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Introduction

Let I' be a non-elementary Kleinian group with region of discontinuity Q and let
¢2>2 be an integer. We shall show that there exist Eichler integrals of degree ¢ (this term,
as all others used here, will be defined below) with preassigned singularities at finitely
many non-equivalent points of 2 and with preassigned parabolic singularities at finitely
many non-equivalent cusps, and that these integrals have certain pleasing properties.
Our results are a modest improvement of those of Ahlfors [3], who constructed Eichler
integrals with preassigned poles at preassigned ordinary points in Q. The method, however,
may be of interest since it clarifies the connection between Eichler integrals with poles and
generalized Beltrami coefficients (as defined in Bers [5]). That such a connection must
exist becomes obvious, at least for a finitely generated group I', by comparing recent results
of Ahlfors [3] with those of Kra [6].

1. Preliminaries

We are given a Kleinian group I', that is, a group of M6bius transformations y(z) =
{az+b)/(cz+d) which acts discontinuously on some open set of the Riemann sphere
¢=cu {=°}. The largest open set (2 for which this is true is called the region of discontinuity
of T'; the complement A =6 — is nowhere dense and is called the limit set of I'. We assume
that I' is non-elementary, that is, that A is infinite. The Poincaré metric A(z)|dz| in Q is
defined by the condition: for every component A of Q, and for every universal holomorphic
covering k: U~A of A by the upper half-plane U, one has A(A(0))|2'({)| =2/ |¢ -] for
R()EA. Tt is known that A(y(2))|y'(2)| =A(z) for y€T.

The stabilizer in I' of a point 2, €Q is either the identity (then z, is called an ordinary

point), or a finite cyclic group (then z, is called an elliptic verex).
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A cusp for I is a set C'< Q with the following properties. The boundary of (' consists of
3 circular (or straight) arcs «;, «,, o3 and there is a parabolic element y,€I" which maps
oy onto o, and generates the stabilizer of the intersection point 2z, of «; and «, (this point
is called the wertex of the cusp). Also, C consists of all points in one of the components of
ﬁ—{oclU o, U &5} and of all inner points of the arcs «; and oy, and no two interior points
in C are equivalent under I'. It follows that the image of C under the canonical projection
Q->Q[I" is conformal to a punctured disc. Two cusps, C; and C,, are called equivalent if
there is a cusp C; such that the image of C; under the canonical projection is contained in
the intersection of the images of ¢ and C,.

Note that a fixed point of a parabolic element of I" need not be the vertex of a cusp,
and can be the vertex of at most two non-equivalent cusps.

Let ¢>2 be an integer chosen once and for all. If f(z) is a function defined on a set
20 and « a Mébius transformation, one defines: (fo) (z) =f(ec(2)) & (2)1~9, for z€x(Z).
Let IT denote the vector space of polynomials of degree at most 2¢ —2; if p €I then pa €11.
A cocycle (on I' with coefficients in I1) is a mapping y: I'~II such that (writing y, for the
image of « under y) we have y,05=7.8+ 4 A cocycle y is a coboundary if there is a fixed
p€ll with y, =py —p for all y€T". A cocyle y is called parabolic (or Q-parabolic) if for every
parabolic subgroup I', of I" belonging to a cusp, x|I'p is a coboundary. We call y strongly
parabolic if the same is true for all parabolic subgroups of I.

A function f defined on a I' invariant set X will be called an automorphic integral if
for every y €4 there is a y, €IT such that fy —f =y, | Z. If so, y is a cocycle, we call it the
period of f. We shall be concerned with two types of automorphic integrals: potentials of

Beltrami coefficients and Eichler integrals.

2. Automorphic forms, potentials, Eichler integrals

A function g(z) defined and holomorphic in Q, except perhaps for isolated singularities,
is called an automorphic form (of weight —2¢) if @(y(2))y’(2)?=¢(z) for all y €T". If |1~%|
is bounded, ¢ is called a bounded form; in this case ¢ has no singularities. If |A2~%] is
integrable over a fundamental domain of T, then ¢ is called integrable; in this case ¢ has
no singularities except, perhaps, simple poles.

An automorphic form ¢ is said to satisfy the cusp condition in a cusp C'if p| C' approaches
0 as z approaches the vertex of C. A bounded form always satisfies this condition. So does
an integrable one, provided that it has ounly finitely many poles in C.

