LOCALIZATION THEOREM IN K-THEORY FOR SINGULAR VARIETIES (1)

BY

GEORGE OUART

University of Chicago Chicago, Illinois U.S.A.

0. Introduction

0.1. The preceding paper [1] constructs a map $L: K_0^{eq}(X) \to K_0^{abs}(|X|) \otimes \Lambda$ for any equivariant quasi-projective X with projective fixed point scheme |X|. The construction of L involves an imbedding in a nonsingular variety; it is proved that L is independent of the imbedding and is a covariant natural transformation. A fixed point formula results by mapping X to a point. Here we give a direct proof of the following stronger result.

LOCALIZATION THEOREM. Let i: $|X| \to X$ be the inclusion of the fixed point subvariety. Then the induced map i_* from $K_0^{eq}(|X|) \otimes \Lambda$ to $K_0^{eq}(X) \otimes \Lambda$ is an isomorphism.

In § 1 we recall the construction of L, for a fixed imbedding of X in a nonsingular variety, and we show that $L \circ i_*$ is the identity endomorphism of $K_0^{\text{abs}}(|X|) \otimes \Lambda$. We prove in § 2 that i_* is surjective. Thus since L, and i_* are inverse isomorphisms, L, is independent of the imbedding. Since i_* is clearly covariant, the covariance of L, follows. One recovers the Lefschetz-Riemann-Roch formula of [1], since the other properties of L, listed in that theorem are consequences of the corresponding properties of i_* .

This localization theorem is an analogue of localization theorems in topological K-theory (cf. [1], 0.8), and Nielsen's result [4] in algebraic K-theory for nonsingular varieties.

0.2. As in [1], "equivariant varieties" are quasi-projective schemes with an endomorphism of finite order prime to the characteristic of the ground field k, such that the fixed point

⁽¹⁾ Appendix to Lefschetz-Riemann-Roch for singular varieties by P. Baum, W. Fulton and G. Quart.

214 G. QUART

scheme is projective; Λ is the localization of Z[k] at the multiplicative set generated by $\{([1]-[\lambda])| \lambda \text{ is a root of unity and } \lambda+1\}$. Other notations are as in [1].

0.3. I thank P. Baum, A. Landman, R. MacPherson, and M. Rosen. I am especially grateful to W. Fulton.

1. Injectivity of i*

Here we make explicit without relative K-groups the map L. of [1] for a fixed imbedding $X \subset M$.

Let $\alpha: X \to M$ be a fixed closed embedding where M is a nonsingular variety. Let \mathfrak{F} be an equivariant coherent sheaf on X and suppose \mathcal{L} ." and \mathcal{L} ." are two complexes of equivariant locally free sheaves on M that resolve $\alpha_* \mathcal{J}$. There is a third resolution \mathcal{L} ." of $\alpha_* \mathcal{F}$ by locally free equivariant sheaves on M which maps surjectively to \mathcal{L} .' and \mathcal{L} ." and induces the identity map on the zeroth degree equivariant homology sheaves; this follows from the fact that every coherent equivariant sheaf is the image of a locally free sheaf (cf. [3] p. 261) and the dominating sequence argument of Borel-Serre ([2], p. 107). The kernel of each of the surjections is an acyclic complex of equivariant locally free sheaves on M. Thus, for each q, $\mathcal{H}_q(\mathcal{L}'|_{|M|}) = \mathcal{H}_q(\mathcal{L}''|_{|M|}) = \mathcal{H}_q(\mathcal{L}''|_{|M|})$ where $\mathcal{H}_q(\mathcal{L}''|_{|M|})$ is the qth equivariant homology sheaf of $\mathcal{L}^{(1)}$ restricted to [M]. Whence, $\mathcal{H}_q(\mathcal{L}, |_{[M]})$ is an equivariant sheaf on |M| with support on |X| determined up to canonical isomorphism. Also, if $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence of equivariant coherent sheaves on X, there is an exact sequence of complexes of equivariant locally free sheaves $0 \rightarrow \xi$. $' \rightarrow \xi$." ξ ."" $\rightarrow 0$ on M with each ξ , exact in degree > 0 and the map on the zeroth degree homology sheaves is $0 \to \alpha_* \mathcal{J}_1 \to \alpha_* \mathcal{J}_2 \to \alpha_* \mathcal{J}_3 \to 0$. After restricting $0 \to \xi' \to \xi'' \to \xi''' \to 0$ to |M|, we obtain the usual long exact sequence in the \mathcal{H}_{a} 's:

