (v, *y), (1)
M

where dV =+1=Vg da' ... da" and y€ E}* is given.

LevmMa 4.2. Let F be any function satisfying conditions (A). Then there is a vy which

minimizes I(v) over all v€ Ent,.

To prove the lemma, we observe that because of (A), I(») is bounded below. Moreover
the class of admissible forms is all of E}t; and hence is non-empty.
We next show that I(») is lower-semi-continuous with respect to weak convergence in

L% _,(M). Since F is convex, for smooth v and 7 we have
F(xa 7) > F(CL‘, v)+ de("m v) (T; —v).

Let v=(», ..., »,) be any element of L2 _;(M) and let +/ = (+}, ..., »},) be a sequence of smooth

forms converging weakly to ». Then, by Fatou’s lemma

J‘ F(&v’)dV?f F(x,v)dV—l—2f w(z, @ 1 (v)) g%y, (v] —v,) dV.
M M M

Since the second integral on the right is the inner product (uv, »/ —») which tends to

zero by weak convergence,

lim F(m,v’)dV>f F(x,v)dV.
00 M

j—o0 M

Because K3, is weakly closed, we obtain the result of the lemms.
The hypotheses of Lemma 4.2 are satisfied by the function F(x,v) = & u(x, £) d¢. More-

over, in this case we may state

LemmA 4.3. The extremal v, satisfies the Euler equation
uvy—*y€EEY 4 (2)
and v, ts the unique solution of (2) in Ejt,.
Proof. For fixed 1€ E3ty, let ¢(e) =I(v,+ 7). Expand ¢ by Taylor’s formula:
b(e) = I(vo) +&¢'(0) + &R,

where $'(0) = (uvg —*y, 7)



68 L. M. SIBNER AND R. J. SIBNER

1
and R=f (f F,,i,,i(x,v—lratt)r,-r,dV) (1—¢t)dt.
M

0
By conditions (4), cllefi-i<R<O|v|3i-s

where the constants are independent of &.

Since ¢ has a relative minimum at ¢ =0, (uv, — *7, T} =0, and since T was arbitrary, we
obtain (2).

To prove uniqueness, set T=v» —v, and ¢=1. From the positive definiteness of R, we

obtain
I(w)= I(vg) + B> I(v,)

which proves that the minimizing », is unique.
On the other hand, if v,€ E3t; and satisfies (2), then by the above inequality v, gives

the (unique) minimum of I(») over all forms in E3L,.

THEOREM 4.2. Let y be regqular and let y€ ET+ be given. Then there is a unique v
satisfying
(i) veExL,
(ii) *uv€EL+
({i) *ur+(—1)"y€E,.
Proof. We shall show that the extremal v, satisfies the conditions of the theorem. By
definition, vy € E3L;. By (2), *uv, + (—1)"y € E, and since y € BT+ and E, < ET*, (ii) follows.
On the other hand, any solution » of (i), (ii), and (iii) is a solution of (2). By the preceding

remarks, a solution of (2) provides a unique minimum for I(»).

4.3. Smoothness.

THEOREM 4.3. The extremal vy ts Holder continuous on every compact subdomain of
M with modulus and exponent of Holder continwity depending only on ||vy|| s, the regularity
constant for u, and bounds on the g,;. Moreover, vy has Holder continuous first derivatives on

every compact subdomain. If u€C® then v, € C®. If u is analytic then v, 18 analytic.

