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w 1. Introduction 

The main purpose of the following article is to present a proof of a formula of J. A. 

Todd for the rational equivalence class of the double locus of a morphism. In  our proof, 

the main ingredient is a formula for the rational equivalence classes of residual intersections 

without embedded components which is of considerable interest in itself. The latter formula 

we  shall derive from an important  special case called the "formule clef", conjectured by  

Grothendieck ([3], expos6 0, 1957) and proved by  A. T. Lascu, D. Mumford and D. B. Scott 

[8]. In  his article [10], Todd obtained his formula for the double locus and a formula closely 

related to our formula for residual intersections simultaneously, by  an inductive argument.  

I t  is interesting to notice that  while we can prove the latter formula under mild conditions 

on the intersections involved, the formula for the double locus is shown to be true only 

under restrictive transversali ty conditions on the morphisms in question. We shall however, 

give a weaker version of Todd's formula for the double locus, which follows immediately 

from the formula for residual intersections and which holds under correspondingly mild 

transversality conditions. 

In  a previous article [7] we treated the particular case of Todd's formula for the double 

locus when the target  variety was a projective space. We could in tha t  case, define the 

scheme of double points as the scheme of zeroes of a section of a locally free sheaf. As a 

consequence, when the section intersected the zero section property,  we obtained an easy 

proof of the weak version of Todd's  formula, avoiding the "formule clef". We also proved 

that  when the morphism in question was induced by  a generic projection (possibly after a 

twisting of the embedding involved) the morphism satisfied the restrictive conditions under 

which Todd's formula holds. As a consequence of our results we obtained generalizations 

of results of A. Holme [5] and of C. A. M. Peters and J.  Simonis [9] about secants of pro- 

jective schemes. These results are generalized further below. 
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The arrangement of this article is as follows. In sections two and three we derive the 

formula for residual intersections from the "formule clef". Then, in section four, we derive 

the weaker version of Todd's formula from the formula for residual intersections. In sec- 

tion five, we first prove a criterion for a smooth scheme to be embedded into another 

smooth scheme which generalizes a result given in our previous article [7] (w 5, Theorem 

20). Then we prove that,  when the morphisms satisfy suitable transversality conditions, 

Todd's formula follows from the weaker version of section four. 

w 2. Residual intersections 

We shall in the following, exclusively consider schemes that  are algebraic over an 

algebraically closed field k. In sections one and two, we shalI fix the following notation and 

assumptions. We denote by X, Y and Z schemes that  are connected and smooth over k 

and b y / :  X ~  Y a proper morphism. Assume that  Z is a closed subscheme of Y and that  

the scheme theoretic inverse image V =/-I(Z) of Z by / contains a divisor R in X. Denote 

by I(V) and I (R)  the ideals in Ox defining V and R. The ideal I (R)  is invertible and the 

product I (V) .  I (R) -1 defines a closed subscheme W of X. Then I (V)  = I (W)  I(R),  where 

I(W) is the ideal defining W. 

In  the above situation, when the scheme W is o /pure  codimension codim (Z, Y) in X 

we shall say that the inverse image V=/- I (Z)  is residual and we shall call R the residual 

divisor and W the proper part o/the inverse image. 

Throughout section two and three we shall assume that ]-I(Z) is residual and that no com- 

ponent o/ W is contained in R. 

LV.MMA 1. Under the above assumptions the scheme W is locally a complete intersection 

in X .  

Proo/. By assumption, the schemes Y and Z are smooth. Hence, Z is locally a complete 

intersection in Y. I t  follows that  the ideal I(V) defining the inverse image of Z by  f is 

generated locally by codim (Z, Y) elements. The ideal I (R)  is locally principal. Consequently 

the ideal I ( V ) I ( R )  -1 defining W is also generated locally by codim (Z, Y) equations. 

However, by assumption, W is of pure codimension codim (Z, Y) in X. Consequently W 

is locally a complete intersection in X. 

We denote the monoidal transformation of X (resp. Y) with center V (resp. Z) by 

X'  (resp. Y'). The structure morphism of X'  (resp. Y') over X (resp. Y) we denote by  

(resp. r and the exceptional divisor in X'  (resp. Y') by V' (resp. Z'). Moreover, we let 

~: V ' ~  V (resp. ~: Z ' ~ Z )  be the morphisms induced by ~fl (resp. r Finally, we denote by 

j and ~" (resp. i and 4') the inclusions of V in X and V' in X '  (resp. of Z in Y and Z' in Y'). 
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By the naturali ty of monoidal transformations; there is a canonical morphism 

]': X'-~ Y' such that  el' =fv 2 and such that  (f')-I(Z') = V'. We let g: V---,'-Z and 9': V ' ~ Z '  

denote the morphisms induced by  f and f'. The morphisms and schemes defined above 

make up the following commutative diagram. 

f 
t 

X'  

V 
y 

X - -  
I 

~ y '  

/+ 
. Z p 

~ Z  

. Y 

LEMMA 2. Denote by X" the monoidal trans/ormation of X with center W. Then the 

schemes X" and X '  are canonically X.isomorphic. 

Proof. The ideal I(R) is invertible. Hence, the natural maps I(W) v | I(R) v_~ 1(W) ~- I(R)" 

are isomorphisms. Moreover, I ( V ) = I ( W ) I ( R )  and consequently I (V)~=I(W)~I(R)  ~. 

We conclude that  X'=Proj ( |174  By definition 

X " = P r o j  ( ~ = o  I(W)~). Hence, the isomorphism of the lemma is the canonical isomor- 

phism. 

Proj ( | I(W) ~)->Proj ( |  I (W)  ~ | I (R)  ~) associated to the invertible sheaf I(R). 

([4] Chapter II ,  Proposition (3.1.8) (iii), p. 52.) 