$$\ldots \to \mathcal{H}_q(\xi^{\,\prime}\big|_{|M|}) \to \mathcal{H}_q(\xi^{\,\prime\prime}\big|_{|M|}) \to \mathcal{H}_q(\xi^{\,\prime\prime\prime}\big|_{|M|}) \to \mathcal{H}_{q-1}(\xi^{\,\prime}\big|_{|M|}) \to \ldots$$

We define $I^M: K_0^{eq}(X) \to K_0^{eq}(|X|)$ by the formula $I^M([\mathcal{F}]) = \sum (-1)^q [\mathcal{H}_q(\mathcal{L}, |_M)]$. Here we have identified the Grothendieck group of equivariant coherent sheaves on |M| with support on |X| with $K_0^{eq}(|X|)$.

Let $\lambda_{M} \in K_{eq}^{0}(|M|) \otimes \Lambda$ be the alternating sum of exterior powers of the conormal bundle of |M| in M; λ_{M} is a unit in $K_{eq}^{0}(|M|) \otimes \Lambda$ (cf. [1], 0.5).

We define as in [1], the Lefschetz-Riemann-Roch map $L: K_0^{eq}(X) \to K_0^{eq}(|X|) \otimes \Lambda$ by $L = |\alpha|^* (\lambda_M^{-1}) \cap I^M$.

The fact that i_* is injective after localization at S follows immediately from the fact that $|\alpha|^*(\lambda_M)$ is invertible in $K^0_{eq}(|X|) \otimes \Lambda$ and the following lemma.

LEMMA 1. $I^{M} \circ i_{*}$ is equal to multiplication by $|\alpha|^{*}(\lambda_{M})$ as an endomorphism of $K_{0}^{eq}(|X|)$.

Proof. Let \mathcal{F} be an equivariant coherent sheaf on |X| and a resolution of $i_*\mathcal{F}$ by locally free equivariant sheaves on M; \mathcal{L} is also a resolution of $|\alpha|_*\mathcal{F}$ on M. Since \mathcal{F} is a sheaf on |X|, then

$$\Lambda^q(N) \otimes_{O_{|\mathcal{M}|}} \mathcal{F} \approx (\Lambda^q(N) \otimes_{O_{|\mathcal{M}|}} O_{|\mathcal{X}|}) \otimes_{O_{|\mathcal{X}|}} \mathcal{F} \approx \big|\alpha\big|^* (\Lambda^q(N)) \otimes_{O_{|\mathcal{X}|}} \mathcal{F},$$

where $\Lambda^q(N)$ is the qth exterior power of the conormal bundle of |M| in M equipped with its canonical endomorphism. Thus it suffices to show if \mathcal{F} is an equivariant coherent sheaf on |M|, then $\mathcal{H}_q(\mathcal{L}.|_{|M|})$ is isomorphic to $\Lambda^q(N) \otimes_{O_{|M|}} \mathcal{F}$. At the level of coherent sheaves on |M|, we have a canonical isomorphism from $\mathcal{H}_q(\mathcal{L}.|_{|M|})$ to $\Lambda^q(N) \otimes_{O_{|M|}} \mathcal{F}$ ([2], Prop. 12). We must see that this isomorphism is compatible with the endomorphisms of these coherent sheaves. Since this isomorphism is compatible when \mathcal{F} is a locally free equivariant sheaf on |M| ([4], p. 91) and every coherent equivariant sheaf on |M| has a resolution by locally free equivariant sheaves on |M|, it suffices to apply a dimension shifting argument: if $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence of coherent equivariant sheaves on |M|, then the isomorphism of [2] is compatible for \mathcal{F}_3 if it is compatible for \mathcal{F}_1 and \mathcal{F}_2 . After writing out the long exact sequence in the \mathcal{H}_q 's obtained from the short exact sequence of sheaves on |M| and applying the compatibility hypothesis to \mathcal{F}_1 and \mathcal{F}_2 , we obtain the compatibility for \mathcal{F}_3 .

