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1. Introduction

Jordan, von Neumann, and Wigner [5] have classified all finite dimensional Jordan
algebras over the reals. The present paper is an attempt to do the same in the infinite
dimensional case. The follbwing restriction will be imposed: we assume the Jordan alge-
bras are weakly closed Jordan algebras of self-adjoint operators with minimal projections
acting on a Hilbert space, i.e. are irreducible J W-algebras of type I.(*) The result is then
quite analogous to that in [5], except we do not get hold of the Jordan algebra I of that
paper, as should be expected from the work of Albert [1]. We first classify all irreducible
J W.algebras of type I,, n=>3 (Theorem 3.9). These algebras are roughly all self-adjoint
operators on a Hilbert space over either the reals, the complexes, or the quaternions.
Then all J W-factors of type I,, n >3, will be classified (Theorem 5.2). In addition to those
in the irreducible case we find an additional JW-factor, namely one which is the C*-
homomorphic image of all self-adjoint operators on a Hilbert space. J W-factors of type
I, are studied separately (Theorem 7.1). They are the spin factors, and except when the
dimensions are small, are exactly those J W-factors which are not reversible. Global results
of this type are obtained in section 6. Finally we show that the von Neumann algebra
generated by a reversible J W-algebra of type [ is itself of type I (Theorem 8.2).

A J-algebra is a real linear space U of self-adjoint operators on a (complex) Hilbert
space §) closed under the product 4o B=4(4 B+ BA). Then Y is closed under products of
the form 4ABA and ABC+CBA, A, B, C€¥ (see [4]). A JC-algebra (resp. J W-algebra) is
a uniformly (resp. weakly) closed J-algebra. A JW-factor is a J W-algebra with center the
scalars (with respect to operator multiplication). A projection E in a J-algebra U is abelian
if EAE is an abelian family of operators. By a symmetry we shall mean a self-adjoint unitary
operator. Two projections E and F in a JW-algebra U are said to be equivalens if there

(1) In a forthcoming paper all irreducible JW-algebras will be shown to be of type I.
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exists a symmetry S in Y such that E=SFS. The central carrier of a projection E in U
is the least central projection in 9 greater than or equal to E. % is of type I if there exists
an abelian projection in Y with central carrier the identity. If = is a cardinal ¥ is of type I,
if there exists an abelian projection in % n equivalent copies of which add up to the identity
operator. We shall write I, whenever # is infinite. A Jordan ideal in a J-algebra U is a
J-algebra J< U such that 40 BEY whenever A€J, BEY. Let R(A) denote the uniformly
closed real algebra generated by U. If n is a positive integer then 9" is the uniformly
closed real linear space generated by products of the form [[,4,, 4,€Y, and () denotes
the C*-algebra generated by . U is reversible if [[1 4, +] [}~ 4,€U whenever 4,, ...,
A,€N, n=1,2, ... If Ais a JC-algebra then U is reversible if and only if A=NR(A)s, [10].
We denote by I, the set of self-adjoint operators in a family I of operators. IR is said
to be self-adjoint if M contains the adjoint of each operator in JR. M- is the weak closure
and I’ the commutant of M. If B< § then [INB] is the subspace of § generated by vectors
of the form Az, A €M, x€ B. We identify subspaces of § and their projections. We denote
by B(P) the algebra of all bounded operators on §. Throughout this paper R denotes the
real numbers, C the complex numbers, and Q the quaternions. We shall consider Q as a
subalgebra of M,—the complex 2 X 2 matrices.

We are indebted to L. Ingelstam for pointing out an error in an early version of
Theorem 2.1.

" 2. Real algebras

As will be seen there is a close relationship between real self-adjoint algebras of oper-
ators and JW-algebras. Kaplansky [7] has classified (up to isomorphisms) the simplest
real algebras. We shall need a more detailed description of them.

THEOREM 2.1, Lel N be a real self-adjoint algebra of operators on a Hilbert space such
that every self-adjoint operator in R is a scalar multiple of the identity 1. Then R is charac-
terized as follows:

(1) R=RI.

(2) f=C1L

(8) There exists a minimal projection P’ €R’ with central carrier I such that P'R=QP’.

(4) There exist two non zero projections P and Q with P+@Q=1 such that

R={AP+1Q:21€C}.

Proof. Let A be a non zero operator in R and suppose there exists a sequence (B,) of
operators in R such that B, 4 -0 or AB,~ 0 uniformly, say B,4 0. Then A*B; B, A=
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(B,A)*B,4 0. By hypothesis By B,=a,I with «,€R. Thus «,4*4 0, «,-0, and
B, — 0. Similarly 4B, —~ 0 implies B, —0. Thus R has no non zero topological divisors of 0.
By [7, Theorem 3.1] R is isomorphic to one of R, € or Q. This could also be shown by an
application of [3]. If =R we have case (1). Let B denote the C*-algebra generated by R.
Since N is finite dimensional being isomorphic to C or @, B=R +iR. Assume R =>~C. Then
the dimension of B as a vector space over € is 1 or 2. In case dim B=1 we have case (2).
Assume the dimension is 2. Then there exist two orthogonal non zero projections P and
Q in B with P+Q =1 such that every operator in P is of the form AP +u@ with 1, u€C.
We may thus identify 8 with € xC. Let (4, u) €R. Then (1, z) €R, hence (1+1, u+) €N,
hence is a scalar. Thus Red=Reyu. Moreover, if (, £}€NR then (AL, u£) ENR, hence Rell=
Reuf, and ImA Im{ =TImy Imé&. In particular, with 1 =¢, u=¢, (Im2)?=Imu)?, If Imi=
Impu=+0 then by the above identity Im{=Imé for all (£, &) in R, so R={(4, 2):1€C},
and we have case (2). Otherwise ImA= —Imy for all (4, u)ER, R={(1,7):1€C}, and we
have case (4).