LEMMA 3. Let s: T ~  U be a morphism from an equidimensional scheme T, without 

embedded components, to a scheme U. Moreover, let S be a Cartier divisor in U defined by an 

ideal I ~ 0~. I f  the subscheme s-~(S) does not contain any component of T then 8"I i8 the ideal 

in 0 T defining the subscheme s-l(S) of T. 

Proof. Let Spee B be an open affine subset of U where the subscheme S is defined by 

a single equation b E B. Moreover, let Spec A be an open affine subset of T which is mapped 

into Spec A by s. Then over the scheme Spec B the inclusion I _  0u can be represented 

by the injeetive homomorphism B b , B which sends c to cb. The pull back s*I~Or  to 
b 

OT of the above injection is then represented over Spee A by the homomorphism A * A 

sending a to ba. However, b is not a zero divisor in A. Indeed, by  assumption A has no 

embedded components and s-l(S) N Spec A =Spec A/bA is of dimension strictly less than 

Spee A. Consequently, b is in no associated prime of A. 

I t  follows that  the homomorphism s*I->Or is injeetive. 
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L~MMA 4. Denote by R' the subscheme ~-l(R) o/X' and by I(Z') (resp. I(V')) the ideals 

de/ining the subscheme Z' o] Y' (resp. the subscheme V' o/ X'). Then (/')*I(Z')=I(V') and 

yJ*I(R) is the ideal I(R') defining the subscheme R' o/X' .  

Pro@ The scheme X '  is integral because it is a monoidal transformation of the integral 

scheme X. Hence, the assertions of the lemma are immediate consequences of Lemma 3 

applied to the morph i sms / '  and ~0. 

LEMMA 5. The ideal I(W)Ox, defining the subscheme W'=~0-1(W) o / X '  is invertible. 

Moreover, the shea/ I(W)Ox.| is the invertible ideal I(V') defining the subscheme 

V' o/X' .  

Pro@ By Lemma 2 the scheme ~?-I(W) is a Cartier divisor in X' .  Hence, I(W)Ox, 

is invertible. 

To prove the second assertion, recall tha t  V is defined by the ideal I ( V ) =  I (W)I(R)  

in Ox. Hence, V' is defined by  the ideal I(W)I(R)Ox, in Ox,. By Lemma 4, the latter 

ideal is equal to I(W)Ox,.g~*I(R) and since I(W)Ox, and ~p*I(R) both are invertible by  

the first part  of Lemma 5 and Lemma 4, the natural  map 

I(W) Ox, | ~. I(W) Ox, .yJ*I(R) 

is an isomorphism. 

LEMMA 6. Denote by m and n the immersions o] W' and R' in V'. Moreover, denote by 

I(W') and I(R') the ideals defining the subschemes W' and R' o] X'. Then (j'm)*I(R') and 

(j'n)*I(W') are the ideals in 0 W, and O h, defining the scheme W' N R' as a subscheme o/ W' 

and R'. 

Proo]. Each component of the scheme W' intersect each component of the scheme R'  

properly, because the same is true for the components of the schemes W and R. Moreover, 

the scheme W' is a Cohen-Macaulay scheme. Indeed, by Lemma 1, the scheme W is Cohen- 

Macaulay and the eonormal sheaf I(W)/I(W) ~ is a locally free Ow-module ([1], VI-1, 

Theorem (1.8), p.104 and VII-5, Theorem (5.1), p. 147). Hence, the projective bundle 

W'=P(I(W)/I(W) 2) is Cohen-Macaulay ([4], Chapter IVy, Corollary (6.3.5) (ii), p. 140). 

However, the scheme W' is a Cartier divisor, and the scheme X '  is integral being a monoidal 

transform of an integral scheme. Consequently, X' is a Cohen-Macaulay scheme and the 

same is true for the Cartier divisor R'  in X'. In  particular, both the schemes W' and R" 

are equidimensional without imbedded component. 

Both assertions of the lemma now follow from Lemma 3 applied to the morphisms 

i'm and ]'n. 
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w 3. The rational equivalence classes of residual intersections 

We shall next recall some basic definitions and results f r o m  the theory of rational 

equivalence on schemes tha t  are not necessarily smooth. Our source of reference is W. 

Fulton's  article [2]. 

In  the remainder of the article we shall fix the following notation. Let  U be a scheme. 

The Chow homology group of U ([2], w 1.8) we denote by A.(U) and the class of a closed 

subscheme S of U by  [S] (if S is also a subscheme of a scheme T we also denote the class 

of S in A.(T)  by [S]. I t  will be clear from the context in which group we consider the class). 

The direct image map A.(T)-+A.(U) associated to a morphism s: T--->U ([2], w 1.9) we 

denote by s,. I f  U is smooth there is also a Gysin map s*: A.(U)-+A.(T) associated to s. 

The Chow cohomology ring of U ([2], w 3.1,) we denote by A'(U). Associated to the 

morphism s: T ~ U  there is a Gysin map s*: A'(U)-+A'(T) ([2], w 3.1). The group A.(U) 

is a A'(U) module in a natural  way ([2], w 3.1). We denote the product of two elements 

aEA'(U) and bEA.(U) by a ~ b .  If U is smooth, the Gysin maps satisfy the following 

relation h*(a r~b) = h*a r-,h*b. 

The top square of diagram (1.1) above is Cartesian. Moreover, the morphisms i' and j '  

are proper and the schemes Y' and Z '  are smooth. Consequently, ([2], w 2.2, Lemma (4)) 

the following equality holds in A.(X')(1), 

(/')*i',z' = f,(g')*z' (2.1) 
for all z' E A.(Z'). 

