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Introduction 

Let  1 ~ be a non-elementary Kleinian group with region of discontinuity ~ and let 

q >~ 2 be an integer. We shall show that  there exist Eichler integrals of degree q (this term, 

as all others used here, will be defined below) with preassigned singularities at finitely 

many non-equivalent points of ~ and with preassigned parabolic singularities at finitely 

many non-equivalent cusps, and that  these integrals have certain pleasing properties. 

Our results are a modest improvement of those of Ahlfors [3], who constructed Eichler 

integrals with preassigned poles at preassigned ordinary points in ~.  The method, however, 

may  be of interest since it clarifies the connection between Eichler integrals with poles and 

generalized Beltrami coefficients (as defined in Bers [5]). That  such a connection must 

exist becomes obvious, at least for a finitely generated group F, by comparing recent results 

of Ahlfors [3] with those of Kra [6]. 

1. Preliminaries 

We are given a Kleinian group F, that  is, a group of M6bius transformations 7(z)= 

(az+b)/(cz+d) which acts discontinuously on some open set of the Riemann sphere 

2 =  C U {~}.  The largest open set ~ for which this is true is called the region o] discontinuity 

of F; the complement A =~  - ~  is nowhere dense and is called the limit set of F. We assume 

that  F is non-elementary, that  is, that  A is infinite. The Poincard metric ~(z)]dz I in ~ is 

defined by the condition: for every component A of ~,  and for every universal holomorphic 

covering h: U-~A of A by the upper half-plane U, one has 2(h(~))lh'(~)l = 2 / I ~ - ~ [  for 

h(~) e h.  I t  is known that  ~(~(z))l~'(z)l =~(z) for ~, el". 

The stabilizer in F of a point z 0 E ~ is either the identity (then z 0 is called an ordinary 

point), or a finite cyclic group (then z 0 is called an elliptic vertex). 
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A cusp for F is a set C~ ~ with the following properties. The boundary of C consists of 

3 circular (or straight) arcs ai, a2, ~3 and there is a parabolic element 70 E F which maps 

ai onto cr 2 and generates the stabilizer of the intersection point z 0 of al and ~2 (this point 

is called the vertex of the cusp). Also, C consists of all points in one of the components of 

- {~i O ~2 U ~3} and of all inner points of the arcs cr 1 and ~2, and no two interior points 

ia C are equivalent under D. I t  follows that  the image of C under the canonical projection 

~ - + ~ / F  is conformal to a punctured disc. Two cusps, C 1 and C2, are called equivalent if 
there is a cusp C 3 such that  the image of C 3 under the canonical projection is contained in 

the intersection of the images of C i and C2. 

Note that  a fixed point of a parabolic element of r need not be the vertex of a cusp, 

and can be the vertex of at most two non-equivalent cusps. 

Let q>~2 be an integer chosen once and for all. If  ](z) is a function defined on a set 

E c C and ~ a M5bius transformation, one defines: (]~)(z)=](~(z))~'(z) i-q, for z E~-I(E). 

Let II denote the vector space of polynomials of degree at most 2 q - 2 ;  if p EII then p~ EII. 

A cocyele (on F with coefficients in II) is a mapping Z: F-+II  such that  (writing Z~ for the 

image of ~ under Z) we have Z~op =Z~fl +Xp. A cocycle Z is a coboundary if there is a fixed 

p EII with g~ =PY - P  for all y E F. A cocyle Z is called parabolic (or h-parabolic) if for every 

parabolic subgroup FD of F belonging to a cusp, x IFD is a coboundary. We call Z strongly 
parabolic if the same is true for all parabolic subgroups of F. 

A function ] defined on a F invariant set E will be called an automorphic integral if 
for every yEG there is a z7EH such that  ]y-/=z~l ~. If  so, Z is a cocycle, we call it the 

period of )t. We shall be concerned with two types of automorphic integrals: potentials of 

Beltrami coefficients and Eichler integrals. 

