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O. Introduct ion  

An old and  classical problem in  algebraic geometry is the following: T r y  to classify 

- - i n  some sense- -a l l  the subvarieties of P~, say with k = ~. 

If  the degree of the var ie ty  is small, such a classification can be carried out, sec Swin- 

ne r ton-Dyer  [21] and  the anonymous  note  [23]. Bu t  as the  degree gets larger, the problem 

rapidly  becomes much  more difficult. 

Recent ly  there has been a renewed interest  in this area. We will no t  a t t e mp t  to give 

a complete account  of this, bu t  only men t ion  some of the papers which are closest to our  

own interests. For  fur ther  l i terature,  the reader m a y  for ins tance  consult  the references 

in  the papers listed here: R. Har t shorne  [4] and  [5], E. Lluis [13] and  [14], Peters  and  Si. 

monis  [16], J.  Rober ts  [17] and  [18], L. Szpiro [21], as well as our papers [8], [9] and  [10], 

11 -752906 Acta mathematica 135. Irnprim6 le 15 Mars 1976 
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In  [10] we have proved the following result: Let k be an algebraically closed field (it 

suffices to assume tha t  k is infinite), and let X be a non-singular, projective ]c-variety, 

embedded in P~. Let  c ( X ) = c ( ( ~ l / k )  *) be the total  Chern-class of X, and let 

1 
s(X)  = = 1 + s l (X)  + . . .  + sn(X ) 

c(X) 

( n = d i m  (X)) be the (total) Segre-elass of X (this name was introduced in [11]). With 

respect to the given projective embedding of X it then makes sense to talk about the de- 

gree of sl(X),  put  
d, = deg (s,(X)), l = O, 1 . . . . .  n. 

In  particular d0=deg (X)=d.  Now let 

j~n j+ 1 
f l ,=z:o ( j _ n _ l ) )  d ' - d ~ ,  

for n~j<~2n ,  and f l j=0 for j > 2 n .  Then we show that  ([9], [10] Theorem 4.2): 

T H ~ 0 R E M. Let m >~ n. Then the non-singular embedded variety X can be embedded into 

P~ via a projection ]rom P~ i[ and only i / f l j = 0 / o r  all j>~m. 

This result was obtained independently by Peters and Simonis in [16]. See also [8]. 

Throughout this work we assume ]c =)~. 

The purpose of the present paper is to generalize this theorem to the case when X has 

singularities. 

One should note that  this is necessary in order to treat  the affine case of the situation 

described in the above theorem: In  fact, let Y be a non-singular closed subscheme of AS. 

What is the necessary and su//icient condition that Y may be embedded into A r~ by a projec- 

tion? In  section 7 we give the answer to this question for projections from a center which 

does not contain any points at infinity of Y. Here the main point is tha t  even when Y is 

non-singular, it may  have singularities at  infinity, and this gives a contribution to the em- 

bedding obstruction which is not covered by the theory in [10]. 

In  trying to formulate a generalization of the above theorem, one is confronted with 

the obstacle that  no theory of Chern-classes for singular varieties is available in the lit- 

terature, except recently for complex algebraic varieties by the work of MacPherson [15]. 

Moreover, Baum, Fulton and MacPherson have recently made some remarkable advances 

in this direction with their Riemann-Roch theorem for singular varieties, [2]. 

The techniques developed in their paper include a theory of Chern-classes for locally 

free sheaves on a singular variety. However, this does not suffice as ~ l lk  is not locally free 

for a singular variety X. 
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On the other  hand  the full theory  of Chern-classes is not  really needed for our pur- 

pose. I n  fact, what  is needed here is a generalization of the degrees dl, ..., dn of the Segre. 

classes st(X ) .. . . .  sn(X) for an embedded (singular) var ie ty  X~->P N. 

I t  turns  out  tha t  in the singular ease there are two natural  generalizations of the  pro- 

jective invariant  d,, namely  the invariants  p,  and qa.~ introduced in section 1. In  the non- 

singular case we get p, =q~., =dz, see section 2. 

Bo th  of these sets of invariants  are used for the embedding-obstruct ion in the  

singular case. I n  fact, let i: Xc-~P N be a closed embedding of the var ie ty  X into pN. Let  

where 

for 1 = n, ..., 2n, and 

for l >~ 2n + 1. Moreover, 

~, = ( 7 i ,  2,), 

z-n/ l+ 

7, = 0  

' + ~  / + 1  ) 

for 1 = e~ - n .. . . .  ~ .  For  n ~< l < Q= - n we pu t  ~ . ,  = l, and for l > Q=, we let ~ . ,  = 0. Here 

l<~<~r=r(X, i), where P ( ~ / k ) = P 1 U  ... UP~ is the decomposit ion of P ( ~ / k )  into ir- 

reducible components  (as a set) and Q~ = dim (P~). Se section 6. Finally, we pu t  

and 
?z : (71, ,  . . . . .  ?~. ,)  

Y, = (Tt, ?z)- 

We then prove (Theorem 6.3) tha t  X m a y  be embedded into P~ via a projection from 

pN if and only if the entries of 

Ym, Ym+1 .. . .  

are all zero. 

I n  section 7 we prove an  affine analogue of Theorem 6.3, namely  Theorem 7.2. For  

an affine var ie ty  Y one m a y  also obtain embeddings by  projecting from a center which  

contains points at  infinity of Y. We h o p e  to re turn to this later. 

We hope tha t  the result of this paper  indicate t ha t  the invariants  p,  and q~.l are 

wor th  a closer study.  I t  would, for instance, be interesting to t ry  to relate them to  the in- 

var iants  studied by  Horonaka  in [6] and [7], or for the complex ease, to  look for a con- 

nection with MacPhersons theory  of Chern-classes in [15]. We hope to  re turn  to this later. 
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Chapter I. Projective invariants for projective varieties with singularities 

1. Definition of the invar iants  

Let  i: Xc->P~ be a projective var ie ty  X,  embedded in pN by  the embedding i. We 

assume tha t  X is reduced and  irreducible. 

Then 
6C 

p(f~l ) ,_. P(f2],.,k)= T 

X '  , P~ 

where a is a closed embedding and 

(1.1) 

i .e .  

I f  r >~ 2n, let 

e ~N-2n+l+r /*(cIT(T(X)) ~r) = N-un+x+r 

One now has the following 
eN_2n+l+r ~ O, 

P(~ i /k  ) = Proj (Sox(~/~))-  

Moreover, 5x: Xc->X x k X  = Y denotes the diagonal embedding, ~x: X x k X ~ X  x k X  

the blowing-up with center in the diagonal and T(X)=g~ l (Ax)  the exceptional divisor. 