It remains to consider the case when R = Q. Then the dimension of R as a real vector
space is 4. Let § be the underlying Hilbert space. Since 3 is a vector subspace of B($)
the real dimension of B=R+iN is less than or equal to 8, i.e. dimPB <4 as a complex
vector space. Since § is non abelian so is B, hence B> M,. In particular, B being finite
dimensional, is a factor of type I, hence B’ is a factor of type I. Let P’ be a minimal pro-
jection in B'. Then its central carrier is I. Since P’ is minimal, (BP')' =P'®'P' ={iP'},
considered as a von Neumann algebra on the Hilbert space P’, hence B8P’ =M,P’. Thus
RP’'=QP'. The proof is complete.

It should be remarked that in the quaternionian case there exist real algebras like
those in case (4). However, if there exist projections P and @ with sum I such that =
{AP+1Q:1€Q}, then P and @ belong to R’ but not to B—the C*-algebra generated by R.
Moreover, the map.4 —~AP is an isomorphism of 3 onto BP. This should be kept in mind
in order to get a full understanding of the classification theorems to follow.

CoroLLARY 2.2. Let U be a reversible J W-factor of type I. Let E be an abelian projec-
tion in W. Let R=ERN) E. Then R is a real self-adjoint algebra satisfying the conditions of
Theorem 2.1, and E(N) E is characterized as follows:

(1) EQHE=CE.

(2) There exists a minimal projection P’ in E(N) E’ such that E(N) EP’' = M,P'.

(3) There exist two non zero projections P and Q with P+Q=E such that

EQ)E=CPo(Q.
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Proof. Since E is abelian EYE=RE [11, Corollary 24]. Since ¥ is reversible it follows
that 9 satisfies the conditions of Theorem 2.1. The rest is clear from the theorem and
its proof.

The next result will be used in section 8.

COROLLARY 2.3. Let R be an irreducible, uniformly closed, self-adjoint, real algebra
with identity I acting on a Hilbert space §). Assume R, is abelian. Then R is one of the
following algebras:

(1) (resp. 2) R=RI (resp. CI), and dimH=1.
(3) R=QI, and dimH=2.

Proof. Let I be a maximal ideal in R;,. Let f be a pure state of Ry, with kernel IN.
Let f be a state extension of f to the C*-algebra B generated by R. Then [=w,p with ¢ a

representation of B. Let IR =R N ker g. Then 9 is a uniformly closed self-adjoint ideal in
R. If A€ then AA*€IR, hence 0=w,p(AA*)=f(AA*), and AA*€IM. Let J be a uni-
formly closed ideal in Rg,. Then J= N M, M maximal ideals in Ry,. Lot % = n I, where

the 9% are constructed as above. Let A €. Then 44* €S, hence 44* €M for all M. By the
above AA*€N for all I, hence AA* €.

We show Ry, =RI. If not then there exist two non zero uniformly closed ideals J
and 7 in Ry, such that JF=0. Let S and 9 be ideals in R constructed as above. Let
A€S and B€J. Then ABeSNnF. Thus ABABYeJNF=37=0, and 4AB=0. Thus
§§=0. Since N is irreducible N has no non zero ideal divisors of zero [8, Lemma 2.5].

Thus % or §=O, contrary to assumption; Rs, =RI. An application of Theorem 2.1 com-
pletes the proof.

3. Irreducible JW-algebras

We classify all irreducible JW-algebras of type I,, n>3. The key to this and later

results lies in the following general lemma on the structure of J W-algebras.

LeMuma 3.1. Let A be a J W-algebra such that there exists a family {E ,} e, of orthogonal,
non zero, equivalent projections in U with 3 e; By =1, and cardJ >3. For ¢,0€J let Sy, =
E,UE,. Then the following relations hold:
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0if vy
(1) &€,,C,,=1Cs if =17, %0
CopCyo for all p+a if =p+T=1.

(2) Cre =8y S0 if a .

() If o=, let A, be the uniformly closed real linear space generated by € ,,S,,. Then
A, is a real self-adjoint algebra with identity E,, U, is independent of o, and
Upsa=So0

4) B, RN E,=C,, if o+, E,RA) E,<U;.

(8) U is reversible, and R(WA)~ =A*".

Proof. Clearly ©,,€,,=0 if v+7. Now &,,8,<S,, if 0+9. In fact, take B, C€Y
and put A=E,BE,+E, BE,+E CE,+E,CE,. Clearly A€, hence A%2€, so that
E,A*E,€S,, There are three cases, namely, T=0, 1=p, and 70 and v=p. In the two
first cases straightforward computations yield E, BE,CE,=}E,4%E,€S ,. In the third
case a similar computation yields E,BE,CE,=E,A’E,€S,, and &,,&,<€,, for
all 7 whenever o=, as asserted. The opposite inclusion is clear if 7=¢ or T=p. Assume
therefore ¢, 0,7 all distinct. Let S be a symmetry in U such that E,=SE,S. Let V=
E,SE,. Then V is a partial isometry in &,, such that V*V =E, and VV*=E, Let A€S,,.

Then
A=AE,=(AV)V*€(8,,8,,) €, E,,E,,,

by the above. Thus &,,<&,,&,,, and they are equal.

Assume p=¢. Let ¢ &1 in J, both different from ¢. Then, by the above, &, S,,=
©r8,0C0s =8y Sy, and (1) is proved.