The Chern classes in A'(U) associated to a locally free Ou-module E we denote by  

ci(E ) and the corresponding Chern polynomial ~ - 0  cv(E)t ~ by ct(E). Let F be another 

locally free O~-module. The coefficient of t" in the polynomials vt(F)ct(E) -1 and ct(E) -1 

we denote by c~(l~-E) and % ( - E ) .  We let s,(U)=c~(-(~lv)v), where ( ~ ) ~  is the dual 

module o] the module o/ one Kdhler di//erentials on U and let tv (s )=cr(s*(~)~-(~)~) .  

We call the classes sr(U ) the Segre classes o/ U and the classes t~(s) the Todd classes o/ the 

morphism s. Clearly t~(s) ~ * ~ ~ s =Y~,=0 %(8 ( ~ ) )  v_AT). 

LV, MMA 7. Let E be a locally/ree Ou-module o/rank e and let P = P ( E )  be the projective 

bundle over the scheme U, associated to E. Denote by ~ the structure morphism o/the pro~ective 

bundle P and by 0p(1) the universal invertible quotient shea/ o] ~* E. Then the/ollowing/ormula 

holds in A.(U), 

a,(cl(Op(1 ) )~ r-, [p]) = %_~+~( - E ~) ~ [U] 

/or v=O, 1 .. . .  

(1) See Remark 2.8 in W. Fulton, "A note on residual intersetions .. .". Acts. Math., this volume. 
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Proo]. Choose an embedding e of U into a smooth scheme G such that  E is the pull 

back by  e of a locally free Oa-module F ([2], w 3.2, Lemma (1)). Let Q =P(F )  be the projec- 

tive bundle associated to F and denote by  fl the structure morphism of the projective 

bundle Q. The formulas of the lemma are well known when the base scheme is smooth. 

Hence, the following formulas hold in A.(G), 

for v = 0, 1 ... .  Clearly 

f l ,  Cl(OQ(1))  v r"~ [Q])  = Cv_e+l( - -  F v) ~ [ ~ ]  

e* (Cv_e§ 1 ( - -  F ~) f'~ [G])  = Gv_e§ - E ~ ) f ~  [ U ] .  

(2.2) 

Consequently, we obtain from (2.2) the formulas 

~*fl,(cl(OQ(1))~ ~ [Q]) = Cv_e+l( - E v) ~ [ U ]  (2 .3 )  

for u=0 ,  1, ... 

Denoted by  ~ the natural  morphism P-+ Q defined by  the surjection ~*e*F = a*E ~ 0p(1 ) 

Then the commutat ive diagram 

P ,Q  

t 
U , G  

e 

is Cartesian, the morphisms ~ and ~ are projective and G and Q are smooth schemes. 

Hence the equality e*~, = e ,  ~* holds ([2], w 2.2, Lemma (4)). We obtain from (2.3) the for- 

mulas 

~,$*(cl(OQ(1))v ~[Q]) = C~-e+l( -- E v) ~ [ U ]  (2.4) 

for v =0,  1 . . . .  The lemma now follows from (2.4) and the equality a,(*(Cl(0Q(1)) v ~[Q]) = 

~,(cl(Op(1))~ ~ [P]). 

Denote by  I(Z) the ideal defining the subscheme Z of Y. The schemes Y and Z are 

smooth. Hence, I(Z)/I(Z) ~ is a locally free Oz-module of rank codim (Z, Y) ([I], VI-1, 

Theorem (1.8), p. 104 and VII-5, Theorem (5.1), p. 147) and consequently, Z' =P(I(Z)/I(Z)2). 
The structure morphism of the projective bundle P(I(Z)/I(Z) 2) over Z is the morphism 

7: Z '  ~ Z  of diagram (1.1). Moreover, the universal invertible quotient sheaf of ~*I(Z)/I(Z) ~ 
is (i')*I(Z') where I(Z') is the ideal defining the subscheme Z '  of Y'. Denote by K the kernel 

of the surjection ~*I(Z)/I(Z)2-->(i')*I(Z). Then the following fundamental  formula of inter- 

section theory, called the "formule clef", holds in A.(Y') for all z EA.(Z), 

r  z = i .  (co-1 (K v) ~ y *  (z)) 



RESIDUAL INTERSECTIONS AND TODD'S FORMULA 81 

where e =codim (Z, Y) ([8], w 4, Theorem 2, p. 122). We use the equation 

ct(K ~) = ct(~*(I(Z)/l(Z)~y)ct( (i')*Z(g'y)-~ 

to rewrite the "formule clef" in the following form, 

r ~ r162 (2.5) 
/2+v=c-1 

where 1gzlr = (I(Z)/I(Z)2) ~ is the normal sheaf of Z in Y. 

The  purpose of section three is to deduce the following formula from the "formule 

clef". 

THEOREM 8. Let X ,  Y and Z be smooth, connected and pro]ective schemes and let/: X-+ Y 

be a morphism. Assume that Z is a subscheme o] Y and that the inverse image/-I(Z) is residual 

with a proper part W and a residual divisor R. Moreover, assume that no component o/ W 

is contained in R. Denote by r the inclusion of R in X and by h: R-+Z the morphism induced 

by/.[Then the/ollowing/ormula holds in A.(X),  

/*[Z] = [W] + ~ cl(I(R)yr,(h*cv(Nz/r )~[R]) .  
~t+v=c-1 

Here c=codim (Z, Y) and Nz/r is the normal bundle o[ Z in Y. 

We shall break up the computations needed in the proof of Theorem 8 into a series 

of lemmas. 

LEMMA 9. With the notation o/Lemma 6 the/ollowing/ormula holds in A.(X'), 

(]')*r = ?, l (]')*{Cl(I(W')~cl(I(R'))~'z} c'((gb)*2Vzlr)r"([W'] + [R']) 
,a+v=c-I l=O \ / 

where c = codim (Z, Y). 

Proo/. From the "formule clef" in the form (2.5) and with z = [Z], together with formula 

(2.1), we obtain the following formula, 

(/')*r = i', Y (g')*{c,(~*~Vz/y)cl((i')*I(Z')')~'~*[Z]}. 