Then 
T(X) = Proj (Gr,(Or)), 

where I is the Ideal  on Y which defines A x. Thus as 

ar,(Oz) = O d I  | I / P  | 1' /1"|  

is a quotient  of Sox(~lx/~), we get 

h ~  x~g (,.2) 

A(  T) = Z[t, 8], 
where 

~N+ ( N +  1)t~N-1 +. . .  + . +. . .  + ( N +  1)t~=0.  

/ . :  A (T)-~ A (p~v) = Z [t] is of degree - N + 1, and T(X) is of codimension 2N - 1 - (2n - 1) = 

2 N -  2n in T, so for all r 

/ .(clr(T(X)) ~:r) e A2N-sn-N+I+r(P~), 
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LEMMA 1.3. T(X) is irreducible. 

Proof. Let  U be the open set of all regular points in X.  Then h- l (U) is an  open subset 

of T(X), pu t  Y = h - I ( U ) .  h-l(U) is a P~-l-bundle over U, so h- l (U)  and hence Y are of 

dimension 2n - 1. 

Further ,  for all points x E X, 

T(X)~ = Proj (k (9 rex. Jm2x. ~ | m~x. ~/m 3. ~ |  ) 

is the projeetivized tangent  cone of X at  x. Hence dim (T(X)x) = n -  1, f rom which it  fol- 

lows t h a t  dim ( T ( X ) ) = 2 n - 1  = d i m  (Y), cf. E G A  IV Coroll&ire (5.6.6). 

Suppose now tha t  Z is another  irreducible component  of T(X). Since h ( Y ) = X ,  we 

must  have h(Z)O:X,  and since for all xEh(Z)  d i m Z x < n - 1 ,  we get as above tha t  

dim (Z) < 2n - 1. 

At  the beginning of section 4 it is noted tha t  T(X) m a y  be embedded into a var ie ty  

Bl as the intersection of two subvarieties, one of codimension 1 and the other  of dimension 

2n. Hence dim (Z) ~> 2n - 1, a contradiction. 

We have (cf. [10], section 9) 

PROPOSITION 1.4. e~_2n+l+r=0 unless n - -1  <~ r ~ 2 n - - 1 .  

Proof. I t  suffices to  show t h a t  eN-z~+l+r = 0 for r ~< n -  2. Let  A, = Z~n~ A,.~ be a cycle 

such tha t  

ClT (At) = elz (T(X))~ r. 

Then 

dim At., = 2n - 1 - r .  

Now/(Ar.~) ~_ X, so/,(elf  (A,))=0 if 2 n - 1  -r>~n+l ,  i.e. if r<~2n-1 - n - 1  = n - 2 .  

B y  Proposit ion 1.4 it is reasonable to make the following definition: 

Definition 1.5. ps(X, i)=eN-n+8 for s = 0  ... . .  n. 

Let  P1 . . . .  , Pr, r =r(X ,  i) be the irreducible components  of P ( ~ j k ) ,  and let ~1 .. . . .  Qr 

be their dimensions. We have 

/,(elr(P~) ~r) = ~. N-Q~+r t N-~§ 

where ~.jEZ. Put g~ j=O for j~>N+I. 

P R O P O S I T I O N  1.6. g~.N_q~+r = 0  unless n >~Qa--r >~O, i.e. unless ~a>~r >~a - n. 
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Proof. F o r  s impl ic i ty ,  we delete  the  subscr ip t  a. B y  def ini t ion eN-o+r = 0  if N - 9  + 

r ~> N + 1, i.e. if Q - r < - 1. Moreover,  as in the  proof  of Propos i t ion  1.4, ](P) __ X implies  

t h a t  eN-~+r = 0 if 0 - r >~ n + 1. 

W e  now make  the  following 

De/inition 1.7. q~.s(X, i) =g~.N_,+ s for ~ = 1 ,  ..., r(X, i) and  s = 0  . . . .  , n. 

I f  r = 1, we p u t  qL 8 = qs" 

2. The non-singular case. Relat ion to the Chem.  and the Segre-classes 

The purpose  of th is  sect ion is to  give an  i n t e rp re t a t i on  of the  inva r i an t s  1o, q in t ro-  

duced  in the  previous  sect ion in the  case t h a t  X is smooth  over  k. 

I f  i: X~-~P~ is an  embedd ing  of the  n-d imensional  smooth  va r i e t y  X into  P~, and  if 

~6AJ(X) ,  recall  t h a t  deg (x) is g iven b y  

i , (~ )  = deg (a) t  j+~-n 

where t is the  class of a hype rp l ane  in P~. Le t  

c(X) = 1 + C l ( X  ) + ... +on(X) ,  

be the  to ta l  Chern-class of X,  and  let  

1 
s ( X )  = - -  = 

c ( x )  
1 + 81(x) + . . .  + 8 . (x )  

be the  t o t a l  Segre-elass of X.  W e  p u t  so(X) = co(X ) = 1. Then  we have  the  

PROPOSlTIOI~ 2.1. I[ X is a smooth pro~ective variety, embedded in P~ by the embed- 

ding i: X'-~P~, then 

p~(X, i) = qz(X, i) = deg (st(X)) 
/ o r  l = O  . . . . .  n .  

Proo[. W e  have  

T(X) = P(fl~:k), 

and  thus  10z(X, i) =q~(X, i) f o r / = 0  . . . . .  n. W i t h  no t a t i on  as in (1.1) we now have  

a*(~) = ~x, 

where Sx=~nllk, see [10], (3.3), Thus  
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and hence 
/.(C]T(p(~l/k) ) ~r) = l* 0 ~ , ( ~ )  = i ,  g,(~). 

By Lemma 11.1.3 in [10] (where the Segre-classes are referred to as the inverse Chern-classes) 

one now obtains 

0 for r ~ n - 2  

g * ( ~ X ) =  8 r _ ( a _ l ) ( X  ) for r > ~ n - 1 .  

This gives 

Hence 

= I 0  for r < ~ n - 2  

i*g*(~rx) [deg(s~ (n_l)(X))t r-(n-1)+N-n for r > ~ n - 1 .  

deg (Sr_(n_l)(X))= eN-2n+l+r = p-n+l+r(X ,  i), 

and the claim follows. 

In  particular we thus obtain 

81 = - - C a ( X  ) 

8 2 = e l ( X )  2 - c 2 ( X  ) 

8 3 = - -  C l ( X )  3 -q- 2c2(X ) Cl(X) - -  c a ( X  ) 

As in [10] we let 
d~ = deg (s~). 

3. Elementary properties 

The invariants P, and qa. s defined in section 1 depend on the scheme X as well as on 

the embedding i. In  what  follows we shall need some very simple observations on how 

these invariants change when the embedding i is changed in a certain manner.  

Let  
/ : p ~  ~ pM 

be a projective embedding. 1 may  for instance identify P~ with a linear subspace of pM in 

which case we say that  1 is linear. Or l m a y  represent some twisted embedding of P~ into 

pM, like the Veronese-embedding of p2 into P~. 

