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1. Introduction 

Jordan,  von Neumann, and Wigner [5] have classified all finite dimensional Jordan 

algebras over the reals. The present paper  is an a t tempt  to do the same in the infinite 

dimensional case. The following restriction will be imposed: we assume the Jordan  alge- 

bras are weakly closed Jordan algebras of self-adjoint operators with minimal projections 

acting on a Hilbert space, i.e. are irreducible JW-algebras of type i.(1) The result is then 

quite analogous to tha t  in [5], except we do not get hold of the Jordan algebra ~ a  s of tha t  

paper, as should be expected from the work of Albert [1]. We first classify all irreducible 

JW-algebras of type In, n>~3 (Theorem 3.9). These algebras are roughly all seif-adjoint 

operators on a Hilbert space over either the reals, the complexes, or the quaternions. 

Then all JW-factors  of type In, n >/3, will be classified (Theorem 5.2). In  addition to those 

in the irreducible case we find an additional JW-faetor ,  namely one which is the C*- 

homomorphic image of all self-adjoint operators on a Hflbert space. JW-factors  of type 

I~ are studied separately (Theorem 7.1). They are the spin factors, and except when the 

dimensions are small, are exactly those JW-faetors  which are not reversible. Global results 

of this type are obtained in section 6. Finally we show tha t  the yon Neumann algebra 

generated by  a reversible JW-algebra of type I is itself of type I (Theorem 8.2). 

A J-algebra is a real linear space 9~ of self-adjoint operators on a (complex) Hflbert 

space ~ closed under the product A o B = �89 + BA). Then • is closed under products of 

the form ABA and ABC+CBA,  A, B, CEg~ (see [4]). A JC-algebra (resp. JW.algebra) is 

a uniformly (resp. weakly) closed J-algebra. A JW-/actor is a JW-algebra with center the 

scalars (with respect to operator multiplication). A projection E in a J :algebra 9~ is abelian 

if Eg~E is an abelian family of operators. By a symmetry we shall mean a self-adjoint unitary 

operator. Two projections E and F in a JW-algebra 9~ are said to be equivalent if there 

(1) In a forthcoming paper all irreducible JW-algebras will be shown to be of type I. 

11- 662945 Acta mathematica. 115. Imprim6 le 10 mars 1966. 



166 E. STORMER 

exists a symmetry S in 9 /such that  E = S F S .  The central carrier of a projection E in 9~ 

is the least central projection in 9~ greater than or equal to E. 2 is of type I if there exists 

an abelian projection in 2 with central carrier the identity. If n is a cardinal 2 is of type 1. 

if there exists an abelian projection in 2 n equivalent copies of which add up to the identity 

operator. We shall write I~  whenever n is infinite. A Jordan/deal in a J-algebra 2 is a 

J-algebra ~ c 2 such that  A o B E ~ whenever A E 5, B E 2.  Let  ~ (2 )  denote the uniformly 

closed real algebra generated by  2.  If n is a positive integer then 2 = is the uniformly 

closed real linear space generated by products of the form 1-[~=lAt, A~ E2,  and (2) denotes 

the C*-algebra generated by 2.  2 is reversible if [I~=lAi+l-[~=AiE2 whenever A 1 . . . . .  

AaE2,  n = l ,  2 . . . . .  If 2 is a JC-algebra then 2 is reversible if and only if 2 = ~ ( 2 ) z A  [10]. 

We denote by ~J~sA the set of seif-adjoint operators in a family ~J~ of operators. ~J~ is said 

to be sel/-adjoint if ~ contains the adjoint of each operator in ~)~. ~J~- is the weak closure 

and ~j~' the commutant of ~J~. If  !~ ~ ~ then [~!~] is the subspace of ~ generated by vectors 

of the form Ax, A E~i~, x E ~ .  We identify subspaees of ~ and their projections. We denote 

by !3(~) the algebra of all bounded operators on ~. Throughout this paper R denotes the 

real numbers, C the complex numbers, and Q the quaternions. We shall consider Q as a 

subalgebra of M2--the complex 2 • 2 matrices. 

We are indebted to L. Ingelstam for pointing out an error in an early version of 

Theorem 2.1. 

"2. Real  algebras 

As will be seen there is a close relationship between real seif-adjoint algebras of oper- 

ators and JW-algebras. Kaplansky [7] has classified (up to isomorphisms) the simplest 

real algebras. We shall need a more detailed description of them. 

T~ .OR~M 2.1. Let ~ be a real sd/-adjoint algebra o/operators on a Hilbert space such 

that every sel/.adjoint operator in ~ is a scalar multiple o/the identity I.  Then ~ is charac- 

terized as/ollows: 

(1) 9~ = R I .  

(2) ~t=cs .  

(3) There exists a minimal projection P'  E~'  with central carrier I such that P ' ~ = Q P ' .  

(4) There exist two non zero projections P and Q with P + Q = I  such that 

~ ={)~P+~Q:2EC}. 

Proo/. Let  A be a non zero operator in ~ and suppose there exists a sequence (B,) of 

operators in ~ such that  BnA -~0 or ABn-~ 0 uniformly, say B , A  -~0. Then A*B* BaA = 
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(B~A)*B~A~O.  By hypothesis B * B ~ = ~ I  with ~ E R .  Thus g~A*A-~0, a~-~0, and 

B~ -~ 0. Similarly A Bn -~ 0 implies B~ -~ 0. Thus ~ has no non zero topological divisors of 0. 

By [7, Theorem 3.1] ~ is isomorphic to one of R, C or Q. This could also be shown by an 

application of [3]. If ~ ~ R  we have case (1). Let  ~ denote the C*-algebra generated by ~.  

Since 9~ is finite dimensional being isomorphic to C or Q, ~ = ~ + i~.  Assume 9~ ~ C. Then 

the dimension of ~ as a vector space over C is 1 or 2. In case dim ~ = 1 we have case (2). 

Assume the dimension is 2. Then there exist two orthogonal non zero projections P and 

Q in ~ with P + Q = I such that  every operator in ~ is of the form 2P +/~Q with 2,/~ E C. 

We may thus identify ~ with C • C. Let  (~, # )E~ .  Then (~, 1~)E~, hence (~ +~, # § 

hence is a scalar. Thus Re2=Re/u.  Moreover, if ($, ~)E~ then (2~, /~)E~,  hence Re2~= 

Re/~,  and Ira2 Im~ =Im/~ Imp. In particular, with 2 =$,/z =~, (Im2) ~ = (Ira/z) ~, If Im2 = 

Im/u~:0 then by the above identity I m ~ = I m ~  for all (~,~) in ~,  so ~={(~,2) :2EC},  

and we have case (2). Otherwise I m 2 = - I m / z  for all (~,~u)E~, ~={(2 ,  ~):2EC}, and we 

have case (4). 

