
A c t a M a t h . ,  165 (1990), 161-187 

Algebraic K-theory of spaces, with bounded control 

by 

WOLRAD VOGELL 

Unioersitdt Bielefeld 
Bielefeld, West Germany 

This paper is concerned with a boundedly controlled version of the algebraic K-theory 

of spaces functor X~-~A(X). The word boundedly controlled refers to the following 

situation. Every object is equipped with a reference map to a metric space. In 

particular it makes sense to talk about boundedness of maps, homotopies etc. 

Controlled algebraic K-theory should be related to bounded stable concordance 

theory in the same way as algebraic K-theory of spaces is related to (ordinary) stable 

concordance theory. 

Parts of such a theory have been studied variously. 

As a first example consider h-cobordisms W with a reference map p: W--~B to a 

metric space B. One may ask when W has a bounded product structure. In [AH] 

Anderson and Hsiang have been studying such cobordisms in the special case where 

the lower boundary of W is of the form M x R  k, where M is a compact manifold and the 

metric space is R k. The answer to this question is provided by the bounded s-cobordism 

theorem. It turns out that there is a naturally defined algebraic K-theory invariant 

whose vanishing guarantees the existence of a bounded product structure on W. The 

group in which these invariants live is called the controlled Whitehead group. 

As another example, this time on the K0-1evel, we mention the controlled finiteness 

obstruction, which has been treated for example in [C]. The problem here is to decide 

when a space which is finitely dominated in the bounded sense is actually boundedly 

homotopy equivalent to a locally finite space. 

In [PW1, PW2] Pedersen and Weibel have been studying a version of controlled 

algebraic K-theory of rings. They define the category ~n(Fn) of locally finite families of 

free R-modules parametrized by Z n. They show that its K-theory is in fact an n-fold 

(non-connective) de-looping of the K-theory of the ring R. In [PW2] this result is 

generalized: To any metric space B there is associated a category ~B(FR) of locally 

finite families of free R-modules parametrized by the metric space B. Now assume that 

the metric space arises in the following way. Let X be a finite PL-subcomplex of R ~, 
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and let o(X) denote the open cone on X with the induced metric. It is the main result of 

[PW2] that the functor defined by X~--~K(ffo~x~(FR)) defines a generalized homology 

theory. It is also shown that one may replace the category FR of free R-modules by any 

exact category in which all short exact sequences are assumed to split. 

These examples show that one has been considering so far only linear controlled 

algebraic K-theory in contrast to the non-linear K-theory of spaces. On the other hand, 

from the potential applications to bounded stable concordance theory it clearly seems 

desirable to have available a controlled K-theory of spaces functor. This paper is 

addressed to the construction of such a functor. 

Controlled algebraic K-theory of spaces is built from the category of locally finite 

spaces over X parametrized by a metric space B and their bounded homotopy equiva- 

lences. We obtain a functor of two variables (X, B) ~A(X; B). Our main result concerns 

the dependence of this functor on the control space B. It parallels the corresponding 

result of  Pedersen and Weibel for the controlled K-theory of rings. The precise 

statement is as follows. 

THEOREM. Let K denote a PL-subcomplex o f R  ~, and let o(K) denote the open 

cone on K with metric induced from R ~. Then the functor 

K ~--~ A(X; o(K)) 

is a generalized homology theory. Its coefficients are given by the algebraic K-theory 

of X with a dimension shift by one. 

This result may also be viewed as giving a geometric interpretation of the homo- 

logy theory associated to the spectrum A(X). In fact one obtains a non-connective 
spectrum. 

THEOREM. There are homotopy equivalences f2nA(X; Rn)=A(X) for each n. Further- 

more, zciA(X; R n) = Ki_,(Z[:t~ X]) for i<~n. 

From a technical point of view the main ingredient in the proof of these theorems is 

the decomposition technique employed in [Wl] to analyze the algebraic K-theory of 

generalized free products of rings. Actually we use a translation of this technique into 

the general framework of categories with cofibrations and weak equivalences, cf. 

[W2]. In the paper [V], which is a sequel to the present one, we explain the relationship 

between our definition of controlled K-theory and the linear version of Pedersen and 

Weibel. 
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In this section we define the concept of a controlled space and the category ~)~f(X; B) of 

boundedly finite controlled spaces over X with control in B, together with several 

modifications of it. We define the concept of bounded homotopy equivalence of 

controlled spaces. We show that the category ~f(X;B) becomes a category with 

cofibrations and weak equivalences in the sense of [W2]. Given such a category we can 

define the associated K-theory. This leads to the definition of controlled K-theory. We 

consider various finiteness conditions in the categories of controlled spaces and discuss 

their effect on K-theory. In particular we state and prove a cofinality theorem for 

algebraic K-theory. 

