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1. Introduction

For (C*-subalgebras 4 and B of a (*-algebra C we study the relation 4 & B, which
means that for any o in 4, there exists an operator b in B such that |ja —b|| <y||a]|.

The main reason why we have investigated those relations, is that we think, that if ¢
is small enough, B must have a subalgebra which shares some of its properties with 4,
and in turn we hope that we can get information on the space of C*-subalgebras of a given
C*.algebra.

Our methods yield positive answers in several cases, and we prove under some condi-
tions on 4 and B that there exists a unitary operator » on a underlying Hilbert space
such that u is close to the identity and udu* is contained in B, (Th. 4.1, Cor. 4.2, Th. 4.3,
Th. 5.3). The theorems in section 4 are, generally speaking, obtained in the situation where
A and B are von Neumann algebras on a Hilbert space and one of them is injective.

Theorem 5.3 tells that B contains such a twisted copy of 4, if A4 is finite-dimensional
and v is less than 104, In particular one should remark that the result is independent of
the dimension of 4.

Having the result of section 5 we are able to show in section 6 that if 4 is the norm
closure of an increasing sequence of finite dimensional C*-algebras (AF for short), 4 and
B satisty A& B, B A and y is less than 10-?, then B is also AF. This implies that B is
unitarily equivalent to 4 in these cases.

At the end of section 6 we study the relations 4 £ B, B& A for other types of C*-
algebras, and we find that if 4 is nuclear and v is less than 102 then B is also nuclear and
the dual spaces 4* and B* are isomorphic via a completely positive isometry.

The proofs of the results in the sections 4 and 5 are made in three steps.

Suppose 4 & B, then the first step is to find a completely positive linear map of 4

into B which is close to the identity on 4. In the case where B is an injective von Neumann
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algebra one can get this map simply by restricting a projection from B(H) with image B
to 4.

In the cases where neither 4 nor B is injective it is in general impossible for us even
to find a linear embedding of 4 into B. On the other hand when A is finite-dimensional
and B arbitrary we get the desired map via the results in section 3. In that paragraph we
do prove that for any nuclear C*-algebra D the relation 4 & B implies 4® D & B® D. This
tells that it is possible, simultaneously, to approximate several elements in 4 with elements
from B in such a way, that certain linear and algebraic relations between the elements
from A are nearly fulfilled by those from B. Having this we can construct a linear com-
pletely positive map of 4 into B which is close to the identity on A.

The second step is to perturb this completely positive map such that the perturbed
map is a star-homomorphism of 4 into B. A technique yielding such a result was developed
in [6]. The third and final step is to show that such a star-homomorphism is implemented
by a unitary close to the identity i.e. the homomorphism is given by a—wuau*. Questions
of this type were discussed in [6] and [7], and it follows that in the situation considered
here, we are able to find such a unitary. Therefore we get that uAu* is contained in B for
some unitary % close to the identity and we are done.

In order to be able to perform the second and third step, the analysis from [6] and
[7] show, that it is important that the algebra A has the property that any operator in C
which nearly commutes with all elements in A4, is close to the commutant of 4 in C. In
section 2 we recapitulate these concepts in detail, and we show how the results in [4], [8]
and [15] can be used to extend the validity of the results in [6] and [7].

2. Preliminaries

In their article [18] Kadison and Kastler defined the distance between two von Neu-
mann algebras as the Hausdorff distance between the respective unitballs. In the articles
[5], [6], [7] we used this notion too, but since then we have found it more natural and
easier to deal with the distance concept introduced below. The metrics are of course equiv-

alent.

2.1. Definition. Let E and F be subspaces of a normed space @ and let y >0.

If for any e with [le]| <1 there exists an f in F such that || —f|| <y, then Z is said to
be y contained in F and we write EE F. If EE F for some Yo <y we write £ E F. The
distance between £ and F is the infimum over all >0 for which F EF and FE E. The
distance between E and F is denoted by || E— F||.
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Let H be a Hilbert space; the algebra of all bounded operators is denoted by B(H),
vectors by small greek letters, operators by small latin letters, von Neumann algebras by
the letters M and N and general C*-algebras by the letters 4, B, and C. For an operator
x in B(H), ad (x) denotes the derivation on B(H)implemented by zi.e. ad {z)(m) =[xz, m]=
am —mx. 1f « is any unitary operator in B(H) or more generally in a C*-algebra, Ad (u)
is defined as the automorphism implemented by u, i.e. Ad (u) (m) =umu*.

