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0. Introduction

An old and classical problem in algebraic geometry is the following: Try to classify
—in some sense—all the subvarieties of Py, say with k=E.

If the degree of the variety is small, such a classification can be carried out, see Swin-
nerton-Dyer [21] and the anonymous note [23]. But as the degree gets larger, the problem
rapidly becomes much more difficult.

Recently there has been a renewed interest in this area. We will not attempt to give
a complete account of this, but only mention some of the papers which are closest to our
own interests. For further literature, the reader may for instance consult the references
in the papers listed here: R. Hartshorne [4] and [5], E. Lluis [13] and [14], Peters and Si-
monis [16], J. Roberts [17] and 18], L. Szpiro [21], as well as our papers [8], [9] and [10],
11— 752906 Acta mathematica 135. Imprimé le 15 Mars 1976
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In [10] we have proved the following result: Let & be an algebraically closed field (it
suffices to assume that k is infinite), and let X be a non-singular, projective k-variety,
embedded in PY. Let ¢{X)=c((Q%)*) be the total Chern-class of X, and let

1
3(X)=@= 14+8(X)+... +8,(X)
(n=dim (X)) be the (total) Segre-class of X (this name was introduced in [11]). With
respect to the given projective embedding of X it then makes sense to talk about the de-
gree of s,(X), put
d,=deg (s,(X)), {=0,1,.. n

In particular dy,=deg (X)=d. Now let
f=ny
1+1 ) 2
= ) d,—ds,
ﬂj zg) (7 —-n—1) e

for n<j<2n, and B;=0 for j>2n. Then we show that ([9], [10] Theorem 4.2):

THEOREM. Let m =2n. Then the non-singular embedded variety X can be embedded into

¥ via a projection from Py if and only if ;=0 for all j=m.

This result was obtained independently by Peters and Simonis in [16]. See also [8].

Throughout this work we assume k=£.

The purpose of the present paper is to generalize this theorem to the case when X has
singularities.

One should note that this is necessary in order to treat the affine case of the situation
described in the above theorem: In fact, let ¥ be a non-singular closed subscheme of A}.
What is the necessary and sufficient condition that Y may be embedded into AT} by a projec-
tion? In section 7 we give the answer to this question for projections from a center which
does not contain any points at infinity of Y. Here the main point is that even when Y is
non-singular, it may have singularities at infinity, and this gives a contribution to the em-
bedding obstruction which is not covered by the theory in [10].

In trying to formulate a generalization of the above theorem, one is confronted with
the obstacle that no theory of Chern-classes for singular varieties is available in the lit-
terature, except recently for complex algebraic varieties by the work of MacPherson [15].
Moreover, Baum, Fulton and MacPherson have recently made some remarkable advances
in this direction with their Riemann-Roch theorem for singular varieties, [2].

The techniques developed in their paper include a theory of Chern-classes for locally
free sheaves on a singular variety. However, this does not suffice as Q% is not locally free

for a singular variety X.
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On the other hand the full theory of Chern-classes is not really needed for our pur-
pose. In fact, what is needed here is a generalization of the degrees d,, ..., d, of the Segre-
classes §;(X), ..., 8,(X) for an embedded (singular) variety X <P¥.

It turns out that in the singular case there are two natural generalizations of the pro-
jective invariant d,, namely the invariants p, and g, , introduced in section 1. In the non-
singular case we get p,=q, ;—d,, see section 2.

Both of these sets of invariants are used for the embedding-obstruction in the

singular case. In fact, let i: X~ P¥ be a closed embedding of the variety X into P}. Let

Y=L,
where
L+
S ),
Vi Zo l—n—i]P
forl=n, ..., 2n, and
y,=0
for 1>2n 1. Moreover,
~ I+ n—oq l+ 1 y
Ve :‘go <l+n*9a—f) Ge

for I=p,—m, ...,0,. For n<l<g,—n we put y,,=1, and for I>g,, we let 9, ,=0. Here
1<a<r=r(X, 1), where P(Qk%,)=P,U..UP, is the decomposition of P(QY%,) into ir-

reducible components (as a set) and g, =dim (P,). Se section 6. Finally, we put

Y= (771.1’ ceer }_’m)
and

Y= 7).

We then prove (Theorem 6.3) that X may be embedded into P} via a projection from

PY if and only if the entries of
Yomr Ymits -
are all zero.

In section 7 we prove an affine analogue of Theorem 6.3, namely Theorem 7.2. For
an affine variety ¥ one may also obtain embeddings by projecting from a center which’
contains points at infinity of ¥. We hope to return to this later.

We hope that the result of this paper indicate that the invariants p, and ¢, , are
worth a closer study. It would, for instance, be interesting to try to relate them to the in-
variants studied by Horonaka in {6] and [7], or for the complex case, to look for a con-

nection with MacPhersons theory of Chern-classes in [15]. We hope to return to this later.
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Chapter 1. Projective invariants for projective varieties with singularities
1. Definition of the invariants

Let 2: X>P} be a projective variety X, embedded in P} by the embedding i. We
assume that X is reduced and irreducible.

Then
o
P(Q%) = P(Qpri)=T
lgx jf (1.1)
1

X —— P}
where « is a closed embedding and
P(Q}/k) = Proj (Sox(QiY/k))-

————

Moreover, d5: X— X x, X =Y denotes the diagonal embedding, mz: X x, X—>X x, X
the blowing-up with center in the diagonal and T(X)=n%'(Ax) the exceptional divisor.