If o0 let T7€J be distinet from both. Then by repeated applications of (1),

@09 =C,, 619 = 60'9 @er @19 = @cre @ea Sor @m = 60@ @ea gcre’

and (2) is proved.
It is clear from (1) that 9, is independent of p. By (2),

(60'9 @ea-)z = @09 @eo' @09 @Qa' = @o'e @90"

80 ©,,8,, is multiplicative. Since it is clearly self-adjoint 9, is a real self-adjoint algebra
with identity E,. Let A be a self-adjoint operator in (,. Then A4 is a uniform limit of self-
adjoint operators of the form >, B, with

‘Bi=EU0i‘EQDiE(TE(@0'Q@QO')SA’ Cz‘s Diea[
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Since Bi='2L(Bi +Bi*) =%EU(CiEQDi+D1E90i)EaEEa'%[Ea'=@aw

A€&,,. Thus A, ,,=S,,. The opposite inclusion follows as soon as we have shown

Sye<U,. For this let P<E, be a non zero projection in . Let S be a symmetry in A
such that SE,S=E,, o+0c. Let Q=8PS. Then Q< E,. Let R=P+Q. Let T=RSR. Then
TeY, and

P=TQT=E,TQTE,=E,TE,TE,€G,,S,<,.

Since real linear combinations of projections are uniformly dense in the J W-algebra &,,,
and since ¥, is uniformly closed &,,< U, as asserted, (3) is proved. Notice that the same
argument shows (A )ss=,,, & fact which will be used below.

We next show &,, is weakly closed whenever g+p. Let A€S,,. Then A=E,AE,.
Let {4,} be a net in ¥ such that E, 4, E,—~ A weakly. Since the *-operation is weakly
continuous, E,4,E,—~A* weakly, hence 4 +A4* is the weak limit of the net {E,4,E,+
E,A,E,}, the net consisting of operators in 9. Therefore 4 +A4*€¥, as U is weakly closed.
Thus 4=E (4 +A4%*)E,€S,,, S, is weakly closed.

In order to show (4) let A €R(A). Then A is a uniform limit of operators of the form
ora ], 4, with 4,€U. Therefore, in order to show E,AE,€S,, if o+¢ (resp. in

A; if o=p), it suffices by linearity and the fact that S, and ; are weakly closed so
uniformly closed, to show that any operator of the form

E,[] A;E,€S,, (resp.¥U;), where 4,€A.
=1
For n=1 this is trivial. Use induction and assume it holds for n —1. Then
n n—1
E, ]1 4B, =B, (1 4,) 4, B,
which is the strong limit of operators

n-1
>E,1] A;E. A, E,,
TeJ i=1
with J' a finite subset of J. By induction hypothesis
n-1
E,[14,E.€8,, ifo+7
i=1
and in ¥U; if 6=1. Hence, by (1)

n-1
E,[1A4,E, A, E,€S,, (resp. A7) if zr+o0,
i=1

and if T=q¢ then by (2) and the fact that &, is weakly closed,
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n-1

E,[14,E,A,E,€S,, (resp. U;).
j=1

n—1
Thus > E, 1 4;E. A, E,€S,, (resp.¥;)
7=1

Teld’

for all finite subsets J' of J. As &, and YU; are weakly so strongly closed, it follows that
n—1
E, (1131 A,) A, E,€S,, (resp.U;).

Thus E, RN) E,= S, (resp. As). Since clearly &,,< B, R(N) E, (4) follows. Notice that
E, RN E, oA, so they are equal.
Let A €R(A)sy. Then B, AE, €U, 5, =S,,. If 0+ p then there exist B, C €Y such that

E,AE,+E,AE,=E,BE,+E,CE,
=4E,BE,+E,CE,)+}(E,BE,+E,CE,)*
E,4(B+C)E,+E,}(B+C)E, €.

Thus A€, A is reversible.

It is clear that each S,,c U2 Thus A,< A4 Hence by (4), RA)"<A*", and they
are equal. The proof is complete.

From now on the £, in Lemma 3.1 will be abelian projections in a JW-factor U of
type I. If U is of type I, we define the &,, as above. Whenever we write &,, we shall
assume ¢ =+g.

LemmaA 3.2, Let A be a JW-factor with orthogonal non zero abelian projections {Ey},e;
such that 2 ey By =1. Then every operator in ©,, is a scalar multiple of a partial isometry
of E, onto E,. Moreover, if S, T€S,, then there exists a real number o such that

S*T+ T*S=akK,  ST*+TS*=uok,.
Proof. Let S€S,,. Then §=E,AE,, A€%. Thus
8*S=E,AE,AE,cE,)E,=RE,

[11, Corollary 24], hence S*S= ||S|2E, Similarly 88*=|S|2E,, and S=8V with V a
partial isometry of E, onto E,, S€C. Let T be another operator in &,,. Since U is linear
80 i8 & Thus S+ T =yW with W a partial isometry of E, onto E,, y€C. Therefore,

|72 B, =(S+ TS+ T) =8*S+T*T +(S* T+ T*8) = | B|2 B, + 8 B, + (S*T + T*S),

where T*T'=§E,. Thus S$*T+ T*S=aE, We may assume 7'+0. Then



172 E. STORMER
T8*+8T*=TS8S*E,+ E, ST*=6"1T(8*T + T*S) T* =0""ToB, T*=ok,.

The proof is complete.

From now on ¥ is a J W-factor of type I,,, >3, and the E, are as in Lemma 3.2. Then
they are all equivalent [11, Corollary 26], and Lemma 3.1 is applicable. We keep the
notation in Lemma 3.1.

LeMMA 3.3. For each pair a9 in J we can choose one partial isometry W ,,€S,,
such that whenever o, o, T are three distinct elements in J then

(1) Wop= W: o

(2) WO’Q = W(TT W‘!’Q'

Proof. Let first p, o, T be three distinet elements in J. Choose partial isometries W,
and W,, in &,, and €,, respectively (Lemma 3.2). Define W,, and W, by (1). Let

Woo=W.oWop Wor=Woe Wor

By Lemma 3.1 W,,€S,, and W, €S,,, and W,,=W;,. It is straightforward to check
(2) for the different rearrangements of g, o, and 7, e.g. W, =E W, =W W, W, =
W, Wo,. Thus the lemma holds for the three elements g, ¢, and 7 in J.