I t  remains to consider the case when ~ ~ Q. Then the dimension of ~ as a real vector 

space is 4. Let  ~ be the underlying Hi]bert space. Since ~ is a vector subspace of ~ ( ~ )  

the real dimension of ~ = ~ + i ~  is less than or equal to 8, i.e. dim~-~<4 as a complex 

vector space. Since ~ is non abelian so is ~ ,  hence ~ M ~ .  In particular, ~ being finite 

dimensional, is a factor of type I ,  hence ~ '  is a factor of type I .  Let  P '  be a minimal pro- 

jection in ~ ' .  Then its central carrier is I.  Since P '  is minimal, (~P ' ) '  =P'!~ 'P'= {2P'}, 

considered as a yon Neumarm algebra on the Hflbert space P' ,  hence ~ P ' =  M~P'. Thus 

~ P ' =  QP'. The proof is complete. 

I t  should be remarked that  in the quaternionian ease there exist real algebras like 

those in case (4). However, if there exist projections P and Q with sum I such that  ~ = 

{2P+~Q:2EQ}, then P and Q belong to ~ '  but  not to ~ - - t h e  C*-algebra generated by ~.  

Moreover, the mapA --->AP is an isomorphism of ~ onto ~ P .  This should be kept in mind 

in order to get a full understanding of the classification theorems to follow. 

COROLLARY 2.2. Let 9~ be a reversible JW-/actor o] type I.  Let E be an abelian projec- 

tion in 2. Let ~ = E~(~)  E. Then ~ is a real sel/-ad]oint algebra satis/ying the condition8 o/ 

Theorem 2.1, anal E(~) E is characterized as/ollows: 

(1) E(9~)E=CE. 

(2) There exists a minimal projection P'  in E(2)  E' such that E(?I) EP'  = M~P'. 

(3) There exist two non zero projections P and Q with P +Q= E such that 

E(9~) E =CP | CQ. 
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Proof. Since E is abelian Eg.IE =RE [11, Corollary 24]. Since 9~ is reversible it follows 

that 3 satisfies the conditions of Theorem 2.1. The rest is clear from the theorem and 

its proof. 

The next result will be used in section 8. 

COROLLARY 2.3. Let 3 be an irreducible, uni/ormly closed, sel/.ad~oint, real algebra 

with identity I acting on a Hilbert space ~. Assume 3s,, is abelian. Then 3 is one o/the 

/ollowing algebras: 

(1) (resp. 2) 3 = R I  (resp. CI), and d i m ~ = l .  

(3) 3=QI ,  and dim~=2.  

Proo]. Let ~J~ be a maximal ideal in 3sA. Let ] be a pure state of 3s~ with kernel ~ .  

Let ] be a state extension of ] to the C*-algebra ~ generated by 3.  Then ]= r with ~ a 

representation of ~.  Let ~ = 3  N ker ~. Then ~ is a uniformly closed self-adjoint ideal in 

3.  If A E ~  then AA*E~)~, hence O=a)~q~(AA*)=/(AA*), and AA*E~)l. Let ~ be a uni- 

formly closed ideal in 3sA. Then ~ = N ~J~, ~J~ maximal ideals in 3sA. Let ~ = N ~ ,  where 

the ~ are constructed as above. Let A E~. Then AA* E~, hence AA* e~l for all ~ .  By the 

above AA*E~)~ for all ~}~, hence AA*E~. 

We show 3s~=RI .  If not then there exist two non zero uniformly closed ideals 

and ~ in 3sA such that ~ =0. Let ~ and ~ be ideals in 3 constructed as above. Let 

AE~ and BE ~. Then A B E ~  N ~. Thus AB(AB)*E~N ~ = ~ = 0 ,  and AB=O. Thus 

~ =0. Since 3 is irreducible 3 has no non zero ideal divisors of zero [8, Lemma 2.5]. 

Thus ~ or ~ =0, contrary to assumption; 3s, t=RI.  An application of Theorem 2.1 com- 

pletes the proof. 

3. Irreducible $ f f -a igebras  

We classify all irreducible JW-algebras of type In, n>~3. The key to this and later 

results lies in the following general lemma on the structure of J W-algebras. 

L~MMA 3.1. Let ~ be a JW-algebra such that there exists a/amily { E~}~E~ o/orthogonal, 

non zero, equivalent proiections in ~ with ~ae1Ea=I, and cardJ~>3. For a, eeJ let | 
Ec,~Ee. Then the ]ollowing relations hold: 
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0 i /~4:~ 

(1) |174 =~| i /~=~,  a:~ 0 
! 

[ ~ ~ o / o r  all 9~ 44= a i /  a = q 4: ~ = ~. 

(2) |174 if a ~ ) .  

(3) I / a  4: e, let 9I~ be the uni/ormly closed real linear space generated by ~ ~ .  Then 

9I~, is a real sel/-ad]oint algebra with identity E~, 9~ is independent o/~, and 

~ s ~  = | 

(4) E ~ ( 9 ~ ) E 0 = ~ e  i/ (r~-~, E,~(9~)E~c9~. 

(5) 9~ is reversible, and ~ ( ~ ) - = ~ - .  

Proo/. Clearly |  if ~ .  Now ~ , q c  ~,o if a 4 ~ .  In fact, take B, CEg~ 

and put  A = E ~ B E , + E ,  BE~+E,  CEq+EqCE,. Clearly AEg/, hence A2Eg~, so that  

E~A~EeE| There are three cases, namely, T=a, ~=~, and T 4 a  and v:~Q. In the two 

first cases straightforward computations yield E~ BE,  CEQ = �89162 E ~r In the third 

case a similar computation yields Er and ~ , ~ , q c ~ q  for 

all T whenever a~=Q, as asserted. The opposite inclusion is clear if T=a  or v=Q. Assume 

therefore a, Q, ~ all distinct. Let S be a symmetry in 9~ such that  Eq =SE,  S. Let V = 

EQ SE,. Then V is a partial isometry in ~Q~ such that  V* V = E~ and V V* = EQ. Let A E | 

Then 

by the above. Thus @~q~ ~ @ ~ q ,  and they are equal. 

Assume ~=a.  Let ~:~v in J ,  both different from a. Then, by the above, ~ =  

~ , ~ r 1 6 2 1 6 2  and (1) is proved. 

If ~ 4: a let ~ EJ be distinct from both. Then by repeated applications of (1), 

and (2) is proved. 