2. Automorphic forms, potentials, Eichler integrals 

A function ~(z) defined and holomorphic in ~, except perhaps for isolated singularities, 

is called an automorphie ]orm (of weight -2q)  if q(y(z))y'(z) q =~v(z) for all y EF. If I2-q~vl 

is bounded, ~ is called a bounded ]orm; in this case ~v has no singularities. I f  1~2-qq01 is 

integrable over a fundamental domain of F, then ~v is called integrable; in this case ~v has 

no singularities except, perhaps, simple poles. 

An automorphie form ~v is said to satisfy the cusp condition in a cusp C if ~ [ C approaches 

0 as z approaches the vertex of C. A bounded form always satisfies this condition. So does 

an integrable one, provided that  it has only finitely many poles in C. 

We shall often use a distinguished automorphic form, defined as follows. Let A 1 ..... 

A2q 1 be distinct points in C, zEC a point such that  z#Aj. Set 
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1 ~-~ z - A ~  7'(~)q 
~ ~r  ~=1 ~(~) -Ar  ~ ( ~ ) - z  

(where we agree, once and/or  all, to omit any term of the form z - ~  o r 7 ( ~ ) - ~ ) .  This 

Poincar6 series converges because (in view of the inequalities on X stated, for instance in 

Ahlfors [1]) 

l < 

For a fixed z, l(z, ~) is an integrable automorphic form. I t s  simple poles are the points 

y(Aj) and 7(z), yEF ,  located in ~ .  

A measurable functionju(z), z E ~ ,  is called a (generalized) Beltrami eoe]]icient (of order q) 

if/~(7(z))y'(z)l-qT'(z ) =#(z) for all 7 EF and ~q-s# is bounded. For instance, if yJ is a bounded 

automorphic form, ~2-2~ is a Beltrami coefficient. 

I f  # is a BeRrami coefficient and ~v an integrable automorphic form, then (v(z)~(z)dx dy 

is invariant under P, so tha t  one may  define 

(qJ' /~> = / f n ~ r  ~v(z) #(z) dz A dS. 

For a fixed ~, this is a continuous linear functional on integrable automorphic forms (with 

respect to the L 1 norm of 1 2-o 1 over a fundamental  domain), and every such functional 

can be so represented. Two Beltrami coefficients, # and r, are called equivalent if @, #> = 

@, v> for every integrable holomorphic automorphic form 0~ (not necessarily for integrable 

forms with poles). I t  is known ([5], [7]) tha t  every Beltrami coefficient is equivalent to a 

unique Beltrami coefficient of the form ~2-2q~ where ~ is a bounded automorphie form. 

We recall tha t  i@,~2-2%~>/2 = (~,~v) is the familiar Petersson scalar product. 

Let/~ be a (generalized) Beltrami coefficient. A potential F of # is a continuous function 

~(z), z EC, such tha t  F(z) = O(Iz12r z ~  c~, and ~F =~F/~5, in the sense of distribution 

theory, is a measurable function such that  ~Fl~=~t  and ~ F ] A = 0  a.e. I f  F 1 and F2 are 

potentials of #, then F 1 - E ~ E I I .  I f  F is a potential  of #, so is F + p ,  p E H .  I f  7EP,  one 

computes easily tha t  ~(FF - F) = 0, so tha t  By - F E H. Thus F is an automorphic integral. 

The cohomology class of the period of F depends only on #. 

The existence of potentials has been established in [5]. We shall recall this construction 

and make it more precise: the function 

F ( z )  = </(z, .),/~> 

is a potential of # which vanishes at all finite points Aj and is o([z[~q-2), z-+co, if one 
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Aj = ~ .  By  abuse of language we shall say, in this lat ter  case, t ha t  " the  potential  F vanishes 

at  co". A simple calculation shows tha t  one also has 

F ( z )  = ~ J ~ a j : l  C - A j  C - z 

I f  all Aj  lie in A, then,  for zEA, / (z ,  ~) is holomorphic for ~E~.  I n  this case the  period 

of F depends only on the  equivalence class of/~. The same is therefore t rue for the coho- 

mology class of the period of F, in all cases. 