We shall often use a distinguished automorphic form, defined as follows. Let 4, ...,
Ay, , be distinet points in 6, 2€€ a point such that z+4;. Set
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(where we agree, once and for all, to omit any term of the form z—co ory(f) — oo). This

Poincaré series converges because (in view of the inequalities on 4 stated, for instance in
Ahlfors [1])
2
[T
al( — Asg-1) (E—2)]

For a fixed 2, f(z, ) is an integrable automorphic form. Its simple poles are the points
y(4;) and y(z), y €T, located in Q.

A measurable function u(z), z€Q, is called a (generalized) Beltrami coefficient (of order q)

if p(y())y (@)% ( )==u(z) for all y €I’ and 1972y is bounded. For instance, if p is a bounded
automorphic form, A%-2%p is a Beltrami coefficient.
If 4 is a Beltrami coefficient and ¢ an integrable automorphic form, then ¢(z) u(z)dzdy

is invariant under I', so that one may define

@, > = U (2) u(z) dz A dz.

For a fixed y, this is a continuous linear functional on integrable automorphic forms (with
respect to the L, norm of |A2~%| over a fundamental domain), and every such functional
can be so represented. Two Beltrami coefficients, 4 and v, are called equivalent if {¢p, u) =
{p, v for every integrable holomorphic automorphic form ¢ (not necessarily for integrable
forms with poles). It is known ([5], [7]) that every Beltrami coefficient is equivalent to a
unique Beltrami coefficient of the form 42-2% where y is a bounded automorphic form.

We recall that (@, A22995/2 = (p,y) is the familiar Petersson scalar product.

Let u be a (generalized) Beltrami coefficient. A potential F of y is a continuous function
F(z), 2€C, such that F(z)=0(|2|2%?), 2> o0, and 9F =9F |7, in the sense of distribution
theory, is a measurable function such that 0F|Q =y and 6F|A=0 a.e. If F, and F, are
potentials of u, then F,— F,€Il. If F is a potential of u, so is F+p, p€Il. If y €T, one
computes easily that d(Fy — F) =0, so that Fy — F€Il. Thus F is an automorphic integral.
The cohomology class of the period of F depends only on u.

The existence of potentials has been established in [5]. We shall recall this construction

and make it more precise: the function

Fe) =<fz ), w>

is a potential of u which vanishes at all finite points 4, and is o(]|z]2%-2), z— o, if one
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A;=oo, By abuse of language we shall say, in this latter case, that “the potential ¥ vanishes

at oo”, A simple calculation shows that one also has

M1y 4 u(l)
z’“z_n?ffg = Ac s Hndl

If all 4;lie in A, then, for z€A, f(z, {) is holomorphic for £€£). In this case the period
of F depends only on the equivalence class of u. The same is therefore true for the coho-
mology class of the period of F, in all cases.

An Fichler integral (of degree g) for I' is an automorphic integral E(z) , which is holo-
morphic in ), except for isolated singularities. If E is an Eichler integral, so is E+p,
p€ll. We have that é2¢-(Ey—E)=0 for y €L, where ¢ =d/dz. Since **-1Ey =(0*Ey) (y)?
(Bols’ identity, cf. [2]) one concludes that 62¢-1E is an automorphic form. ¥ is called regular
in a cusp C if 0%1F satisfies the cusp condition in C. E is called parabolic, or strongly

parabolic, if its period is.

3. Principal parts

In order to describe the possible singularities of Eichler integrals, we introduce the
following terminology. Let z, be either a point in  (case 1) or the vertex of a cusp C
(case 2), and let y, be a generator of the stabilizer of zy in I'; y =id if 2, €€ is not an elliptic
vertex. Let D<) be an open set such that y(D) =D, and either {z,}U D is a disc or half
plane (in case 1) or D is a disc or half plane and DN C is a cusp (in case 2). Let & be a holo-
morphic function defined in D such that there is a polynomial p €11 with hy,—h=p|D.
Then we say that the pair (D, &) represents the principal part of an Eichler integral at z,
(in case 1) or at C (in case 2). Two representatives, (D;, ;) and (D,, h,) are called equivalent
(at 24 or at Q) if, setting D =D, N D,, one has: in case 1, that &,|.D -h2] D has a removable
singularity at z,, or, in case 2, that 0~k | D 0 —8%1h,| DN C approaches 0 at 2z, A
principal part H (at z, or at C') is the equivalence class of representatives. A principal
part H at C is called parabolic if it contains a pair (D, k) with hy,=h.