Then
T(X) = Proj (Gr/(Oy)),

where [ is the Ideal on Y which defines Ay. Thus as
Gr0y) = Oy/IDI| PO 3| 3D...

is a quotient of Sy, (Q%x), we get

T(X) “‘p;’ P(Q% 1)

1.2
~_ |7 (1.2)
X

where

V(N 1)tE%1 .+ (N:- 1) PEN L+ (N 4+ 1) =0.

fo: A(T)—>A(PY)="17[t] is of degree —N +1, and T(X) is of codimension 2N —1 —{(2n —1)=
2N —2nin T, so for all r
fa(eln(T(X)) £7) € 4PN -2n- VeI r(PY),
ie.
f(@r(T(X))ET) = en_gnirs V7244
If r>2n, let

en_mi1+r = 0.
One now has the following
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Lemma 1.3. T(X) is srreducible.

Proof. Let U be the open set of all regular points in X. Then A—2(U) is an open subset

of T(X), put Y =~rYU). A YU) is a P*1-bundle over U, so A~1{(U) and hence Y are of

dimension 2n —1.

Further, for all points z€ X,

T(X), = Proj (k@ my /m% ,®m% /m% .®...)

is the projectivized tangent cone of X at z. Hence dim (T(X),) =»—1, from which it fol-
lows that dim (T(X)) =2n —1 =dim (Y), ¢f. EGA IV Corollaire (5.6.6).

Suppose now that Z is another irreducible component of T(X). Since A(Y)=X, we
must have A(Z)+ X, and since for all z€A(Z)dim Z,<n—1, we get as above that
dim (Z) <2n —1.

At the beginning of section 4 it is noted that T(X) may be embedded into a variety
Bl as the intersection of two subvarieties, one of codimension 1 and the other of dimension
2n. Hence dim (Z) >2xr — 1, a contradiction.

We have (cf. [10], section 9)

ProrosiTIioN 14. ey_g,,1,,=0 unless n —1<r<2n~—1.

Proof. It suffices to show that ey_g,,1,,=0 for r<n—2. Let A,=%,n,A,; be a cycle
such that

cly (A,) = el (X)€"
Then

dim A, ; =2n—1—r.

Now f(A, ) S X, 80 fulcly (A)=0if 2n—1—r>n+,ie if r<2n—1—-n—-1=n—2.
By Proposition 1.4 it is reasonable to make the following definition:

Definition 1.5. p(X, i) =ey_,,, for s=0, ..., n.

Let Py, ..., P,, r=r(X, i) be the irreducible components of P(Q%,), and let g, ..., o,
be their dimensions. We have

fa(elp(P) &) =¢,, N-gytr AR
where &, ,€Z. Put &, ;=0 for j =N +1.

PrOPOSITION 1.6. &, v, ., =0 unless n>p, —7>0, i.e. unless g, 21>, —n.
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Proof. For simplicity, we delete the subseript a. By definition éy_,,,=0 if N—p+
r2N+1, ie. if p—r< —1. Moreover, as in the proof of Proposition 1.4, f(P) < X implies

that éy_o,,=0if p—r>n+1.
We now make the following
Definition 1.7. g, (X, £y =6, y_n4s for =1, ..., (X, 4) and s=0, ..., n.

If r=1, we put ¢; ;=q,.

2. The non-singular case. Relation to the Chern- and the Segre-classes

The purpose of this section is to give an interpretation of the invariants p, g intro-
duced in the previous section in the case that X is smooth over k.

If ¢: X—P} is an embedding of the n-dimensional smooth variety X into PY, and if
x € A¥(X), recall that deg («) is given by

i (o) = dog (@)
where £ is the class of a hyperplane in P}/. Let
e(X) =14+¢,(X)+... +¢,(X),

be the total Chern-class of X, and let

s(X)= 1 1+ s(X)+ ... +8,(X)

o(X)
be the total Segre-class of X. We put s,(X) = ¢o(X) = 1. Then we have the

ProrosiTiOoN 2.1. If X is a smooth projective variety, embedded in P} by the embed-
ding 1: X<>P¥, then
PX, 3) = q(X, 1) = deg (s(X))
for1=0, ..., n.

Proof. We have
T(X) = P(Qk),

and thus p,(X, ¢) =¢(X, 1) for =0, ..., n. With notation as in (1.1) we now have

a'(é) = éx’
where Ex:EQIXIk’ see [10], (3.3). Thus
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CIT(P(QEYII:)) &= s (£%).
and hence

fa(el(P( {X'/k)) &) =fr x(E%) = 14 94(£%).

By Lemma 11.1.3 in [10] (where the Segre-classes are referred to as the inverse Chern-classes)

one now obtains

, 0 for r<n-—2
u X)z{s,_(n_l)(X) for r=zn-—1.
This gives
. . 0 for r<n-—-2
l*g*(SX)={deg (Sr—(n_py(XNE VY- for rzp—1.
Hence

deg (sr—(n—l)(X)) =€eN-2n+1+r= p—n+1+r(X’ 7/)’

and the claim follows.

In particular we thus obtain
8= —¢,(X)
8y = €1(X)? —co(X)
83 = —ca(X)P + 204X cy(X) —cs(X)

As in [10] we let
d; = deg (s;).

3. Elementary properties

The invariants p, and g, , defined in section 1 depend on the scheme X as well as on
the embedding 4. In what follows we shall need some very simple observations on how
these invariants change when the embedding 4 is changed in a certain manner.

Let

1:PY — P}

be a projective embedding. ! may for instance identify Py with a linear subspace of P}’ in
which case we say that [ is linear. Or ! may represent some twisted embedding of P} into
P¥, like the Veronese-embedding of P2 into P%.