An  Eichler integral (of degree q) for F is an automorphic  integral E(z), which is holo- 

morphic in s except for isolated singularities. I f  E is an Eichler integral, so is E + p ,  

p EII. We have tha t  ~2q-l(E~ - -  E) = 0 for y E F, where ~ = d/dz. Since ~2q-lEy = (~qEy) (~')q 

(Bols' identity,  cf. [2]) one concludes tha t  a2q-lE is an automorphic  form. E is called regular 

in a cusp C if ~2q-lE satisfies the cusp condition in C. E is called parabolic, or strongly 
parabolic, if its period is. 

3. Principal parts 

I n  order to describe the possible singularities of Eichler integrals, we introduce the 

following terminology. Let  z 0 be either a point  in ~ (case 1) or the ver tex of a cusp C 

(case 2), and let Yo be a generator  of the  stabilizer of z 0 in F; Yo = id if z 0 E ~ is not  an  elliptic 

vertex. Let  D ~  be an open set such tha t  y 0 ( D ) = D ,  and either {%} U D is a disc or half 

plane (in case 1) or D is a disc or half plane and Dr1 C is a cusp (in case 2). Let  h be a holo- 

morphic funct ion defined in D such tha t  there is a polynomial  p El i  with h~o-h =p[D. 
Then we say tha t  the pair  (D, h) represents the  principal part of an EicMer integral  at  z o 

(in case 1) or at  C (in case 2). Two representatives, (D1, hi) and (D2, h2) are called equivalent  

(at z 0 or at  C) if, setting D = D 1 fl D2, one has: in case 1, t ha t  hllD-h~]D has a removable  

singularity at  zo, or, in ease 2, t ha t  ~q-lhllDN C-~q-lh~IDflC approaches 0 a t  %. A 

principal par t  H (at z 0 or at  C) is the equivalence class of representatives. A principal 

par t  H at C is called parabolic if it contains a pair  (D, h) with hyo=h. 
Let  E be an Eichler integral. I f  zoEg2, let D O be a sufficiently small disc containing 

z0, with ~ ( D 0 ) = D  o for yEV,  y(z0)=%, and set D=Do-{Zo}. Then (D, E[D) represents a 

principal part ,  called the  principal par t  of E, at  z o. I f  C is a cusp with ver tex z0, let D be a 

disc containing z 0 on its boundary ,  such tha t  y(D)= D for 7 E F, y(Zo)=Zo, and such tha t  

D fi C is a cusp. Then  (D, E I D) represents a principal part ,  called the  principal pa r t  of 

E,  at  C. If  E is parabolic, the  principal par t  H represented by  (D, E [ D) is also parabolic, 

since it can be represented by  (D, E I D - p  I D) where p EII  is chosen so tha t  E 7 - E = P 7  - P  

for y in the stabilizer of z 0 in F. 
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Le t  H be a pr inc ipa l  p a r t  a t  z 0 E~ .  W e  associa te  wi th  i t  a linear/unctional 1 on the  space 

of au tomorph ic  forms q0 which are  regular  a t  z 0. The def ini t ion reads:  

: ? z) l(~) = ~ J S  h(~) ~ 

where  m is the  order  of the  s tabi l izer  of z 0 in F,  (D, h) is a r ep resen ta t ive  of H chosen so 

t h a t  ~(z) is ho lomorphic  for zE{z0}U D, and  ~ is a s imple closed curve in  D wi th  winding  

n u m b e r  1 wi th  respect  to  %. 

The  res t r ic t ion  of 1 to  the  Banach  space of holomorphic  in tegrab le  au tomorph ic  forms 

is continuous. Indeed ,  for such ~ one can compute  l(~) using a f ixed r ep resen ta t ive  (D, h) 

of H and  a f ixed smooth  curve (r. One m a y  also assume t h a t  the re  is an  open set G wi th  

compac t  closure, and  m f u n d a m e n t a l  regions of I ~, w:, w~ . . . .  , win, such t h a t  

a ~  G c  (w 1 U w2 U ... U w~). 