We record the following facts concerning Poincaré duality for later use:

Remark 1. Suppose M is nonsingular. The duality map from $K_{eq}^0(M)$ to $K_0^{eq}(M)$ which takes the class of a locally free sheaf to its class as a coherent sheaf is an isomorphism; if \mathcal{F} is a coherent sheaf and \mathcal{L} . is a resolution by locally free equivariant sheaves on M, then $[\mathcal{F}] \mapsto \sum (-1)^i [\mathcal{L}_i]$ is the inverse map. If $y \in K_0^{eq}(M)$, we denote its "dual" element in $K_{eq}^0(M)$ by y^* . In section 3 we give an example of a singular variety for which the duality map is S-torsion.

Remark 2. Suppose M is nonsingular and imbed M in itself by the identity. The map I^M from $K_0^{eq}(M)$ to $K_0^{eq}(|M|)$ is compatible with the restriction map i^* from $K_{eq}^0(M)$ to $K_{eq}^0(|M|)$. Whence, the above lemma asserts if $y \in K_0^{eq}(M)$, we have

$$i^*((i_*(y))^*) = \lambda_M \cap y^* \tag{1}$$

in $K_{eq}^0(|M|)$. In particular, if \mathcal{L} is a resolution on M of the structure sheaf of |M| with the identity endomorphism, then $i^*(\sum (-1)^i[\mathcal{L}_i]) = \lambda_M$, a unit in $K_{eq}^0(|M|) \otimes \Lambda$.

216 G. QUART

Remark 3. Since λ_M is invertible after localization at S, then the formula (1) asserts that the composition

$$K_0^{\text{eq}}(|M|) \xrightarrow{i_*} K_0^{\text{eq}}(M) \approx K_{\text{eq}}^0(M) \xrightarrow{i^*} K_{\text{eq}}^0|M|$$

is an isomorphism after localization at S (the middle map is the duality isomorphism).

§ 2. Surjectivity of i.

We now reduce the surjectivity of i_* after localization to a computation on projective space.

If p is a diagonal linear automorphism on projective n-space P, then $K^0_{eq}(P)$ and $K^0_{eq}(|P|)$ are free Z[k]-modules of rank (n+1) ([1], 2.3). Since the composition $i^* \circ i_*$ is an isomorphism of $K^0_{eq}(|P|)$ after localization by Remark 3 of § 1, we conclude that i^* from $K^0_{eq}(P)$ to $K^0_{eq}(|P|)$ is an isomorphism after localization at S. If \mathcal{L} , is a resolution on P of the structure sheaf of |P| by locally free equivariant sheaves on P, then i^* ($\sum (-1)^i[\mathcal{L}_i]$) is a unit in $K^0(|P|) \otimes \Lambda$ (Remark 2 of § 1) and so $\sum (-1)^i[\mathcal{L}_i]$ is a unit in $K^0(|P|) \otimes \Lambda$.

To prove for an arbitrary equivariant variety X that i_* is surjective after localization, we fix an embedding $\alpha: X \to \mathbf{P}$ where p is a diagonal linear automorphism of \mathbf{P} (cf. [1]). Let $\varphi = \alpha^* \left(\sum (-1)^i [\mathcal{L}_i] \right)$ in $K^0_{eq}(X)$ where \mathcal{L} is a resolution of the structure sheaf of $|\mathbf{P}|$ by locally free equivariant sheaves on \mathbf{P} .