Let M be a von Neumann algebra on a Hilbert space H, and let « be a bounded operator
on H. If x is close to the commutant M’ of M, we get easily that ||ad (z)| M| is small,
but on the other hand if ||ad (x)| M|l is small we proved in [7], that the distance from x
to M’ is small provided M is not non injective and of type II,. The definition below re-

flects that we do not know whether a general result is valid.

2.2. Definition. Let 4 be a C*-algebra and let k be a positive real; 4 is said to have
property D, if for any representation 7z of 4 on a Hilbert space H and any operator z in
B(H)

inf {||lz—m| |men(4)'} < k|ad (z)|=(4)].

2.3. Definition. For any k, 0<k<1 we define d(k) =k2*(1 + (1 —k2)¥)- 1.

During the last years the injectivity concept in the category of C*-algebras and
completely positive maps, has been investigated very much ([3], [4], [8], [91, [15], [25]).
We benefit from this, since Remark 6 of [15] implies, that injective von Neumann algebras

do have the property P of Schwartz, so we obtain the following:

24. TaroreM. If M is an injective von Neumann algebra on a Hilbert space H, then
for any x wn B(H)
tHlad ()| M| <d(z, M') < ||ad (x)| M|
Proof. ['7, Theorem 2.3).

2.5. THEOREM. If M is an injective von Neumann algebra on o Hilbert space H, 0 <k <1
and o is star homomorphism of M into B(H), such that for any m in M, ||a(m) —m| <k||m]|,
then there exists a unitary u in (M U oa(M))" such that o =Ad (u) and || I —ul] <é(k).

Proof. [6, Proposition 4.2].
A (*-algebra A is said to be nuclear if any of the following equivalent conditions is
fulfilled ({[4], [12]).

1. For any finite number a, ..., a, of operators in 4 and any £>0 there exists a fnll
matrix algebra M, and completely positive maps y: 4—+M, and ¢: M,—~A4 such that
lla: — (@) <e and |lp|| <1, ly|| <1.
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2. For each representation 7 of 4, 7(4) is injective.

3. The bidual A** is an injective von Neumann algebra.

From 2.4 and Kaplansky’s density theorem we then get.

2.6. PRoPOSITION. Any nuclear C*-algebra has property D,.

We call & C*-algebra approximately finite-dimensional AF for short, if it contains a
dense subalgebra, which is the union of an increasing sequence of finite-dimensional C*-
algebras.

Finally we remark that type I C*-algebras and AF C*-algebras are nuclear.

Before closing this section we mention

2.7. ProPOSITION. If a unital C*-algebra A contains two isomelries v and w such that

w* +ww* < I then A has property Dy,.

Proof. The von Neumann algebra generated by any non degenerate representation

of 4 must be properly infinite, and the proposition follows from [7, Theorem 2.4].

3. Tensorproducts of inclusions

Suppose 4 and B are C*-subalgebras of a C*-algebra C.

If A £ B and Dis an arbitrary C*-algebra, we want to investigate the relations between
the subalgebras 4® D and B® D of C® D. (The sign ® means minimal C*-tensorproduct
whereas ® means spatial von Neumann algebra tensorproduct.)

Suppose that A can be twisted into B by a unitary close to the identity, then one
easily deduces that A® D is nearly contained in B® D.

On the other hand if 4® D is nearly contained in B® D for a “big” algebra D, we do
have the hypothesis, that there will exist a completely positive map ¢ of 4 into B which
is close to the identity map on 4.

In the proof of Theorem 5.2 we actually verify this hypothesis in a special case.

3.1. TuroreM. Let C be a C*-algebra with C*-subalgebras A £ B, and let D be a nuclear
6ky

C*-algebra. If A has property D, then A9 D < B®D.

Proof. Let 7 be a representation of C' on a Hilbert space K and let H be an infinite-

dimensional Hilbert space then

v
7(A) ® Oy < 7(B) ® Cy.
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Since A has property D,, we find that
—_— 2Ky —
7(B)' © B(H) = n(4) ® B(H),

because for any x in #(B)’'® B(H) and any @ in A, b in B we get, when we define 7{c) =
ae)®1;
e, a1 = e, @)~ 363 <20 [t ).