Le t  M denote  the  m a x i m u m  of [h(z)[ for zEa, k the  length  of a, r the  d is tance  f rom a to 

the  b o u n d a r y  of G, c a (positive) lower bound  for ~(z) in G, and  ][qI] the  no rm of ~ in  t he  

Banach  space considered.  We have  

]l(qD)I <~ M foi~O(z)l [dzl <~M f ,  { ~  f f lz_r + ~)i d~d~} IdzI 

<~ mnr 2- Iq~(z)idxdy mnr ~ jjslq~(z)[~(z)e-qdxdy 

2 , y~r  2 m , r  JJ w,u...uw,~ I'p(~)I x(~)~-~g~ey 
as asserted.  

Now let  H be a parabol ic  pr inc ipa l  pa r t  a t  a cusp C wi th  ve r t ex  %. W e  associate  wi th  

i t  a l inear  funct ional  1 on the  space of au tomorph ic  forms ~ which sa t i s fy  the  cusp condi t ion  

in C. The  def ini t ion reads:  

l(~f) = | cf(z) h(z) dz 
J o  

where  (D, h) is a r ep resen ta t ive  of H chosen so t h a t  ~(z) is holomorphic  for z E D, and  h~0 = h  

where  ~0 is a genera to r  of the  s tabi l izer  of %, and  ~ is a curve in D leading  f rom a po in t  z: G D 

to t he  po in t  y0(zl). (The r eade r  will easi ly ver i fy  t h a t  th is  def ini t ion is legi t imate: )  

The  res t r ic t ion  of I to the  Banach  space of holomorphic  in tegrab le  form is cont inuous.  

This  can be  p roved  b y  an  a rgumen t  s imilar  to  the  one given above.  
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Now let there be given a system ~ = {//1, H a . . . .  , Hr} of finitely m a n y  principal par ts  

at  non-equivalent  points z 1 .. . .  , z~ of ~ and at  non-equivalent  cusps C~+1, C~+2 ... . .  Cr. 

I f  E is an Eichler integral which is regular at  all points of ~ non-equivalent  to 1 .. . .  , z~, 

and  at  all cusps non-equivalent  to C~+1, ..., C ,  and if Hj  is the  principal par t  of E at  zj, 

for j = l  . . . . .  n, and at Cj for ] = n §  ... . .  r, then  we call ~ a complete system of principal 

par ts  of E. 

I f  all principal parts  at  cusps are parabolic, we associate with 74 a linear/unctional l 

on the  space of automorphic  forms ? which are regular at  z I . . . .  , z.  and  satisfy the  cusp 

condition in C~+I . . . . .  C~. The definition reads: l(~)=11(~)§ + l~(~) where lj is the  linear 

functional  associated with Hi. The restriction of 1 to the  Banach  space of holomorphic 

integrable automorphic  forms is, of course, continuous. For  such a ~0 one has, therefore, 

l(~) = <% ~2-2q~} where yJ is u uniquely determined bounded au~omorphic form. We call 

it the  ]orm associated with ~.  

4. Statement of the theorem 

We can now state our result. 

T ~ w o ~ .  Let ~ be a given/inite system o/principal parts, at non-equivalent points 

and cusps./Let all parts de/ined at cusps be parabolic. Let 1 be the linear/unctional associated 

to 74, and y~ the associated bounded automorphic /orm. Also, let A 1 ..... A2q_ 1 be 2q-1 distinct 

points in A,/A1 ..... A2q_l(z, ~)=/(z,  ~) the corresponding automorphic /orm, F the potential o/ 

~2-2qC~ which vanishes at A 1 .... , Azq_l, and set, ]or z E ~,  z not equivalent to a point occurring in 

74, 
F~(z) = -l( /(z ,  .). 

Then E is a strongly parabolic Eichler integral, with ~4 as a complete system o/principal parts. 