One has the group-homomorphism 

l, :A(P N) = Z[t]-~ A(P M) = Z[T], 

where f +x = O, T M+I = O. Put  

l ,( t~) = O~(1) T "+M-N. 
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In  particular (~(1)= 1 when 1 is linear. 

Now let i: X~-~P N be a projective embedding of the scheme X. We then have the fol- 

lowing 

PROPOSZT~ON 3.1. I]  n = d i m  (X),  then with notations as above 

(3.1.1) p ~ ( x ,  l o i) = ~z ,_ ,+, ( l )p , (x ,  i), 

(3.1.2) q~,.,(X, l o i) = ~}~_,+~(l)q~.,(X, i). 

Proo]. We get the diagram 

T(X)  �9 ~P(~xtk) " j , P ( ~ , f / k ) '  m } P ( ~ f / k )  

X ~ ) P~ ~ ~ P ~  

Since now (cf. [10], (3.3)) 

~ = m * ( ~ , ) ,  

we obtain the following for any cycle Z on T 

m, (c17 (Z) ~],) = m, (clr(Z) m*(~:~)) = m. (elf (g)) ~ ,  = cl v (Z) ~ .  

by means of the Projection Formula. This gives 

F,(clv (T(X)) ~,)  = F,(m,(clr  T(X)) (~,)) = / , ( / , (c ] r  T(X)) ~,)). 

Hence with the notation introduced in section 1 we get the following (e corresponds to 

P~, while E corresponds to P~): 

E M-2n+ l +r T M - 2 n +  l +r = l , ( e N - 2 n +  l +r t N - 2 n + l  +r)  = e N - 2 n +  l +r Ol~-2n+ l +r(l)  T M - 2 n +  l +' .  

{3.1.1) is immediate from this. 

(3.1.2) is shown similarly. 

The following corollary is immediate 

COROLLARY 3.2. I /  1 is a linear embeddi~g, then T, and qa., are unchanged. 
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Chapter H. Secant bundle and secant schemes for singular varieties 

4. Secant bundle and the secant variety 

First, recall the following from [10](1): Let ~: BI-~P~ x kP~ denote the blowing-up of 
N N Pk • kPk with center in the diagonal A. As before, let 

1 N _.> N / :T=P(~2pk/k)  Pk 

be the projectivized cotangent-bundle of pN. Then g-l(A) = T, and we have the commu- 

tat ive diagram 

T '  > BI 

where (~ is the diagonal embedding. Note tha t  T(X) = T N X • kX. Moreover, we have (see 

[10], Proposition 8.6): 

PROPOSITIOI~I 4.1. There is a projective morphism ~t=BI-~T, which is a Pl-bundle, 

such that the/ollowing diagram is commutative: 

B1 , T 

1 .r. 1' (4.1.1) 

Moreover, ~ induces the identity on T =~-I(A),  and i / x  is a k-point o/pN, then the [iber 

o v e r  x 

Bl2 

p~ T.--P~ -~ 

(4.1.2) 

is the blowing-up el P~ with center x and the corresponding Pl.bundle 2x where 

y ~-> gx(2;1(y)) 

establishes a 1 - 1 correspondence between k.points y in p~- i  and lines in P~ passing through x. 

As in [10] (Definition 8.10) we now put  

Sb(X, i) =)I(X • kX), 

(1) Similar techniques may be found in [1] and [12]. 
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where X • kX denotes the strict  t ransform of X x kX under  the blowing-up z.  The induced 

morphism Ix: Sb(X, i ) ~ X  is referred to  as the  secant bundle of the embedded var ie ty  

i: X'~P~.(1) As alway i is deleted when no confusion is possible. I n  [10] the following is 

proved (Proposition 8.9): 

PROPOSIT~O~ 4.2. pr  1 (7t(2-1(Sb(X)))) is the closure o/ the union o/ all lines in P~ 

with two or more points in common with X.  

The subvar ie ty  See (X, i) = pr  1 (zt(2-1(Sb(X)))) is referred to as the secant variety o / X  in 

pN. Also as in [10] we let 

(4.3) S(X, i) = ~t(~t-l(Sb(X))). 

The arguments  used to prove Proposit ion 8.11 and its corollaries in [10] give the fol- 

lowing proposit ion and corollaries. 

PROPOSITION 4.4. I /  the variety X has a non-singular point x such that 

T(X)~ = Sb(X)~, 
then X is a linear subspace o/P~. 

COaOLLAlCY 4.4.1. dim (Sb(X)) < 2  dim (X), with strict inequality i /and  only if X is 

a linear subspace o/P~. 

COROLLABY 4.4.2. dim (See (X)) ~<2 dim (X) +1 .  

COaOLLABY 4.4.3. I / X  is not a linear subspace o/pN, then 

dim (S(X, i)) = 2 dim (X) + 1. 

5. The Zariski secant scheme  

For  all k-points xEX,  the tangent cone Cx.~ of X a t  x is contained in Sec (X). I n  fact, 

this follows by  Proposit ion 8.5 in [10]. Bu t  if x is a singular point, then Sec (X) need no t  

contain the Zariski tangent space Zx. z of X a t  x. 

Recall t ha t  if I(X)=(F1,  ..., Fm)k[X o . . . . .  X~], where F1 ... . .  Fm are homogeneous 

polynomials, and  if x = (a 0 : ... : aN), then  Zx.~ is the linear subspace of p~v defined by  

~Fs a 
X ~ - ~  ( o . . . . .  aN)=O, j = l  . . . . .  m. (5.1) 

iE=O v ~ x  i 

I f  x is a regular point,  Cx.z =Zx.z- 

(x) For related notions, see [19]. 
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With  nota t ion as in (1.1) and in Proposi t ion 4.1, we now put  

z(x, i) = ~(~-l(p(~i~k))), (5.2) 

which is a closed subset of P~ • kPg. Finally the subscheme of P~ 

Zarsec (X, i) = pr  1 (Z(X, i) U S(X, i)), 

where the union and the image are scheme-theoretic, is referred to as the Zariski-secant 

scheme of the embedded var ie ty  X. 

We need the following 

PROPOSITION 5.3. pr i (Z(X, i)) is the union o/al l  Zariski tangent spaces Zx. ,  as x 

runs through all k-points o] X.  

Proo/. Let  y be a k-point of pr  1 (Z(X, i)). Then y=pr  1 (z) where z is a k-point of 

Z(X, i). Now x = p r  2 (z)EX, so 

yE ~z~(2;l(P(O~/~)~)). (5.3.1) 

Thus  to complete the proof, it suffices to show the  following lemma: 

LEMMA 5.3.2. 
Zx.~ = ~ ( Z ; i ( p ( o ~ ) ~ ) ) .  