Now 7n(B)'® B(H)®Cy is properly infinite, so Proposition 2.7 shows that this algebra has
property Dy,. We can then repeat the argument with 3/2 instead of k and get

6%y
(7(4)® B(H))" < (m(B)® B(H))". (D

Any finite-dimensional C*-algebra M can be represented on H such that I, =Ig;y,, more-
over there exists a normal projection of norm one from B(H) onto M, so the relation (1)

can be projected into

6y
m(A) ® M<n(B) ® M. @)

Let us continue to consider a finite-dimensional C*-algebra M, and let ¢ be a continnous
functional of norm one on C® M which vanishes on B M.

Let (7, H,) denote the universal representation of C ® M, then ¢ has a unique exten-
sion to an ultraweakly continuous functional ¢ on #(C®M)", § vanishes on n(BQM)",
and therefore the restriction of ¢ to {4 ® M)" has norm less than 6%y. This in turn implies,
that the restriction of ¢ to A ® M has norm less than 6ky, so from Hahn-Banach’s theorem

we may conclude, that whenever M is a finite-dimensional C*-algebra

6ry
A@M< B M. (3)

Let x be an operator of norm less than one in 4 ® D, then to any & >0 there exists operators
@ - @y in A and g, ..., y, in D such that |z —>7; 4,0y <e.

To the operators y,, ..., y, we can find a finite-dimensional algebra M and completely
positive contractions g: DM, ¢: M—D such that |ly,—e(o(y,))|| <e(Sia fja]|)~*. The
completely positive maps id®g: C@ D-C®M and id®e: CQM—-C®D maps AR D into
A®M and B M into B® D. By (3) we conclude that there exists z, in B®.M such that

< 6lky(L+¢).

2:1 4, ®0(y) — 2
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When we define z=id®p(z,), we get that z belongs to B® D and

[l — 2| < +

r— 21&1@'14 _21a2®((p9(y1)_yi)”

+ < 6ky(l+¢)+ 28,

dee (21 @0y} — zo)
The theorem follows, since we do assume ||| <1.

3.2. THEOREM. Suppose that A & B are C*-subalgebras of a C*-algebra C. If D is an
abelian C*-algebra, then A® D & B®D.

Proof. Choose ¢ >0 such that 4 Y& B,and let T denote the spectrum of D. The algebras
A®D and B® D are then isomorphic to the algebras of continuous functions on 7' with
values in A (resp. B) which vanish at infinity, and both algebras can of course be con-
sidered as subalgebras of C,(T, C), the algebra of continuous functions on T with values
in C which vanish at infinity.

Suppose x=x(t)€Cy(T, A) and [|z]| = sup, ||#(t)|[ <1, then there exists a compact
subset K of 7' such that ||«(t)]| <¢ for ¢ in ™\ K. Let O, ..., O, be a finite covering of K
with open sets in T such that for any s, ¢ in O; we have ||z(s) —z(t)|| <e. We want now to
use a partition of the unit, on K, subordinate to this covering. Let {y;|j=1, ..., m} be
such a partition consisting of non-negative continuous functions with compact support

such that each vy, has its support in some O, and

s

1g< 2 p;<1y.

j=1

We can now construct a y in Cy(7T, B), close to z by first choosing ¢; in the support
of y,, and secondly operators y; in B such that |[z(t;) —y,|| <y —4e. A simple calculation
shows that the operator y in Cy(T, B) defined by y=>7, vy, satisfies sup, ||z(t) —y(t)|| <
y —¢, and the theorem follows.

4. Inclusions with ene injective von Neumann algebra

In this paragraph we study the relation M & N for von Neumann algebras M and N,
We show—ifor sufficiently small y’s—that if M has property D, and N is injective,
or if M is injective and N arbitrary then M can be twisted into N via a unitary close to
the identity. As a corollary of this we find, as Raeburn and Taylor did [22], that the set

of injective von Neumann algebras on a Hilbert space is open and closed.
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The proofs follow the ideas sketched in the introduction.

In the case where N is injective and hence has a projection of norm one onto itself.
we get immediately a completely positive map from M into N. By restricting this projec-
tion to M, we get a situation similar to these discussed in [6].

In the case where M is injective; M has property D, and we get N'® B(K )2CyM ‘®
B(K). Now M'® B(K) is injective and we can use the previous result for this case too.

4.1. THEOREM. Let 4 be a unital C*-algebra with property D, acting on a Hilbert space
H and N an injective von Neumann algebra on H.

