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In  this note we show how to extend Laksov's  proof ILl of the residual intersection 

formula in the preceding paper to allow the case where there are imbedded components. 

This gives a proof of the double point formula for a general mapping provided only 

that  an appropriate double point scheme has the right dimension. 

w 1. The theorems 
1.1. Residual Intersections 

Let [: X n ~  ym be a morphism from an n-dimensional variety X to a non-singular quasi- 

projective variety Y. Let Z be a non-singular closed subscheme of Y of codimension d, 

and let N be the normal bundle of Z in Y. 

Assume that  there is a Cartier divisor R on X which is a subscheme of the inverse 

image scheme [-I(Z). Laksov defines the residual subscheme W by  the equation 

I(/-l(Z)) = I(R).  I(W) 

relating their ideal sheaves. Let  r: R-+X be the inclusion, h: R ~ Z  the map induced by  ]. 

Since W is locally defined by  d equations, codlin (W, X) ~< d. 

THEOREM 1. Assume codim (W, X)=d.  Then 

/*[Z] = [W] + r . (  U ~ [R] )  
in An_dX , where 

U= ~ r*cl(I(R)) ~.h*cj(N) 
i + / - ~  1 

(We denote the group o/ k-cycles modulo rational equivalence on X by AkX; /or properties 

o/Chern classes, cap products, etc., see [Eli) .  

(1) Partially supported by the NSF under grant no. NCS 76-09753, while a visitor at the Mathe- 
matics Institute in Aarhus, Denmark. 
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1.2. Double points 

L e t / :  X n-> ym be a morphism of non-singular varieties. Let  ~: X • X--*X x X be the 

blowing-up of X x X along the diagonal; the exceptional divisor P(X)  can be identified with 

the projectivized tangent bundle of X. Let  F: X x X-+ Y x Y be the composition of 

with / x / .  Laksov defines the double point scheme Z(/) to be the subseheme of X x X which 

is residual to P(X) in F- l (Ar) ,  i.e. 

I ( F - I ( A y ) )  = I(P(X)). i(Z(l)) 

He showed tha t  the underlying set of Z(/) consists of pairs (x, x') with x ~ x '  and/(x)  =/(x'), 

together with points of P(X)  which correspond to tangent  lines tha t  are mapped to zero 

by  d/. 

I f  Z(/) has the expected codimension m, then it determines a cycle Z(/) of dimension 

2 n - m  on X x X .  The double point cycle D(/) is then the (2n-m)-cyc le  on X defined by  

D(])=pr i .~ .Z([  ), where pr i is the first projection of X x X  to X. 

TREOREM 2. Assume codim Z([)=m. Then 

(/)] = / * / , I X ]  - cm- . (n )  ~ [ x ]  

in A~n_,~X, where vI=/*T r -  T z is the virtual normal bundle o] ]. 

1.3. Curves 

Let  ]: X i-+ y2 be a morphism from a non-singular curve to a non-singular surface. 

Assume that  / maps X birationalty onto its image X. The conductor of X ~ X  is an ideal 

sheaf on X, so it determines a zero cycle C on X. 

THEOREM 3. The double point cycle D(/) is equal to C. 

1.4. Divisors 

Let  C and D be effective Cartier divisors on a purely n-dimensional variety X. Then 

ci(O(C)) ~ [ D ]  = cl(O(D)) ~ [ C ]  

in An_2X, as follows easily from the facts tha t  [C] =ci(O(C))~[X],  [D] =ci(O(D))~[X] ,  

and the Chern classes commute. Both sides of this formula live natural ly in A,_ 2 E, where 

E = C U D, and we claim tha t  equality holds there. Theorems 1 and 2 depend on this theorem. 

THEOREM 4. Let k: E ->X be the inclusion. Then 

ci(k*O(C)) ~ [ D ]  = cl(k*O(D)) ~[C]  
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w 2. Remarks 

2.1. Theorem 1 is Laksov's  Theorem 8 ILl, except tha t  we do not need to assume tha t  

W has no components in R. Similarly Theorem 2 is Laksov's  Theorem 15, but  without the 

assumption tha t  the double point scheme has no components in the exceptional divisor. 