Proo/. We m a y  assume t h a t  x = (1 : 0 : ... : 0). Ident i fying D+(Xo) with A~, we pu t  

U = X N AN. Let  

Z = Zx. ~ N A~ 

be the Zariski tangent  space of U a t  x = ( 0  . . . . .  0) EA~. Wi th  nota t ion as in (1.1) we now 

have 

g 2 ( u ) = e ( ~ , ~ ) ,  
so in part icular  

P ( ~ - , . ~ ) ,  = P ( ~ , k ) ~  = T~ = P ~ - I  

is the projectivization of Z. Hence the claim follows from (4.1.2). 

As in [10], let a = ~ + t E A ( T )  (cf. section 1). Then A(T)  is free over Z[t]=A(P~) on 

the base 
1, a, ..., o ~v-i. 

Moreover, we have the 

LEMMA 5.4. ~t,(~t*(a~t~))= s~t~ /or all 0 <~ ot < N  and/or all ft. 

This  lemma is proved iv [10], as Proposi t ion 9.4. 
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Finally we note that  

PROPOSITION 5.5. (i) Z(X, i )=  (J~_IZa(X, i) where r = r ( X ,  i) and 

Z~( X, i) = n(~t-l(P~)), 
(ii) Moreover, 

Ms 
tt8 2~-(Q~+1)-] (5.5.1) clpN• ~ ~. j  

J~ Ml 

where ~a.,eZ and Ml=Max {0, ~V-e~}, Ms=MAn {N, 2 N - c a -  1 }. 

Proof. (i) is immediate by Proposition 5.3, since 

P(~l/k) = P1 U... tJ P,, 

(ii): We delete the subscript a, and have 

clr (P([21/k)) = ~ Au~ t u a ~, 

where 0 ~ v < N - 1 ,  O<u<.N, u + v = 2 N - 1  -~.  This sum with s instead of a is just that  

of the right side of (5.5.1), which now follows by Lemma 5.4. 

(5.5.1) implies that  

dim (Z(X, i)) = e + l, 

since not all ~'s are zero. 

Chapter E[I. Embedding obstruction for singular projective varieties 

6. Definition of the obstruetion. Main results 

Let i: X'-->P~ be an embedded projective variety with singularities. Let  ~ denote the 

blowing-up of the diagonal in ~ N P~ •  and let X x k X  be the strict transform of X • 

X x k X '  > BI 

1 1 
X xkX'  , P~ x kP~ 

With notations as in section 1, we have the (See Lemma 1.3.) 

LEMMA 6.1. cln, (X • m (E) =cl  m (T(X)). 

Proo]. First, we get tha t  

c] m (X x kX)" elm (E)=  �9 clm (T(X)), (6.1.1) 
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where V=em(O ) is the multiplicity of the local ring 0 of X xkX at the generic point of 

T(X). In fact, this is shown in the same way as Lemma 11.1.1 in [10]. 

To prove that  v = 1, let U be the open subset of X consisting of all regular points. 

We then obtain the following diagram 

U x~ U '  , X x~X 

where :~e, Zx are blowing-up with center at the diagonals, and ~, ~ are the canonical open 

embcddings. Now the generic point of T(X) is in U x k U, which is non-singular. Thus '  

v = l .  

Now let n = d i m  (X) and d = d e g  (X) be the degree of X in P~ by the embedding i. 

For n ~< 1 ~< 2n we define 

)h=d 2-  ~ _ j  PJ 
j=o 1 - n  

and for l>2n we let ~z=0. 

Moreover, for Q~ - n  < l < ~  define 

( l+, 
%--X l+n_e=_j)/q~.J, 

where the sum is taken over all ~ from 0 to l+n-~=. For l>~= put 2=.~=0, while for n~< 

1 < ~= - n we let 2=.z = 1. Put  

7 l  = (~)L' . . . . .  7r. l )-  ( 6 . 2 )  

Whenever r(X, i )=  1, we write )h =TLl- 

Finally we make the following definition: 

Definition 6.3. Yt = (7l, 7~) is referred to as t h e / ' t h  part of the embedding-obstruction 

of the embedded variety X. Fz=(Tz, 7z+1 .... ) is referred to as the to ta l / ' t h ,  embedding 

obstruction. 7z or I '  l are said to vanish if all their entries are zero. We then write 7t =0  

or P t=0 .  

The main aim of this section is to prove the following 

THV.ORI~M 6.4. Let m >Jn=dim (X). Then X may be embedded into P'~ via a pro]ection 

/tom P~ i /and only i/Pm = O. 

The proof rests on the following theorem, which is due to E. Lluis (see [13]): 
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THEOREM 6.5. X may be embedded into P~ via a projection [rom P~ i /and  only i[ 

dim (Zarsec (X, i)) ~< m. (6.5.1) 

Proo/. (See also the proof of Proposition 12.1 in [10]). Let r = N - m - 1  and let pr  be 

a linear subspace of P~ of dimension r. 

To prove the theorem, it suffices to show that  the projection with center Pr induces 

an embedding of X into P~ if and only if 

Zarsec (X, i) f?/x = 0 .  (6.5.2) 

More precisely, projecting with P~ as center one obtains a morphism 

p: P ~ - P r  -~ P~. 

Let Y = p ( X )  be the (closed) scheme-theoretic image of X - P  ~, cf. EGA I 9.5. We then 

have a morphism 

~0: X - P ' - ~  Y, 

and the claim is that  ~ is an isomorphism of X with Y if and only if (6.5.2) holds. 

First, assume (6.5.2). Then in particular 

X Iq P r = 0 ,  

SO 

q z : X ~  Y. 

Since moreover pr f/Sec (X, i ) = 0 ,  it follows that f is bijective on closed points, and hence 

bijective on the underlying topological spaces of X and Y: In fact, suppose that  two closed 

points of X, say x I and x~, are mapped to the same point yE Y. Then p-l(y) =pr+l is a linear 

subspace of pN, of dimension r + 1, which contains P~ as well as x 1 and x~. Now the line 

joining x 1 and x~ is a secant of X which lies in pr+l and hence meets P~, a contradiction. 

Thus a s / i s  proper, it is a homeomorphism of underlying topological spaces. 

Hence it remains to show that  the morphism of sheaves 

O: Or ~ l.(Ox), 

which corresponds to [ is an isomorphism. 

By EGA I I I  (4.4.2) f is a finite morphism. Let U =Spec (A) be an open affine subset 

of Y. Then [-I(U) = Spec (B), where 

Or: A ~ B 
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makes B to a finite A-module. To show is that  0g is bijective. For this, it suffices to show 

that for all primes i0 in A, the homomorphism 

(0v)~: Ap ~+ B~ = B @ A  A p  

is bijective. Since / is bijeetive as map of topological spaces, so is the induced 

Spec (B) -+ Spec (A). 