Let K be a maximal subset of J containing g, o, and 7, and for which the W, are chosen
so that (1) and (2) hold for all elements %, ¢ in K. Then K =J. If not let €J — K. Choose
W,, and Wy, in &, and &,, respectively such that W,,=Wy,. Let

Woo=WpeWes, Won=WeeWe,

for all p€K, @+p. Then Wy,=W,,, so (1) holds. Let u=¢ be in K and distinct form p.
This is possible by the preceding paragraph. As above we can show (2) holds for all rear-
rangements of 7, o, and g. We show (2) holds for all rearrangements of 7, 4, and ¢. Indeed,

Win=WueWen=WugW oo Woo Won = Wop EeWon = WioWon,
W= W:n =Wy Wen,
Wou=WooWou=Weo B,Wo = WeoWon WooWou = Wy Wop,

and (2) holds. Thus KU {} satisfies (1) and (2) for all its elements, contradicting the
maximality of K. Thus K =J, the proof is complete.

LemMA 3.4. The N, 6€J, are all spatially isomorphic, and each U, is one of the fol-

lowing algebras:
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(1) (resp. 2) A, =RE, (resp. CE,).

(8) There exists a projection P' €U’ with central carrier I such that if U is replaced by
P'Y then A, =QE,.

(4) There exist two orthogonal non zero p}ojections P, and Q, with sum E, such that
A, ={AP,+2Q,: AEC}.

Proof. Choose the W,,€S,, as in Lemma 3.3. By Lemma 3.1 €,,=8,,5,,S,,.
If VeES,, then V=VE,=VW, W, ,,=E, V=W, Wy V. Thus &,,=C,,S,; Wso=
W 0CorSop- Since S, is linear S =W, W,o=W,,U,. In particular A, = W5, A, W,,,
and they are spatially isomorphic.

By Lemma 3.1 A s, =E,AE,=RE,. By Theorem 2.1 there are four cases. The cases
(1), (2), and (4) of that theorem yield cases (1), (2), and (4) above. Assume 9, is given by
(3) in Theorem 2.1 for all c€J. Then there exists a minimal projection P, €, where U,
is considered as an algebra on the Hilbert space E,, such that P,%,=QP,. Let B, denote
the C*-algebra generated by . Then B, is a factor of type I. The map 4 ~AP, is an
isomorphism of B,.. Fix g€J. For each o=+ o let P,=W,, P, W, Since the map %A, %,
by A->W,, AW, is an isomorphism, P, is a minimal projection in A,. Let P’ =3, P,.
Then P'€Y’. In fact, let 4 €Y. Then P'E,AE,~P,E,AE,=E,AE,P,=E,AE,P’, since
P,€¥,. Since S,,=A, W,, there exists 4,€U, such that E,AE,=A,W,, Thus, with 7

and ¢ distinct from g,

PE.AE,~P,A . W,,=A,P.W,
=AW o PoWo, Weo=A, W, Po W,
=AW o WyoPy=A, W, P, =E AE,P',
and P'€U’' as asserted. Let @ be a central projection in Y’ such that @ >P’. Then Q,=
E,QE,>P,. But Q, is central in E,A"E,=B,, so Q,=E,. Thus Q=3 _E,=1, and the
central carrier of P’ is I. The proof is complete.

As an immediate application of this lemma and its proof we have

LemMmA 3.5. Let the W, 6% 0€J, be partial isometries in S,, chosen as in Lemma 3.3.
Then ©,, is characterized as follows:

) @UQ=RW0'Q‘

(2) €,,=CW,,.

(8) There exists a projection P’ €U’ with central carrier I such that if U is replaced by
P'U then S,,=QW .

(4) There exist orthogonal projections Py, Q,, Py Q, with P,+Q,=E,, P,+Q,=E,
such that
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@a-e = {(lPa- +IQ¢7) W :IEC} = {W,g(,uPQ + Q) p GC}'

The remaining part of the proof of Theorem 3.9 consists of eliminating case 4 in Lemma

3.5. We shall need a simple and probably well-known lemma of more general nature.
LeEmMA 3.6. Let E, F and G, H be two pairs of orthogonal non zero projections, let V

be a partial isometry of G+ H onto E + F. Assume that for each A €C there exists p € C such that
(1) AE+AF)V =V (uQ+aH).

Then either V*EV =G and V*FV =H, or V*EV =H and V*FV =G.

Proof. Multiply (1) on the right by G. Then
(2) AEVG+AFVG=uVG.

Multiply (2) on the left by E. Then AEVG@=uEVG. Thus either 1 =y or EVG =0. Similarly,
multiplication of (2) on the left by F yields 1=y or FVG=0. Since (1) holds for all 2€C
either EVG =0 or FV@=0, say EVG=0. Multiplication of (1) on the right by H yields
EVH=0 or FYH=0. If EVH=0 then 0=EV(G+H)=EV=EVV*=E, contrary to
assumption. Thus FVH =0. Now (V*EV)G =0 hence V*EV <H. Similarly V*FV <G.
Since V*EV+V*FV=H+@G, V*EV=H, V*FV =(. The case F VG =0 is treated similarly.

LEMMA 3.7. Assume the S,, are given by (4) in Lemma 3.5. Then the P, and Q, can
be chosen so that P, W,o=W P, and Qo W po=W ,,Q,, where the W, are chosen as in
Lemma 3.3.

Proof. Fix T€J and P,. By relabelling P, if necessary whenever p +17 Lemma 3.6 gives
P,W,,=W,P, hence W, P,=(P,W,)*=(W,P)*=P,W, whenever g+7. Let 0c€J.
We may assume o+71. If p+0,7, then P, W, =P, W, W, =W, P, W, =W, W,P,=
W 4P The proof is complete.

Assume the W, are chosen as in Lemma 3.3 and the P, as in Lemma 3.7.