One has the group-homomorphism

Le: A(PY) = Z[t]~ A(Pg') = Z[T],

where t¥+1 =0, T¥+1=0, Put

1,(8%) = 8, (1) T*+4-V,
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In particular §,(!) =1 when ! is linear.
Now let ¢: X—P} be a projective embedding of the scheme X. We then have the fol-
lowing

ProrosiTioN 3.1. If n=dim (X), then with notations as above

(3.L.1) P(X, Lot) = by_pss()Ps(X, 1),
(312) qa,s(X) lo 7’) = 6N—n+s(l) qa,s(Xs ")

Proof. We get the diagram

T(X) e PQYn) L Q) — B PQbx)i)
B g T y
Lok
¥e P pye—t  ypx

Since now (cf. [10], (3.3))
Er =m* (&),

we obtain the following for any cycle Z on T

my(cly (Z) E7) = ma(clp(Z)y m*(Ey)) = me(cly (Z)) €y = cly (Z) &Y.
by means of the Projection Formula. This gives

Fy(cly (T(X)) £p) = Fo(ma(clr (X)) (§7)) = Le(f+ (c)r T(X)) €7)).

Hence with the notation introduced in section 1 we get the following (e corresponds to
P}, while E corresponds to P¥):

M-2n+l4r _ N-2n+1+71y _ M—-2n+1+r
Ey 3014 T " —l*(eN—2n+1+rt )—'eN—2n+1+r6N—2n+1+r(l)T .

(3.1.1) is immediate from this.
(3.1.2) is shown similarly.

The following corollary is immediate

CoroLLARY 3.2. If I is a linear embedding, then p; and q, , are unchanged.
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Chapter II. Secant bundle and secant schemes for singular varieties
4. Secant bundle and the secant variety

First, recall the following from [10](1): Let z: Bl->P} x Py denote the blowing-up of
PY x,PY with center in the diagonal A. As before, let

f T =P(Qp/i) > Py

be the projectivized cotangent-bundle of P}. Then z~1(A)=7T, and we have the commu-
tative diagram

T— Bl

v, b
é

Pf<—>P¥XkaCV

where ¢ is the diagonal embedding. Note that T(X)=7 n m . Moreover, we have (see
[10], Proposition 8.6):

ProrosiTioN 4.1. There is a projective morphism A=Bl—T, which is a P -bundle,

such that the following diagram is commutative:

p
Bl—— .1
17: l]‘ (4.1.1)
7
PY x PV D2, py

Moreover, A induces the identity on T =x—1(A), and if x is a k-point of PL, then the fiber
over x
Bl,

7, A, (4.1.2)
Py T,=Pi*
ts the blowing-up of P with center x and the corresponding P -bundle A, where
y > 70, (A5 (y))
establishes a 1 —1 correspondence between k-points y in Py~ and lines in Py passing through x.
As in [10] (Definition 8.10) we now put

R

Sh(X, i) = A(X x . X),

(1) Similar techniques may be found in [1] and [12].
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————

where X x, X denotes the strict transform of X x, X under the blowing-up 7. The induced
morphism fy: SW{X, {)>X is referred to as the secant bundle of the embedded variety
7: X—>Py.(1) As alway i is deleted when no confusion is possible. In [10] the following is
proved (Proposition 8.9):

PrOPOSITION 4.2. pr, (m(A-X(Sb(X)))) 35 the closure of the union of all lines in P}

with two or more points tn common with X.

The subvariety Sec (X, ¢) = pr, ((A~1(Sh(X)))) is referred to as the secant variety of X in
PY. Also as in [10] we let
(4.3) S(X, i) =7 (A-1(Sh(X))).

The arguments used to prove Proposition 8.11 and its corollaries in [10] give the fol-

lowing proposition and corollaries.
ProPosiTION 4.4. If the variety X has a non-singular point x such that

T(X}: = Sb(X):n
then X is a linear subspace of P} .

COoROLLARY 4.4.1. dim (Sh(X))<2 dim (X), with strict inequality if and only if X is
a linear subspace of PY.

COROLLARY 4.4.2. dim (Sec (X)) <2 dim (X)+1.

COROLLARY 4.4.3. If X is not a linear subspace of Py, then
dim (S(X, 7)) = 2 dim (X)+1.

5. The Zariski secant scheme

For all k-points € X, the tangent cone Oy , of X at z is contained in Sec (X). In fact,
this follows by Proposition 8.5 in [10]. But if x is a singular point, then Sec (X) need not
contain the Zariski tangent space Zy , of X at «x.

Recall that if I(X)=(F, ..., F ) kX, ..., Xy), where Fy,..., F, are homogeneous
polynomials, and if x=(ay: ... :ay), then Z,, is the linear subspace of P{ defined by

N
EXE;F_!

Z X7 @ e =0, j=1,...m. (5.1)

If = is a regular point, Oy ,=Zy ,.

(*) For related notions, see [19].
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With notation as in (1.1) and in Proposition 4.1, we now put
Z(X, 1) =n(A7(P(Q% ), (5.2)
which is a closed subset of P} x,Py. Finally the subscheme of P{
Zarsec (X, t) = pry (Z(X, i) U S(X, 7)),

where the union and the image are scheme-theoretic, is referred to as the Zariski-secant
scheme of the embedded variety X.
We need the following

ProPOSITION 5.3. pr, (Z(X, ) is the union of all Zariski tangent spaces Zix . as x
runs through all k-points of X.

Proof. Let y be a k-point of pr, (Z(X, 7)). Then y=pr, (2) where z is a k-point of
Z(X, 1). Now z=pr, (2)€X, so
Y€ m (A5 (P(Qs)s))- (5.3.1)

Thus to complete the proof, it suffices to show the following lemma:

LEMMa 5.3.2.
ZX, z = nx(}';l(P(Q}lk)z))-

Proof. We may assume that =(1:0:...: 0). Identifying D (X,) with A}, we put
U=XnAY. Let
Z =2y NAY

be the Zariski tangent space of U at x=(0, ..., 0)€AY. With notation as in (1.1) we now
have
9% (U)=P(Qlx),
80 in particular
P(Qki). =P(Qup), < T, =P

is the projectivization of Z. Hence the claim follows from (4.1.2).
As in [10], let o =&+t€A(T) (cf. section 1). Then A(T) is free over Z[t]=A(PY) on

the base
1,0, .., 0L

Moreover, we have the
LeMMa 5.4. 7, (A% (0*t8)) = s2tf for all 0< <N and for all 8.