From this it is easily seen that  if q is a prime in B and p =0~a(q), then 

Hence, in order to show that  / is an isomorphism, it suffices to prove the following: 

Let x EX, y=/(x).  Then the induced local homom0rphism 

0#~: Or.y+Ox.~ 
is bijective. 

From the above it follows that  O~ # is injective and makes Ox.x to a finite Or.u-module. 

By Nakayama's  Lemma it therefore suffices to show that  

m y ,  y Ox,  x ~ m x ,  x, 

i.e. that  / is unramified at x. 

This follows since the center of projection pr does not meet Zarsec (X, i) and hence 

does not meet any Zariski tangent space of X in pN, see Lemma 5.3.2. Hence the projec- 

tion p induces a closed embedding of the Zariski tangent space of X at x into that of Y at 

y. Thus / is unramified at x. 

For the converse, assume that  

Zarsec (X, i) N pr ~= O, 

but that ] is an isomorphism of X with Y. We show that  this leads to a contradiction. 

Let y E Y be a k-point. Then 

/-i(y) ={x}, 

since / is an isomorphism. Hence no secant of X meets pr, so 

Sec (X) n P '  = 0 .  

Moreover, / induces an isomorphism of the Zariski tangent space of X at x, Tx. x onto 

that  of Y at y, Tr, u. Thus 

Tx.x N Pr = 0 ,  
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for all x E X. Hence 

Zarsee (X) fl P~ = 0 ,  

which is a contradiction. This completes the proof of Theorem 6.5. 

By Theorem 6.5, the proof of Theorem 6.4 now amounts to computing the dimension 

of Zarsec (X, i). For this we need the following lemma (see Lemma 7.1 in [10]). 

Let  S c P N •  be a subseheme of pure codimension d. Let  h be the class of a 

hyperplane in P~. Then 

A(P) = Z[s, t], 

where 

Now put  

Then 

s = p r ~  (h), t = p r ~  (h). 

N 1 = Min (N, d}, N O = Max (0, d - N } ,  

N1 

cle (S) = _~ a, tb ~- z. 
1 = No 

L~M~A 6.6. I / M i n  {dim (S), N } - d i m  (pr 1 (S))=r ,  then 

a ~ ,  = . . . .  aN~-~+1 = 0 ,  a N , - r  =~ 0 .  ( 6 . 6 . 1 )  

Proo/. I f  pr  denotes a generic linear r-dimensional subspace of P~, one gets 

pr I (S) N pN-m-1 = O ~ d i m  (pr 1 (S)) ~< m. 

Hence since (see the proof of Lemma 7.1 in [10]) 

clp (S N pri -1 (pN-m -1)) = elp (S)8 m+s = ~ aQtz8 d+ re+l-t, 

where the sum is taken over all l from Max (No, d - N + m + 1 } = Max (0, d - N + m + 1 ) 

to N~, we obtain 

d i m ( p r l ( S ) ) ~ < m ~ = 0  for l = 2 V  1 . . . . .  M a x { O , d - N + m + l ) .  (6.6.2) 

Taking m=Min (dim (S), N } - r  it thus suffices to show tha t  

Max (0, d - - N + M i n  (dim (S), N ) - r + l )  ---- N l - r +  1. (6.6.3) 

This is seen as follows: Max (0, d - N + M i n  (dim (S), N i - r §  (0, d - N + N - r +  

l + M i n  ( N - d ,  0 ) ) = M a x  (0, N l - r + l  ). Thus it remains to show tha t  N l - r + l > ~ 0 ,  i.e. 

tha t  
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N 1 ~> Min { 2 N - d ,  N } - d i m  (prl ( S ) ) -  1. (6.6.4) 

For  d>~N, (6.6.4) is trivial. So assume d < N .  Then s and 2 N - d > N ,  hence the  

claim amounts  to 

d >~ 2N - d  - d i m  (prl (S)) - 1. (6.6.5) 

But  this is clear: In  fact, 

S ~ p r  1 (S) • 

so d = codim (S) >~ codim (pr I (S) • kP N) = N -  dim (pr I (S)). 

This completes the proof of (6.6.4), and hence of Lemma 6.6. 

Proo] o/ Theorem 6.4: We first t rea t  the  trivial case when X is a linear subspace of 

P~. As 
Tz~ 

where ~ E A (P~) is the class of a hyperplane,  it  follows in this case t ha t  

c(X) (1 +z)~+l  i=0 i ~ '  

and hence 

= ( - (n + i 1)). d~ 

Thus if X a linear subspace of P~, then 

J=o l - n - j /  ? 

z-~,+l ( l + l  ) ( - ( n +  1)) 
~z = ~ . , n ~ l < ~ 2 n .  

j=o l - n + l - j  

Now recall the Vandermonde convolution ]ormula 

~ m - i  i = ' 

which immediate ly  implies tha t  1-'m vanishes for m >~ n. 

Hence we m a y  assume tha t  X is not  a linear subspaee of P~. B y  Corollary 4.4.3 we 

thus have 

dim (S(X, i)) = 2n + 1. 

12-752906 Acta  mathemathica 135. Imrim6 le 15 Mars 1976 
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Moreover,  by  Corollary 3.2 we  m a y  assume that  N > M a x  {~, 2 n + l } .  Thus  one  ob- 

tains  
N 

elp (S(X,  i)) = s N-c2~§ ~ ~j tJs N-~, 
tffiN-(2n+l) 

and (cf. (5.5.1)) 
N 

clp (Z~(X, i)) = s ~-(~§ ~ ~ . j t '8  N-~. 
t=~-Q 

By Lemma 6.6 and the assumption that  N > M a x  {Q, 2 n + l }  it now suffices to prove 

the following 

P R O P O S I T I O N  6.8.  We ha're 

flj=~u~_(~_~) /or N - n  <.j <~N, (6.8.1) 

and 

fl~.j=s /or N-n<.~<~N, (6.8.2) 

where ]a i8 a non.zero rational number. 

Proo[. With the same notation as in section 4, we write as in [10]. 

cl~i (X xkX) = a0 +llal, 

where I1 =elm (T) and a t =2*(at)EA(T). In fact, recall from section 1 that  

A(T) = Z[t,~], 

where t=/*(h), h being the class of a hyperplane (usually we put h=t, when no confusion 

is possible), ~ =p(O(1)) satisfies 

~N+ ... + ( N :  I)  t ' ~ - ' + .  . . . + ( N + l ) t ~ = O ,  

and moreover 
A(BI) = Z[t, ~, ~l], 

where t =2*(t), ~ =2"(~). Finally, ~i satisfies 

11 ~ + ~ i  = 0, (6.8.3) 

see Lemma 9.3 in [10]. Since X is not a linear subspace of P~, Corollary 4.4.1 gives that  

~(x, i) = [tc(x • kx): tc(Sb(X, i))] :~0. 