Let E be an Eichler integral. If z,€Q, let D, be a sufficiently small disc containing
2o, With y(Dy) =D, for y €T, y(2y) =2,, and set D=Dy—{z,}. Then (D, E| D) represents a
principal part, called the principal part of E, at z,. If C is a cusp with vertex zy, let D be a
disc containing z, on its boundary, such that y(D)=D for y €T, y(z,) =2,, and such that
DnC is a cusp. Then (D, E|D) represents a principal part, called the principal part of
E, at C. If E is parabolic, the principal part H represented by (D, E|D) is also parabolic,
since it can be represented by (D, E|D —p| D) where p €11 is chosen so that By — E=py —p
for ¢ in the stabilizer of 2, in T'.
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Let H be a principal part at z,€L2. We associate with it a linear functional I on the space

of automorphic forms ¢ which are regular at z,. The definition reads:

lg) =~ f () h(z) de

where m is the order of the stabilizer of z, in I', (D, k) is a representative of H chosen so
that g(z) is holomorphie for z€{z,} U D, and ¢ is a simple closed curve in D with winding
number 1 with respect to z,.

The restriction of / to the Banach space of holomorphic integrable automorphic forms
@ is continuous. Indeed, for such ¢ one can compute l{p) using a fixed representative (D, h)
of H and a fixed smooth curve 6. One may also assume that there is an open set G with

compact closure, and m fundamental regions of T, wy, ws, ..., w,,, such that
oGS (wyUwy,U...Uw,,).

Let M denote the maximum of |A(z)| for z€s, k the length of ¢, r the distance from o to
the boundary of @, ¢ a (positive) lower bound for A(z) in &, and ||¢|| the norm of ¢ in the

Banach space considered. We have

il <3 [ lpallad <2 [ L, HIMI (40| dedn
Mk
<o JLW(Z)IGZW/

Mkc2 q . Mkcz,q”(p”
< mar? Jvfwluh_bwml(P(Z)lZ(z) dxdy_T’

(2)] Alz)* * dwdy

as asserted.
Now let H be a parabolic principal part at a cusp C with vertex z,. We associate with
it a linear functional / on the space of automorphic forms ¢ which satisfy the cusp condition

in (. The definition reads:

Up)= LW) h(z) dz

where (D, k) is a representative of H chosen so that ¢(z) is holomorphic for z€ D, and kyy=h
where y, is a generator of the stabilizer of z;, and ¢ is a curve in D leading from a point 2z, € D
to the point y4(z,). (The reader will easily verify that this definition is legitimate.)

The restriction of / to the Banach space of holomorphic integrable form is continuous.

This can be proved by an argument similar to the one given above.
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Now let there be given a system # ={H,, H,, ..., H,} of finitely many principal parts
at non-equivalent points 2z, ..., 2z, of Q and at non-equivalent cusps C,.q Crie -y O
If E is an Eichler integral which is regular at all points of { non-equivalent to 1, ..., z,,
and at all cusps non-equivalent to C, 4, ..., C,, and if H, is the principal part of E at z,,
for j=1, ...,n, and at C, for j=n-+1, ..., r, then we call U a complete system of principal
parts of K.

If all principal parts at cusps are parabolic, we associate with ¥ a linear functional 1
on the space of automorphic forms ¢ which are regular at 2y, ..., z, and satisfy the cusp
condition in C,,,, ..., 0,. The definition reads: I(p) =I,(¢)--... +1,(¢) Where ; is the linear
functional associated with H;. The restriction of ! to the Banach space of holomorphic
integrable automorphic forms is, of course, continuous. For such a @ one has, therefore,
Ugp)=<p, 2* %2> where y is a uniquely determined bounded automorphic form. We call

it the form associated with H.

4. Statement of the theorem
We can now state our result.

THEOREM. Let I be a given finite system of principal parts, at non-equivalent points
and cusps. Let all parts defined at cusps be parabolic. Let 1 be the linear functional associated
to |, and p the associated bounded automorphic jorm. Also, let A, ..., Ay, 1 be 2g—1 distinct

points in A, f,, . (2, 0)=f(2, ) the corresponding automorphic form, F the potential of

i AZg—l
A220 which vanishes at A,, ..., Ayy_y, and set, for z€Q), z not equivalent to a point occurring in

#,
E@) = —lf, )

Then E is a strongly parabolic Eichler integral, with H as a complete system of principal parts.
The period of E is that of F, and if A is a component of Q such that E is reqular at all points
and cusps in A, then E|A=F|A.