This lemma is proved in [10], as Proposition 9.4.
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Finally we note that
ProrosiTION 5.5. (i) Z(X, 1) = Ui-1Z,(X, 1) where r=r(X, i) and

Za(X1 7’) =7t(l'l(P¢)),
(i1) Moreover,

M,
clpl x p¥ (Zo(X, i) = 2. fa,st's*" @V, (6.5.1)
!

=M,
where B, ,€Z and M, =Max {0, N —p,}, M,=Min {N, 2N —p, —1}.
Proof. (i) is immediate by Proposition 5.3, since
P(Q%:) =P, U...UP,
(ii): We delete the subseript «, and have
cly (P(Qx)) = 2, Ayt 0”,

where 0SSy <N —1, 0<u <N, u+v=2N-—1-—p. This sum with s instead of ¢ is just that
of the right side of (5.5.1), which now follows by Lemma 5.4.
(6.5.1) implies that
dim (Z(X, 5)) =0 +1,

since not all f’s are zero.

Chapter ITI. Embedding obstruction for singular projective varieties

6. Definition of the obstruction. Main results

Let i: X—>P¥ be an embedded projective variety with singularities. Let 7z denote the
blowing-up of the diagonal in P¥ x P, and let X x,X be the strict transform of X x, X:

s

X x, X —— Bl

|

X XkX — Pﬁ X Pﬁ
With notations as in section 1, we have the (See Lemma 1.3.)
LemmMaA 6.1. clg (X x, X)-clg, (E) =clg; (T(X)).

Proof. First, we get that
clg (X x 1 X)-clg, (E) =2 clg (T(X)), (6.1.1)
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where v=e,(0) is the multiplicity of the local ring O of X x, X at the generic point of
T(X). In fact, this is shown in the same way as Lemma 11.1.1 in [10].

To prove that v=1, let U be the open subset of X consisting of all regular points.
We then obtain the following diagram

Y B

U, Uc—> X %, X

where 7, 75 are blowing-up with center at the diagonals, and «, 8 are the canonical open
embeddings. Now the generic point of T(X) is in U x, U, which is non-singular. Thus*
y=1.

Now let n=dim (X) and d=deg (X) be the degree of X in P§ by the embedding .

For n <I<2n we define
1+
—d2—
‘}’l—d ng) (l—n——y)pj’
and for I>2n we let ,=0.
Moreover, for g, —n <I<g, define

l
7705. =z( 1 )) G is

l+n—@a—j
where the sum is taken over all § from 0 to I+n —g,. For I>g, put §,,=0, while for n <
l1<g,—n welet y, ,=1. Put
'}-’t = ()_’1,1: aees }77,1)- (6~2)

Whenever r(X, ¢) =1, we write =, .

Finally we make the following definition:

Definition 6.3. y;=(y,, 7,) is referred to as the I’th part of the embedding-obstruction
of the embedded variety X. I';={y,, ¥,4,, ...) is referred to as the total I’th. embedding
obstruction. y, or I", are said to vanish if all their entries are zero. We then write y,=0
or I',=0.

The main aim of this section is to prove the following

THEOREM 6.4. Let m =n=dim (X). Then X may be embedded into P} via a projection
from Py if and only if I',,=0.

The proof rests on the following theorem, which is due to E. Lluis (see [13]):
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THEOREM 6.5. X may be embedded into PT via a projection from P} if and only if
dim (Zarsec (X, ¢)) < m. (6.5.1)

Proof. (See also the proof of Proposition 12.1 in [10]). Let r=N —m —1 and let P be

a linear subspace of P} of dimension 7.

To prove the theorem, it suffices to show that the projection with center P induces

an embedding of X into P} if and only if
Zarsec (X, i) NP =0Q. (6.5.2)
More precisely, projecting with P' as center one obtains a morphism
p: PY—P —Pp,

Let Y =p(X) be the (closed) scheme-theoretic image of X —P", cf. EGA I 9.5. We then

have a morphism
g X-P Y,

and the claim is that @ is an isomorphism of X with Y if and only if (6.5.2) holds.

First, assume (6.5.2). Then in particular

XNP =0,
80

p: X~>7Y.

Since moreover P™ N Sec (X, 1) =, it follows that f is bijective on closed points, and hence

bijective on the underlying topological spaces of X and Y: In fact, suppose that two closed

points of X, say z; and z,, are mapped to the same point y € Y. Then ]_)_—Ty) =P g a linear

subspace of PY, of dimension 7+ 1, which contains P' as well as x, and z,. Now the line

joining x; and z, is a secant of X which lies in P™! and hence meets P’, a contradiction.
Thus as f is proper, it is a homeomorphism of underlying topological spaces.

Hence it remains to show that the morphism of sheaves
6: Oy~ f+(Ox),

which corresponds to f is an isomorphism.
By EGA IIT (4.4.2) { is a finite morphism. Let U =Spec (4) be an open affine subset
of Y. Then f~1(U) = Spec (B), where
0, 4—~B
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makes B to a finite 4-module. To show is that 6, is bijective. For this, it suffices to show

that for all primes p in 4, the homomorphism
(Ou)p: Ay~ B, = B®, 4,
is bijective. Since f is bijective as map of topological spaces, so is the induced
Spec (B) - Spec (A).
From this it is easily seen that if ¢ is a prime in B and p =07(g), then
B,=B,.

Hence, in order to show that f is an isomorphism, it suffices to prove the following:

Let x€ X, y=f(z). Then the induced local homomorphism

0%: Oy, > Ox. .
is bijective.
From the above it follows that 67 is injective and makes Oy _, to a finite Oy ,-module.

By Nakayama’s Lemma it therefore suffices to show that

My,yOx ¢ =Mx g
i.e. that f is unramified at x.