LEMMA 3.8. Assume the ©,, are given by (4) in Lemma 3.5. Let P be the projection
P=3_;P,. Then P belongs to the center of U’

Proof. Let A€. Then 4 is a strong limit of finite sums of the form
ogg (}*og P, + zﬂg 458 Wag + %: o B,

Hence Pe’ if we can show

P (AP +Q,) W o= (AP;+2Q,) W P,
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for all ¢, p €J. But this is immediate from Lemma 3.7. Since the P, are all in (U) (see Corol-
lary 2.2), P€Y". Thus P is central in (',

THEOREM 3.9. Let U be an irreducible JW-algebra of type I,, n>3. Let {E,},; be an
orthogonal family of non zero abelian projections in W with >, c;B,=1. Let S,,=E,UE,
for 0% p. Then every operator in S,, is a scalar multiple of a partial tsometry of E, onto E,,.
If W, is a partial isometry in &, then one of three cases occur.

(1) Suo=RW,, for all c+p, and dimE, =1
(2) Bye=CW,, for all 6+p, and dim E, =1
(3) Byo=QW,, for all 6+, and dim E,=2.

Moreover, Y is reversible.

Proof. Case (4) in Lemma 3.5 cannot occur. Indeed, if it did, let P=> ., P,, @=
> e/, By Lemma 3.8 both P and @ are non zero orthogonal projections in %’ contradicting
the fact that 9 is irreducible. By Lemma 3.2 every operator in &, is a scalar multiple
of a partial isometry of E, onto F,. By Lemma 3.5 &, is one of the three sets described
above. By Corollary 2.2 dim ¥, is also as described. Finally, by Lemma 3.1 U is reversible.
The proof is complete.

4. Abelian projections

One of the difficulties in the study of J W-algebras is due to the poor behaviour of
cyclic projections. In this section and in section 8 we shall obtain useful results on such

operators. Presently we shall find a formula connecting abelian and cyclic projections.

Lemma 4.1. Let A be a JC-algebra with identity acting on a Hilbert space . Let x be a
vector in  and assume [(N)x]=1. Let F be a projection in A such that F<I~—[Ux]. Then
F=0.

Proof. By assumption the projections [U"z] converge strongly to I, n=1,2, .... Also
F{UAx]=0. Use induction and assume F[A"1x]=0, »>2. Let n>2 and 4,,..., 4,€U.

If n=2 then
FA dyx=F(FA,A,+ A, 4, F)x € F[Ax]=0.
If >3, then

FIl Ajz=P(FA,4,+ A, A, F) [] A,z € FA" 2] =0.
i=1 i=3

Thus F{A"z]=0, n=1, 2, .... Since [A"2]—I strongly, 0= F[N"x] —~F strongly. F=0.
For reversible JC-algebras similar techniques give an inequality in the opposite direc-

tion.
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LemMMA 4.2. Let U be a reversible JC-algebra. Let E be a projection in U and x a vector
in E. Assume [(A)x]=1. Then I—E <[Nx].

Proof. Let F=I—E. Then F[W*z]=(AxlF for n=1,2, .... Indeed, Fxr=0, so with
Ay ..., 4, €9,

=

FIl dw=F 1 A,+i11[ A,F) zeUa] <[Ar2],
i=1 =n

i=1

I

and the assertion follows. Since [W"z]—>1I strongly, [z]F = F{A"z]~F, strongly. Thus
[Ax] F=F, the proof is complete.

LeMma 4.3, Let A be a JC-algebra acting on a Hilbert space . Let w, be a pure vector
state on . Let F denote the set of vectors z€$) such that w,|UA= |z|2w,|UA. Then F is a sub-
space of O, and F<[z]+1—[Ax].

Proof. Clearly z€ F, 1€C implies Az€ F. Let w and z be unit vectors in F. Let A>0

be in Y. Then
Wypiz(A)= w,(4)+ 0w (4)+ 2Re(Aw, 2)

=2(w;(4)+Re (4t w, Atz))

<2(w;(A) + | 4bw]| | 4¥2])

=4 w,(4).
Since w, is pure and w,,,<4w;, 0y, = [W+2|Pw, on A, w+2z€F. Thus F is a linear
manifold. It is clear that F is closed, hence is a subspace. Now x € F. Hence in order to

show F<[x]+I—[Ux] it suffices to consider a unit vector y€ F —[z]. Let 4 be a complex
number of modulus 1. Then z+Ay€F, so

Wiy = e+ Ay [P, = (22 + |y |*) 0 =20, on A

Thus for all 4€9,
20, (4) =w g 2,(4) =20,(4) +2Re(Aly, x),

so that Re(Aly, z)=0 for all complex numbers A of modulus 1. Thus 0=(4y, z) = (y, 4x)
for all A€, ie. y€I—[WUx]. The proof is complete.

TurorREM 4.4. Let A be a JW-factor acting on a Hilbert space §). Let E be a projection
in W and x a unit vector in E. Assume [(N)x)=1. Then E is abelian if and only if

1) E<[z]+1I—~[Ux].
Moreover, if U is reversible then the inequality (1) is equality.
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Proof. Suppose E is abelian. Then EUE =RE, hence w, is pure on 9. Moreover, if y
is a unit vector in £ then w,| A =w,|N, so by Lemma 4.3, (1) follows.

Conversely, assume (1) holds. Let @ be a projection in U with G<E. If 2€G then
E~G<I—[Ux], hence £ —G=0 by Lemma 4.1. If € F —@ then similar arguments give
G=0. Assume Gz+0. Since G<E<[z]+I—[Uz], Gx=Ax+y with y€I—-[Az], 1+0.
Then y=(G —AI)x €[Ax], hence y=0. Thus Gz =Ax. Since A+ 0, z€G, G=E by the above.
Thus E is a minimal projection in 9, hence is abelian. If U is reversible then Lemma 4.2
shows that (1) must be equality. The proof is complete.