Thus entire components of Z(]) can consist of ramification points, provided the dimensions 

are correct. When we map a curve to a surface, this means we may  allow cusps and higher 

singularities as well as ordinary multiple points (cf. Theorem 3). 

2.2. By following the ideas of K. Johnson [J], the double point formula may  be ex- 

tended to mappings ]: X-+ Y when X is singular. See IF-L]  for a report tha t  includes this 

generalization. 

2.3. The double point locus D(I ) of a morphism/ :  X-~ Y is the set of points x E X  such 

tha t  either there is an x'~=x with [(x') =](x), or ] is ramified at  x. As a set, D(]) is the image 

of Z([) under prlo~.  Artin and Nagata  [A-N] have shown tha t  if X is a local complete inter- 

section and Y is non-singular, then each irreducible component of ~(Z(])) has dimension 

a t  least 2 n - m .  I t  follows that  each component of D([) has dimension at  least 2 n - r e .  

(This is easy to see for components which do not consist entirely of ramification points, 

and for those that  do it follows from the fact tha t  pr 1 maps the diagonal isomorphically 

onto X.) 

In  particular, if X is a local complete intersection, and Z(]) has dimension 2 n - m ,  

then D(]) is a positive (2n-m)-cycle whose support  is exactly the double point locus. 

2.4. Given a morphism ]: Xn-~ ym, it  is desirable to find a subscheme of X whose 

support  is the double point locus, and whose cycle is D(/), assuming the dimensions are 

correct. Laksov [L] studies the image scheme of Z(]) under the projection pr loz:  X • X ~ X  

as a possible solution; he shows that  if [ is sufficiently generic it answers the question. 

The generic assumption doesn't  allow for higher order multiplicites, however; e.g. for a 

map from a curve to a surface it allows only nodes, while we have seen tha t  the conductor 

works in general here. 

For the general codimension one ease X n-~ y~+l Kleiman [K] has showed tha t  the 

divisor C defined by  the conductor satisfies the desired formula [C]=]*].[X]-ClO, f). 

There should certainly be a proof tha t  the C and D(h are the same divisor in this case. 

When m > n + l ,  however, the conductor does not give the right answer. A counter- 

example (cf. [A-N], w 5.8) is given by  taking X ~ to be the disjoint union of three projective 

planes, Y4=projective 4-space, and ]: X-+ Y mapping X to three planes tha t  intersect 

(pair~ise transversally) in one point Q. In  this case the conductor consists of functions tha t  
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vanish, together with their linear parts, at  the three points tha t  map to Q. So Deg C = 9, 

while Deg D(/ )=  6, as may  be calculated from Theorem 2. 

2.5. I t  is clear in general tha t  the class/*/ ,[X] -cm_n(vr) restricts to zero on the comple- 

ment  of the double point locus D(/) and therefore ([F], w 1.9) there is a class in A2n_,,(D(/)) 

tha t  maps to this class in A2n_mX. A double point formula may  be thought  of as a con- 

struction of such an element in A2n_m(D(/)). 
I f  we start  with a non-singular hypersurface X ~ in a non-singular var iety yn+l, 

and let Xn+X '~ be the blow-up of X along a non-singular subvariety, then the induced 

map /: X n--> yn+l has the exceptional divisor D for its double point locus. Note tha t  in 

this case D has the correct dimension, but Z(/) is too big. And in fact a simple calculation 

shows tha t  

/*/,IX] - cl(vs) = - In] .  

2.6. Theorem 3 is proved by a straight-forward calculation, comparing the given 

map to one obtained by blowing up a point  in the image. I have learned that  M. Fischer, 

M. Gusein-Zade and B. Tessier have, independently, done essentially the same thing. 

(See [T] for this and interesting uses of the double point scheme in the s tudy of equi- 

singularity.) We include an elementary proof in w 4 which doesn't  use the relation between 

the conductor and the arithmetic genus Pa" This relation can then be deduced from Theorems 

2 and 3. Theorem 2 says 

D(I) =/*[X] -1%( Y) +c~(X) 

If  we let Kx, Kr deuote canonical divisors, we have 

deg D(/) = X.  (X + K r )  - d e g  Kx 

= 2 p f i - 2 - ( 2 p ~ x - 2 )  

by Riemann-Roch. Combining this with Theorem 3 we recover the formula 

deg C = 2(p~X-paX). 