I t  is clear from (1) that  2~ is independent of ~. By (2), 

so ~ q  ~0~ is multiplicative. Since it is clearly self-adjoint 2~ is a real self-adjoint algebra 

with identity E~. Let A be a self-adjoint operator in 2~. Then A is a uniform limit of self- 

B adjoint operators of the form ~t=l ~ with 

Bi=E~,CiEoDIE~E(~,~q| Ci, DiE 9~. 



1 7 0  ~.. STORMER 

Since B~ = �89 B, + B'~) = �89 EQ D, + D~ Eq C,) E,~ E Er 2E,~ = ~,~,~, 

A E r i e .  Thus 2~s c ~ .  The opposite inclusion follows as soon as we have shown 

|  For this let P<~Er be a non zero projection in 2 .  Let S be a symmetry in 2 

such that  SE~S=EQ, 0#0 .  Let Q=SPS. Then Q<~Eq. Let R = P  +Q. Let T = R S R .  Then 

TEg~, and 
P = TQT = E~ TQTE(, = E,~ TE  e TE,, E ~ ~Q,~c 2~. 

Since real linear combinations of projections are uniformly dense in the JW-algebra ~aa, 

and since 2~ is uniformly closed ~ c  ~r as asserted, (3) is proved. Notice that  the same 

argument shows (2~)sA =~r a fact which will be used below. 

We next  show ~ q  is weakly closed whenever a~=Q. Let A E ~ .  Then A =E~AEq. 

Let {A~} be a net in 2 such that  Eo.A~,Eq~A weakly. Since the *-operation is weakly 

continuous, EqA~E,~--+A* weakly, hence A +A* is the weak limit of the net (Eo, AaEe+ 

Eq A a E,~}, the net consisting of operators in 2.  Therefore A + A*E 2,  as 2 is weakly closed. 

Thus A =E,~(A + A * ) E q E ~ ,  ~,q is weakly closed. 

In order to show (4) let A E ~(2) .  Then A is a uniform limit of operators of the form 

~n=l]-[~U=lA~l with A~jE2. Therefore, in order to show E,~AEqE~,rq if a # ~  (resp. in 

9~ if a=Q), it suffices by linearity and the fact that  ~,~ and 9J~- are weakly closed so 

uniformly closed, to show that  any operator of the form 

n 

E,, 1-I AjE~E| (resp. 2~), where AsE2.  
t = 1  

For n = 1 this is trivial. Use induction and assume it holds for n -  1. Then 

n - - 1  

t = 1  

which is the strong limit of operators 

n - - 1  

2 E,, 1-[ A,E~A,,Eq, 
r e  J" 1 = 1  

with J' a finite subset of J .  By induction hypothesis 

n - 1  

E,, I-[ A j E ~ e ~  if a # v  
1 = 1  

and in 2g  if a = ~. Hence, by (1) 

n - - 1  

E,, I-I AsE, A,,EqE~,,e (resp. 9/g) if ~=~a, 
t = 1  

and if ~=a then by (2) and the fact that  ~ is weakly closed, 
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n - 1  

E.  FI A~EoAnEeE~oe (resp. 2~). 

n - 1  

Thus ~ Eo 1-I A~ E~ A~ Eq E ~,q (resp. 2g) 
~ e J '  t = 1  

for all finite subsets J '  of J .  As ~ae and ~ -  are weakly so strongly closed, it follows that  

<resp Eo ~:~ 

Thus Er | (resp. 9J~-). Since clearly ~ e ~  E ~ R ( 2 ) E  e (4) follows. Notice that  

E,7~(2)-Eo.~ 2~, so they are equal. 

Let A E~(9~)s ~. Then E,~AE~Eg~o.sa =~r If a4=~ then there exist B, CE~ such that  

E~A Eq + Eq A E,~ = E~ B E  e + Eq CE,~ 

= �89162 BE  e § W e CE~) § �89 B E  e + E e CEr 

= E(~�89 +C)EQ § Eq�89 § 

Thus A E~, 9~ is reversible. 

I t  is clear that  each ~ec9~2.  Thus 9J~c24. Hence by (4), ~ ( 2 ) - ~ 2 4 - ,  and they 

are equal. The proof is complete. 

From now on the E~ in Lemma 3.1 will be abelian projections in a JW-faetor 9~ of 

type I. If 9~ is of type I~ we define the ~ p  as above. Whenever we write ~ p  we shall 

assume q ~= ~. 

L~.~MA 3.2. Let 9~ be a J W-/actor with orthogonal non zero abelian projections ( E~}~I 

such that ~r Then every operator in ~r is a scalar multiple o~ a partial isometry 

o/ E e onto E~. Moreover, i / S ,  T E ~ap then there exists a real number o~ such that 

S*T + T*S = ~E~, ST* + TS* = ~E~. 

Proo/. Let S E ~ q .  Then S=EaAEq,  A Eg~. Thus 

S*S = Eq A E~ A E e E E e 9~ EQ = REQ 

[11, Corollary 24], hence S ' S =  IIS[lUEe. Similarly SS *= [ISII2E~, and S=f lV  with V a 

partial isometry of E e onto E~, fl E C. Let T be another operator in ~ e .  Since 9~ is linear 

so is | Thus S + T = y W  with W a partial isometry of E e onto Er yEC. Therefore, 

lyI~ Eq=(S § T)*(S + T)---S*S-t-T*T + (S*T § T*S)= 1flI2 Eq +~Ee + (S*T + T*S), 

where T*T=~Eq. Thus S*T+T*S=o~Eq. We may assume T:~0. Then 
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TS* + ST* = TS* E a + EAST* =5-~T(S*T + T 'S)  T* =5-~TaEq T* = o~Ea. 

The proof is complete. 

From now on 9A is a JW-factor  of type I , ,  n ~> 3, and the Er are as in Lemma 3.2. Then 

they are all equivalent [11, Corollary 26], and Lemma 3.1 is applicable. We keep the 

notation in Lemma 3.1. 

LEI~IMA 3.3. For each pair a~-~ in J we can choose one partial isometry W r 1 6 2  

such that whenever ~, ~, v are three distinct elements in J then 

(~) W~ = WL, 

(2) W~y = W ~  Wry. 

Proo/. Let first if, a, ~ be three distinct elements in J .  Choose partial isometries W~Q 

and W~ in ~ y  and ~ respectively (Lemma 3.2). Define Wee and Wrr by (1). Let 

Wry = Wr~ Wa~, WQr = WQa War- 

By Lemma 3.1 W~yE| and W~rE~yT, and Wry=W~r . I t  is straightforward to check 

(2) for the different rearrangements of ~, a, and v, e.g. W~ = E a W ~ = W~y WQ~ War = 

W,,~ Wq~.. Thus the lemma holds for the three elements ~, ~, and ~ in J .  