If AL N then there exists a star homomorphism @ of A into N such that |(®—id)| 4| <
(2+6k)y. If y <(6k%-+2k)~ then there exists a unitary w in B(H), such that ®(a)=uau™* and
I\~ | <(9%2+3k)y.

Proof. If ky =% then ® is chosen to be zero, if ky <} then let o be a projection of norm
one from B(H) onto N and let (&, K, p) be chosen such that 7 is a representation of B(H)
on K and for any x in B(H); o(x)=pn(x)|H ([24], [6, Theorem 3.1]). Since p| N is a star
isomorphism it follows that p commutes with z(N). Let €4 and choose n € N such that

la —n| <y]|a||, then one finds
(@) p —pr(@)] = Flala—n)(2p — 1) - (2p — Drla—n))| <y|la].

Therefore there exists an operator « on K in s(4)’ such that ||p —z| <ky.

According to Arveson’s commutation result [1, Theorem 1.3} we know that @ and K
can be chosen such that the commutant [p Un(B(H))] is isomorphic to the commutant
N’ of N in B(H). Hence N’ and [p Uz(B(H))]” are both injective [25]. Let ¢ be a projection
of norm one from B(K) onto [p Un(B(H))}". Then ¢ maps x into 7z(4)’ because p is a module
map, in fact one gets for x in w(A4)’ and ain 4, 7(a)p(x) = p(n(a)x) =@(zn(a)) = p(z)n(a).
It is clear that @(p) = p so that for y =g(x) we get ||y —p|| <ky and y €[p Un(B(H))]" N7(4)".
When we now continue as at the end of the proof of Lemma 3.3 of [6] with ¢* replaced by
ky, we find a projection ¢ in t(A4)' N [p Uz(B(H))]” and a unitary v in [p Un(B(H))]” such
that v*pv =g, ||p —q|| <2ky and || I —v|| <&(2ky) <3ky. The map ® of A4 into N given by

a — 7e(a) ~ vrr(a) qv* —~ vr(a) qv* | H = vr(a)v* | H,

is a star homomorphism of 4 into N, because p[p Un(B(H))]"|H=N.
For each @ in A, there exists n in N such that ||a —n|| <y; hence we get
[@(@) —a| < ||pn(a)v* —a(n)p| +|la—n|
<y +||wla) —a(n)|| + ||vl@)v* —ala)|| < (2+6Fk)y.
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If y <(6k2+2k)~* then (2 +6k)y <k~! and one finds that the argument given in the proof
of [7, Proposition 3.2] applies. This means, that there exists a unitary w in B(H) such that
O (a) =uau* and ||1—ul| <6((2 +6k)yk) < (3k+9k2)y.

The following corollaries 4.2 (a), (b), (c), (d) follow from Theorem 4.1 and the remarks

made in section 2. The last statement 4.2 (e) is commented upon below.

4.2. COROLLARY. (a) Let A& N be as above. If A is nuclear and y <} then there extsts
a unitary win (A UN)" such that wAu*< N, ||uau* —a| <8y||a| and || I —u| <12y.

o) If M EN, M and N injective von Neuwmann algebras on o Hilbert space H, and
y <} then there exists a unitary w in (M U N)" such that uMu*< N and || I —u| <12y.

(¢) If |M—N||<}, M and N are injective then there exists a unitary w in (M U N)”
such that uMw*=N and ||I—u| <12y.

(d) Let AEN be as above, if A is a properly infinite von Neumann algebra 0<y<g,
then there exists a unitary w in B(H) such that, wAu*< N and || I —u| <25y.

(e) Let AE B be finite-dimensional C*-subalgebras of & unital O*-algebra C. Suppose all
three have the same unit and that y <} then there exists a unitary u in C such that, uAw*< B,
Juan* ~al <8pfall, | 1] <12y.

Proof. Ad. e. The proof of Theorem 4.1 yields a starhomomorphism ® of 4 into B
such that || ®(a)—a| <8y|a|.

Since the unitary group in 4 is compact it is easy to see that the proof of {7, Proposi-
tion 4.2] works in this case too. We can therefore find an operator z in C such that z®(a) =az
and ||I—z|| <8y. This inequality implies that z*x is invertible, and hence that the unitary
part in the polar decomposition of z belongs to C. The collorary follows,

We will now turn to the case where an injective algebra is nearly contained in an

arbitrary von Neumann algebra.