2.7. Theorem 4 can also be proved by using MacPherson's graph construction (of. 

[F-M]). In  fact, one can show that  both sides of the equation live naturally and are equal 

in An_2(C N D). The proof given in w 5 is more elementary. 

2.8. The result here, and in [L], make use of rational equivalence on singular varieties. 

In  particular we use Lemma (4) of w 2.2 in [F]. Unfortunately the essential hypothesis 

tha t  the two maps ] and 9 are Tor-independent, i.e. tha t  Tor~ O x ) = 0  for i > 0 ,  
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was left out of the statement there. This hypothesis does hold in the places necessary for 

our results. See [F-M] for a detailed proof. 

2.9. I would like to thank K. Johnson, S. Kleiman, A. Landman, R. MaePherson, 

and C. McCrory for helpful conversations concerning intersection problems and double 

point formulae. 

w 3. Proof of Theorems 1 and 2 

The only place where essential change is needed in Laksov's argument in [L] is in 

his proof of Lemma 13. With notations as in w 1.1, let ~v: X ' ~ X  be the blow-up of X along 

V =/ - I (Z ) ,  and construct the following Cartesian diagram: 

w'  k ' , v  ' J ' , x '  

W k ~ V  j_...~ X 

Let R' =~v-I(R). The assertion of Lemma 13 in [L] follows immediately from the following 

two formulae, valid for any ct EA~V. 

(i) 

for any l ~< d - 2. 

(ii) 

v/.j'.{O*(c,)j'*(c~(I(W'))~cx(I(R')) m) ~[W']}  = 0 

~.j'.{~*(c,)j'*(c~(I(W'))'c~(I(R'))~)~[R']) =0 

for any l ~ d - 1. 

Since I (R ' )  = ~v*I(R), the left side of (i) equals 

c1(I (R))ra r-~v. j ,  {8"(c,) j'*Cl(I ( W'))' r-~ [ W']} 

= cl(I(R)) ~j ,~,{~*(c,)~' ,(k'*j'*cl(I(w'))~[w'])}  

= cl(l(R))m ~ j . { c ,  2 .  ~.(c~((j'k') "I( W'))'~ [W'])} 

But W' has pure dimension n - 1 ,  and W has dimension n - d ,  so ~ , ( # ~ [ W ' ] ) = 0  for any 

c EA ~ W', l ~< d -  2, by reasons of dimension. 

For the proof of (ii), we apply Theorem 4 to know that  

j'*c~(I(W')) ~[R'] = j,*cx(I(R')) ~[W'] 

in An_ ~ V', and therefore 

j'*(cx(I (W')) z" cl(I(R'))  m) ~ [R'] = j'*(Cx(I (W')) Z-Xcl(I(R'))m+l ) ~ [ W'] 
7 -  772907 Acta matkematica 140. Imprim~ le l0  FSvrier 1978 



98 WILLIAM FULTO:N 

for l > 0, Substituting this last identity into formula (ii) reduces it to one of type (i), and 

concludes the proof. 

w 4. Proof of Theorem 3 

By extending the ground field, we may  assume we are working over an algebraically 

closed field /c. Let C be the conductor of X-~X.  We must  show that  ordp C =ordp D(/) 

at  each point P ir~ X. 

Let  ](P) = P, and let ~: Y' -> Y be the blow-up of Y at  P, and let / ' :  X-* Y' be the induced 

morphism, so (~of = / ,  and let )~' =/'(X), P' =/'(P), and let C' be the conductor of X-~X' .  