Let  K be a maximal subset of J containing Q, a, and T, and for which the W~ are chosen 

so that  (1) and (2) hold for all elements ~/, ~ in K. Then K = J .  If not let 7 1 EJ -K .  Choose 

W~ and W~q in ~ and ~ y  respectively such that  WQ~ = W~y. Let 

W,~= W,~W~, W ~ =  W ~ W ~ ,  

$ _ _  for all ~EK,  ~v~:~. Then W n r  so (1) holds. Let/z~=~v be in K and distinct form Q. 

This is possible by the preceding paragraph. As above we can show (2) holds for all rear- 

rangements of ~1, ~, and ~. We show (2) holds for all rearrangements of ~,/~, and ~v. Indeed, 

Wun = W.o Wq~ = W.vW~y Wq+ Wq~ = I~+ E+W+. = Wu+ W+~, 

= W . , -  W,~ W~, W ~ 7 .  u * _ 

and (2) holds. Thus K U {~) satisfies (1) and (2) for all its elements, contradicting the 

maximality of K. Thus K =J,  the proof is complete. 

LV.M~A 3.4. The 9A~, a~ J ,  are all spatially isomorphic, and each 9A~ is one o/ the/ol -  

lowing algebras: 
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(1) (resp. 2) I ~ = R E ~  (resp. CE~). 

(3) There exists a pro~ection P'~9~' with central carrier I such that i / ~  is replaced by 

P'9~ then ~ = QE~. 

(4) There exist two orthogonal non zero pro~ections P~ and Q~ with sum E~ such that 

~{~ = {~P~ +]Q~: ~ e c}. 

Proo/. Choose the W~0E@aQ as in Lemma 3.3. By Lemma 3.1 ~ q = ~ a 0 ~ q r  

If V E ~ q  t h e n  V=VEQ=VWQ~W~q=E~V=WaqWq~V. Thus ~ q = ~ q ~ q ~ W a Q  = 

W ~ q ~ q ~ q .  Since ~ q  is linear | =9~r W~q = W~q~e. In particular ~ = W*q~Ia W~q, 

and they are spatially isomorphic. 

By Lemma 3.1 9~r ~. By Theorem 2.1 there are four cases. The cases 

(1), (2), and (4) of that  theorem yield cases (1), (2), and (4) above. Assume 9~ is given by 

(3) in Theorem 2.1 for all aEJ. Then there exists a minimal projection P~Eg~, where 9~ 

is considered as an algebra on the Hilbert space E~, such that  P ~  = QP~' Let ~ denote 

the C*-algebra generated by 9~r Then ! ~  is a factor of type I. The map A ~AP'~ is an 

isomorphism of ~ .  Fix aEJ. For each ~ . a  let P'~= Wq~P'~W~q. Since the map 9/r 9~.o 

by A -+W~r is an isomorphism, P~ is a minimal projection in 2~. Let P '  =~q~sP~- 

Then P '  E 9~'. In fact, let A fi 9/. Then P'EqA Ee =P'q E~ A Eq = EqA EqP'~ = Eq A EqP', since 

P~Eg~. Since ~ = 9 ~ W ~  there exists A ~ e ~  such that  E~AEq=ArW~.  Thus, with 

and ~ distinct from a, 

P'E~AE e =P~A, W,e =A,P~ W~q 

= A, W.~P'~ W~ W~q =A,  W,~P'~ W~q 
= A,  W~r W~qP'~ = A ,  W,qP'~ = E,  AEqP', 

and P'Eg~' as asserted. Let Q be a central projection in 9~' such that  Q>~P'. Then Q~= 

E~QE~>~P'~. But Qr is central in E~2"E~=!~r so Q~=E~. Thus Q = ~ r  and the 

central carrier of P' is I.  The proof is complete. 

As an immediate application of this lemma and its proof we have 

LEPTA 3.5. Let the W~e, ave ~EJ, be partial isometrics in ~aQ chosen as in Lemma 3.3. 

Then ~ o  is characterized as/ollows: 

(1) ~ = R W ~ .  

(2) |  =CW~. 
(3) There exists a projection P' Eg~' with central carrier I such that i] ~ is replaced by 

P '2  then ~ = Q W~q. 

(4) There exist orthogonal projections P~, Q~, Pq, Qe with Pr Pe+Qq=Eq 
such that 
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~r : {(AP~ +~Q~) W~e: 2 ~ C} = { W~o(t~P ~ + ~Qo):# ~ C}. 

The remaining par t  of the proof of Theorem 3.9 consists of eliminating case 4 in Lemma 

3.5. We shall need a simple and probably well-known lemma of more general nature. 

LEMMA 3.6. Let E, F and G, H be two pairs o/orthogonal non zero projections, let V 

be a partial isometry o/G + H onto E + F. Assume that/or each ~ E C there exists/~ E C such that 

(1) (~E + ~ )  V = V(pG +#g). 

Then either V*EV=G and V*FV=H, or V*EV =H and V*FV=G. 

Proo[. Multiply (1) on the fight by  G. Then 

(2) 2EVG +~FVG =# VG. 

Multiply (2) on the left by  E. Then 2EVG =/zEVG. Thus either ~ =/~ or EVG =0.  Similarly, 

multiplication of (2) on the left by  F yields ~=/z or FVG=O. Since (1) holds for all 2EC 

either EVG=O or FVG=O, say EVG=O. Multiplication of (1) on the fight by  H yields 

EVH=O or FVH=O. I f  EVH=O then O=EV(G+H)=EV=EVV*=E,  contrary to 

assumption. Thus FVH=O. Now (V*EV)G=O hence V*EV<~H. Similarly V*FV<~G. 

Since V ' E V e  V*FV= H + G, V* EV = H, V* FV  =G. The case FVG =0 is t reated similarly. 

LEM~A 3.7. Assume the ~ q  are given by (4) in Lemma 3.5. Then the P~ and Q~ can 

be chosen 8o that P~ W~o= W~eP o and Q~W~ = W~oQ e, where the W~o are chosen as in 

Lemma 3.3. 

Proo]. Fix T E J  and P,. By relabelling Pe if necessary whenever p + T Lemma 3.6 gives 

P~Wre=W,~Pe, hence WQrPr=(P,W~e)*=(W,oPo)*=PeWo~ whenever e~=v. Let  aeJ.  

We may  assume a =~ z. I f  ~ * a, v, then P~ W~ =P~ W~, W~ = W~TP~ W,~ = W~ W,oP e = 

W ~ P  e. The proof is complete. 

Assume the W~q are chosen as in Lemma 3.3 and the Pr as in Lemma 3.7. 

L~,M~x 3.8. Assume the ~ are given by (4) in Lemma 3.5. Let P be the projection 

P= ~ P r  Then P belongs to the center o/~' .  