4.3. TaEOREM. Let N & M be an injective and an arbitrary von Neumann algebra on a
Hilbert space H. Suppose 0<y <1072, then there exists a unitary v in (NUM)" such that
I —»|| <150y, vNv*< M and ||vnv* —n|| <100y||n|| for any n.

Proof. Since N has property D, we can argue as in the beginning of the proof of The-
orem 3.1 in order to get M’ ® B(K) ZN '® B(K). Corollary 4.2 (d) shows that there is a
unitary u in B(H)® B(K) such that ||I —u| <50y and «* (N ®C)us (M @C).

By Theorem 2.4 there is a unitary v in (N U M)” such that |7 —v| <46(100y) <150y,
vNv*C M and vnv* =u*nu.
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4.4. CoroLLARY. If || M —N| <y <101-! and N is an injective von Newmann algebra

then there exists a unitary v in (M U N)” such that oNv*=M.

Proof. By 4.3 there is a unitary v in (M U N)” such that || I —v|| <150y and |jvno* —n|| <
100y||n|| for any n in N. Hence we get M " yNv*< M and by a standard argument which
is given in [6), we get M =vNv*, and the corollary follows.

Especially we have reproved the result due to Raeburn and Taylor, that the set of

injective von Neumann algebras is open.

5. Inclusions with finite-dimensional C*-algebras

Suppose O is a (*-algebra which contains the O*-algebras 4 and F, suppose moreover
that F is a finite-dimensional factor and that {e;|¢, j=1, ..., n} are matrix units for F,
then in [16] Glimm proved; to any >0 there exists a d(n, &), such that if 4 contains oper-
ators z;; satisfying |x;;—e;|| <d(n, ) then 4 also contains matrix units f;; such that
lf:;;—ei;|| <e. In other words if a set of matrix units for F is close enough to 4, then 4
" contains a copy of F.

As indicated the constant d(n, ¢) is very much dependent upon n.

If one considers the relation F & A, meaning that any element in the unitball of F
is within distance p to 4, then we give a proof independent of the dimension of F, which
shows that 4 contains a copy of F.

Since a set of matrix units is also a basis, it is possible to deduce Glimm’s result
from the one of our’s.

We start with the case, where F is abelian say with minimal projections p,, ..., p;.
The idea is then to show, that there exist natural numbers %, ..., n, such that the images
of the function f(z)=p,2™ +p,2™ +... p2", 2€T ={2€C| |z| =1} is & dense in the set of
unitaries in the algebra F. We then find a ¢ in O(T, A) with power series expansion g(z) =
@,2" + ... +a2" such that a,>0 and g is close to f, then the map ®(> 4,p)=2 Aa;is a
completely positive map of F into 4 close to the identity on F. The details follow in 5.1
and 5.2 below,

This abelian result combind with elementary technique give the general finite-dimen-

sional algebra, result.

5.1. LEMMA. Let k€N and £>0, then there exist positive integers ny, ..., n, such that for

any (Y1, ..., Vi) ET¥ there is a £ wn T for which

k
> lyi— Ml <e.
i=1
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Proof. It is possible to get a proof via a simple induction argument, but it is also
known from the theory of lacunary series, that one can find integers n,, ..., #; such that

the functions 2™, 2™, ..., 2™ on T satisfy any wanted degree of independence.

5.2. ProrosiTiON. Let F be a finite-dimensional abelian C*-subalgebra and B a C*-
subalgebra of a C*-algebra C. If for some y <10-3, I & B, then there exists a partial isometry v
in C such that vo = I, and

vFv* < B; ||ofo —fl| < 15y }|f]]; [| Lz —ol| < 37y*.

Proof. We follow the method sketched above and construct first a completely positive
map of F into B. Then by some technique taken from [6] we perturb the positive map
slightly such that the perturbed map becomes a star homomorphism. Finally we show
that this map is given by f—wvfo* for some partial isometry having the properties above.

Let p,, ..., p, be the minimal projections in F, >0 such that F'< B and n, ..., n
positive integers for which the statement in Lemma 5.1 is fulfilled with respect to .