This follows since the center of projection P™ does not meet Zarsec (X, i) and hence
does not meet any Zariski tangent space of X in P}, see Lemma 5.3.2. Hence the projec-
tion p induces a closed embedding of the Zariski tangent space of X at x into that of Y at
y. Thus f is unramified at z.

For the converse, assume that

Zarsec (X, i) N P" =,

but that f is an isomorphism of X with Y. We show that this leads to a contradiction.
Let y€ Y be a k-point. Then

) ={=},
since f is an isomorphism. Hence no secant of X meets P’, so

Sec (X)n P =0Q.

Moreover, f induces an isomorphism of the Zariski tangent space of X at x, T'x , onto
that of ¥ at y, T’y ,. Thus
Ty NP =0,
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for all z€ X. Hence
Zarsec (X)NP' =0,

which is a contradiction. This completes the proof of Theorem 6.5.

By Theorem 6.5, the proof of Theorem 6.4 now amounts to computing the dimension
of Zarsec (X, 7). For this we need the following lemma (see Lemma 7.1 in [10]).

Let ScP¥ %, PY=P be a subscheme of pure codimension d. Let & be the class of a

hyperplane in P}. Then

AP) =1Zs, t],
where
s =pri (h), t =pr3 (h).
Now put
N, =Min {N, d}, N, =Max {0,d— N},
Then

I
clp(8)= > at'e? L
1N,

LEmMMA 6.6. If Min {dim (S), N} —dim (pr, (8)) =7, then
oy, =...=0ty,_yp1 =0, oay,_, *+0. (6.6.1)
Proof. If P™ denotes a generic linear 7-dimensional subspace of Py, one gets
pry (S) N PY-"-1 = @ «dim (pr, (S)) < m.
Hence since (see the proof of Lemma 7.1 in [10])

elp (S N pri* (PY~™71)) = clp (8) 8™+ = S o, #ls? 1,

where the sum is taken over all ! from Max {N,, d —N +m+1}=Max {0,d—N+m+1}
to N,, we obtain

dim (pr, (S)) <m <o, =0 for =N, .., Max{0,d—N+m+1}. (6.6.2)
Taking m =Min {dim (8), N} —r it thus suffices to show that
Max {0, d— N +Min {dim (§), N} —r+1} =N, —r+1. (6.6.3)

This is seen as follows: Max {0, d —N +Min {dim (S), N} —r+1}=Max {0,d - N+ N —r+
1+4Min {N —d, 0}} =Max {0, N, —r+1}. Thus it remains to show that N;—r+1>0, i.e.
that
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N1 > Min {2N —d, N} —dim (pr; (S))—1. (6.6.4)

For d >N, (6.6.4) is trivial. So assume d <N. Then N,=d and 2N —d > N, hence the
claim amounts to
d > 2N —d —dim (pr, (S))—1. (6.6.5)
But this is clear: In fact,
S <pry (8) x, P,

50 d =codim (8) > codim (pr; (S) x . P¥) =N —dim (pr, (S)).
This completes the proof of (6.6.4), and hence of Lemma 6.6.

Proof of Theorem 6.4: We first treat the trivial case when X is a linear subspace of
PY. As

1\ .
(P) =c,((Q},Z/k)*) = (n—: ) T,

where 7€ A(P}) is the class of a hyperplane, it follows in this case that

and hence

Thus if X a linear subspace of P}, then

y,=1—l§n( b+l )(“("‘Jrl)), n<l<2n,

=0 \l—n—j ]
R0+l —(n+1)
5 = <I<2n.
"= A (l—n+1—7‘)( j ) mers

Now recall the Vandermonde convolution formula

éo (:n_—p%) (f) B (;)’ (6.7)

which immediately implies that I',, vanishes for m >n.
Hence we may assume that X is not a linear subspace of P}. By Corollary 4.4.3 we
thus have
dim (S(X, 1)) =2n+1.
12— 752906 Acta mathemathica 135. Imrimé le 15 Mars 1976
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Moreover, by Corollary 3.2 we may assume that N>Max {g, 2n+1}. Thus one ob-
tains

N
clp (8(X,3))=8V-C2+D % BtiN

j=N-@2n+1)

and (cf. (5.5.1))
Y
clp (ZX,3)) =8V 3 B, sV,

J=N-¢

By Lemma 6.6 and the assumption that N >Max {g, 2n +1} it now suffices to prove
the following

ProPosSiTION 6.8. We have

Bi =uy;-w-am for N-n<j<N, (6.8.1)
and
Bﬂ.l=)—’f—(N—0¢) fOT N_n<7.<N’ (6.8.2)

where p is a non-zero rational number.
Proof. With the same notation as in section 4, we write as in [10].
olgy (X %, X) = 29+18y,
where y =clg, (T') and a,=24*(a,) € A(T). In fact, recall from section 1 that
A(T) =21, €],

where t={f*(h), h being the class of a hyperplane (usually we put - =¢, when no confusion
is possible), &£ =p(0(1)) satisfies

£"+...+(N7L1)
?

HEV T+ L+ (N + )Y =0,

and moreover
A(Bl) = Z{t, §,n],

where t=1*(t), £ =4*(£). Finally, n satisfies
n2-+En =0, (6.8.3)
see Lemma 9.3 in [10]. Since X is not a linear subspace of P}, Corollary 4.4.1 gives that

8(X, i) = [B(X x, X): k(SH(X, §))] +0.
Now A.(n)=1, hence
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@y = Aulclgy (X < X)) =8 el (SH(X, 0)).
Moreover

N
a= 2 boNery (6.8.4)
I=N-2n
since Sh(X, ) is a subvariety of 7' of codimension 2N —(2r +1), and since A(T') is a free
Z{t]-module on 1, g, ..., 6™ (cf. section 1). Now

N
a, =0 clg (A"1Sh (X, 4)) =6 S b2V - @1l
l==N-2n
We now eclaim the following:

N
dp (S8(X,8)=p 3 bV @D (6.8.5)
1

=N-2n

where

1
p=io, 6= k(A 1(Sh (X, 1)) : k(S(X, 9))].