The latter formula we can rewrite in the following way, 

( f )*r  ~ %((rg')*2Vz/r)C~((i'g')*I(Z'))~r,@g')*[Z]. (2.6) 
/x+v=c--1 

However, (i'g')*= (fj')* and by  Lemma 5 and Lemma 6 the following equalities hold 

ci((f)*l(Z')) = q(I(W)Ox, |  -- c~(I(W')) + c~(l(R')). 
6 -  772907 Acta mathematica 140. Imprim6 le 10 F6vrier 1978 
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Moreover, (Tg')* = (gS)* and (Tg')*[Z] = [ V'] = [W'] + [R']. Consequently, formula 

can be rewritten in the following form, 

(f)*(~*i,[Z] : j', +v_~c_l C,((~)*~Z/y)() ')*{{~I(/(W')) § Cl(I(~'))}v f'~ ( [W']  § [R']) .  

Rearranging the latter formula we obtain the formula of the lemma. 

(2.6) 

LEMMA 10. Keep the notation o/Lemma 9. 

. !  

Let A = ~, ~ (j')%(I(W'))'~*c,(g*~V~y)~[W'], 
p+v=c-1 

and 

~ 
B = ?. ~. (j')*c~(I(R'))~(~*c,(g*Nz/r) ~[R'],  

/~+v=c-I 

C = (/')*r - A - B, 

where c=cod im (Z, Y). Then the element C in A.(X')  is in the image o / A . ( R ' ~ W ' )  by the 

direct image map associated to the inclusion o / R '  ~ W' in X' .  

Proo/. I t  follows from Lemma 9 tha t  C is a sum of terms of the form 

with 0 < l <~. Consequently, to prove the lemma, it is sufficient to prove tha t  the elements 

(j ')*cx(I(R'))~[W' ] and (j')*Cl(I(W'))f~[R' ] in A.(X')  are in the image of A . ( R ' ~ W ' )  

([2], w 2.4). However, with the notation of Lemma 6, we have m, [W' ]  = [W'] and n . [R ' ]  = [R'] 

and using the projection formula we obtain the formulas ( f )*e l ( I (R ' ) )~[W']= 

m.(m*(]')*cl(l(R')) ~ [ W'] and (]')*cl(I (W')) ~ [R'] = n.(n*(~')*c 1 (I(W'))  f~ [R']). By Lemma 

6, the sheaves (]'m)*cl(l(R')) and (]'n)*el(I(W')) are the ideals defining W ' ~ R '  as a 

subseheme of W' and R'. Consequently we have tha t  (]'m)*cl(I(R')) ~ [ W ' ]  = [W' ~ R ' ]  

in A.(W'), and ( ] 'n )*c l ( I (W' ) )~[R ' ] )=[W'~R'  ] in A.(R')  ([2], w 3.2, Proposition (3)). 

Hence both (j ' )*cl(l(R'))~[W'] and (y)*cl(I(W'))~[R'] are in the image of A.(W' f~R ' ) .  

Lv, MMA 11. With the notation o/Lemma 10, the equality ~f.A =[W] holds in A.(X).  

Proo]. We have tha t  ~oj' =](~. Consequently, we have the equation, 

~,A=j,~, ~ (j')*cl(Z(W'))~*cAg*lVz/y)~[W']. 
/~+v-c-I 

From the latter equation, we obtain, using the projection formula, the equation 

w . A = ] .  F cAg*Nz/y)~.{(j ')%(I(W'))~ ~[W']} .  (2.7) 
~u+v=c--1 
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By Lemma l ,  the scheme W is a complete intersection in X. Hence, the normal bundle 

Nwjx= (I(W)[I(W)~) " is a locally free Ow-module of rank c ([1], VI-1, Theorem (1.8), p. 104 

and VIII-5, Theorem (5.1}, p. 147) and W' =P(I(W)/I(W)~). The structure morphism Q 

of the projective bundle P(I(W)/I(W) ~) over W is the morphism induced by ~: V'-+ V. 

Moreover, (fm)*I(W') is the universal invertible quotient sheaf of Q*I(W)/I(W) 2. Conse- 

quently, it follows from Lemma 7 that  the expression 

~,(ca((j'm)*I(W')) v ~[W'] )  

is zero when 0 < ~ v < c - 1  and is equal to [W] when v = c - 1 ,  The same is therefore true 

for the expression 6,n~,(cl((~'m)*l(W'))v,"~[W']). However, by the projection formula 

the latter expression is equal to 6,(cl((~')*l(W'))v,",[W']). The only nonzero term in the 

right hand side of the equation (2.7) is therefore the term 

co(g*Nzir)~,((~')*Cl(I(W'))~-t~[W']) and this term is equal to [W]. 

LEM~tA 12. With the notation o[ Lemma 10, the following equality holds ~n A.(X), 

y,B= F cl(I(R))%(cA~*Nz~)~[R]) 
/ t+v=c-  1 

Proo I. By Lemma 4 we have that  I(R')=~?*I(R) and consequently that  cx(I(R'))= 

~2*cx(I(R)). Moreover, we have tha t  ~ j ' =  j~. Consequently, we obtain the equation, 

~p, B = j,  8,,+~_0_~ ~*~*Cl(I(R)) O*c,(g*Nz/y) f', [R']. 

Using the projection formula we can rewrite the latter equation in the following form, 

~o,B= Z c~(I(R))i,(%(g*Nz~r),",(~,[R']}. (2.8) 
/ t+~=c-1  

However, we have that  ~,[R'] = [R]. Indeed, ~ is an isomorphism outside of W' by Lemma 

2. Consequently, ~ induces a morphism from R' onto R which sends each component of 

R' birationally onto exactly one component of R. The equation of the lemma now follows 

from (2.8). 