By Theorem 3.2 there exists a continuous function f on T with values in B such that

o]

Since the inequality is sharp and the trigonometric polynomials are dense in C(T, C)

k
f2)— 2 p2" IZET}<7—€-
i-1

we may assume that f has the form f(z)=>7 _,, b;2'.
We let 1, denote the translation operator 7,h(z)=h(6-'2) and define g by g(z)=
>iz1p;2". For any 6 in T

(s )* = (zog)* g1 O)| < ||(xolf —g))*gll + || (xal))* (F =] <2 —2e.

When written out this inequality becomes

k
' Z by, 0 (El P, 0"7) <2y—2¢ forany0inT.

i=-m

In order to get rid of excessive terms we estimate
k
Y= (g (f-9)(0)= 2 b+ 2 (br,=2)" (br, = 2.

#ni j=

Therefore for any &, 5 in H

(3 800l < (S &S TPy <o?lel il
ng tFn; iFn
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and we have proved that for any 6 in T

k k

Define a completely positive map ® of F into B by ®(p;) =b;.b,, then Lemma 5.1 and
the arguments above show that for any unitary uin F, ||®(u) —u|| <2y —¢& 42 Since the
unitball in F is the convex hull of the unitaries we get | @(f) —f|| < (2y +?) ||f|| for all fin F.

Let g be the spectral projection for ®(I) corresponding to the interval [1/2, 3/2], then
an argument similar to the one given in [5, Lemma 2.1] shows that ||¢ — ®(Ip)|| <(2y +y?).

Let b denote the inverse to ¢®(I;) in B, then the map I’ of F' into B, defined by
T(f)y=b*®(f)b? satisties I'(I;) =g and ||I'(w*)T'(u) —q| <12,05y for all unitaries » in F,
{see [6, Theorem 3.4] for a similar argument). Since the group of unitaries in F is compact,
the methods from [6, Lemma 3.3] can be used at the “C*-level” and we find that there
exists a star homomorphism ¥ of ¥ into B such that |[I'—¥'|| <14p*.

Ii we do examine the constructions of I' and ® we can easily prove that for any f
in F, [%() 1] <157*

We want now to suppose that F and C have the same unit. If this is not the case or
if C has not got a unit we do simply adjoin one and define a star homomorphism ¥ of
F=CIaF into CI®B by YA+ =1+T(f). Now ¥ satisties ¥(I)=1I and for each fin
B, |[¥ () || <30y 1))

The group of unitaries in F is compact, and also [6, Proposition 4.2] works at the
“C*.level”. Hence we find that there exists a unitary u in ¢ implementing ¥ such that
[l I —ul|| <87y % The theorem follows when we define v =uly.

Having this abelian result the general result for a finite-dimensional C*-algebra 4 is
proved by first to twist a maximal abelian subalgebra of 4 into B and then secondly to
show, that in this situation a set of matrix units for the perturbed algebra can easily be

twisted into B via a unitary close to the identity.

5.3. THEOREM. Let A be a finite-dimensional C*-subalgebra and B a C*-subalgebra of a
C*-algebra C.

Suppose 0<y <10t and A & B, then there exists a partial isometry v in C such that
|1, —v»| <120y% and vAv*< B.

Proof. Let F be a maximal abelian C*-subalgebra of A and let % be a partial isometry
in O such that ||I;—u|| <37yt and uFu*< B.

We may assume that the minimal projections in F are the self-adjoint elements in a
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set of matrix units for 4. Since 4 has the form A=M, ®..® M, , where M, is a full
matrix-algebra of dimension n? we may enummerate the matrix units by f; where 1 <k <m,
1<4, j<my.

Choose 23 in B such that ||fj; —af]] <y, and define g;; =uf}u*, then

gt gt —uffw*|| < ||giais —ufiw*)gnl] < 75yt
When we define g as the partial isometry part of the polar decomposition of giiaf g1

and af as the positive part we obtain;
|lufi€¢u*g§‘1a§‘ —g’f1|| <75yt

Lemma 2.7 in [5] implies that the isometry part uffiu*gi of the operator satisfies
”ufglciu*gfl —gh “ <5('757/ i),
This relation shows that

Il —ufs u|| < 8(75y %) < 83yt

and since 83yi<1,gli(gh)* =9k (95)*95=g%. We may then define matrix units gj; by
gri=gk(gh)* and we have got a system of matrix units in B which is close to the system
fi. This is verified by constructing a partial isometry close to I, which twists £ into gi.

Let w=>7.1 2% ghufi,u* then wgf =gkw, so
flo =2 > fill < 8312
k i

Let v =wu then v€C, v4v*< B and

|1y —v| < |Jwu—u|| +|Ju— L] <83y?+37y# <120p%.