Proo/. Let A E ?I. Then A is a strong limit of finite sums of the form 

(2ooPo+ ).,,QQ,,)Wo++ ~o ~oEo. 

Hence P E ~ '  if we can show 

P:(~P: + 2Q:) W:+ = (~P: + ]Qr W::P+ 
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for all ~, ~ EJ. But this is immediate from Lemma 3.7. Since the P~ are all in (~) (see Corol. 

lary 2.2), PE~".  Thus P is central in 9~'. 

THEORE~I 3.9. Let ~ be an irreducible J W-algebra o/type In, n >~ 3. Let { E~}~j  be an 

orthogonal /amily o/non zero abelian projections in 9~ with ~ E I E ~ = I .  Let ~ao=Err~[Eo 
/or a ~= ~. Then every operator in ~ e  is a scalar multiple o/ a partial isometry o/Eq onto E~. 

I] Wr is a partial isometry in ~r then one o/three cases occur. 

(1) ~r ]or all (r:~O, and d i m E ~ = l  

(2) ~Q=CW~q/or  all (x:~O, and d im E~=  1 

(3) ~ = Q W~q /or all (r =~ e, and dim E~ = 2. 

Moreover, 9~ is reversible. 

Proo/. Case (4) in Lemma 3.5 cannot occur. Indeed, if it did, let P = ~.~++Pr Q = 

~ Q r  By Lemma 3.8 both P and Q are non zero orthogonal projections in 9~' contradicting 

the fact that  ~[ is irreducible. By Lemma 3.2 every operator in ~ is a scalar multiple 

of a partial isometry of Eq onto E~. By Lemma 3.5 ~ q  is one of the three sets described 

above. By Corollary 2,2 dimE~ is also as described. Finally, by Lemma 3.1 9~ is reversible. 

The proof is complete. 

4. Abeliau projections 

One of the difficulties in the study of JW-algebras is due to the poor behaviour of 

cyclic projections. In this section and in section 8 we shall obtain useful results on such 

operators. Presently we shall find a formula connecting abefian and cyclic projections. 

L ~ M A  4.1. Let 9~ be a JC-algebra with identity acting on a Hilbert space ~. Let x be a 

vector in ~ and assume [(~)x]=I.  Let F be a projection in ~ such that F <~I-[~x]. Then 

F = 0 .  

Proo[. By assumption the projections [9~nx] converge strongly to I,  n--1,  2 . . . . .  Also 

F[~x]=O. Use induction and assume F[~n-lx]=O, n>~2. Let  n>~2 and A1, ..., AnE2. 
If n = 2 then 

FAI A2X = F( FA1A ~ + A~A 1 F)x  E F[Olx] = O. 
If n >~ 3, then 

t=1 ~=3 

Thus F[~Inx] =0, n = l ,  2 . . . . .  Since [~nx]~l  strongly, O--F[~nx]~F strongly. F = 0 .  

For reversible JC-algebras similar techniques give an inequality in the opposite direc- 

tion. 
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L E M ~ A  4.2. Let 9ft be a reversible JC.algebra. Let E be a projection in 9~ and x a vector 

in E. Assume [(2) x] = I .  Then I - E ~< [~x]. 

Proo]. Let  F = I - E .  Then F[O~x]=[~x]F for n = l ,  2 . . . . .  Indeed,  F x = 0 ,  so with 

Ax .. . . .  A , e 2 ,  

t = l  t = l  i = n  

and  the  ~ssertiou follows. Since [ 2 ~ x ] ~ I  strongly,  [9~x]F= F[9~'x] ~ F ,  strongly.  Thus  

[9~x] F = F,  the proof is complete. 

LEMMA 4.3. Let 9~ be a JC-a~lebra acting on a Hilbert space ~.  Let o~ z be a pure vector 

state on ~.  Let F denote the set o/vectors z E ~  such that o~[9~= IIz [12co~[9~. Then F is a sub. 

space o] .~, and F <~ [x] § I - [~x]. 

Proo]. Clearly z E F, ~ E C implies )~ E F.  Let  w and z be uni t  vectors in F .  Let  A >~ 0 

be in 9~. Then  

eow+~ (A) = o ~  (A) + eo~(A) + 2 Re(Aw, z) 

= 2 (~o~(A) + Re  (A~w, AJz)) 

< 2 + IIJ wU liAr4) 

=4~,AA). 

Since o~ x is pure and ww+z~4cox, r = I[w+zll~o~z on ~ ,  w + z E F .  Thus F is a linear 

manifold. I t  is clear t ha t  F is closed, hence is a subspace. Now x E F.  Hence in order to  

show F ~< [x] + I - [9~x] it suffices to consider a uni t  vector  y E F -  [x]. Let  ~ be a complex 

number  of modulus  1. Then  x §  F ,  so 

Thus  for all A Eg~, 

(ox+ay = II x + ~ Y  112eoz = (]l x II ~ § IlY I[~)~% = 2e% on 9~. 

2o)~(A) =o~+:~(A) = 2co~(A) + 2Re(A,~y, x), 

so tha t  Re(AXy, x) = 0 for all complex numbers  2 of modulus 1. Thus 0 = (Ay, x) = (y, Ax) 

for all A e 2 ,  i.e. y e I - [ 2 x ] .  The proof is complete. 

TEEOREM 4.4. Let 9~ be a JW-factor acting on a Hilbert space ~. Let E be a projection 

in 9~ and x a unit vector in E. Assume [(~)x] = I. Then E is abelian i] and only i] 

(1) E<.[x]+ I-[O~x]. 

Moreover, i/9~ is reversible then the inequality (1) is equality. 
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Proo/. Suppose E is abelian. Then EP~E = RE, hence cox is pure  on ~.  Moreover,  if y 

is a uni t  vector  in E then  e%]9~ =w~lP~, so by  L e m m a  4.3, (1) follows. 

Conversely, assume (1) holds. Le t  G be a project ion in 9~ with G<~E. I f  xEG t hen  

E -  G ~< I - [~lx], hence E - G = 0 by  L e m m a  4.1. I f  x E E - G then  similar a rguments  give 

G = 0 .  Assume Gx:~O. Since G<~E<<.[x]+I-[~x], Gx=Lv+y with yEI-[OAx], 2 4 0 .  

Then y=(G-~I)xE[PAx], hence y=O. Thus  Gx=~x. Since ~:~0,  xEG, G = E  b y  the above.  

Thus  E is a minimal  project ion in 9A, hence is abelian. I f  9A is reversible then  L e m m a  4.2 

shows t h a t  (1) mus t  be equali ty.  The  proof is complete.  