The result is obvious if / is an imbedding at  P, and this is realized by enough blowing up, 

so it suffices to show 

(*) ordp D( / ) -o rdp  D(/') = ordp C - o r d p  C' 

This depends only on the completions of the local rings, so we may  take uniformizing 

parameters (x, y) for Y at P so )77 is given by an equation F(x, y) =0,  where the y-axis is 

not tangent to X at  P=(O, 0). Let m be the multiplicity of X at  P. Write k(Q)=OrdQ (X) 
for any QE/-I(P),  and for a zero-dimensional subseheme Z of X • X, write ord(p,Q)Z for 

the length of Oz at (P, Q). Since 

ord~D(/) ~ ord(p,Q)Z(/) 
f(Q)=~ 

the formula (*) follows from the following four fornmlae: 

(i) m =  ~ k(Q) 
f ( Q ) - P  

(ii) ord(e, p) Z(/) - ord(e.e) Z([') = lc(P)(k(P) - 1) 

(iii) ord(p, Q) Z(]) -  ord(e. Q)Z(/') = k(P)k(Q) if 

(iv) ordp C - o r d e  C ' =  (m-1)k(P)  

P~:Q. 

Formula (i) follows from the fact that  m is the intersection number  of X with the 

y-axis. 

To prove formula (ii), let t be a uniformizing parameter  for X at P,  so / is given by 

](t)=(x(t), y(t)) for power series x(t), y(t), and / '  is given by  ]'(t)=(x(t), z(t)) where 

y(t) = z(t) z(t). 

For any power-series w(t) define the power series ~v(t, h) in two variables by the equation 

w(t +h) -w(t)  = h~(t, h). 

Let  t~=topr~, i = l ,  2. Then u=tl,  v = t 2 - - t  1 may be taken as uniformizing parame- 

ters for X •  at  (P ,P) ,  and the ideal of ( / •  is generated at  (P ,P)  by the 
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functions x(tl) -x(t2) and y(tl) -y( t2) ,  or by x(tl) - x(t2) and y(tl).(z(tl) -z(t~)), i.e. by v~(u, v) 

and vx(u)~(u,v). Therefore I(Z(f))=@(u,v), x(u)~(u, v)) at (P,P). Similarly I(Z(/'))-- 
@(u, v), ~(u, v)). I t  follows (by the bilinarity of intersection numbers) tha t  

ord<p, p) Z(/)-  ord<p, p> Z(/') = length (k[[u, v]]/@(u, v), x(u))) 

Since the "curves" x(u) and ~(u, v) are not tangent,  this length is the product of their 

multiplicities, which proves (ii). 

The proof of (iii) is similar but easier, so we leave it to the reader. 

To prove (iv), let O, 0', and 0 be the completions of the local rings of )~ at P, X '  at  P ' ,  

and X at  P respectively, and regard C (resp. C') as the conductor of 0 over 0 (resp. 0 

over 0 ' ) .  Then (iv) is equivalent to showing tha t  C = x  ~-1 C'. This follows from the fact 

tha t  the conductor of O'  over ~ is x~-'lO '. And this last fact can be seen by writing 

0 : - ~  ~ k[[x]]y ~, O'=~5-o~k[[x]]z*; By induction on r, one calculates tha t  for a0, ..., 

a,~L1Ek[[x]], we have (Eatz~).zJEO for O~j<~r~m-1, if and only if  Xm-l[am_l_~ for 

O<j<r. 

w 5. ProoI of Theorem 4 

Reduction step. Let ~: X'-+X be a birational morphism, C'=~*C, D'=~*C. Then 

it is enough to prove the theorem for C' and D' on X' .  

For if E '  = C '  U D', k': E'->X' the inclusion, ~: E ' ~ E  the induced morphism, then 

[D]=~,[D']=~,[D'] ([F1], w 1.5 Prop. 1(2)), so 

k*(c 10(O) ) ~ [ D ] )  = ~,(~]*k*c 10( C) ~ [ D ' ] )  

t ,  r ~ r =~7,(k c,(O(C )) [D ]) 

Then we interchange C' and D '  in this last formula and reverse the argument. 

In  general let [C]=Emp(C)[P], [D]=]Emp(D)[P] be the Well divisors of C and D, 

the sums being over the codimension one subvarieties P of X which are components of E. 

Define re(C, D ) =  Emp(C)mp(D), which measures the excess intersection of C and D. 