The period o / E  is that o /F ,  and i / A  is a component o / ~  such that E is regular at all points 

and cusps in A, then E I A = F 1 A. 

5. A counter example 

The following example shows tha t  the parabolici ty condition in the theorem is essential. 

Let  P be the  principal congruence subgroup modulo 2 of the  elliptic modular  group; 

it consists of all mappings 7(z)=  (az +b)/(cz +d) with a, b, c, d E Z, a d - b e  = 1, b and c even. 

This is a free group on two generators, so tha t  there are 2 ( 2 q - I )  linearly indeneqdent  

cocycles, 2 q - 1  of which are eoboundaries. The limit set of P is RU {co} and, as is well 

known,  there are 2q - 4  l inearly independent  bounded  automorphic  forms. Therefore there  
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are 2 q - 4  strongly parabolic cocycles no linear combination of which is a coboundary (cf. 

for instance, Bers [5]). Thus there can be at most 3 linearly independent non-parabolic 

eoeyeles, modulo parabolic ones. 

On the other hand, there are 6 non-equivalent cusps (2 at z =  co, 2 at  z=l ,  and 2 at  

z = 2). I f  one could prescribe arbitrarily non-parabolic principal parts of an Eichler integral, 

the codimension of the parabolic eocycles in the space of all eoeyles would be at  least 6. 

6. COnjugation 
I t  is useful to state explicitly how the objects which we study behave under conjuga- 

tion. 

Let  ~ be a Mhbius transformation and set F = ~-iF~. Then F is a Kleinian group with 

region of discontinuity ~-i(~)  and limit set ~-l(A). 

If  ~ is an automorphic form for D, we define ~(~)=~(~(~))~'(~)q. Then 95 is an auto- 

morphic form for F. I f  ~ is bounded, so is 95, with the same bound. I f  ~ is integrable, so is 

93, with the same norm. I f  T is regular at  z0, ~ is regular at a-l(z0). I f  ~ satisfies the cusp 

condition in C, 95 satisfies the cusp condition in ~-i(C). Also, if ~f is an automorphic form for 

D, and y~ the corresponding form for F, then (~, F ) =  (95, ~) whenever one of the scalar 

products exists. I f  ~($)=/A ...... A2q_l(z, $), then 95 (~) =f~ ...... ~2q-1 (2, ~) where f is the Poincar4 

series for the group P, ~ j  = ~-i(A~) and ~ = ~-i(z). 

I f  # is a (generalized) Beltrami coefficient for F, set fi(~)-#(~(~))~,(~)l-q~,(~). Then 

/2 is a Beltrami coefficient for F, and <~, ~u> = (~,/2> for every integrable automorphie form 

~. If  2' is a potential of/~, ~ = F g  is a potential of ft. If  F vanishes at Aj, ~ vanishes 

at  -~j. 
I f  E is an Eichler integral for P, J~ = Ecr is one for F. I f  H is a principal par t  for F, 

at  a point z0 or at a cusp C, defined by  (D, h), then the pair (~-](D), ha), defines a principal 

p a r t / q  for F, at ~-l(z0) or at ~-1(C). I f  H is parabolic, so is/~. I f  H is a principal par t  of E, 

t h e n / ~  is one of ~.  

For every y E F, set ~ = ~- loyo  ~. I f  Z is a cocycle on F, set ~ =Zr g. Then ~ is a cocycle 

on F. I f  Z is a eoboundary, or parabolic, or strongly parabolic, so is ~. If  Z is the period 

of F,  or of E, then ~ is the period of /~, or of ~.  

The proofs of all these assertions are trivial. 

We use the remarks just made to show tha t  the period of a potential  F of a Beltrami 

differential is strongly parabolic, as observed by  Gardiner (unpublished) and Kra  [6]. Let  

Y0 ~ P be parabolic. We lose no generality in assuming tha t  yo(z) = z + 1; this can be achieved 

by  conjugation. We lose no generality in assuming tha t  F "vanishes at  ~ " ,  tha t  is, satisfies 

F(z)=o(]z]~-~), z--*~; this can be achieved by  subtracting from F an element of II .  