:Now 2,(TI) = 1, hence 
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ai  = ~,(clBt (X x kX))  = ~ c l  r (Sb(X,  i)). 

173 

I n  o ther  words 

since Sb(X, i) is a subvar ie ty  of T of eodimension 2 N - ( 2 n + l ) ,  and  since A(T) is a free 

Z[t]-module on 1, (r, ..., o "v-1 (cf. section 1). Now 

N 

a I = (~ CIBI (~-i(Sb (X, {))= ~ ~ b, a21v-(2n+l)-'t ' 
l = N - 2 n  

We now claim the  following: 

N 
clp (S(X, i))=p ~ bls2N-(2n+l)-It I (6.8.5) 

l f f i N - 2 n  

where 
1 

# = ~ ,  ~ = [k(2- ' (Sb (X, i))) : k(S(X, i))]. 

Similar ly 

flN-(~+l) =0, flj =l~bj for j > ~ N - 2 n .  (6.8.6) 

Proof of (6.8.5): B y  L e m m a  5.4, 

N 
~.(a l )  = ~ bls2N-(2n+l)-l~ I. 

l f f i N - 2 n  

Moreover,  not  all b z are zero, since this would imply  2 , ( c l m ( X •  hence 

d im (Sb(X)) <2n .  Thus  g , ( a l )  40 ,  and  thus  e :~0. 

Now 

a i = i*(2.(cl  m (X x ~X))) = (~ elm 0t-i(Sb(X, i))). 

~,(cls, (~-I(Sb(X, i)))) = ~ clp (S(X, {)). 

Pu t t i ng  these identi t ies together  we obta in  

~e.(al) --(~ clp (S(X, i)), 

and  (6.8.5) follows. 

Thus  (6.8.1) follows f rom the 

L ~ M M t  6.8.7. For N-n<<.j<~N we have 

bt = ?t~N-2.) ,  

For other values o/j ,  bj = O. 

N 
a l =  ~. b~ a2N-(~+l)-z tl (6.8.4) 

l f f i N - 2 n  
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Proo/.  To show is t ha t  

bz+N_2. = ~o  1 -- n + i /  

0 otherwise. 

p~ for n~<l~<2n, 
(6.8.8) 

By  Lemma 6.1 and (6.8.3) we obtain 

clm (T(X)) = q(a o - - ~ a l ) .  

Here the  notat ions are as in the proof of Proposit ion 6.8. Moreover 

b~-2n = 0. a o = d2(at) N-n and 

I n  fact, recall the diagram 

T ? ~ - ~ B I  , T  

d /rr~ 
p f  ~ - - - ,  p , P~  

(6.8.9) 

where the two horizontal compositions are the identities. 

Now 

j,(j*(al) ) = qa  1 

by  the projection formula, so 

~ , ( l q a l )  = ~ , ( ] $ ( j * ( a l ) ) )  = 7 ~ , j , ( a l )  , 

since 2] is the identity.  Hence 

~,(~lal)  = ~ , ] , ( a l ) .  
~ O W  aS  

0 for i = 0 . . . . .  N - 2 
1,(~') l 1 for i = N - 1 ,  

we get by  (6.8.4) 

and thus 

N 

/ ,(al) = ~ bl/ ,(a2N-(2n+l)-l)t l=bN-2~t N-2~ 
l = N - 2 n  

z~,(~ al)  = bN-2n 6,(tN-en)- 

Since A(P~' )=Z[t]  is identified with the canonical subring of A ( P ) = Z [ s ,  t] via pr~, and 

pr  2 ~ is the identity,  we get  

(~,(t N-2n) = O,((pr e (~)*(t N-2~) = 0,(~*(t ~-2") = t N-2~ clp (A) = t~-2n(s N + 8N-lt q-o.. + t N) 

(cf. [10], Lemma 9.4.3). Thus 
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~,(~la~) = b~_z~(sNt N-~ +.. .  + sN-~"t N) 

On the  o ther  hand,  as :~x: X •  •  is birat ionM, we get  

~,(a0 +~la~) = cl (X • ~X) = d~(st) ~-". 
Now wri te  

2 n  

a 0 =  ~ t N - 2 n + ~ N - ~  
i = l  

which is possible since 1, a . . . . .  o ~v-1 forms a base for A(T) over  Z[t]. Then  

This gives 

2 ~  

~.(ao)= ~ ~t"-~'~+%~'-( 
l = l  

2rt  2 n  

~tN-~+tSN-~ + bN_2~ ~ tN-~+tS N-~ =d2(st)N-~, 
t = 1  $=0  

which f inal ly  implies  t h a t  

and  (6.8.9) follows a t  once. 

I f  now fl ~< N - l ,  then  

/ , ( o ~ )  = [ 

I n  fact ,  we have  

S O  

Now 

I n  fact ,  the  re la t ion 

bN_2n = O, 

a 1 + biv_2n = O, 

aN + bN-z~ = d 2, 

o . . ~  . . . . . .  

O(,2n : bN_2n  ~ O, 

0 for a + f l < N - 1 ,  

(~ - ( N + I )  ~t~+~_(N_D for a + f l > ~ N ' l ,  
. + f t -  ( N -  U] 

o~ ~= ~ t~-J~ j§ 
1=0 

,% \j  ! 

]*(~N-I+*)=(--(N+ I)) i for i~>0. 
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(6.s.10) 

(6.8.1D 
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gives 

Thus if we put 

we get 

Hence 

and (6.8.11) is immediate. 

~N+ (N+ 1)t~N-l+ ... + ( N :  1) tt~/~-t+ ... + (N+ 1)fv= 0 

~N-l+tq-(N-~l)t~N-2+|q- . . q - ( ~ r ; 1 )  t t~N- lq - . . .=0 .  

/ , (~N-l§ = at t', 

:e, + (N+ 1) aq-,+ ... + ( N ;  1)% = 0. 

a~X t (1 +X)N+I = 1, 
t 

By means of (6.8.11) we obtain the following, where m = ~ + f l - ( N - 1 ) :  

,.,r162 (: ,)  ( 
Thus the Vandermonde convolution formula (6.7) with p = - (N + 1), r = ~ +/9 = g -  (N + 1) 

yields 

/ . ( o ~ ) = C r  ~ - ( N + I )  ~ 
m \ ~ + ~ - ( ~ v -  1 ) / '  

provided m~>0. If m < 0 ,  i.e. if ~ + f l < N - 1 ,  then / . ( ~ a ) = 0  since / .  is of degree 

- ( N - 1 ) .  Thus (6.8.10) is proved. 