5. JW-factors of type I, n>3

In Lemma 3.5 we have practically classified all J W-factors of type I,,, n>3. However,
the description of case (4) is incomplete. The present section fills out this gap. For this we
shall need an analogue of the result for von Neumann algebras, which states that a factor

of type I has a faithful normal representation as all bounded operators on a Hilbert space.

TrEOREM 5.1. Let U be a J W-factor of type I, n=>3. Then there exists a representation
of (N) which, when restricted to N, is a faithful normal representation as an irreducible JW-
algebra of type I,.

Proof. Let E be an abelian projection in . Let x be a unit vector in Z. Then w, is a
pure state of Y. Let f be a pure state extension of w, to (). Then f=w,p with ¢ an ir-
reducible representation of (). Thus @(¥) is an irreducible JC-algebra. Moreover, y€ F =
@(E) with F an abelian projection in ¢(%), hence in ¢(¥)-, which is thus of type I. By
assumption ¥ is of type I,, n>3. Since all abelian projections in Y are equivalent [11,
Corollary 26), ¢ is faithful on U, hence ¢(A)~ is of type I,, m =n. If n is finite clearly m =un.
Otherwise n=coin which case m = oo, hence p(2)~ is of type I,. In particular ()~ is
reversible (Theorem 3.9). We show ¢ i ultra-weakly continuous on 9. There are two cases.

Case 1. g(¥)~ is determined by (1) or (2) in Theorem 3.9. Then dim F'=1, so by
Theorem 4.4 [p(N)y]=1. Let w=Ay+iBy with 4, BEp(Y). Let §>0 in ¢(A). Then

0<(Sw, w)
=(SAy, Ay) +(SBy, By)—2Im(SBy, 4y)
<(484y, y)+ (BSBy, y)+2 |8 By || 1S4y |
=((484y, y)* +(BSBy, y)})2.

Thus | if 4=¢(4,), B=@(B,), S=¢(S,) then
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0< (‘P(Sﬂ“’, w)< (wI(AlSlAl)* tw, (B8, Bl)*)z'

Therefore, if §,>0 in the unit ball %, of A and §,~> 0 weakly, then (¢(S,)w, w) 0. Let z
be any unit vector in §. Suppose S, are operators as above. Let £>0 be given. Choose a
unit vector w=Ay+iBy in §, A, B€p(¥), such that [w—z|<ef4. By the preceding we
can choose j so large that (p(S;)w, w) <g/2. Then

0<(p(8,)z, 2)
<(@(8))2, 2) — (@(S))w, w)] +(@(S))w, w)
< [(@(8))z, z—w) +(p(S)) (z —w), w)| +&/2
<2pSH Il lle—wli+&/2
<2¢ef/4+ef2=¢.

Thus §;~0 on the positive part of %, implies (p(8,)z, z) -0 for all unit vectors zin §. As
in [6, Remark 2.2.3] it follows that ¢ is ultra-weakly continuous on .

Case 2. ()~ is determined by (3) in Theorem 3.9. Then dim F'=2 so there exists a
unit vector z orthogonal to y in F. By Theorem 4.4 [y]+[2]1=F =[y]+ I —[p(%A)y], hence
[p(A)y]+[z] = I. Therefore, every vector w in §) is of the form w=u+1z with «€[@(A)y],
A€C. Exactly as in case 1 w,p is weakly continuous at 0 in ;. Let §>0 be in (). Then

0 <(Sw, w)
=(Su, u) + |1[2(Sz, 2) + 2Re(S4z, u)
=(Su, u) + |1|%(Sy, y) +2Re(S1z, u)
< (Su, u)+ |A{2(Sy, y) + 2|18z || [1S*u |
=((Su, u)* + [2{(Sy, y)})*

As in case 1 we conclude that g is ultra-weakly continuous on U, ie. p is weakly continuous
on %, which is weakly compact. Thus the unit ball in ¢(%) is weakly compact. As Topping
has pointed out the Kaplansky density theorem holds for JC-algebras (see the proof in
[2]). Since ¢(¥) is strongly dense in p(2A)~ and contains the unit ball in ¢(A)~ it must be
equal to @(N)-, i.e. () is a J W-algebra. The proof is complete.

TarorEM 5.2. Let A be a JW-factor of type I,, n>3, acting on a Hilbert space 9.
Let {E,}qe; be an orthogonal family of non zero abelian projections in N with 2 ,e; E,=1.
For o+¢ lot S,,=E,UE,. Let W,, be a partial isometry in S,,. Then one of the following
four cases occurs:

(1) oo =RW, for all o +p.
(2) Sye=CW , for all s+ 9.
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(8) There exists a projection P' €W’ with central carrier I such that if U is replaced by
P'Y then S,,=QW,.

(4) There exist two non zero projections P, and Q, with P,+Q,=E, such that S,,=
{(AP,+3Q,) W ,o:2€C}. In this case there exist a Hilbert space §, a normal *-iso-
morphism v, and a normal *-anti-isomorphism v, of B(K) into B() such that
vi(D)po(I1)=0, and such that U is the tmage of the C*-isomorphism w,+p, of
B(R)sa tnto B(H)sa-

Proof. 1f the &,, are determined by (1), (2), (3} in Lemma 3.5 then we have cases
(1), (2), (3) above. Assume the &, are determined by (4) in Lemma 3.5. Let P=> _.,P,,
Q=7 ,e;Q,, Where the P, and @, are as in Lemma 3.5. By Lemma 3.8 P and @ are central
projections in (A)~ with P+@=1. Let ¢ be the representation constructed in Theorem
5.1 of (A) into B(K). Then ¢ has an extension to an irreducible representation @ of (A)-,
hence ¢(P) =0 or ¢(@) =0, say #Q)=0. Then ¢(,) =0 for all ¢ €J. Consequently p(S,,) =
Co(W ) =p(E,)p(N)@(E,). Thus ¢(A)=B(K)sa. Let v be the map ¢ 1:B(R)s,—~>A.
Then v is normal and has an extension to a normal C*-isomorphism of B(R) onto A +¢2.
By [4, Corollary to Theorem 7] (or by [10, Theorem 3.3]) v is the sum of & normal *-iso-
morphism y,, and a normal *-anti-isomorphism y, of B(RK) into B(H). Since A =p(B(K)s4)
the proof is complete.