5. JIV-factors of  type  In, n >~ 3 

I n  L e m m a  3.5 we have pract ical ly classified all JW- fac to r s  of type  In, n ~> 3. However ,  

the description of case (4) is incomplete.  The present  section fills out  this gap. For  this we 

shall need an analogue of the result  for yon N e u m a n n  algebras,  which s tates  t ha t  a factor  

of type  I has a fai thful  normal  representa t ion as all bounded operators  on a Hi lber t  space. 

T H E O R E ~  5.1. Let 9A be a J W-/actor o/type In, n >~3. Then there exists a representation 

o/ (9~) which, when restricted to ~, is a [aith/ul normal representation as an irreducible JW-  

algebra o/type I n. 

Proo[. Let  E be an abelian project ion in 9~. Le t  x be a uni t  vector  in E.  Then o~x is a 

pure s ta te  of 9~. Le t  [ be a pure  s ta te  extension of eo x to (9~). T h e n / = o ) ~  with ~v an ir- 

reducible representa t ion of (PA). Thus  ~v(9~) is an irreducible JC-a lgebra .  Moreover,  y E F = 

~v(E) with F an abelian project ion in ~v(9~), hence in ~(PA)-, which is thus  of t ype  I .  B y  

assumpt ion  9~ is of type  In, n~>3. Since all abel ian projections in 9~ are equivalent  [11, 

Corol lary  26], ~v is fai thful  on ~,  hence ~v(PA)- is of type  Ira, m ~>n. I f  n is finite clearly m = n .  

Otherwise n =  w i n  which case m = c~, hence ~(9~)- is of type  In. In  par t icular  ~(PA)-is 

reversible (Theorem 3.9). We show ~v i u l t ra-weakly  continuous on ~[. There are two cases. 

Case 1. ~(PA)- is de termined by  (1) or (2) in Theorem 3.9. Then d i m F = l ,  so b y  

Theorem 4.4 [~v(~)y] = I .  Le t  w = A y + i B y  with A, BE~v(PA). Le t  S>~0 in ~v(9~). Then 

0 ~<(Sw, w) 

= (SAy, Ay) + (SBy, By) - 2Im (SBy, Ay) 

<~ (ASAy, y) + ( BS  By, y) +2 IIS�89 By [I [I8�89 [[ 

= ((ASAy, y)~ + (BSBy, y)�89 

T h u s ,  if A =~v(At), B=~v(Bt),  S=~v(S1) then  
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0 < (f(S1) w, w) < (~o~(A1S~ A1) ~ + o~(B1Sz B1) ~)3. 

Therefore, ff S~>~0 in the unit ball 921 of 2 and S~-~0 weakly, then (r w)-~0. Let z 

be any unit vector in ~. Suppose S~ are operators as above. Let  e > 0 be given. Choose a 

unit vector w - - A y + i B y  in ~, A, B6~0(~[), such that  [[w-zll<e/4. By the preceding we 

can choose ~ so large that  (~0(S~)w, w)<e/2. Then 

0<@($~)z,  z) 
< I (~(S~)z, z ) -  (q~(Z~)w, w) I + (q~(Z~)w, w) 
< [ (~(S~)z, z-w) + (q~(~)(z-w), w)] +~/2 
< 2  [l(~(~)II llz [I [I~-w II +~/2 
< 2~/4 +~/2 =e. 

Thus S~ --> 0 on the positive part of ~[1 implies (~0(S~)z, z) -> 0 for all unit vectors z in ~. As 

in [6, Remark 2.2.3] it follows that  ~0 is ultra-weakly continuous on 2. 

Case 2. q)(?I)- is determined by (3) in Theorem 3.9. Then d i m F = 2  so there exists a 

unit vector z orthogonal to y in F. By Theorem 4.4 [y]+[z]=F=[y]+l-[qo(9~)y], hence 

[q)(9.1)y]+[z]=I. Therefore, every vector w in ~ is of the form w=u+2z  with ue[q0(~l)y], 

~IEC. Exactly as in case 1 ~ou~0 is weakly continuous at  0 in 911. Let S>~0 be in ~0(91). Then 

0 <(Sw, w) 
= (5'u, u)+ p.[~(Sz, z)+2Re(~'~, u) 
=(Su, u)+ [~l~(Sy, y)+ 2Re (S~z, u) 

<(su, u) + Ix V(Sy, y) +2 ILs~ 11 i js~ IJ 
=((Su, ~)*+ I~l(sy, y)~)~. 

As in case 1 we conclude that  q~ is ultra-weakly continuous on 9~, i.e. q0 is weakly continuous 

on g[1, which is weakly compact. Thus the unit ball in ~(9/) is weakly compact. As Topping 

has pointed out the Kaplansky density theorem holds for JC-algebras (see the proof in 

[2]). Since q~(~I) is strongly dense in ~0(~)- and contains the unit ball in ~0[)-  it  must be 

equal to ~0(g[)-, i.e. ~v(91) is a JW-algebra. The proof is complete. 

TH~,OR~.M 5.2. Let 9~ be a JW-/actar o/type In, n~>3, acting on a Hilber$ space ~. 

Let {E~),rGj be an orShogonal ]amily o] non zero abelian pro~ec$ions in ~ w~th ~esE~,=I .  

For a ~ ~ let ~ = E ~ 2 E Q .  Let W~q be a partial isometry in ~ .  Then one o/the ]ollowing 

/our  ~gse8 06cur8: 

(1) ~o~--RW~Q ]or all a=~e. 

(2) ~.~=CWo~ /or all aO=e. 
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(3) There exists a projection P'691' with central carrier I such that i /9I  is replaced by 

P'~I then | = Q W~. 

(4) There exist two non zero projections P~ and Qr with P~+Qr such that ~ = 

{(,~P~+~Qr W~q:A6C}. In  this case there exist a Hilbert space ~, a normal *.iso- 

morphism ~1, and a normal *-anti-isomorphism v2~ o] ~ (~)  into ~(~)  such that 

V~(1)~(1)=0, and such that ~ is the image o~ the C*.isomorphism y~, +V, o/ 

~(~)~  into ~(~)~. 

Proo/. If the ~r are determined by (1), (2), (3) in Lemma 3.5 then we have cases 

(1), (2), (3) above. Assume the ~ e  are determined by (4) in Lemma 3.5. Let P=~r 

Q = ~=,~Qa, where the Pc and Q~ are as in Lemma 3.5. By Lemma 3.8 P and Q are central 

projections in (9~)- with P + Q = I .  Let 90 be the representation constructed in Theorem 

5.1 of (91) into ~(~).  Then ~0 has an extension to an irreducible representation ~ of (~)-, 

hence qS(P) =0 or ~(Q) =0, say 9~(Q) =0. Then ~(Q~) =0  for all a e J .  Consequently ~ ( ~ e )  = 

Cq~(W~e)=q~(E~)q~(91)q~(Ee). Thus ~(?I)=~(~)ZA. Let V be the map ~-~:~(~)sA-~?I. 