5. A counter example

The following example shows that the parabolicity condition in the theorem is essential.
Let T' be the principal congruence subgroup modulo 2 of the elliptic modular group;
it consists of all mappings y(z) =(az+b)/(cz +d) with a, b, ¢, d€Z, ad —bc=1, b and ¢ even.
This is a free group on two generators, so that there are 2(2¢—1) linearly indeneqdent
cocycles, 2¢—1 of which are coboundaries. The limit set of I' is RU {oo} and, as is well

known, there are 2¢ —4 linearly independent bounded automorphic forms. Therefore there
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are 2q —4 strongly parabolic cocycles no linear combination of which is a coboundary (cf.
for instance, Bers [56]). Thus there can be at most 3 linearly independent non-parabolie
cocycles, modulo parabolic ones.

On the other hand, there are 6 non-equivalent cusps (2 at z=0c0, 2 at z=1, and 2 at
z=2). If one could prescribe arbitrarily non-parabolic principal parts of an Eichler integral,

the codimension of the parabolic cocyeles in the space of all cocyles would be at least 6.

6. Conjugation

It is useful to state explicitly how the objects which we study behave under conjuga-
tion.

Let « be a Mbius transformation and set I —a-1T'x. Then T is a Kleinian group with
region of discontinuity «~'(Q2) and limit set o~1(A).

If ¢ is an automorphic form for I', we define @({) =@(x(Z))o’'({)%. Then ¢ is an auto-
morphic form for I'. If ¢ is bounded, so is ¢, with the same bound. If ¢ is integrable, so is
¢, with the same norm. If ¢ is regular at z;, ¢ is regular at a«—(2y). If ¢ satisfies the cusp
condition in C, ¢ satisfies the cusp condition in a—1(C). Also, if ¢ is an automorphic form for
[, and ¢ the corresponding form for f, then (¢, y)=(¢, ¥) whenever one of the scalar
products exists. If g(0)=f4, .., 4,,,(2 {), then ¢ () =f;1,,,_.,,a2q_1 (8, ¢) where f is the Poincaré
series for the group f‘, A,—aY(4,) and 2=oa1(2).

If 4 is a (generalized) Beltrami coefficient for I, set ﬂ(é‘):y(a(é))a’(é)l—q;’(_é‘)._ Then
£ is a Beltrami coefficient for T', and {p, u> = (@, 4> for every integrable automorphic form
p. If F is a potential of u, F=Faq is a potential of g. If F vanishes at 4;, F vanishes
at A4 o

If E is an Eichler integral for I', £ = E« is one for L HHisa prineipal part for T,
at a point z, or at a cusp O, defined by (D, k), then the pair («~(D), k), defines a principal
part H for f‘, at a~1(z,) or at «Y(C). If H is parabolic, so is H. If H is a principal part of E,
then H is one of £.

For every y €1, set  =aloyow. If y is a cocyele on I', set 4; =y, o. Then 7 is a cocycle
on [. It % s a coboundary, or parabolie, or strongly parabolic, so is ¥. If ¥ is the period
of F, or of E, then § is the period of F, or of E.

The proofs of all these assertions are trivial.

We use the remarks just made to show that the period of a potential F of a Beltrami
differential is strongly parabolic, as observed by Gardiner (unpublished) and Kra [6]. Let
o€ be parabolic. We lose no generality in assuming that y(z) =z -+ 1; this can be achieved
by conjugation. We lose no generality in assuming that F “vanishes at co”, that is, satisfies

F(z)=o0(]z]|**-?), z—>oo; this can be achieved by subtracting from F an element of II.

2—"712906 Acta mathematica 127, Imprimé le 28 Mai 1971
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Now the polynomial Fy,—F equals F(z+1)— F(z), hence it has degree at most 2¢g—3,
hence it is of the form p(z+1) —p(z) for some p€Il. Thus Fy,— F=py,—p, q.e.d.