6. Non reversible JW-algebras

It turns out that a JW-algebra can be decomposed along its center into three parts,
one part being the self-adjoint part of a von Neumann algebra, one part more like the
J W-algebras given by (1), (3), and (4) in Theorem 5.2, and a third part, which is practi-
cally a global form of a spin factor.

Lemma 6.1. Let U be a reversible JW-algebra. Then there exist central projections E
and F in U with E+ F=1 such that EU is the self-adjoint part of a von Neumann algebra,
and R(FA) N RFA)={0}.

Proof. Let & =R(A) N¢R(A). Then K is an ideal in (A) [10, Remark 2.2], hence its
weak closure & is an ideal in (%{)~. Thus there exists a central projection E in ()~ such
that 8~ =E( )~ [2, p. 45], and E€R-. Now ¥ is reversible, hence §5,<, and (8 )gs=
(Rs4)"<U. Thus K€Y, and & 5,=FYU. Clearly & is a von Neumann algebra. Let
F=1I—E. Then F is central in 9, and

R(FA) NR(FA) =FRQ) N iRQA) =FR< FEN)~={0}.

The proof is complete.
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LeEMMA 6.2. Let A be a JC-algebra with identity 1. Let  denote the set of operators A €A
such that BAC +C*AB*€¥ for all B, CERN). Then J is a untformly closed Jordan ideal
in A. Moreover, 3§ is a reversible JC-algebra.

Proof. Let A, BEY, 8, TE€R®). Then
S(A+B)T+T*A + B)8* =(SAT + T*AS*) + (SBT + T* BS*) €%,
so ¥ is linear. Let A€, Be¥, 8, T€R(A). Then
S(AB+BA)T+ T*AB+ BA)S*=(SA(BT)+(BT)*AS*)+ (SB) AT + T*A(SB)*) €%,

so ¥ is a Jordan ideal in 9. Since multiplication is uniformly continuous J is uniformly
closed. Let 4,€3, 4,, ..., 4,€U. Let A=[1"24,. Then 4,4 + A*4, €Y by definition of J.
We show 4,4-+A4*4,€S, hence J is in particular reversible (with A4,,..., 4,€3) Let
B, CeR(N). Then

B(A, A+ A*A,)C+C*(A, A+ A*4,) B*
= (BA,(AC) +(AC)* A, BY) +((BA*) 4,0 + C* A,(BA*)*) €Y.

The proof is complete.
Definition 6.3. Let Y be a JC-algebra. We say U is totally non reversible if the ideal

in Lemma 6.2 is zero.

THEOREM 6.4, Let Y be a J W-algebra. Then there exist three central projections E, F, G
i W with E+ F+G=1I such that

(1) BEU is the self-adjoint part of a von Neumann algebra.
(2) FU is reversible and R(FY) N iR(FA) = {0}.
(3) -G 1s totally non reversible.

Proof. Let ¥ be the ideal found in Lemma 6.2.  is weakly closed. In fact, if 4,€,
A4,—~A weakly, then for all S, TER(), S4,T+T*4,8" ~SAT + T*A8* weakly. Since U
is weakly closed SAT + T*A8*€N, A€S. Let H be the central projection in U such that
HY =S (see [11]). Then HY is reversible, and the existence of £ and F follows from Lemma
6.1. Let @ =1 — H. We must show G is totally non reversible. Let 4 €Y. If for all B, C in
RGAW=GR(A), BAC+C*AB*€QV, then, since B=GS, C=GT, 8, TERA), BAC+
C*AB*=Q(SAT +T*A8*)€GY. But A=GA. Thus SAT+T*A8*€GN<U for all 8, T in
R(A). But then 4 €F=HA, 4 =0. Thus G is totally non reversible. The proof is complete.

COROLLARY 6.5. 4 JW-factor is either reversible or totally non reversible.
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THEOREM 6.6. A totally non reversible JW-algebra is of type I,.

Proof. From [11, Theorem 5] there exists a central projection E in 9—the JW-algebra
in question—such that A¥ is of type I and A(I — E) has no type I portion. If (I — E)+0
the “halving lemma” [11, Theorem 17] yields the existence of at least four orthogonal
equivalent projections in (I — E) with sum I, hence (I — E) is reversible by Lemma, 3.1,
contrary to assumption. Thus 9 is of type I. By [11, Theorems 15 and 16] there exists an
orthogonal family {P,} of central projections in U such that P,=0 or AP, is of type I,
for all cardinals », and >,P,=1. However, if #>>3 and P, 0 then 9P, is reversible by
Lemma 3.1, contrary to assumption. If P;+0 then 9P, is abelian hence reversible. Thus

A is of type I,, the proof is complete.

7. JW-factors of type I,
Following [11] we define a spin system to be a set P of symmetries =+ + I such that
TS+8T=0 for S, T€P, S+ T. If P is a spin system let & denote the weak closure of the

real linear space spanned by B. If a JW-factor can be written in the form RI® & with &
as above, it is said to be a spin factor.

TueorEM 7.1. Let W be a JW-factor. Then the following are equivalent.
(1) U s of type I,
(2) U is a spin factor.