Then V is normal and has an extension to a normal C*-isomorphism of ~(~)  onto ~ + i ~ .  

By [4, Corollary to Theorem 7] (or by [10, Theorem 3.3]} ~0 is the sum of a normal *-iso- 

morphism Vx, and a normal *-anti-isomorphism V~ of ~(~)  into ~(~).  Since 9/=V(~(~)sa) 

the proof is complete. 

6. Non reversible JgV-algebras 

I t  turns out that  a JW-algebra can be decomposed along its center into three parts, 

one part being the self-adjoint part of a yon Neumarm algebra, one part more like the 

JW-algebras given by (1), (3), and (4) in Theorem 5.2, and a third part, which is practi- 

cally a global form of a spin factor. 

L E p t A  6.1. Let ~ be a reversible JW-algebra. Then there exist central projections E 

and F in 9~ with E + F = I such that E ~  is the sel/.adioint part o[ a yon Neumann algebra, 

and ~ (F~)  N i~(FPi) : {0}. 

Proo]. Let R =~(~/)N i~(9/). Then R is an ideal in (~) [10, Remark 2.2], hence its 

weak closure ~ -  is an ideal in (91)-. Thus there exists a central projection E in (9/)- such 

that  ~ -=E(9 i ) -  [2, p. 45], and E 6 ~ - .  Now 9/is reversible, hence ~SAC~, and (~-)sA : 

(~SA)-C~. Thus E6~[, and R-sA=E~.  Clearly ~ -  is a yon Neumann algebra. Let 

F = I - E .  Then F is central in ~, and 

91(F9/) n i~(Fg/) -- F(~(9/) n i~(9/)) = F~ c FE(~/)- = {0}. 

The proof is complete. 
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L~mMA 6.2. Let 91 be a JC-algebra with identity I. Let ~ denote the set o/operators A E91 

such that BAC +C*AB*E91/or all B, CE~(9~). Then ~ is a uni/ormly closed Jordan ideal 

in 91. Moreover, ~ is a reversible JC-algebra. 

Proo I. Let A, BE~,  S, TE~(9~). Then 

S(A + B) T + T*(A + B) S* = (SAT + T'AS*) + (SBT + T*BS*) E 91, 

so ~ is linear. Let  AE~,  BE91, S, TE~II(91). Then 

S(AB  + BA) T + T*(A B + BA ) S* = (SA( BT)  + (BT)*AS*) + ((SB) A T + T*A(SB)*) E 9I, 

so ~ is a Jordan ideal in 91. Since multiplication is uniformly continuous ~ is uniformly 

closed. Let A1E~, A 2 .... , A,E91. Let A = 1-Ig-sAt. Then A1A +A'AlE91 by definition of ,~. 

We show A1A+A*A1E~,  hence ~ is in particular reversible (with As ... .  , A , E ~ )  Let 

B, C E ~It(91). Then 

B(A 1A + A'A1) C + C*(AI A + A'A1) B* 

= (BAt(AC) + (AC)*A 1B*) + ((BA*) ArC + C*Ax(BA*)*) E 91. 

The proof is complete. 

De/inition 6.3. Let 91 be a JC-algebra. We say 91 is totally non reverxible if the ideal 

in Lemma 6.2 is zero. 

T~.OR~.M 6.4. Let 91 be a JW-algebra. Then there exist three central projections E, F, G 

in 91 with E + F + G = I such that 

(I) E91 is the sel/-adjoint part o /a  yon Neumann algebra. 

(2) F91 is reversible and ~(  F91) N i~( F2)  = {0}. 

(3) G91 is totally non reversible. 

Proo/. Let ~ be the ideal found in Lemma 6.2. ~ is weakly closed. In fact, if Aa E 5, 

A~-~A weakly, then for all S, T E~(91), SA~ T + T*A~S*-+SAT+ T'AS* weakly. Since 91 

is weakly closed S A T  + T'AS*E91, A E~. Let H be the central projection in 91 such that  

Hg~ = ~ (see [11]). Then H91 is reversible, and the existence of E and F follows from Lemma 

6.1. Let  G = I - H. We must show G91 is totally non reversible. Let  A E G91. If for all B, C in 

~(G91)=G~{91), BAC+C*AB*EG91, then, since B=GS,  C=GT,  S, Te!}t(91), B A C +  

C*AB* = G(SA T + T'AS*) E G91. But A = GA. Thus SA T + T'AS* E G91c 91 for all S, T in 

~(91). But then A E ~ = H91, A = 0. Thus G91 is totally non reversible. The proof is complete. 

COROLLARY 6.5. A JW-[actor is either reversible or totally non reversible. 
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THE OR~M 6.6. A totally non reversible JW-alqebra is o/type I~. 

Proo/. From [11, Theorem 5] there exists a central projection E in 9~--the JW-algebra 

in question--such that  9~E is of type I and 2 ( I  - E) has no type I portion. If ~ ( I -  E) =~ 0 

the "halving lemma" [11, Theorem 17] yields the existence of at least four orthogonal 

equivalent projections in 9~(I-  E) with sum I, hence !~I(I-E)  is reversible by Lemma 3.1, 

contrary to assumption. Thus 9~ is of type I.  By [11, Theorems 15 and 16] there exists an 

orthogonal family {P~) of central projections in ~ such that  P~ =0  or 9~P~ is of type I ,  

for all cardinals n, and ~nP~ = I. However, if n ~> 3 and P~ ~ 0 then 9~[P n is reversible by 

Lemma 3.1, contrary to assumption. If P1 ~= 0 then 9~P 1 is abelian hence reversible. Thus 

9~ is of type Is, the proof is complete. 

7. JW-faetors of type Iz 

Following [11] we define a spin system to be a set ~ of symmetries ~= • I such that  

T S + S T = O  for S, T E ~ ,  S=~ T. If  ~ is a spin system let ~ denote the weak closure of the 

real linear space spanned by ~.  If  a JW-factor  can be written in the form R I |  with 

as above, it is said to be a spin ]actor. 

THEOREM 7.1. Let ~ be a JW-/actor. Then the/oUowing are equivalent. 

(1) ~ is o/type I2. 

(2) 9~ is a spin/actor. 

I / d i m  ~ as a vector space over It is greater than 10(1) then the above conditions are equivalent to 

(3) 9~ is totally non reversible. 

Proo/. (3) ~ (1). This follows from Theorem 6.6. 