In other words
Pr—nin =0, B;=ub; for j=N-2n. (6.8.6)

Proof of (6.8.5): By Lemma 5.4,

N
ﬂ*(al)= z b182N_(2n+1)_ltt.
l=N-2n

—e e~

Moreover, not all b, are zero, since this would imply A,(clg (X x,X))=0, hence
dim (8b({X)) <2n. Thus z,(a;) =0, and thus 0.
Now

8, = 1*(Ay(clpy (X % X)) =8 clg (A-X(Sh(X, 1))).
Similarly

(el (AHSB(X], 7)) =& clp (S(X, 9)).
Putting these identities together we obtain

n*(al) =68 CIP (S(X: i))’
and (6.8.5) follows.
Thus (6.8.1) follows from the

LeMMA 6.8.7. For N—n<j<N we have

by =¥ s-w-gm»
For other values of j, b;=0.
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Proof. To show is that

I-n
d?— Z( i1 )pi for n<i<2n,

biy-2n= o \l—n+1

0 otherwise.

By Lemma 6.1 and (6.8.3) we obtain

clp (T(X)) =n(a, —&ay).
Here the notations are as in the proof of Proposition 6.8. Moreover
ay = d¥ot)*" and by_,, =0.

In fact, recall the diagram

|
I, b b
d

Py p 2 py

where the two horizontal compositions are the identities.
Now
7x(7%(ay)) =ma,
by the projection formula, so
(M) = 4 (4 (7%(81))) = s ] 4(@1),
since Aj is the identity. Hence
T4(M2y) =04 fx(ay)-

Now as
. 0 for ¢=0,...,N—-2
MO=1 1 for i=N-1,
we get by (6.8.4)
N
F(tg)= 3 bifa(@® OO = by p tV
I=N-2n

and thus
T4 (0 87) = by_a, Ou(tV77).

(6.8.8)

(6.8.9)

Since A(PY)=7[¢t] is identified with the canonical subring of A(P)=Z[s, t] via pri, and

pr; 0 is the identity, we get

S4(EV=2") =B ((pry 0)*(1-2") =8,0%(t"-2") =tV clp (A) = ¥ (sV + &V Mt 4 .. 1-8)

(cf. [10], Lemma 9.4.3). Thus
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(M) = by _pn(SMV 2"+ .. + 8721Y)

On the other hand, as 74 Xx +X—~>X %, X is birational, we get

74 (29 +Ma,) = el (X x,, X) = d2(st)V-".

Now write

2n
AN N-2n+i N—i
a,= > ot c
i=1

which is possible since 1, o, ..., 6¥~1 forms a base for A(T) over Z[t]. Then

2n
s (By) = ;j oy
-1

tN~2n+i8N— i.

This gives
2n 2n
Z aitN—2n+iSN—i+ bN—zn z tN42n+lsN—i =d2(8t)N_n,
$=1 =0

which finally implies that

bN—zn = 0:
@ +by s, =0,
oy +by_ gy =d?,

..........

and (6.8.9) follows at once.
If now f<N —1, then

0 for a+pf<N-—1,

folo™EP) = a=(N+1) \ st (6.8.10)
(oH-ﬁ—(N—l))t W=D for a+f=N-1,
In fact, we have
P = % (‘x) e Igi+h
o \j ’
SO
J+(0%Eh)= 3 (;‘) 1o (&)
i1=0
Now
fFEV Y = (—(‘\;“L 1)) t for i>0. (6.8.11)

In fact, the relation
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EN 4+ (N4 1)1+ .+ (Nj 1) HENtL (N +1)V=0
gives
ENCIHL (N + 1) 2 L+ (N: 1) gV L =0.

Thus if we put
f*(fN_IH):(X,t‘,
we get
N+1
o+ (N+1)oy_+ ...+ ( i )oco=0.

Hence

(2 oc,X‘) 1+X)¥1=1,
i=0

and (6.8.11) is immediate.
By means of (6.8.11) we obtain the following, where m =+ — (N —1):

er=(3.2) ()

Thus the Vandermonde convolution formula (6.7) with p= —(N¥N +1), r=a+p=0—(N +1)

yields
(a=(N+1) [ a—(N+1) )
o= ()= (55w )

provided m=>0. If m<O0, ie. if a+B<N-—1, then f,(x*#)=0 since f, is of degree
— (N --1). Thus (6.8.10) is proved.
Now by (6.8.9) we get

N
cly (Tg) &M 1=d¥et)¥ "~ 1— 5 p&trgh 21l

I=N-2n+1
On the other hand,

0 for —n+l1l<s<0

s+n—1y _
fe (el (Tx) & ) {pstnun-t-s for 0<s<mn,

and hence
N

pstN—rHs=d2f*(o.N—-n§s+n—l) tN_"— Z blf*(a.zN—2n—1—l§s+n)tt,

I1=N-2n+1

where we let p; =0 for s <0. Now by (6.8.10)
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(— n+1)
f*(6N~n§s+n—l)tN—n= 8

0 for —n+1<s8<0,

)t””“” for >8>0

and
N-2n—-2-1
f*(o_zN—Znal— §s+n)tl= (N+s_n_l
0 for I>N+s—mn,

)t"*s‘" for ISN+s—n

since by assumption N > 2n + 1. This gives
- (n+1) Nison N-2n—-2-1
o)l
Be ( s l=N§2n+1 NN+s—n-1)’
for all 0<s<n, and

N+s—n — —9 _
0=— 3 b,(N 2n—2 l),

N+s—n-—I

=N-2n+1

forall —n+1<s<0.