LEI~IMA 13. With the notation of Lemma 10 we have that ~o,C=O. 

Proo[. On the one hand, Lemma 10 asserts that  the element C is in the image of the 

map A.(W' ,"~R')~A.(X') associated to the inclusion W' r-,R'-~X' and on the other hand, 

the composite map W' ~ R'-+ X of the inclusion W' ~ R'-+ X'  with ~0 factors via the inclusion 

W ~ R ~ X .  Consequently, the e]ement ~0,C in A.(X) is in the image of A . ( W ~ R )  by the 

map associated to the inclusion W ~ R ~ X .  However, the element C is in the graded 



84 DA~ LAKSOV 

piece Aa(X' ) of cycles of dimension d = d i m  X ' - c = d i m  W. Hence, w ,C is in Aa(E ) and 

consequently, is in the image of an element in Aa(W~ R). However, by  assumption, no 

component of W is contained in R. Consequently, d i m ( W r - , R ) < d i m  W=d and 

Aa(W ~R)=O. 

Proo] o/ Theorem 8. I t  follows from Lemma 10 and Lemma 13 tha t  W,(/')*r = 

W, A +W, B. However, W,W* =idA<x), because the morphism V is birational and X is smooth. 

Moreover, (1')*r Hence, ~o,(/')*r and the equation /*[Z]=w,A+~o,B 
holds. From the latter equation together with Lemma 11 and Lemma 12 we obtain the 

following formula 

/*[z] = [w] + y. cl(I(R))~i,(c,(g*Nz/r)r-,[R]). (2.8) 
I~+V-c-1 

Moreover, from the projection formula applied to the inclusion of R in V it follows tha t  

~,(c~(g*Nzlr)~[R]) =r,(c~(h*Nzlr)~[B]). Hence, the formula of Theorem 8 follows from 

(2.8). 

w 4. The rational equivalence class of the scheme of double points of a morphism 

We shall in the remainder of this article fix the following notation. Let  ]: X ~  Y be a 

proper morphism of smooth schemes over k. We denote by  (X x X)'  the monoidal transfor- 

mation of the product scheme X x X with center on the diagonal ~x(X) and by  n the 

structure morphism of the monoidal transformation. The conormal sheaf of the subseheme 

8x(X) of X x X is isomorphic to the sheaf ~lx of one K/ihler differentials on X ([1], VI-1, 

Pro p.(1.13), p. 106). Hence, the exceptional locus of the monoidal transformation is isomor- 

phic to the projective bundle P(~lx) over X. We denote this bundle by T(X) and its struc- 

ture morphism by w. The inclusion of T(X) in (X • X) '  we denote by  t. Finally, we denote 

by (X x rX) '  the scheme ((1 x f)~7~)-l(~y(]7))  =y~-l(X X yX).  The scheme X x r X  contains 

dx(X). Consequently, the scheme (X x r X )  ~ contains T(X). We denote by  ~ and 8' the 

embeddings of X in (X x r X) and of T(X) in (X • r X)'.  The schemes and morphisms defined 

above make up the following commutat ive diagram, 

(X x X) .... 

t (X x rX) '  

c ~ t  
T ( X )  . 

Yg 

T 

, x x x  l X t ,  y x  y 

~ X x r X  , Y 

, X 

(3.1) 

Denote by  I((X x r X ) '  ) and I(T(X)) the ideals defining the subsehemes (X x r X  )' 

and T(X) of ( X x X ) ' .  Then I(T(X)) is an invertible sheaf and I((XXrX)')I(T(X)) -1 
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is an ideal which defines a closed subscheme Z(/) of X. We call Z(/) the scheme o/double 

points ot/. The scheme theoretic image o] Z(/) by the morphism prl~ we denote by D(/) and 
call the double locu~s o/the morphism ]. 

Remark 14. The set X(k) of rational points of D(/) is the union of the set 

{xEX(k)13x'eZ(k),x'=~x and /(x')=/(x)}, or ordinary double points of /, and the set 

{xeX(k) I/is ramified at x}, of ramification points of f. More precisely, the following two 

assertions hold, 

(i) Let x and x' be two different rational points of X. Then z-l(x,  x') is contained in 

Z(/) if and only if/(x) =/(x'). 

(ii) Let  u be a rational point  of T(X) and put  ~(u)--x. Then u is contained in Z(/) 

if and only if the tangent vector tu in Tx(x) =Homk(x)(~,  k(x)), associated to u, is mapped 

to zero by  the hom0morphism d/: Tx(x)--> Tr(](x)) associated to f. 

Proo/. Assertion (i) is immediate from the definition of Z(]). 

To prove assertion (ii), we first note that  the conormal sheaves of the diagonals in 

X • X and Y • Y are isomorphic to g2~ and ~ ([1], VI-1, Proposition (1.13), p. 106) and that  

the conormal sheaf of T(X) in (X • X)' is t*I(T(X)). We denote the conormal bundle of 

T(X) in (X • by N 1 and the conormal bundles of X •  and ( X x r X ) '  in X x X  
and ( X •  by ~Y2 and _N a. Corresponding to diagram (3.1) we obtain a commutative 

diagram of conormal sheaves, 

0 

l 
N1 

T 
t*I(T(x//, ~*a~- (3.21 

l 
([4], Chap. IV4 (16.2.1), p. 10). The left vertical sequence of (3.2) is exact ([4], Chap. IV4 

Proposition (16.2.7), p. 13) and the two bottom horizontal maps are surjective ([4], Chap. 1-V a 

Proposition (16.2.2) (iii), p. 10). Moreover, the top horizontal map is the universal quotient 

map of the projective bundle T(X)=P(s I t  follows by an easy diagram chase that  the 

composite map 

�9 : * / * ~ - ~ t * I ( T ( X ) ) ,  (3.3) 
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obtained from diagram (3.2), is surjective at  the point u, if and only if the map u of diagram 

(3.2) is surjective a t  u. However, on the one hand the map ~( / (x))-~k(x)  obtained from 

(3.3) at  the point u is the tangent  vector d/(tu). On the other hand, u is surjective if and only 

if Nl(u ) is zero. Hence, d/(tu) is different from zero if and only if Nl(u ) is zero. However, 

Nl(u ) is zero if and only if u is not in Z(]). Indeed, by  Nakayamas  lemma Nl(u ) is zero 

if and only if the immersion 5' is open at the point u. However, 6' is an open immersion 

if and only if the inclusion I ( (X•  ) is surjective at  u. 