Now by (6.8.9) we get 

N 
el T (Tx)~s+n-1 =d2(fft)N-n~s+n-l_ ~ bt~S+n~-2n-l-ttt. 

l=N-2n+l 

On the other hand, 

and hence 

0 for - n + l ~ < s < 0  
/*(clr(Tx)~S+n-1)= pst N-n+8 for O<.s<~n, 

N 
pstN-~+S=d~/,(aN-n~s+~-l)~ -n -  ~ bz/,(o~-2~-l-t~'+ ~) t t , 

/=hr-2n+l 

where we let psi-0 for s < 0 .  Now by (6.8.10) 
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and 

- ( n +  1))tN+s_ n for 
8 

0 for - n + l ~ < s < O ,  

f {N--2n--2--l~tN+s_~ 
1,(o ~N-2~-l -~+~)tz= \ N + s - n - I /  

0 for l > N + s - n ,  

n >~ s >~ O 

for l <. N + s - n  

since by assumption N > 2n + 1. This gives 

for all 0 ~< s ~< n, and 

( ) N+.-. ( N - 2 n - 2 - l ~  
p~=d 2 - (n+ 1 ) s  - -  ,=N-2n+1~ b ' [ l q + s - n - 1 ] '  

0 =  - 
N+s-~ ( N - 2 n - 2 - l ~  

b~ N + s - n - l  ]' = N - 2 n + l  

for all - n +  I ~ s < 0 .  

(6.8.13) immediately implies t ha t  

b N - 2 n + l  ~ . . .  == b N _ l _  n . ~ O .  

Hence (6.8.12) takes the form 

ps=d ~ - ( + 1 )  -,=N-n~ bz\ N + s - n - l  ]" 

Now put  i = 1 - ( N -  2n), fit = b z = b,+N-~.. Then we get 

Since 

" + '  - - ( i  + 2 )  

( :):, 
this can be writ ten as 

P , = ( - 1 ) ' d  ~ s + ( - 1 ) ' + ' +  1 ~ ( - 1 ) ' f l '  
,=~ / + 1  ' 

i.e., l e t t i ng  j = { - n:  

_ 1)s+, (s + n + : s )  

for all s = O, .. . ,  n. 

177 

(6.8.12) 

( 6 . 8 . 1 3 )  

(6.8.14) 
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Define 
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[ ( n + r ]  1)~+ s \n+s]  ( -  for l <~s<~r-<.n+ l 

0 for 1 4 r < s ~ n + l .  

{nr~}" {]nr~l} = E, 

where E is the  uni t  matrix.  

Indeed,  it is clear t ha t  this product  can be expressed as 

where for r < s 

and  

~Zrs = O, 

while finally for r>s (p = r - s ) :  

a T ~ = Y ( - t )  T§ + r  n +  ~ ( _  
i=s +i  n+ J~o \ n + s + j  \ n~- 

With  n + s = m one thus obtains  

' ( m + p ) ( m m + J ) = ( - 1 ) ~ + ~  ~ ( - I ) ' ( m + p ) ( p ) = O .  ~'s= ( -  1)r+s ~ ( -  1) m+j j:o 
j=o \ p / 

Thtm 

i.e. for n ~< j ~< 2n: 

i.o. 

t - : = ( I n r ~ l }  : 

t l ~ o U - n -  

~o \ j - n +  t ~o \ j - n -  
Now 

z~o \ j -  n -  

Using the  Vandermonde formula  (6.7) with m = r = j -  n, p = - ( n  + 1), we get  

' f(i  j+l ] 
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'-"( i + l  'i 
k ,= b,+,<_... = d" -  j_ _zip,. 

and the proof of Lemma 6.8.7 is complete. 

To show (6.8.2), and  thus complete the proof of Proposition 6.8, it now suffices to 

prove the following 

L~MMA 6.8.15. For all O < l < n  and all 1 <~r i) we have 

~.Z+N_ = ~ ( L § 2 4 7  
~=0\ s + Q - - n  q~'~' 

and for other values of l, fl~. Z + N- ~ = O. 

Proof. Note first that  since ~ = ~ + t, the relation 

gives that  

Together with 

this gives 

In fact, we have 

(r N+I ~ O. 

( T N = ~ N - { -  ~ N - l t  off .. , 

0 for f l < N - 1  
/,(t'e* ~) = t v for fl = N - 1 

- t  v+l for f l = h  r . 

O for f l < N - 1  

f , (~)= 1 for / ~ = N - 1  
- ( 2 V + l ) t  for f l = N .  

and fl > h r 

(6.8.16) 

get 

For simplicity we delete the subscript :r By  Proposition 1.6 and Definition 1.7 we 

[, (cl~ (p)~s+Q-n) = { qsN+8-nO otherwise.f~ s = 0  . . . .  , n  (6.8.17) 
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Moreover since N > 5, we have 

( - .-J) 

= Y 7 ( - 1 ) J  
I-N-o t=0 ] 

By (6.8.16) we now have 
t T M  for i + j = N + s - n  

/ ,(t~+Jo~r+'- '-~-"+J))=-t N+*-" for i + j = N + s - n - 1  

0 otherwise. 
Thus 

/, (elf (P) ~*+Q- ") 

f+I-N+s-n-1  \ ~ ] 

: n), x,J) 
f+J~N+s-n J 

where N ~> i ~> N -  ~ and s + ~ - n >/j 7> 0. The coefficient is equal to 

N + s-  n-1 i 8 -~ ~ 7b ~ N + s -  n _ i 8 2i- ~ - -  ~b 1 )  N + s -  n - |  

~r+~-n(_ l)N+s_n_~(S+Q--n + l ~ 
t=~-~ \ N  + s - n - i ]  ~t" 

Hence we obtain the following system of equations 

X (-- 1) N+s-"-' ~ 
q~ = ~ ~_~ \ N  + s - n - i /  

0 otherwise. 

for s=0 ,  ..., n 

For simplicity we write 

O f l ~ l + N - n .  

Then the above system takes the form 

q8 [ l~,-QO: otherwise,(-- 1)s- l(s+Q--n+ 1 ) s - - l  
~t for s=O, . . . ,n  



i.e. 

where 
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0 l ~ < r < s ~ < ~ + l .  

(:) (; ) ~ t -  l~J r s 

1-0 

For r > s one obtains 

r-s r ~(-1)'-8(i~(:)=~o(-1)'(s+si)(s+i)= 
~: s ks/  : 

This yields 

and we find 

f ~n-Q ] = f l , r . I }  

~n 

Thus ~._Q . . . . .  a-1 = O, and for 1/> 0 

t=o \  ~ - n + i  qt. 

~ O 

This completes the proof of Lemma 6.8.15, hence of Proposition 6.8. 

Thus the proof of Theorem 6.4 is completed, 

7. Aitlne embedding theorems 

In  this section we give an analogous result to Theorem 6.4 in the affine case. Through- 

out this section, A~ is identified with the open subscheme D+(Xo) of PN=Pro j  (k[X 0 .. . . .  