(6.8.13) immediately implies that

by-zni1=... =by_1_n=0.

Hence (6.8.12) takes the form

_ o —(t1)) V2 (N—2n—2—l)
ps—d( s ) z=g_,,bl N+s—n-1)’

Now put i=1— (N —2n), ﬁi=bt=b,m_2n. Then we get

et (),

i=n \s+n—z2

(_n’")=(—1>"(m+2"1)=(—1)"(m;’_”1 1),

this can be written as

Since

n+s nes ~ (s+n+1
ps=(_1)sd2( " )+(_1)n+s+1iz (_l)tﬂ‘( it1 )’
ie., letting j =i —mn:

. 1
(=B (T ) p (1 (M) -,

M =

§=0

for all s=0, ..., n.

177

(6.8.12)

(6.8.13)

(6.8.14)
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Define
n+r rts
(-1 for 1<s<r<n+1
Ny = n+s
0 for 1<r<s<n+l.
Then

{nrs} ' {Inrsl} =E,

where E is the unit matrix.

Indeed, it is clear that this product can be expressed as

4= {ars}’
where for r<s
A, =0,
and
o, =1,

while finally for r>s (p=r—s):

oc,s=j§(—1)r+i(n+r) (n+i)= s (_1),””( n+r )(n+s+7’).

nte n+s+j) n+8

With %+ s=m one thus obtains

w= (=1 3 1y (00 () = - B - (") () <o

I

=0 m+j m j=0 ]
Thus
Bn Yo
-4 = {lnrsl}
5271 ?!75

ie. for n<j< 2n:

i.e.

= g+l
_ﬂ’-go(i_"b“l)yb
2+ r j+1 \ (n+l
[=0(7_7L+l)pl+{1§0(_l)l(7-’n—l)( l ) dzi

o j+L N (n+l\ T j+1 —(n+l))
2 l)l(f—n—l)( ! )“Zo(:i—n—l)( L)

Using the Vandermonde formula (6.7) with m=r=j—mn, p= — (n+ 1), we get

12 (izzl—l) (_(ZH)): (§::)=1-

ﬁj =
Now
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Thus

3 AR |
ﬁj=b}+N-2n=d2"' Z (-? )pl’

i=o \j—n—1

and the proof of Lemma 6.8.7 is complete.
To show (6.8.2), and thus complete the proof of Proposition 6.8, it now suffices to

prove the following

Lemma 6.8.15. For all 0<<I<n and all 1 <a<r(X, 1) we have

5 Lfl+e—n+1
ﬂoz.l%‘N\n: z ( Q )th.sa

=0 st+o—n
and for other values of 1, Bu, 1+ n—n=0.

Proof. Note first that since o =£ +t, the relation

£ o

<0
gives that
oVt =0.
Together with
oY =+ NEV- 1t + ..
this gives

0 for <N -1 and f>N
foefy=3 & for p=N-1 (6.8.16)
—tr*! for B=N.
In fact, we have
0 for f<N-1
(=1 1 for f=N-1
—(N+1)t for p=N.

For simplicity we delete the subscript a. By Proposition 1.6 and Definition 1.7 we
get

N+s—n  f =0,...,
fx (clp (PY &™) = { & o s " (6.8.17)
0 otherwise.



180 AUDUN HOLME

Moreover since N > g, we have

N
clp (P) & " = ( > 5‘tto.21v—(g+1)-:) (G—t)ren
{=N-o
N _ 3+o0—n s+ Q —-n o
- tlozN_(Q“)_‘) ( -1 ’( . )ﬂgﬁe n ;)
(1=§-eﬂ‘ 120 ( ) 7
= g s+§" (- 1y (8+Q_— n) B tiHig2N e n-1-ten,
i=N-¢ §=0 7

By (6.8.16) we now have
tvt* " for ¢+j=N+s—n
fa(tHIg?NHe-n-1-UD) L _yN¥s-n for {+j=N+s—n—1

0 otherwise.
Thus

fa (clp (P)E°1077)

s EN | W [ S AT -
t+{=N+s—-n-1 7 {+j=N+ts~n 7

where N>i>N —p and s+9—n>j> 0. The coefficient is equal to

N+s-n-1 s+9—-n N+s-n _( 8+Q—"IL ) Nisoni
-1 N+s—n—i+ . -1 +8-7n
,3_9 B'(N+s—n-—1-—i)( ) ,,%_95' N+s—n—i (=1

N+s—-n
_  \NAs—n s+g-n+1) 5
2 D (N+s~n——i P

Hence we obtain the following system of equations

N+s—-n
__]\N+s—n~—i 8+Q-—n+1) 5 —0
9= i=I§V:—q( b (N+8—n-i p; for s=0,...,n

0 otherwise.
For simplicity we write
o= Bl+ N-n»
Then the above system takes the form

> (-—1)"'(8+Qs_n+l)a, for 8=0,...,n

gs=3 l=-n—¢ -1

0 otherwise,
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ie.
0 “n—e
0 _ o4
- { Vrs } »
0 %
qn ‘xn
where

(—1)'-3(’) for 1<s<r<p+1
’VTS= S
0 for 1<r<s<pg+l.

For r > s one obtains

2“”(1) (:’){g(_ ”’(sjj) (s:j)=:§<— 1>’(:) (’;s)=o.
This yields
{#} - {l7sl} =E,

and we find

0
Gp—e :
] 0
: = {Ivrsl}
Oty q:°
qn
Thus «, ,=...=a_,=0, and for [>0
: (l+g—n+ 1)
o= . ).
i=0 o—n+1

This completes the proof of Lemma 6.8.15, hence of Proposition 6.8.
Thus the proof of Theorem 6.4 is completed.