Twisting by I(T(X))  -1 we see tha t  this happens if and only if I(Z(/)) is trivial at u. Tha t  

is, if and only if u is not contained in Z(/). 

Note. I t  is not  hard to prove that  the schemes Z(/) and D(/) defined above are the 

same as the corresponding schemes defined in [7], Section 4, in the case when the scheme 

Y is isomorphic to a projective space P~. Most of the results proved below are generaliza- 

tions of the results of the article [7] to the case when Y is an arbi trary smooth, con- 

nected and projective scheme over /c. The following result generalizes Theorem 10, w 4, 

of [7]. 

THEOgEM" 15. Let X and Y be smooth connected p~v]ective schemes and let /: X ~  Y 

be a morphism. Assume that the scheme Z(]) o/double points o / / i s  o/pure dimension equal 

to 2 dim ( X ) - d i m  (Y) and that no component o] Z(/) is contained in T(X). Then the/ol- 

lowing/ormula holds in A.(X), 

(pr l ) ,  g,[Z(/)]  = l * l , [ x ]  - to(l) ~ [x], 

where c = d i m  ( Y ) - d i m  (X) and to(I) is the c'th Todd class o/1. 

We shall break up the computations needed in the proof of Theorem 15 into a series 

of lemmas. 

LwMMA 16. With the notation and assumptions o/ Theorem 15, the /oUowing /ormula 

holds in A.((X • X)'), 

~*(/•  Y)]  = [Z( / ) ]  + t, ~ cl(t*i(T(X)yc,,((f~)*(f2~) v) ~ [ T ( X ) ] .  
/~+~=dlm(Y)- 1 

Proo/. The morphism ( / •  is a proper morphism of smooth, projective and con- 

nected schemes and 6r(Y) is a smooth connected subscheme of Y • Y. By assumption, 

the inverse image of 5r(Y) is residual with residual divisor T(X) and with a proper par t  

Z(/) and no component of Z(/) is contained in T(X). Consequently, by Theorem 8, the 

following formula holds in A.((X • X)'), 
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~*(! • 1)*[~)] = [z(!)] + ~ ~ 1 el(~(T(X))%(%((/~:)*(~)v),-',[T(X)]). 
/~+v=dlm( ) -  

T h e  formula of the lemma follows from this formula and the projection formula. 

LE~MA 17. With the notation and assumptions o/ Theorem 15, the ]ollowing ]ormula 

holds in A . (X  • X), 

(/•  !)*[~r( Y)] = : , [Z( / ) ]  + (~x), ~ %(/,(fl~)v) ~,{c~(t,i(T(X))V~, [T(X)]} 
/~+u~dlm(Y)-I  

Proof. The morphism 7r is birational and the scheme X • X is smooth. Consequently, 

we have that  xc,xr* =idA(x• Moreover, xt, t ,  = (egx),T,. Hence, mapping both sides of the 

formula of Lemma 16 into A, (X  • X)  by g , ,  we obtain the formula 

([ • !)*[(~r( Y)] = ~,[Z(/)] + (~x)* T, ~ el(t*I(T(X))~c~((]v)*(~) ~) ~ [T(X)] 
~+~-dim Y-I 

The formula of the lemma follows from this formula and the projection formula. 

L~MMA 18. With the notation and assumptions o] Theorem 15, the/ollowing/ormula 

holds in A.(X),  

(Prl), (! • Y)] = (Prl),~,[Z(!)] + to(/) r-, [X]. 

Proo]. The invertible sheaf t*I(T(X)) is the universal sheaf of the projective bundle 

T(X) =P(~)Ix) over X. Consequently, it  follows from Lemma 7 that  

z,{t*cx(I( T(X))) v f~ [T(X)]} = s,.-eam x+~(X) ~ [X]. 

Hence, the formula of Lemma 17 can be written in the following form, 

(f • = =,[z(/)] + 0~), 7. * ~ %(/(~) )e~_~+~(x)~[x]. (3.4) 
/~+v=dlm Y--1 

Here 
C * 1 .(1 ( f~ ) ) s ~ _ ~ x + ~ ( X) =  7~ %(l*(f~)~)s~(X)=tM). 

/l +v = dim Y- 1 / ~ + ~ o  

Hence, mapping each side of equation (3.4) into A.(X) by (prl) , and taking into account 

that  prx(~ =id x we get the formula of the lemma. 

L~MMA 19. The following two/ormulas hold in A . (X  • XL  

(i) (idr x l ) * 0 , ( r ) ]  = [Pr] 

(ii)/*(prx) , [Pr] = pr*(/• 

where F r = Y x Y is the graph o/the m.orphism 1. 
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Proo/. Consider the two commutative diagrams, 

X x X  / x i d x  q Y •  F I �9 Y 

pr~t lprl and el ld r 

X , Y  Y •  * Y •  
] idr • ] 

where e is the embedding of Ff in Y • X and q is the morphism induced by idr • Clearly 

the two diagrams are cartesian. Moreover, the schemes Y z Y and Y • X are smooth and 

the morphisms prl, e and qr are proper. Consequently, the following two equations hold 

([2], w 2.2, Lemma (4)), (idr • =s,q*[Y] and /*(prl),[Ff] = (pr~),(/• igx)*[Fr]. 
The formula of the lemma follows from these equations together with the obvious equalities 

(~r),[ Y] = [~r( Y)] and e, q*[ Y] = e,[F~] = [Fr]. 