Proof. Let wy=*uv,. We have, from Theorem 4.2 and the results of § 3.4, that locally

wy=d¢ where ¢ €L? is a weak solution of the divergence equation

1 2 (., 0
5ed¢=V—§5x—a (Vgg“”e a—:})=0,

where o (the conjugate of u) is regular.
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Let pp=06¢/6x® (so that dé=ppdaf) and Az=Vggafo(x, Q) ps where we regard
@ =Q(x, d¢) as a function of 2n variables @z, ...,x", Py, ..., Pu)-

Since g is regular, the function Q2g/0Q is bounded for all @ at every x€ D. Since @ is a
positive definite quadratic form in the p,,

de
v <o

and l oe 6Q

It follows by elementary computations that the 4% satisfy

2

a
o4 _ o

A*]E+
%‘ | azz opg

3Aa2
—| <K*(Q+>pk
axi' ( %pﬁ)

B
(B)

oA4%
my|EP < —— &, E,< M, |ER.
1€l E 8 N

Since the coefficients of v, are smooth linear combinations of d¢/oxf, Theorem 4.3

now follows from

TarorEM (De Giorgi-Moser-Morrey). Let$€L2, dp€Ly, be a weak solution of
0A%[ox* =0, where the A>= A=(x, V) satisfy (B). Then, locally, the first derivatives of ¢
satisfy a Holder condition depending only on ||dg|l;, my, My, k and K. Furthermore, ¢ € C***,
If A*€C™ then $ €C™; if A% is analytic then so is .

The results stated in the above theorem are proved in Morrey’s book (see [6], §§1:10,
1:11, and Chapter 5).

The regular conjugate theorem (§ 3.4) follows from Theorems 4.2 and 4.3. In the next

two sections we prove the non-regular conjugate theorem.
4.4. Continuous dependence. From now on we assume that M is compact. Let F be
defined as in § 4.1 and
Iy, t)= f F(x,v)dV —2t(v, #y).

M

Denote by »(t) the extremal for each .

LeMMma 44. »(t) is a continuous function of t.
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Proof. Let t, converge to t. Then v, =w(t,) is bounded in L? independently of k. By Theo-
rem 4.3, {»,} is equicontinuous. Since it is uniformly bounded in L,, it is also uniformly
bounded. By Arzela’s Theorem, a subsequence converges uniformly to ». It remains to
show that » is the extremal of I(v, t), so that the selection of a subsequence was unnecessary.

Let t€ E%%,. For every k, I(», t)<I(z,t,). Both integrals converge uniformly from
which it follows that I(», )< I(z, t).

4.5. The Shiffman regularization. Given a regular map ¢ and y € E1*, the problem of
finding an » €Q"-! satisfying
(i) vE€ER:,
(i) *ovE€ETt
({ii) =ov+(—1)"ty€E,

will be called the “(o, ) regular conjugate problem” and its solution will be denoted by

v(0, ¢). To simplify notation we write
|#(a, t)| = max Q(¥(s,1)).
reM
In view of Lemma 4.4 we may state
Remark 1. If ¢ is a regular map, then for any constant C there exists a ¢,(C) such that

|#(o,8)| <C for t<t,(C)
and |#(o, 8)| >C as t—>t,(C).
We state also

Remark 2. If C,<C, then t,(C,) <t,(C,).

This follows from the observation that the interval 0 <t <¢,(C,) is the largest interval
in which |v(o, )| <C,. If C;>C,, then the interval on which |v(o,t)| <C, is at least as

large as the interval on which |»(g, )| <C,.

LeMMA 4.5. If 0 and 1 are regular maps and ¢ =1 on the interval 0 <Q < C then the
solutions v(a, t) and v(z, t), of the (,t) and of the (t, t) regular conjugate problems respectively,
agree for t <t,(C). Moreover, t,(C) =1.(C).

Proof. For t<t,(C) we have |v(c, t)] <C and since ¢ =7 for @ <0, »(g, t) is a solution
of the (7,t) regular conjugate problem. Hence, by the uniqueness part of Lemma 4.2,
v(0, t) =2(7, t). Then |v(q, t}]| = |(z, #)| for every t <t,(C) and ¢,(C) =t,(C).
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Consider now an admissible map p with sonic value Q,. Let {Q}} be an increasing se-
quence Q—>@Q,, and let {,u,,} be a sequence of regular maps with u,(x, @)=u(z, @) for
@ <@} <Q,. Denote by »,(f) the solution »(u,, t) of the (u,,t) regular conjugate problem and
write £,(C)=¢, (C). Thus

Remark 3. |v,(t)| <@} for t <t,(Q}) and. |v,(t.(Q7))| = Q5.