XN]) in the canonical way. The hyperplane at  infinity V+(X0) will be denoted by  H 0. 

Let  Y be an affine variety over k, and ~: Yc-~A~ a closed embedding. Let  X be the 
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project ive closure of Y, and  i: X~-~P~ the  corresponding project ive embedding.  This nota-  

t ion will be kep t  t roughout  this section. 

An embedding of Y into AT is induced by projection if there  is a morph i sm 

p: X ~ X ' ~  P~ = Proj (k[Y 0 . . . . .  Y~]) induces by  a project ion f rom pN with center  con- 

ta ined in H0, and  such t h a t  p induces an isomorphismp': Y ~ , X '  f3 D+(Yo). I t  should 

be kep t  in mind  t h a t  we thus  exclude project ions f rom a point  a t  infini ty of Y. I n  the  

above s i tuat ion we also say t h a t  Y m a y  be embedded  into A~- via a project ion f rom A~ N. 

Wi th  the nota t ions  of (4.1.1) we now pu t  

Sec (Y, i) = pr  1 (~r(~-I(2(Y • Y)))), 

where as before the  image of a subscheme by  a morph i sm is the (closed) scheme-theoret ic  

image.  

Moreover,  we have  a canonical closed embedding 

p ( ~ , ~ )  ~ p(~l~, /~) ,  

and hence an embedding 
P(~ l /k )  ~ P(~ ,~/k) .  

Le t  P(f2~/k) denote  the closure of P ( ~ / ~ )  in P(~2~/~ ). Final ly  pu t  

Zar  (Y, i) = pr  1 (~(2-1(P(Ollk)))), 

Zarsec ( Y, i) = Zar  ( Y, i) U See ( Y, i), 
and  

s ( Y ,  i) = ~(2-~(~(Y • ~ Y))), 

Z( Y, i) = ~ ( 2 - ~ ( P ( f ~ D ) ) .  

Before we continue, note  the  following 

PROPOSITION 7.1. S( Y, i )=S(X ,  j) and Z( Y, i) = ~(2-1(IS(f2~/k))). 

Proo/. The first  pa r t  follows since Y • k Y is an open dense subscheme of X x kX, the  

second since P(~r /k)  is an open dense subscheme of P(~Ir/k ). 

Now pu t  ps(Y, i) =p~(X, j) for all s = 0  . . . . .  n = d i m  (Y), and define q~.~(Y, i) by  means  

of P(f2~lk) in the  same way  as q~.~(X, j) is defined by  P(f21/~): Le t  

P ( ~ , ~ )  =f ix  O ... O Pr,  r = r ( X , i ) ,  

and let ~a = d i m  (ffa). Then  qa,s is defined by  

/ .  (elf (p , )  ~Q~-,+s) = q~. ~( y ,  i) t u-  "+', 

for s=O,  ..., n, and  all 1 <~a<r(X, i). 
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By means of the invariants p: and q:.:  for the affine, embedded variety i: Y~+A~, 

we now proceed to define y~(Y, i), ?t(Y, i), y~(Y, i) and FI(Y, i) as in Definition 6.3. One 

then obtains the following result: 

THEOREM 7.2. Let m >~n =dim (Y). Then Y may be embedded into A~ via a projection 

from AN i /and only if Fro(Y, i) =0. 

Proof. As with Theorem 6.4, the proof rests on the following 

THEOREYf 7.3. Y may be embedded into A~ ~ via a projection from A N i / a n d  only if 

dim (Zarsec ( Y, i)) ~<m. 

First note that  Theorem 7.3 implies Theorem 7.2. In  fact, this follows in exactly the 

same way as we show that  Theorem 6.5 implies Theorem 6.4. 

In  order to prove Theorem 7.3, recall first that  to give an embedding of Y into 

A~ induced by a projection amounts to giving a morphism 

p: X ~ X ' ~ P ~  = Proj (k[Y o . . . . .  Ym]), 

induced by a projection from PN with center contained in H o, and such that  p induces an 

isomorphism 
p': Y-~ X '  N D +( Yo). 

If r = N - m - 1 ,  then the projection with center P T c H  o has the property above if 

and only if pr does not meet any secant line of Y and does not meet any Zariski tangent 

space of Y in pN. Indeed, the proof of this is very similar to that  of Theorem 6.5 and will 

therefore not be repeated here. 

Thus PT has the required property if and only if it does not meet the closure of the 

union of all the secant lines of Y and the closure of the union of all Zariski tangent spaces 

of Y in PN. Now note the 

LEMMA 7.3.1. Sec ( Y, i) is the closure of the union of all secant lines of Y in PN, and 

Zar ( Y, i) is the closure of the union o/all Zariski tangent spaces o/ Y in PN. 

Proof. The same proof as that  of Proposition 4.2 and Proposition 5.3. 

To complete the proof of the theorem, we observe that  

dim Zarsec (X) f3 H o = dim Zarsec (X) - 1. (7.3.2) 

Indeed, this follows since no irreducible component of Zarsec (X) is contained in H0: 
This is clear for Sec (X). Let Z be an irreducible component of Zar (X), we want to show 
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Z ~  H 0. Assume the converse, and let A be an irreducible component of it-l(P(~/k)) which 

is mapped onto Z. Put  P =it(A). Then P is irreducible, hence so is it-l(p), and we conclude 

that  A =~L-I(P). Further, let X '  =/(P). Then X '  is an irreducible subset of X and X '  fl Y #O ,  

since otherwise one would have 

p ~  1 1 P(~'~rlk) --P(~2Ylk), 

which is impossible since P is an irreducible component of P (~ /~) .  Now let U be a non- 

empty open subset of X'  which does not contain the images of the generic points of P(~ /k) ,  

except of course for the image of the generic point of P. We may assume that  U_~ Y. 

Now if ]: P(~lr/k)-~ X is the morphism induced b y / ,  then 

p r  I ( ~ ( i t - l ( ] - l ( U ) ) ) )  

is the union of all Zariski tangent spaces of X at points from U. On the other hand, 

pr 1 (g(it-l(]-i(U)))) _~ pr 1 (g(it-i(P))) = pr 1 (~(A)) = Z. 

In  particular this gives U ~_ H 0, a contradiction. 

This completes the proof of (7.3.2), and hence of Theorem 7.3. 

Theorem 7.2 immediately implies the following affine analogue of Lluis' embed- 

ding theorem (see R. G. Swan [21], Theorem 2.1 as well as the remark on page 31): 

THEOREM 7.4. With notation as be/ore, Y can be embedded into A~', where ~= 

dim (P(~/k))  and 
m >~ max {2n + 1, ~}. 

Remark 7.4.1. Since Y is an affine variety, 

~ <~z+n--1, 

where z is the maximum of the dimensions of the Zariski tangent spaces of Y. 
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