LEMMA 20. The/oUowing/ormula holds in A.(X), 

]*/ ,[ X] = (prl),( / • 

Proo/. As a consequence of formula (i) and (ii) of Lemma 19 we obtain the formula, 

/*(prl),[Ff] =pr*(/• idx)*(id r • The formula of the lemma is a consequence of this 

formula together with the obvious equalities (prl),[Fi] = / , [X]  and (idr • ( / z  idx )=/ •  

The formula of Theorem 15 is an immediate consequence of Lemma 18 and Lemma 20. 

w 5. The rational equivalence class of the double locus of a morphism 

In section three, we defined the double locus D(/), of a morphism /, as the direct 

image of the scheme of double points Z(/) by the morphism (prl~). Moreover, we gave 

(Theorem 15) a formula for the rational equivalence class (prl~),[Z(])]. Consequently, 

when the relation 

(pr17~), [Z(/)] = [D(/)] (4.1) 

holds we obtain a formula for the rational equivalence class of D(/). However, let 

Z1(1) ..... Zq(/) be the irreducible components of D(/) and let (prlg)(Zp(])) =D~(]) be the 

corresponding irreducible components of D(/). Then (prl~),[Zv(/)]=d~[Dv(/) ] where 

d~ >~ 0 is the degree of the morphism q,: Zv(/)-~ D~(/) and consequently, in general, the follow- 

ing relation holds 

(pr~ ~),[Z(/)]= ~ d~[D~(])]. 

We see that  a necessary condition for the relation (4.1) to hold is that  all the morphisms 
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el . . . . .  Oq are birational and that  all the components DI(/) ..... Dq(/) are different, in other 

words, that  the morphism ~: Z(/)~D(]) ,  induced by prx~, is birational The main object 

of section four is to show that  when the morphism ] satisfies the following three conditions, 

then the morphism ~ is birational, 

(G1) The morphism ]: X-+ Y is finite. 

(G~) Let  Y" be the (closed) subset of Y '=  ](X) over which / does not induce an 

isomorphism. Then Y" is empty or of pure dimension 2 dim ( X ) - d i m  (Y) and 

for each point y in an open dense subset of Y" the f iber / - l (y)  consists of exactly 

two different reduced points. 

(G~) The scheme Z(/) of double points of / is of pure codimension dim (Y) in (X • X)' 

and no component of Z(]) is contained in T(X).  

Note. The conditions (G1) , (G~) and (G3) were introduced in [7] (w 4, (4.12)) in the case 

when Y is isomorphic to a projective space. We proved there ([7], Proposition 17) that  when 

there is a sufficiently twisted embedding (see [7], Proposition 17 for details) of X into a 

projective space P~, such that  the morphism / is induced by a generic projection, then ] 

satisfies the conditions (G1), (G2) and (G3). We also proved that  this was true, even without 

twisting the embedding, in certain important cases. As a consequence of these results and 

a formula of J. A. Todd ([7], Theorem 13) we obtained ([7], Theorem 19 andTheorem 20) 

generalizations of some recent result of A. Holme and of C. A. M. Peters and J. Simonis 

about secants of projective schemes {[5], II,  Theorem 4.2 and [9], Theorem {3.4)). See also 

[6], Theorem 20 and Theorem 21). The main reason for choosing the conditions (G1), (G2) 

and (Ga) to other possible transversality conditions on ], is that  they are easy to ve~'ify for 

morphism induced by projections. 

We shall below generalize Theorem 22 and Todd's formula (Theorem 13) of [7] to the 

case when Y is an arbitrary smooth projective scheme, 

P R 0 ]~ 0 S I T I 0 ~. 21. Let x be a rational point o/D(]). Then the complement o/x  in the/iber 

/-l(/(x)) is isomorphic to the fiber over x o/ the morphism (Z(])-Z( / )  f~ T ( X ) ) ~  D(h) induced 

by prl~. 

Proo/. The morphism ~ induces an isomorphism from the scheme (X • X ) ' - T ( X )  

onto the scheme (X  x X)  -(~x(X) and under this isomorphism the scheme Z(/) -Z(] )  N T(X)  

is mapped isomorphically onto the inverse image D of ~y(Y) by the morphism 

( / x / ) I ( X  • X -~x(X)) .  Consequently, Proposition 21 asserts that  the fiber of the morphism 

p: D ~ X ,  induced byprl ,  over the point x is isomorphic to the scheme (/-1/(x) - x ) .  However, 

p - l ( x ) = ( x •  N D, and ( x •  D is the inverse image of ~r(Y) by the morphism 
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(x • (x • X -  (x, x))-~ Y • Y induced by / • Moreover, the morphism (x • factors 

via the inclusion/(x) • Y-+ Y • Y and the inverse image of (~r(Y) by the latter morphism 

is the point (/(x), /(x)). Consequently, (x • D) N X is the pull back (/-i/(x) - x )  of the point 

(](x), /(x)) by the morphism x • X-~/(x) • Y. 

L~MMA 22. Denote by Q: Z(/)-~D(/) the morphism induced by (prl~). Assume that the 

morphism / satis/ies the conditions (G1) and (Ga). Then the restriction o/~ to each component 

o/Z( / )  is generically/inite. 

Proo]. Denote by Z 0 the open subscheme (Z(])-Z(])  N T(x)) of Z(/). Then by (G3) 

the scheme Z 0 is dense in Z(/). Let Zv(/) be a component of Z(/) and put Z 1 = Z o N Z~(]). 