LEMMA 4.6. For m>n we have v, (t) =v,(t) tn the interval 0 <t <t,(Qp).

Proof. If t<t,(@5) then |»,(t)| <@j. But for @ <@} and m>n we have u,,=pu,. Then by
Lemma 4.5, v,(t) =v,(?).

Combining the final assertion of Lemma 4.5 with Remark 2 we obtain,
£ (@) = tn (@) <t (Qu)

so that {t,(@2)} is a non-decreasing sequence. Let t,=lim ¢,(Q}) as n—co. For each ¢, the
forms v,(t) are defined and coincide for all n for which £,(@p) >¢. In this way they define a
form () for t <t,. Clearly |v(t)| <@, so that »(t) is u-subsonic.

Remark 4. Suppose now that ¢ is such that |»,(¢)| <@% (this is certainly true for £ <t,(Q})
but we do not explicitly assume this). Then v, (¢} is u-subsonie and solves the (u,,, t) regular
conjugate problem for m>n, so that v,(t) =»(t).

For each ¢ <t, the form »(t) coincides with the solution »,(t) of a (u,, ¢) regular conjugate
problem (we need only choose n so that ¢ <t, (@) <t,). Thus

(i) vEEz:,
(i) *py€EETH
(iii) *p,v+(—1)"ty€E,

Since ¢ <¢,(@%), however, we have in addition that u =u, so that (i), (ii) and (iii) above hold
with u, replaced by u. We have already observed that for ¢ <¢,

{iv) w»(t) is u-subsonic.

To complete the proof of the non-regular conjugate theorem stated in § 3.4 it remains only
to show

V) )] >Q, ast—t,.
If (v) were not valid there would exist an ¢>0 and an increasing sequence ¢,~£, such that
|(t)| <@u—e. 3)
Recall that @ —~@Q, and choose n such that @, —& <@} <@,. Then by definition, »(t;) =v.(t,),
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for all j such that ;< t,,(QZ). But (3) ensures that this holds for all ¢,. By continuity (Lemma
4.4) v(8;) =v,(t))>v,(t,) as t;—t, so that |v(t;)| > |v.(t,)]|. Consequently.
|7a(ta) | <Q,—e<L
so that |v,(£)| <@ for ¢ sufficiently close to {,. By Remark 4, we have
|»(#)| <@ for ¢ sufficiently close to ,.

However £,(¢.)~>t, as m— co and using Remark 3,

|v(tm(Q!r‘n))l = ‘vm(tm(Q;f))l =Q7 > Qu

which contradicts (3).
This concludes the proof of the non-regular conjugate theorem and hence, by the results

of § 3.4, the proof of the non-regular theorem (§ 1.3).

Appendix — The Hodge—de Rham theorem for harmonic p-forms
I, in the previous work, we take p=1, then p=1 and F=@ (cf. § 4.1). Then

I(v)= fMQ(v)dV —2(, xy) = [l —*p|I> — [« |

which is minimized for »,€ B, minimizing ||y —*y||, that is, for the projection », of ¥y on
B},

Thus, our proof leads to a (slight) modification of existing proofs of the classical
Hodge theorem for harmonic p-forms.

Given y€E;* consider *y€LZ,_,,. Let v, be the projection of *y on the subspace
Ert,. Thenyy—+y € Ey_ so that xyy—( —1)"*+?y € E, (and hence, since y € E3+ and B, E3*,

we have *v € E}+). Then letting w,=(—1)""+? *», we obtain
(i) wo€E
(i) *wo€H%L,
(ili)) w,—y€E,
By Weyl’s lemma [5] conditions (i) and (i) guarantee that o has C? coefficients and is

therefore harmonic.
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