If dim A as a vector space over R is greater than 10() then the above conditions are equivalent to

(3) AU is totally non reversible.
Proof. (3)= (1). This follows from Theorem 6.6,

(1) = (3). Assume dim ¥ >10 and that (3) does not hold. Then ¥ is reversible (Corollary
6.5). Let E, and E, be non zero abelian projections in Y with K, + E,=1. Then dim¥ =
1+1+dim&,,, as a vector space over R. Since U is reversible it follows from Corollary 2.2
that E;() £, is isomorphic to M,, €, or C® C hence E,(A) E, can be imbedded in M, (j=1,2).
Hence ©,, can be imbedded in M,, and dim¥Y<1+1+dim M,=2+8=10, contrary to
assumption.

(2)=(1). Let 9 be a spin factor. Then A=RIB K, K as above. By [11, Corollary 29]
every non zero operator in & is a positive multiple of a symmetry. Thus every operator in
A is of the form T=al+£8, § a symmetry in &, «, fER. Since S=E—F with ¥ and F
projections in 9 such that £+ F=1I, T has at most two spectral projections. Thus ¥ is
of type I,.

(1) In fact it suffices to assume dim % > 6, see e.g. [5].

12 — 662945 Acta mathematica. 115. Imprimé le 10 mars 1966,
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(1)=(2). Let A be of type I, and E and F orthogonal abelian projections in I such
that E+F=1. Then every operator in ¥ is of the form A=aE+SF+EAF+FAE,
o, BER, and where FAE (resp. EAF) is a scalar multiple of a partial isometry of E onto F
(resp. F onto E) (Lemma 3.2). Let 2 and y be vectors of norm 2-* in E and F respectively.
Let Tr be the state w,+w, on UA. In view of Lemma 3.2 it is easy to show Tr is a faithful
trace of U in the sense of [11]. Define an inner product on A by (4, B)=Tr(i(4 B+ BA)).
Let || |i, denote the correspénding norm on 9. Then ¥ is a real pre-Hilbert space. We show
A is closed. In fact, it is straightforward to show || || <2¥|| ||,. If 4, is a Cauchy sequence
in YU with respect to | |, then ||4,—4,|<2}||4,—4,],—0. Hence there exists 4 €
such that A4,->A4 uniformly. Since Tr is uniformly continuous {|4,—4{;—0, U is a real
Hilbert space. Denote it by 9. Now I and E — F are orthogonal unit vectors in 9. Extend

them to an orthonormal base (8,) for A I A€ is orthogonal to I and £ — F then FAE =
FAF=0. Thus, if 8, is in the base and S,+ 1 and E—F, then S,=V,+V; with ¥, a
partial isometry of F onto E. Let S, and S, be distinct elements in the base different from
I and E—F. Then

8 8p+ 8 8u=(Vat V) (Vo+ Vi) + (Vpt+ Vi) (Vot V3)
=(VoVE+ Ve Vi) +(VaVs+ Vi Vo)
=AE+AF=21

by Lemma 3.2. Since S, and S; are orthogonal, 0=Tr(8,8;+848,)=4. Thus 8,8, +
8;8,=0. Let B be the set of S, distinct from I. Then P is a spin system. If § denotes
the weakly closed linear space generated by B then A =RI® &, U is a spin factor. The proof

is complete.

8. Reversible JW-algebras

It would be easy by Theorem 5.2 to show that the von Neumann algebra generated
by a JW-factor of type I,,, n >3, is itself of type I. It is possible, however, to give a global
version of this fact. For this some facts on central carriers will be needed. If A is a JW-
algebra or a von Neumann algebra the central carrier of a projection E in 9 with respect
to U is the least central projection in ¥ greater than or equal to E. It will be denoted by
C(A).

Lemma 8.1. Let A be a JW-algebra and E a projection in Y. Then

C(¥) =[AE]=[A"E]=Cx(A").
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Proof. By [2, Corollaire 1, p. 7] Cx(U")=[A"E]. Clearly [UE])<[U"E]. Now [AE]eN’.
In fact, if € X, 4, BEY then

BAx=(BAE+EAB)x— EABr€[¥x] v E<[UE).

Thus B leaves [UAE] invariant, [ E]€A’. Moreover, [HEJ€N. In fact, if 4€9, and »(B)
denotes the range projection of an operator B, then r(AE)=r(AE(AE)";)=r(AEA)E%f,
by spectral theory and the fact that U is weakly closed. Thus [UE]1=Vieq r(4E) €Y, as
asserted. Thus [HE] belongs to the center of ¥, which in turn is contained in the center
of A”. Since Cx(A") =[N E1Z[NE1=E, [AE]=CxA"). Since clearly Cx(A)>Cx(A") the
proof is complete.

TueorEM 8.2. If U is a reversible JW-algebra of type I then A’ is a von Neumann alge-
bra of type I.(Y)

Proof. There exists an abelian projection E in % with Cx(N) =I. Let ¢ be an irreducible
representation of E()E. Since (N) equals the uniform closure of R(A)+ iRX), ¢ is an
irreducible representation of ER(A) E. Since (ER(YU) E)s, = EUE is abelian, p(ER(A) E) is
isomorphic to either R, C, or Q, by Corollary 2.3. Thus ¢(E(¥) E) is isomorphic to either
C or M,, hence B(H) E is a CCR-algebra (see [8]). By [9, Theorem 6] E(N)-E =(E(N) E)-
is a von Neumann algebra of type I, hence EN"F is of type I. Let F be an abelian projec-
tion in EY"E with Cx(EN"E)=E [2, Théoréme 1, p. 123]. Then F is abelian in A" since
FY"F=F(EN"E)F. Let P be a central projection in %" such that P> F. Then PE > F.
But PE belongs to the center of E"E, hence PE=E, and P> E. But by Lemma 8.1
Ce(A")=Cx(N)=1. Thus P=1, Cx(A")=1, A" is of type I [2, Théoréme 1, p. 123]. The
proof is complete.
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