7. Affine embedding theorems

In this section we give an analogous result to Theorem 6.4 in the affine case. Through-
out this section, A} is identified with the open subscheme D (X,) of P} =Proj (k[X,, ..
Xy)) in the canonical way. The hyperplane at infinity V,(X,) will be denoted by H,.

Let Y be an affine variety over k, and j: YA} a closed embedding. Let X be the

A
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projective closure of ¥, and ¢: X<>P}¥ the corresponding projective embedding. This nota-
tion will be kept troughout this section.

An embedding of Y into A} is induced by projection if there is a morphism
p: XX PP =Proj (k[Y,, ..., Y,]) induces by a projection from P} with center con-
tained in H,, and such that p induces an isomorphism p’: ¥ —~— X’ 0 D,(¥,). It should
be kept in mind that we thus exclude projections from a point at infinity of Y. In the
above situation we also say that ¥ may be embedded into A} via a projection from Af.

With the notations of (4.1.1) we now put

Sec (Y, i) = pry (R(AHA(Y x,. Y)))),

where as before the image of a subscheme by a morphism is the (closed) scheme-theoretic
image.
Moreover, we have a canonical closed embedding
P(Q}) = P(Q}A,‘y/k);
and hence an embedding
P(QY ) = P(Q}’Q]/k)-
Let P(QY,,) denote the closure of P({},,) in P(Q},iv, «). Finally put

Zar (Y, 3) = pry (n(A~ (P(Q¥14)))),

Zarsec (Y, 1) =Zar (Y,4)USec (Y, 9),
and

S(Y, 3) =z(AHUY x, X)),
Z(Y, i) = (A1 (P(Qyx)))-

Before we continue, note the following

PROPOSITION 7.1. S(Y, 5) =8(X, j) and Z(Y, i) = (A1 (P(QY1))).

Proof. The first part follows since ¥ x, ¥ is an open dense subscheme of im, the
second since P(QY,,) is an open dense subscheme of P(Q¥,,).

Now put p(Y, 3) =p,(X, j) for all s=0, ..., n=dim (Y}, and define ¢, (7, ¢) by means
of P(Q},,) in the same way as g, (X, j) is defined by P(Q%,,): Let

P(QL,)=P,U..UP, r=nrX, i),
and let g, =dim (P,). Then g, , is defined by
fa (clg (Pa) 852777 = g o ¥, )8V 77,

for s=0, ..., n, and all 1 <a<r(X, 1).
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By means of the invariants p, and g, , for the affine, embedded variety i: Y—AY,
we now proceed to define y,(Y, @), 7,(Y, 1), y(¥, 1) and I'(Y, ¢) as in Definition 6.3. One

then obtains the following result:

THEOREM 7.2. Let m=n=dim (Y). Then Y may be embedded into AY via a projection
from A¥ if and only if T',,(Y, ¢)=0.

Proof. As with Theorem 6.4, the proof rests on the following

THEOREM 7.3. Y may be embedded into AT via a projection from AY if and only if

dim (Zarsec (Y, 1)) <m.

First note that Theorem 7.3 implies Theorem 7.2. In fact, this follows in exactly the
same way as we show that Theorem 6.5 implies Theorem 6.4.
In order to prove Theorem 7.3, recall first that to give an embedding of Y into

A% induced by a projection amounts to giving a morphism
p: X - X' <Py =Proj (k[ Yy, ..., Y],

induced by a projection from P with center contained in H,, and such that p induces an
isomorphism
P Y2 X' ND. (Y,).

I r=N-—-m—1, then the projection with center P'< H, has the property above if
and only if P does not meet any secant line of ¥ and does not meet any Zariski tangent
space of Y in P}. Indeed, the proof of this is very similar to that of Theorem 6.5 and will
therefore not be repeated here.

Thus P" has the required property if and only if it does not meet the closure of the
union of all the secant lines of ¥ and the closure of the union of all Zariski tangent spaces
of Y in P}. Now note the

LEMMA 7.3.1. Sec (Y, 1) s the closure of the union of all secant lines of Y in Py, and

Zar (Y, ) is the closure of the union of all Zariski tangent spaces of Y in PJ.

Proof. The same proof as that of Proposition 4.2 and Proposition 5.3.

To complete the proof of the theorem, we observe that
dim Zarsec (X) N H, = dim Zarsec (X)—1. (7.3.2)

Indeed, this follows since no irreducible component of Zarsec (X) is contained in H,:

This is clear for Sec (X). Let Z be an irreducible component of Zar (X), we want to show
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Z ¢ H,. Assume the converse, and let A be an irreducible component of 1-1(P(Q},,)) which
is mapped onto Z. Put P =2A(A). Then P is irreducible, hence so is 2-1(P), and we conclude
that A =A-1(P). Further, let X' =f(P). Then X' is an irreducible subset of X and X' N Y +@,
since otherwise one would have

PS P(Qlwk) ""P(QIYI k)’

which is impossible since P is an irreducible component of P(QY,,). Now let U be a non-
empty open subset of X’ which does not contain the images of the generic points of P(QY,x),
except of course for the image of the generic point of P. We may assume that U< Y.
Now if f: P(QYx) = X is the morphism induced by f, then

pry (=(A-Y{H(U)))

is the union of all Zariski tangent spaces of X at points from U. On the other hand,

pry (AU S pry ((A7Y(P))) = pry (n(A)) = Z.

In particular this gives U € H,, a contradiction.

This completes the proof of (7.3.2), and hence of Theorem 7.3.

Theorem 7.2 immediately implies the following affine analogue of Lluis’ embed-
ding theorem (see R. G. Swan [21], Theorem 2.1 as well as the remark on page 31):

TEEOREM 7.4. With notation as before, Y can be embedded into A}, where g=

dim (P(Q7,,)) and
m > max {2n+1, g}.

Remark 7.4.1. Since Y is an affine variety,
gsz+n—1,

where 2z is the maximum of the dimensions of the Zariski tangent spaces of Y.
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