Cw~e 1. The divisors C and D intersect properly, i.e. re(C, D) =0.  

We claim that  both sides of the required formula are equal to 

1 

( -  1)~Zn=~(Tor~ On)), 
=0 

where we use the notation Zk(:~) for the k-cycle defined by a sheaf Y whose support  has 

dimension at  most k. 
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As proved in [F2] there is an inclusion i: X--->X' with X '  non-singular, and a line bundle 

E' on X'  with a section s' of E' transversal to the zero-section C' of E '  such that i*E' = O(C) 

and i*(s') is a section whose zero-scheme is C. Then Cl(E')=[C' ], and k*cl(O(C))~[D] 

is represented by the cycle 

1 

[D]. i[6'] = ~ ( -  1)~Z,-~(Tor~ 00)). 
i=0  

Now the claim follows from the isomorphism 

Wor~ ,, 00) "" Tor~ 00) 

Case 2. All the eodimension one subvarieties of X which are contained in C N D are 

simple on X. 

The proof is by induction on re(C, D), starting with re(C, D)=0 ,  covered by case 1. 

Let J = I ( C ) + I ( D ) ,  and let z:  X ' ~ X  be the blow-up of X along J .  Then JO x .= I (B ' ) ,  

where B' is the exceptional divisor on X'.  Let C' =re*C, D' =re*D, E' =C' U D', k': E ' -~X '  

the inclusion. Then I (B ' )=  I(C')+ I(D'),  so effective divisors C" and D" can be defined on 

X'  by the equations I(C') = I(B')  I(C") and I(D') = I(B')  I( D"). Then I(B')  = I(B') .  (I(C") § 

I(D~')). Therefore we have written 

C' = B' § C", D' = B' + D" 

with C" and D" disjoint. By the reduction step it is enough to prove the formula for C' 

and D'  on X',  and by linearity it is enough to prove it for each pair of divisors (B', B'), 

(C", D"), (C"~ B') and (B', D"). The first two of these are obvious, and the fourth is the 

same as the third, so we consider C 'r and B'. 

We claim first that  re maps the set of eodimension one subvarieties of X'  contained in 

C" N B' one-to-one into the set of codimension one subvarieties of X contained in C ~ D, 

and if re(P') = P  then Op(X)~ O~.(X'), me(C) =m~.(C'), and rap(D) =mp.(D'). 

This claim is local on X, so assume C and D are defined by functions u and v respec- 

tively. Then X'  can be identified with a subscheme of X • p1, where if T o and T 1 are the 

homogeneous coordinates on 1 )1, then u T o - v T  1 vanishes on X' .  Since (u )=Tl . (u ,  v) 

on X',  we see that I (C)Ox.=T1JOx, ,  so C" is defined by the equation T I = 0  on X' .  

Similarly T o defines D" on X'.  

The map re: X ' ~ X  is induced by the projection p: X • so we deduce from 

the above that p maps C" and D" isomorphically into X. In particular any codimension 

one subvariety P '  of X '  lying in C" maps to a variety P of eodimension one in X; and 

if P '  is also contained in B', then P is in C fl D, and therefore Op(X) ~ Op,(X') since by 
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our  a s sumpt ion  in th is  case Op(X) is a discrete  va lua t ion  ring. The  equa l i ty  of mul t ip l ic i tes  

of divisors  follows i m m e d i a t e l y  f rom the  i somorphism of the  local rings. 

To finish the  proof  in case 2 i t  is enough to  show m(C", B') <re(C, D) if m(C, D) >0 .  

B y  the  claim m(C, D)>~Zme.(C')mp,(D'), the  sum t a k e n  over  codimension one sub- 

var ie t ies  P '  of C~'NB '. Now subs t i tu t e  t he  equat ions  mp,(C')=m~,(B')§ and  

mp.(D') = m e . ( B ' ) §  '~) in to  th is  i nequa l i t y  to  finish. 

General case. Le t  ~: X ' ~ X  be the  normal iza t ion  of X,  and  a p p l y  the  reduc t ion  s tep  

to  reduce to  t he  case where X is normal .  Then case 2 applies.  
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