2 -- 712906 Acta  mathematica 127. I m p r i m 6  le 28 Mai 1971 
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Now the  polynomial  F y o - F  equals ~ ( z + l ) - F ( z ) ,  hence it has degree at most  2 q - 3 ,  

hence it is of the form p ( z + l ) - p ( z )  for some p E H .  Thus F ~ o - F = p y o - p ,  q.e.d. 

7. Proof of the theorem 

I t  is clearly sufficient to  prove the theorem for r = 1, t ha t  is, for ~H containing a single 

principal par t :H,  defined either~at a point  z o E ~ (case 1) or at  a cusp C with vertex z o (case 2). 

B y  a conjugation we can achieve that ,  in case 1, z o = 0 and the stabilizer of 0 in F is generated 

by  yo(Z)=e2~l'~z, and that ,  in case 2, Z o = ~ ,  the  cusp C is the  half strip 0 < x < l ,  y > 0 ,  

and the  stabilizer of cr in F is generated by  y o ( Z ) = z + l .  I n  case 1, we m a y  assume 

t h a t  H is defined by  (D, h) where D is the  set 0 <  ]z] <Co and 

h(z) = ~ a~z -~. 
h = l  

The condition h ~ o - h  E H is satisfied trivially if m = 1. For  m > 1 it becomes h?0 = h, or 

a n = 0  f o r n = # - - q + l  (modm).  

We assume also tha t  e 0 is so small t ha t  the  disc Izl <e  0 does not  meet  any  of its images 

under  elements of F distinct f rom powers of Yo- I n  case 2, we m a y  assume t h a t  H is defined 

by  (D, h) where D is a half-plane, y > l/co > 0, and hyo = h. Thus h(z) must  be periodic with 

period 1, and we m a y  assume tha t  

h(z) = ~ an e-2~nz. 
n = l  

For  every e, O<e<e o, let G~ denote the disc [z[ <e  in case 1, the half-plane y > l / e  

in case 2, and let bG~ be the boundary  of G~, with the usual orientation. For  z E G~ U OG~, set 

O~(z) = ~ ans-zn5 ~ (in case 1), 
n = l  

One verifies t ha t  

Oe(z) = Z ane-2nn(iz-2/e) (in case 2). 
n = l  

and tha t  0~7o=0 ~, which implies tha t  

~o~!t) ro(z)l_~ to(Z) ~0o(~) 
a t  t=7o(~) - -  ~ -  " 
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Also, ,~(z)q-280J82 is bounded. This is trivial in case 1, and in case 2 it follows by noting 

that  80~/8~=O(e~:2~.~), ,~(z)=O(y -1) for y-~ + ~ .  (The second inequality is obtained by 

comparing the Poincard metric ~(z)]dz] in the component of ~2 containing the half plane 

y >0, with the Poincarg metric [dz]/y of that  half plane.) 

The observations just made imply that  there is a Beltrami coefficient /~e(z), z EEl, 

such that  

~O(z) for z~ G~, ~(z)= ~ 

/~(z)=0 fo ry (z )~G~,~EF.  

Let K~ denote the union of all sets y(Ge U 8Q), y E F. The second condition on/~s can be 

rewritten as 
t , . I  = o .  

Let F~ be the potential of/~, which vanishes at A1, ..., A2q_l,  2 q - 1  given distinct points 

in A. Let l be the linear functional associated with ~4, ~0 the associated bounded auto- 

morphic form, F the potential of ~-2qv~ which vanishes at A 1 . . . . .  A2q_l, and set 

where /(z, ~)=/A 1 . . . . .  A.q_ 1 (Z, ~). 
We claim that  

E(z) = - l ( / ( z ,  ")) 

F~(z) = E(z) for z~K~. 