7. Proof of the theorem

It is clearly sufficient to prove the theorem for =1, that is, for H containing a single
principal part’H, defined eitherjat a point z, €€ (case 1) or at a cusp C with vertex z, (case 2).
By a conjugation we can achieve that, in case 1, z,=0 and the stabilizer of 0 in I" is generated
by 7,(z) =€*"z, and that, in case 2, zy=c°, the cusp C is the half strip 0 <z <1, >0,
and the stabilizer of oo in I' is generated by y4(z)=z-+1. In case 1, we may assume

that H is defined by (D, k) where D is the set 0<|z| <g, and

The condition hy,—h€Il is satisfied trivially if m =1. For m>1 it becomes hy,=h, or
a,=0 forn=+—g+1 (modm).

We assume also that g, is so small that the disc |z| <g, does not meet any of its images
under elements of I' distinet from powers of 4. In case 2, we may assume that H is defined
by (D, k) where D is a half-plane, y >1/¢,>0, and Ay, =h. Thus A(z) must be periodic with

period 1, and we may assume that
hz) = 2 a,e e,
n=1

For every &, 0<e<g, let G, denote the disc |z| < in case 1, the half-plane y>1/s
in case 2, and let 8G, be the boundary of G,, with the usual orientation. For 2€G, U 9@, set

0.(2)= > a,s 2"z" (in case 1),
=

o
6.(2) = > a,e-2niz-2i5  (in case 2).
e

One verifies that
05|8G£ =h|oG,

and that 0,y,=0,, which implies that

20, (t) toaeg T 00e(2)
oF tmye® Y0 (Z) Yo (Z) - oz *
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Also, Az )‘1—2808/62 is bounded. This is trivial in case 1, and in case 2 it follows by noting
that 00,/0z=0(e2%), Mz)=0(y™) for y—>+oo. (The second inequality is obtained by
comparing the Poincaré metric A(z)|dz| in the component of  containing the half plane
y>0, with the Poincaré metric |dz|/y of that half plane.)

The observations just made imply that there is a Beltrami coefficient u(z), 2z€Q,
such that

_90(z)
He(z)= P for 2z€ G,,

Ue(z)=0 for y(z) ¢ G, pEI.

Let K, denote the union of all sets (G, U dG.), y€I'. The second condition on y, can be

rewritten as
Ue| Q—K, =0.

Let F, be the potential of u,., which vanishes at 4,, ..., 4,, ;, 2¢—1 given distinct points
in A. Let I be the linear functional associated with ‘-H, y the associated bounded auto-

morphic form, F the potential of A2~2% which vanishes at A, ..., 45, ,;, and set

where f(z, {)=f,, .

We claim that

A2q—1 C)
F(z)=E(z) forz¢K,.

Indeed, in case 1 there are m disjoint fundamental regions wj, ..., w, such that G,

(wyU...Uw,) and we have, for z¢ K

Fo = o= [ | f(z,c_?)/le(é)d@/\df=%ffw o Eom@drnd

_~H 2, 0) 1o (£) dE N dE = — ” fat)

= ‘%J fe D) Az = —Uf(z. ) = B(z).
96,

In case 2 we note that f(z, {+1)=f(z, {) so that for every fixed z, andy=Im (>0, f(z,{)
can be represented by a Fourier series X b,e?" ™. The cusp condition implies that b, =0
for n<0; hence f(z, {}=0(e~2m), — + oo. For 2¢ K,, we have
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B = o) o) = ff<5<1<z, (©)dz n &
1

le<n

- im | f1<€<1 A 29O 4 g

BE>too le<n<R

=—ffz£+z/s)0 (E+ife)dE+ lim fz E+iR)6,(&E+iR) dE
0

= —f f(z, & +ile) h(& +ile)dE = —Uf(z, - )) = B(2).
0

Since we also have

Fute)= ” Z_AMS(C)dCAdf,
K, j=1 C

F,(z) is holomorphic for z€C—K,, and since | K, ={y(0); y€I'} in case 1 and N K, =9 in
case 2, we conclude that E(z) is holomorphic in Q —{y(0);  €I'} in case 1, in Q in case 2.

Also, E,—E=F,y—F, for y€I'. Thus E is an Eichler integral, indeed a strongly
parabolic one.