6. Perturbations of nuclear C*-algebras

In the article [6], we did prove that two commutative C*-algebras and two ideal or
dual C*-algebras (C*-algebras of compact operators) are unitarily equivalent, when closer
than 10! and 600! respectively [6, Th. 5.1, Th. 5.3].

We do prove a result of this type for AF C*.algebras below.

John Phillips and Ian Raeburn have proved, that close AF C*-algebras are unitarily
equivalent, by an application of the dimension group theory [20], [14]. Our approach is

different except for the last steps, which are based upon arguments due to Powers and
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Bratteli. We use in the first part the results from section 6 together with some twisting
arguments which have been used by Glimm [16], Dixmier [11], and Bratteli [2].

In the last part of the section we study close nuclear C*-algebras and show, that the
set of nuclear C*-algebras is open, and further any two sufficiently close nuclear C*-algebras

have isomorphic duals and biduals.

6.1. THEOREM. Let 4 and B be C*-subalgebras of a C*-algebra C. If A s AF and
|4 — B|| <10-° then B is AF.

Proof. It A, B and C do not have a common unit, we adjoin a unit I to € and obtain
|4 - B| <2-10-° inside . We do therefore assume in the following computations that
|4 —B]j<2-10~° and the algebras have a common unit. Suppose 4 =cl (U5-; 4,) where
(A,)nen is an increasing sequence of finite-dimensional C*-algebras, all containing the
identity in C. Since A4 is separable and |4 — B|| <4 it is easy to check that B is separable.
Let (b,);en be a dense sequence in the unitball of B, we want then to show, that there
exists an increasing sequence B; of finite-dimensional C*-subalgebras of B such that for
any 4 in N; span {b,|1 \<Jc<i}c% B;. We do make the proof by induction and copy argu-
ments due to Glimm [16, Th. 1.13].

To start the induction suppose b; =0 and B, =0. Let V =span ({b;|1<k<i+1} U B))
and let n in N be chosen such that V is 2. 10—°=y contained in 4,. Find a unitary « in C
such that ||I—u| <120y* and ud,u*< B, (Th. 5.3). It is easy to see that B, is 240y%
contained in w4, u*, so by Corollary 4.2 (e} there exists a unitary w in B such that wu A, u*w*
contains B; and |1 —w|| <2 880yt

Now V is contained y+240y*+2-2880,*¥<0, 3 in B, —=wud,u*w* and the theorem

follows.

6.2. THEOREM. If A and Bare AF C*-subalgebras of a C*-algebra C and | A — B|| <1/16,

then A and B are isomorphic.

Proof. Let |4 — B|| <y <1/16.

The proof is based upon Theorem 5.3 and a modified version of Brattelis isomorphism
argument given in [2]. By [2, Theorem 2.2] it is possible to find increasing sequences
(A ) nens (Bp)nen of finite-dimensional C*-subalgebras of 4 and B such that their unions are
dense in 4 and B and for each # in N; 4, & B, and B, £ A, ,,. Corollary 4.2 implies that
there exists homomorphisms o, of 4, into B, and §, of B, into 4, such that ||a, —id| 4,[| <
8y and ||8, —id | B,|| <8y.
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We have now got a diagram,

and we want to show, that there exists inner automorphisms 7, on B, and y, on 4, such
that the diagram below commutes.

AI—L——>B1

| 4]

~1
T2“2y2
Ay ——

-~

The existence of y, is clear since 16y <1 so f,«, is implemented by a unitary in 4,.
Suppose now that we have found y,, 7,, ..., ¥, T, such that the diagram commutes. Then y,,
is implemented by a unitary v in A4,, hence y, can be extended to A4, ; when defining
P»=Ad (v) the map 8, «, can be extended to an inner automorphism Ad (u) of 4,,, because
|Bron—id | 4,]| <1. Let us then define y,,, as Ad (vu*), and the theorem follows.

6.3. COROLLARY. Let A and B be AF C*-algebras on a Hilbert space H.
If ||A—B|| <1/16 then A and B are unitarily equivalent.

Proof. The proof is due to Phillips and Raeburn [20] and Corollary 4.2, the idea being
that by 4.2 we can find a unitary « in (4 U B)” such that A =uBu* (bar denotes weak
closure).