Indeed, in case 1 there are m disjoint fundamental regions w 1 .... , w~ such that  G~c 

(wlU ... U w~) and we have, for z~K~, 

1 

ra ~ 

_ 1 fo  / ( z , $ ) h ( $ ) d ~ = - l ( / ( z , . ) ) = E ( z ) .  
m G~ 

In  case 2 we note that  ](z, ~+1)=/(z ,  ~) so that  for every fixed z, ands] = I r a  ~>0,/(z,  ~) 

can be represented by a Fourier series N bn e2:un~. The cusp condition implies that  bn = 0 

for n~<0; hence /(z, ~ )=O(e-~/ ) ,  ~-0-+ co. For z~K~, we have 
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= lim <~<1 O~ 
R---~+ oo , uv  lle<~/<R 

f: ro = -  / ( z ,~+i / s )O~(~+i /e )d~+ lim / ( z ,~+ iR)O~(~+iR)d~  

g = - /(z, ~ + i/e) h(~ + i/s) d~ = - l(/(z,. )) = E(z). 

Since we also have 
1 I I  2 ~ - ] l z - A ' #  ~(:) 

F~(z) is holomorphic for z E C - K ~ ,  and since NK~={7(0) ;  7 E F }  in case 1 and f ]K~=lZ / in  

case 2, we conclude tha t  E(z) is holomorphic in ~ -{7(0) ;  7 E F} in case 1, in ~ in case 2. 

Also, E v - E = F ~ y - F  e for y E F .  Thus E is an Eichler integral, indeed a s trongly 

parabolic one. 

I n  case 1, E is regular at  all cusps. Indeed,  let C 1 be a cusp with ver tex z 1. There exists 

a M6bius t ransformat ion ~ such tha t  the  ~-a(C1) is a cusp g-l(C) for the group 

= ~ - IF~  is the half strip 0 < ~ < 1, ~ > 0, and the  stabilizer of oo = ~-l(za) in F is generated 

b y  ~0(~)= ~ + 1. Now ~ = E a  coincides, for ~/> 0, with the  potential  Pe = Fe ~ of a Beltrami 

coefficient, provided e is small enough. Hence, in this half plane, ~ ( ~ ) =  O(]~]~q-2), ~-+ oo. 

Since ~ =Szq- l~  is holomorphic in a half plane ~ >~0 > 0, it m a y  be wri t ten there as q~(~) = 

F= l~e ~ .  Then ~ ( ~ ) =  Z b~(2~in)l-~qe ~=~ +P(~) where P(~) is a polynomial  of degree at  

mos t  2 q - 1 .  I n  view of the growth condition on ~ ,  deg P ~<2q-2  and b, = 0  for n <0 .  

Hence ~(~)=O(e-Z~v), ~-+ + co. Thus the  cusp condition is satisfied and ~ is regular at  

~-x(C). Hence E is regular at  C 1. 

I n  case 2 one sees in the same way  tha t  E is regular at  every cusp C1 not  equivalent to C. 

I n  case 1, let e > 0 be sufficiently small, and let n > 0 be an integer. We shall show t h a t  

fill  E z ~ dz = 2 ~ian+i,. (z) 

This will imply  tha t  E ( z ) - h ( z )  has a removable  singulari ty at  z=O. 

5Tow, since E(z) = F~(z) for [z[ = s, the integral considered equals 

f dz= fro d[F~(z)zndz] = J J~( ( ~F~(z)o~ z"d2 A dz 

: o: = = of~ (z, zndz=2xeian+x. 
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I n  case 2, ~2a-IE is periodic wi th  per iod 1. Hence,  for y >0 ,  

+oo 

E(z)  = y~ c~e ~ + P(z) ,  
- o o  

where c o = 0 and P(z) is a polynomial  of degree a t  most  2 q -  1. For  a fixed e > 0, we mus t  

have  E(x  + i/e) = F~(x + i/s) = 0( Ix ]  2q-2) for x-+ • o~. Hence  deg P ~< 2 q -  2. Le t  n > 0 be 

an  integer.  We shall show t h a t  c_,,=an. This will imply  t h a t  ~2q- l (E-h)  approaches  0 

as z-* co in C. 