In case 1, E is regular at all cusps. Indeed, let €, be a cusp with vertex z,. There exists
a Mobius transformation « such that the «(C;) is a cusp o1(C) for the group
' = 41« is the half strip 0 <£<1, >0, and the stabilizer of oo =a7(z,) in fis generated
by 70(l) =C+1. Now E = Ea coincides, for >0, with the potential F.=F,o of a Beltrami
coefficient, provided ¢ is small enough. Hence, in this half plane, E(@)=0(|¢]2?), {>oo.
Since ¢ =a%-1F is holomorphic in a half plane 7 >7,>0, it may be written there as ¢() =
3 1,62, Then B(Z) =X b,(2min)-2¢2i"t 1 P(£) where P({) is a polynomial of degree at
most 2¢—1. In view of the growth condition on #, deg P<2¢—2 and b,=0 for n<0.
Hence ¢({)=0(e277), p— + oo. Thus the cusp condition is satistied and £ is regular at
o). Hence E is regular at C;.

In case 2 one sees in the same way that E is regular at every cusp C; not equivalent to C.

In case 1, let >0 be sufficiently small, and let » >0 be an integer. We shall show that
f E(2)2"dz =2 mtag 410
l2|=¢

This will imply that E(z)—h(z) has a removable singularity at z=0.
Now, since H(z)=F,(z) for |z| =¢, the 1ntegral considered equals

f z)z"dz—ff d[F (z)z"dz]= Jf "dé/\dz
aa,
ff Ue(2)2"dZ A dz = ff d[0.(z)z"dz] = J‘ 0.(z)2"dz =2 mia,+1.
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In case 2, ' K is periodic with period 1. Hence, for y >0,
+ o0 )
E@)= 3, c,e™" + P(2),

where ¢;=0 and P(z) is a polynomial of degree at most 2¢—1. For a fixed £>0, we must
have E(z+ije)=F(x+i/e)=0(|2|2?) for x>+ co. Hence deg P <2¢—2. Let n>0 be
an integer. We shall show that ¢_,=a,. This will imply that &2*-(E —h) approaches 0
as z—>o0 in C.

Now the function 6,(z) is periodic with period 1 and bounded in the half plane y>1/e.
In this half plane F,(z) -8,(z) is holomorphic, since 8F,—86,=0. Since F,(z+1)—F.(2)

is a polynomial of degree at most 2¢ —2,

Fo(2)=0,(2) = 5, + P, (2)

j=1

where P, is a polynomial, deg P, <2¢ —1. But since F,(z) =0(|z|?%-2), z— o, we have that
deg P, <2q—2. For y=1/¢ we have E=F, and h=0,; thus

B(z) =h(z) +}§1dje2”ffz L PR), (y=1/e)

+o0 . o . Laid o
or 2 07627”;*2 — Z ane—annz + z dje2m}2 +PI (Z) ___P(z)’ (y — 1/8)
— o0 n=1 j=1

which shows that c_, =a,.
We have shown that H is the principal part of £ (at 0 or at ().
Next, for z€A, f(z, {) is holomorphic in {€Q. Hence

F(Z) = <f(z7 '): 22_2q¢> = <f(z: ')a ,ue> = Fe(z)

Thus, for every y€I', Fy — F=F,y —F,. Since F,y—F,=Ey—E, E and F have the same
period.

Finally, let A be a component of Q such thaty(0)§A forally €T (in case 1) or y(C) §A
for all y€I' (in case 2). Let D= U, y(A). Then g, | D=0, hence, for every integrable
automorphic form ¢, {g, u.> =0 whenever ¢|Q D=0, hence y|D=0. Assume now that
z€A. Then f(z,() is holomorphic in {€Q —D. Set f(z, {)=f(z, &) for (€Q~ D, fz,2)=0
for C€D. Then B()=F.2)={f ), pd=< ), ud>=(fe ), 9)= (e ), v)=F(2).
Hence E|A=F|A, as asserted.

The theorem is proved.
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Let us return for a moment to the case 1 considered above, and assume that m =1,
so that 0 is an ordinary point. In this case one may assume that oo € is also an ordinary
point, since this can be achieved by conjugation.

Now if ¢(l) is an automorphic form regular at 0, then

0 (n—~1) (0)

_ < W9

and the Eichler integral E(z) = —I(f(z,-)) is

By § @8 0)

7% BT P

On the other hand, in view of the hypothesis on oo, the Poincaré series considered by Ahl-
fors in [2],
_ o Y

Je0)=50 3 oy

converges. Since f(z,() =f(z, {) + Q(z, £) where

{2‘1_1 z— 4, _1} 7' (§)*

=0 ~4, -2

Q0= -

2 7'57; yel

is a polynomial of degree 2¢g —2 in z, with coefficients depending analytically on £, our E

does not differ significantly from the integral used by Ablfors.
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