Let « be an isomorphism from A onto B obtained as in 6.2 then Ad (u)ox has the

property that projections in 4 which are equivalent in 4 are mapped into equivalent
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projections in 4 by Ad (u)oa. To see this one must use that « is constructed from inner
automorphism in 4, B and homomorphisms, which are close to the identity. Phillips and
Raeburn then use Brattelis and Powers arguments to show that Ad (u)oo is an inner

automorphism of 4, and the result follows.

6.4. CorROLLARY. Let 4, B and C be as in the theorem. For any finite-dimensional
C*-subalgebra A, of A there exists an isomorphism o of A onto B such that for any a in
4o, l(a) —al| <8||4 - B|||a]|.

Proof. Choose A, such that 4,< 4.

We will now discuss perturbations of nuclear C*-algebras.

6.5. THEOREM. Let 4 be a nuclear C*-subalgebra of C*-algebra C. If B is a C*-sub-
algebra of C and || A —B| <y <10-2, then B is nuclear, B** is as von Neumann algebra iso-

morphic fo A** and A* is isomorphic to B* through a completely positive isometry.

Proof. Let 7z be the universal representation of C on a Hilbert space I1. By [18, Lemma. 5]
|(4) —=(B)|| <10-2 (bar denotes here weak closure). The nuclearity of 4 implies that

7(A) is an injective von Neumann algebra (not necessarily containing the identity on H).

Corollary 4.4 implies that #(B) is injective and isomorphic to 7_I(A) through an inner
automorphism Ad (¢) on m .

Since any representation ¢ of 4 or B can be extended to a representation of C [10,
Prop. 2.10.2] we find that 77(2) and m are isomorphic to the second duals of 4 and B
[10, Cor. 12.1.3]. The second dual of B is then injective, hence B is nuclear and the rest of
the theorem follows from the remarks above by transposition.

We will now go back to the near inclusion situation 4 & B.

If A is a non separable C*.algebra we will say, that 4 is AF if any finite number of
elements in 4 can be approximated arbitrarily well with elements from a finite-dimen-
sional C*-subalgebra of A4.

The following proposition is then an immediate consequence of Theorem 5.3.

6.6. PRoPOsITION. Let A& B be C*-subalgebras of a C*-algebra C. If y <10~t and A
is AF (separable or not), then to any finite-dimensional subspace F of A and any &>0 there

exists a partial isometry v in C such that

vF*C B and ||F—vFv*| <240y,
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For any f in F
llofe*(| = (1 —e) | ]]-

If C has a unit, v can be chosen unitary with ||I—v|| <120y %.

6.7. ProposiTION. Let AL B be C*-subalgebras of a C*-algebra C. Suppose A has
approximately tnner flip and that A, B and C have a common unit, then to any finite dimen-

stonal subspace F of A there exists a completely positive map ® of A into B such that for

any f in F, | () —f| <(36y*+12p)]|f]|.

Proof. Choose £>0 such that 4’ B and find (f,, ..., f,) in the unitball of F such that
any f in this unitball is inside an ¢ ball with center in some f,.

By {13, Proposition 2.8] 4 is nuclear and therefore by Theorem 3.1

6(y-¢)

A4 <« B®A.

Choose a unitary v in A®A4 such that for any i=1, .., n, ||o(f,® I)v* — I®f,|| <e, and find
z in B®A such that |jv—2|| <6(y —¢). Let ¢ be a state on 4 then the slice map [25, §1]
R, 0®A—~C®C maps B®4 onto B®C and A® A4 onto 4A®C, we therefore obtain for
Fu B2 I @ 1)) — @ I <[l @ ) — f,@ I <o+ I @ f) 2 —* (I @ fol| < e +
(1+6(y—¢))6(y — &)+ 6{y —¢&). Define ® by ®(a)&@I = R (x*(IRa)x).

It is rather easy to see that this method when applied to a finite-dimensional full

matrix algebra, say of type I, yields a result of the type discussed in section 5. In fact

one can prove.

6.8. COROLLARY. Let A & B be C*-subalgebras of a C*-algebra C. Suppose A is finite-

dimensional factor of type L,.
If py<2-.107* then there exists a partial tsometry v wn C such that vAv*<S B and

2. —o|| <57y L
If A, B and C have a common unit I and y<<10-3, then there exists a unitary u in C

such that uAw*< B and || I —ul| <28y*.
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