Now the funct ion O~(z) is periodic wi th  period 1 and  bounded  in the  half  plane y > 1/e. 

I n  this half  p lane ~ (z ) -O~(z )  is holomorphie,  since ~ F ~ - ~ 0 ~ = 0 .  Since F~(z + 1) -F~(z )  

is a polynomial  of degree a t  mos t  2 q - 2 ,  

$'~ (z) - O~ (z) = ~ die 2'~j~ + Px (z) 
f = 1  

where P1 is a pol3momial, deg Px ~< 2 q -  1. Bu t  since F~(z) = O( ] z] 2q-2), z ~  co, we have  t h a t  

d e g P l ~ < 2 q - 2 .  For  y = l / e  we have  E = F  e and h=O~; thus  

oo 

E(z) =h(z)  + ~  die 2~j~ +Pl ( z ) ,  (y = l/e) 
J = l  

+oo  co .. 

or ~ e , e  e ~ z =  ~ a ~ e - 2 ~ " +  Z d ~ e 2 ~ z + P i ( z ) - - P ( z ) ,  ( y = l / e )  
- o o  n = l  j = l  

which shows t h a t  c_= =a=. 

We have  shown tha~ H is the  principal  p a r t  of E (at 0 or a t  C). 

Next ,  for z E A, /(z, ~) is holomorphic  in r E ~ .  Hence  

F ( ~ )  = < / (z ,  -) ,  ~2-2q~> = < / (z ,  �9 ), g~> = F~(z ) .  

Thus,  for every  y E F ,  F y - F = F ~ 7 - F  ~. Since F ~ y - F ~ = E  7 - E ,  E and F have  the  same 

period. 

Finally,  let  A be a component  of ~ such t h a t  7(0) r A for  all 7 E F (in case 1) or 7(C) ~ A 

for  all 7 E F  (in ease 2). Le t  D =  Usury(A).  T h e n / t ~ I D = 0 ,  hence, for every  integrable  

au tomorphic  form ~, <~v,/t~) = 0 whenever  ~v I ~ - D = 0, hence ~v I D = 0. Assume now t h a t  

zEA. Then  /(z, ~) is holomorphic  in S E ~ - D .  Set [(z, ~)=/(z ,  ~) for S E ~ - D ,  [(z, $ ) = 0  

for ~ ~ D. Then  E(z) = F~(z) = </(z, �9 ), tt~> = ([(z, �9 ), /t~> = ([(z, �9 ), ~v) = (/(z, �9 ), yJ) = F(z). 

Hence  E] A = F ]  A, as asserted. 

The  theorem is proved.  



22  LIPMA~ BERS 

L e t  us r e tu rn  for a m o m e n t  to  the  case 1 considered above,  and  assume t h a t  m =  1, 

so t h a t  0 is an  o r d i n a r y  point .  I n  th is  case one m a y  assume t h a t  ~ E ~ is also an  o r d i n a r y  

point ,  since th is  can be achieved b y  conjugat ion.  

Now if ~(~) is an  au tomorph ic  form regular  a t  0, t hen  

ancf(n-1) (O) z(~) = 
n=l n!  

a n d  the  Eichler  in tegra l  E(z) = - l(/(z,. )) is 

~@(~C) ~o" n=ln!  

On the  o ther  hand,  in view of the  hypothes is  on ~ ,  t he  Poincard  series considered b y  Ahl-  

fors in [2], 
1 ~'($)~ 

} ( z ,  C)= 2~-~ ~r ~'(C) -z' 

converges.  S ince / ( z ,  ~) = ] (z, ~) + Q(z, ~) where  

Q(z,C)= 
~'(~J-' i. I=1 }'(C)-Aj 7(C)-z 

is a po lynomia l  of degree 2 q - 2  in  z, wi th  coefficients depending  ana ly t i ca l ly  on C, our  E 

does no t  differ s ignif icant ly  f rom the  in tegra l  used b y  Ahlfors.  
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