LEMMA 2. φ satisfies properties A and B:

- (A) φ is a unit in $K_{eq}^0(X) \otimes \Lambda$
- (B) if $\Psi \in K_0^{eq}(X)$, then $\varphi \cap \Psi$ is in the image of i_* .

Proof. Since α^* : $K^0_{eq}(\mathbf{P}) \to K^0_{eq}(X)$ is a ring homomorphism and $(\sum (-1)^i [\mathcal{L}_i])$ is a unit in $K^0_{eq}(\mathbf{P})$, then $\alpha^* (\sum (-1)^i [\mathcal{L}_i]) = \varphi$ is a unit in $K^0_{eq}(X)$. If Ψ is a coherent equivariant sheaf on X, then

$$\varphi \cap \Psi = \sum (-1)^q (\alpha^*(\mathcal{L}_q) \otimes \Psi) = \sum (-1)^q \mathcal{H}_q(\alpha^*(\mathcal{L})) \otimes \Psi,$$

where $\mathcal{H}_q(\alpha^*(\mathcal{L}.)\otimes \Psi)$ is the qth equivariant homology sheaf on X of the complex $\alpha^*(\mathcal{L}.)\otimes \Psi$. Since \mathcal{L} is exact on \mathbf{P} off $|\mathbf{P}|$ and the support of the tensor product of two complexes is contained in the intersection of their supports, then $\mathcal{H}_q(\alpha^*(\mathcal{L}.)\otimes \Psi)$ has support on |X|. Since i_* maps $K_0^{eq}(|X|)$ surjectively (in fact, isomorphically) to the Grothendieck group of equivariant coherent sheaves on X with support on |X|, then $\varphi \curvearrowright \Psi$ is in the image of i_* .

Let φ in $K_{eq}^0(X)$ satisfy (A) and (B) and let $\Psi \in K_0^{eq}(X)$. There is γ in $K_0^{eq}(|X|)$ such that

 $\varphi \cap \Psi = i_*(\gamma)$. After localizing this relation and all the K-groups in sight, $\Psi = \varphi^{-1} \cap i_*(\gamma) = i_*(i^*(\varphi^{-1}) \cap \gamma)$ by the projection formula. Whence, i_* is surjective after localization at S, which completes the proof.

§ 3. Computations

Remark 1. If all the local contributions on the fixed points of a singular variety are zero, i.e., $L.(O_X) = 0$ in $K_0(|X|)_S$, then the module property of L implies that $L.(\mathcal{E}) = 0$ for any locally free sheaf \mathcal{E} on X. Since L is an isomorphism after localization, then the duality map $K_{eq}^0(X) \to K_0^{eq}(X)$ is S-torsion. For example, the curve $x^4 + y^4 + x^2z^2 = 0$ with the action $[x, y, z] \to [-x, iy, z]$ has this property; here the characteristic of k is not 2 and i is the square root of -1.

Remark 2. If X is nonsingular, then L. lifts to the Grothendieck group of equivariant locally free sheaves and L.: $K^0_{eq}(X) \to K^0_{eq}(|X|)$ is given by $L.(\Psi) = \lambda_X^{-1} \cap i^*(\Psi)$. To see this from the localization theorem alone, we need only remark that $i^* (\sum (-1)^i [\mathcal{L}_i])$ equals λ_X where \mathcal{L} . is a resolution of the structure sheaf of |X| by locally free equivariant sheaves on X (see Remark 2 of § 1).

References

- [1]. Baum, P., Fulton, W. & Quart, G., Lefschetz-Riemann-Roch for singular varieties.

 Preceding article.
- [2]. Borel, A. & Serre, J.-P., Le theoreme de Riemann-Roch. Bull. Soc. Math. France, 86 (1958), 97-136.
- [3]. Donovan, P., The Lefschetz-Riemann-Roch formula. Bull. Soc. Math. France, 97 (1969), 257-273.
- [4]. Nielsen, H. A., Diagonally linearized coherent sheaves. Bull. Soc. Math. France, 102 (1974), 85-97.

Received August 3, 1978
Received in revised form March 7, 1979