I t  follows from Proposition 21 and (G1) that  the restriction ~ [Z1 is quasi finite. However, 

e Jz~(/) is proper. Hence, Q IZ~(/) is generically finite. 

As a consequence of Lemma 22 and Theorem 15, we obtain a criterion for a morphism 

satisfying the conditions of Corollary 22 to be an embedding. The criterion we give 

generalizes an earlier improvement ([7], w 5, Theorem 20) of a result of A. Holme ([5], II,  

Theorem 4.2). We first need the following well-known lemma. 

L]~MMA 23. The morphism / is an embedding i /and  only i /Z( / )  is empty. 

Proo]. We may assume that  the morphism / is finite. Indeed, by Remark 14 (i), D(/) 

contains every fiber of / of dimension at least equal to one. Moreover, by Remark 14 (i) 

and (ii), the scheme Z(/) is empty if / is an embedding. 

Conversely, assume that  Z(]) is empty. Let  Spec A be an open affine subset of X 

which is mapped into an open affine subset Spec B of Y, by the morphism f. The correspond- 

ing ring homomorphism B ~ A  makes A into a finite B-module. By Remark 14 (i) there is 

only one maximal ideal MA of A lying over a maximal ideal MB of B. Moreover, by Remark 

14 (ii) the morphism ] is unramified at the point corresponding to MA. Consequently, 

the natural homomorphism MB/M~-->MA/M ~ is surjective ([1], VI, Prop. (3.6) (i), p. 114). 

I t  follows by Nakayama's lemma that  MA =MBA.  However, since the ground field is 

algebraically closed, the map B /MB ->A /MA =A /MsA  is surjective. Consequently, by 

hTakayamas lemma, the map B-->A is surjeetive. That  is, / is a closed embedding. 

T~EOR]~M 24. Let X and Y be smooth, connected and projective schemes. Assume that 

the morphism ]: X-+ Y satis]ies the above conditions (G1) and (G3). Then / is a closed embedding 

i /and  only i/the/ollowing relation holds in A.(X)  

1"1, i x ]  = to(/) ~ i x ] .  

Here c=d im (Y) - d i m  (X) and tc(/) is the c'th Todd class o/]. 
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Proo/. By Lemma 23 the morphism / is a closed embedding if and only if Z(]) is empty. 

However, the scheme (X • X)' is projective. Hence, Z(/) is empty if and only if [Z(/)] is 

zero in A.((X • X)'). By Lemma 22, the element [Z(/)] is zero if and only if (prl,~),[Z(])] 

is zero in A.(X).  Consequently, the assertion of Theorem 24 follows from Theorem 15. 

PROPOSITIO!q 25. Assume that the morphism /: X ~ Y satis/ies the above conditions (G1) , 

(Gs) and (Ga). Then the morphism ~: Z ( / ) ~  D(/) induced by (prize) is birational. 

Proo/. Denote by Z 0 the open subscheme of (Z ( / ) -Z ( / )A  T ( X ) ) o f  Z(/). Then by (Ga) 

the scheme Z 0 is dense in Z(/). Moreover, by Lemma 22 the set ~(Zo) is dense in D(/) and 

dim (D(]))=dim (Zo). By (Ga) dim (Z0)=2 dim ( X ) - d i m  (Y). 

Let  z be a rational point of Z 0 and put  x=~(z). Then z=zc-l(x, x') where x and x' 

are different rational points of X and/(x) =/(x'). Hence,/(x) E Y". We conclude that  ~(Z0) = I7" 

and since o(Z0) is dense in D(/) we have that  D(/ )~  f-l(y,,). However, we have seen that  

dim (D(/)) = 2 dim ( X ) -  dim (Y) and from (G~) it follows that  dim/-1(y,,) ~< 2 dim (X) - dim (Y). 

Consequently, each component of D(/) is also a component of/-1(y,,).  

Denote by U the open dense subset of yr, over which the fibers of / consists of two 

reduced points and put  U o =/-I(U) f3 D(/). Then U 0 is an open dense subset of D(/). Indeed, 

since the components of D(/) are also components of/--1(y.) and / is finite, each component 

of D(]) dominates a component of Y". Let  x be a rational point of U 0. Then x is a reduced 

point of the fiber/-1/(x) and consequently / is not ramified at the point x ([1], VI, Proposi- 

tion (3.6) (ii), p. 114). I t  follows from Remark 14 (ii) that  Q-l(x) EZ 0. Moreover, the fiber 

/-1/(x) consists of exactly one more reduced point. We conclude from Proposition 21 that  

the fiber q-l(x) consists of exactly one reduced point. However, the morphism ~ is proper 

and D(]) is the scheme theoretic image of Z(/) by  (prize). We conclude that  the morphism 

is an isomorphism in a neighborhood of the point ~-l(x). Consequently, ~ induces an 

isomorphism over the open dense subset U 0 of D(/). Finally, the open set ~-I(U) is dense 

in Z(/). Indeed, we have noted that  ~lZ0 is quasi-finite and that  Q(Zo) is dense in D(/). 

Consequently, Q-l(U0 ) f~ Zo is dense in Z 0 and hence in Z(]). 

In view of the discussion at the beginning of this section the main result of section 

five is an immediate consequence of Theorem 15 and Proposition 25. 

T~EOREM 26. (J. A. Todd [10], w 7.1, Theorem (Bk), p. 224). Let X and Y be smooth, 

connected and projective schemes and let ]: X ~ Y be a morphism satis/ying the above conditions 

(G1), (G~) and (Ga). Then the ]ollowing /ormula, /or the rational equivalence class o] the double 

locus D(]) o~ ], holds in A.(X),  
[D(/)] =/*/,[X] - t ~ ( / )  ~ IX], 

where c = d i m  (Y) - d i m  (X) and t~(/) is the c'th Todd class o/]. 
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