(1) ~ (3). Assume d im~  > 10 and that  (3) does not hold. Then 9~ is reversible (Corollary 

6.5). Let E 1 and E 2 be non zero abehan projections in ~ with E 1 + E , = I .  Then d i m ~ =  

1 + 1 +d i rnd l s  , as a vector space over It. Since 9~ is reversible it follows from Corollary 2.2 

that  Ej(9~) Ej is isomorphic to M2, C, or C | C hence Ej(~) E~ can be imbedded in M 2 (j = 1, 2). 

Hence 612 can be imbedded in M2, and d i m ~ < . l + l + d i m M 2 = 2 + 8 = l O ,  contrary to 

assumption. 

(2) ~ (1). Let 9~ be a spin factor. Then 9~=It I |  ~ as above. By [11, Corollary 29] 

every non zero operator in ~ is a positive multiple of a symmetry. Thus every operator in 

0/is of the form T = ~ I + f l S ,  S a symmetry in ~, a, tiER. Since S = E - F  with E and F 

projections in 9~ such that  E + F = I,  T has at most two spectral projections. Thus ~ is 

of type 12. 

(1) I n  f a c t  i t  su f f i ces  to  a s s u m e  d i m  9.I > 6, see e .g .  [5]. 

12 - 662945 Acta mathematica. 115. I m p r i m d  le 10 mar s  1966. 
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(1) * (2), Let  ~ be of type I~ and E and F orthogonal abelian projections in 9~ such 

that  E + F = I .  Then every operator in 9~ is of the form A = ~ E §  

~, fl ER, and where F A E  (resp. EAF)  is a scalar multiple of a partial isometry of E onto F 

(resp. F onto E) (Lemma 3.2). Let  x and y be vectors of norm 2 -�89 in E and F respectively. 

Let  Tr  be the state wz+c% on 9~. In view of Lemma 3.2 it is easy to show Tr is a faithful 

trace of ~ in the sense of [11]. Define an inner product on ~ by (A, B)=Tr(~(AB+B,4)) .  

Let I] 112 denote the corresponding norm on 9~. Then ~ is a real pre-ifflbert space. We show 

9~ is closed. In fact, it is straightforward to show ]1 II ~<2t I] 112. If ~4, is a Cauchy sequence 

in 9~ with respect to ]I [12 then I[A,-AmI[~<2 t ] ] A n - A m ] l ~ 0 .  Hence there exists A Eg~ 

such that  A,-~A uniformly. Since Tr  is uniformly continuous ] IA, -A ]{,-~ 0, ~I is a real 

Ifflbert space. Denote it by ~.  Now I and E -  F are orthogonal unit vectors in ~. Extend 

them to an orthonormal base (S=) for ~. If  A E~{ is orthogonal to I and E - F then E A E  = 

FAF=O. Thus, if S~ is in the base and S : # I  and E - F ,  then Sa=V:+V*  with V: a 

partial isometry of F onto E. Let  S:  and S# be distinct elements in the base different from 

I and E - $ ' .  Then 

s.&+ s~s,= (v.+ v*)(v~+ v~)+ (v~+ v~)(v.+ v*) 

= (v, v~ + v~ v*)+(v* v~ + v~ v,) 

= t E + A F = t I  

by Lemma 3.2. Since S a and S# are orthogonal, O=Tr(S~Sp+S#Sa)=2. Thus SaSp+ 

SzSa =0. Let  ~ be the set of S~ distinct from I. Then ~ is a spin system. If  ~ denotes 

the weakly closed linear space generated by ~ then ~I = R I ~  ~, 2 is a spin factor. The proof 

is complete. 

8. Reversible JW-algebras 

I t  would be easy by Theorem 5.2 to show that  the yon Neumann algebra generated 

by a JW-factor of type I~, n>~3, is itself of type J. I t  is possible, however, to give a global 

version of this fact. For this some facts on central carriers will be needed. If  9~ is a JW- 

algebra or a yon Neumann algebra the central carrier of a projection E in 9~ with respect 

to 9~ is the least central projection in 9~ greater than or equal to E. I t  will be denoted by 

c~(~). 

LV, MMA 8.1. Let • be a JW-algebra and E a projection in 9~. Then 
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Proo]. By [2, Corollaire 1, p. 7] Cs(~")= [~"E]. Clearly [2E l  <~[9~"E]. Now [9~E] e~ ' .  

In fact, if x ~ E ,  A,  B ~  then 

B A x  = (BA E + E A  B) x - E A  B x  ~ [!~x] V E ~< [~E]. 

Thus B leaves [~E] invariant, [9~E] E~'. Moreover, [2E l  e~ .  In fact, if A E~, and r(B) 

denotes the range projection of an operator B, then r ( A E ) = r ( A E ( A E ) * ) = r ( A E A ) e 2 ,  

by spectral theory and the fact that  ~ is weakly closed. Thus [ 2 E ] = V A ~  r ( A E ) ~ ,  as 

asserted. Thus [~E] belongs to the center of ~, which in turn is contained in the center 

of ~". Since Cs(2") = [~"E] >~ [~E] ~> E, [~[E] = Cs(2~). Since clearly Cs(9~) ~> Cs(9~ ") the 

proof is complete. 

T H ~. o R ~ Yl 8.2. I /  ~ is a reversible J W-al!Iebra o/type I then ~ ~ is a yon ~Veumann alqe- 

bra o~ type I.(1) 

Proo/. There exists an abelian projection E in ~ with CE(9~) = I.  Let  ~ be an irreducible 

representation of E ( ~ ) E .  Since (~) equals the uniform closure of ~ ( ~ ) §  i~(9~), ~ is an 

irreducible representation of E~(9~) E. Since (E~(2)  E)sa = E ~ E  is abelian, r E) is 

isomorphic to either R, C, or Q, by Corollary 2.3. Thus ~v(E(9~)E) is isomorphic to either 

C or M2, hence E(9.1)E is a CCR-algebra (see [8]). By [9, Theorem 6] E ( ~ ) - E  = ( E ( ~ ) E ) -  

is a yon Neumann algebra of type I ,  hence E ~ E  is of type I.  Let  F be an abelian projec- 

tion in E 2 " E  with CF(E~"E) = E [2, Thdor~me 1, p. 123]. Then F is abelian in ~" since 

F ~ " F = F ( E ~ " E ) F .  Let  P be a central projection in 9~" such that  P>~F. Then PE>~F. 

But P E  belongs to the center of E~"E ,  hence P E = E ,  and P ~ E .  But  by  Lemma 8.1 

CE(9~")=C~(2)=I. Thus P = I ,  CF(2~)=I, 91 ~ is of type I [2, Th~.or~me 1, p. 123]. The 

proof is complete. 
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