Let B denote a metric space with metric denoted by O. Assume that B is proper, 
i.e. every closed ball in B is compact. An equivalent condition to ask is that the map 

Q(-, b): B ~ R +  is a proper map for each b EB. Let c denote a positive real number and 

let A be a subset of B. We say that A has diameter <~c ifA is contained in some closed 

ball of diameter c in B. Our basic object of study in this paper will be spaces equipped 

with a reference map to B which is used to measure distances. Define a controlled 
space (over B) to be a pair (Y,p), where p:Y---~B is called the controlling map. A 

morphism f: (Y, p)---~(Z, q) of controlled spaces is by definition a map f: Y---~Z such that 

qf=p. Let ~o9/B denote the category of controlled spaces over B. Let c denote a 

positive real number. A morphism f." (Y,p)---~(Z, q) is called a c-bounded homotopy 
equivalence if there exists a map g: Z---~ Y and homotopies a:fg=idz, fl: gf - idr ,  which 

are c-bounded in the sense that the path of each point under these homotopies has 

diameter ~<c when measured in B. The mapf i s  called a bounded homotopy equivalence 
if it is a c-bounded homotopy equivalence for some c, Let (Y, p) and (Z, q) denote 

controlled spaces over B, and let f: Y---~Z be any map of spaces. The diagram 

Y f . , z  

B 

is c-commutative if O(P(Y), qf(y))<.c, for all y E Y. It is said to commute up to bounded 
distance if it is c-commutative for some c. In particular, if f is a morphism in 7go~/B, 
then f is c-commutative for all c. With this terminology we can say that a morphism 

f'. (Y,p)--~(Z, q) is a bounded homotopy equivalence if there exists a map g, and 

homotopies a and fl as above such that the following diagrams commute up to bounded 
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Y x I  a fl ~Y Z x I  ~Z 

px id  I pr ]p  q x i d j  pr [ q  

B x I  ~B B x I  ,B 

The homotopy inverse g: Z--~ Y ned not be a morphism in ~ol)/B but it makes the 

diagram 

g 
Z ,Y 

B 

commutative up to bounded distance. 

We now give the definition of the category of controlled spaces which will be used 

in defining controlled K-theory. 

Let B be a metric space and let X be a topological space. Denote by ~(X;B) the 

following category of retractive spaces over XxB:  An object is a triple (Y, r, s), where 

r:Y---~XxB, s:XxB--~Y,  such that rs=id. A morphism f : (Y , r , s ) - -KY ' , r ' , s ' )  is by 

definition a map f: Y---~Y' satisfying that r'f=r, f s=s ' .  We shall call the morphism f a 

bounded homotopy equivalence if it is a bounded homotopy equivalence in Zo~/B. Let 

bgi(X;B) denote the subcategory of ~t(X;B) with the same objects and morphisms the 

bounded homotopy equivalences. The categories defined so far are much too general to 

be very useful. More specifically, we will need a notion generalizing the concept of a 

(finite) CW-complex. First let us define the notion of a cell. Fix a positive real number 

c. A bounded n-cell (of diameter c) is a pair (JxD n, q), where J is a discrete index set, 

D n is the n-ball, and q: JxD~--~XxB is a map satisfying that 

(i) prsq({j} xD ") has diameter at most c for each j EJ. 

(ii) for every compact subset K of B the set {j E JI prs q({j} •  n) N K + 0} is finite. 

Let (Y, r, s) denote an object of ~(X;B), and let ( JxD ~, q) denote a bounded cell. 

We say that (Y ' , r ' , s ' )  is obtained from (Y, r,s) by attaching the bounded n-cell 

(JxD ~, q) if there is a mapf :JxD"- -~Y  such that Y' is isomorphic to the pushout of 

f i 
Y ~---Jx a D n ~ J x D  ~ 
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(where i is the natural inclusion), and r' lJxDn=q, r' I Y=r. We say that an object (Y, r, s) 

of 9t(X;B) has a bounded CW-structure if it can be obtained from X x B  by attaching of 

bounded cells (of any diameter) in order of increasing dimension and if there is a global 

bound for the diameter of the cells. We call the CW-structure (boundedly) finite if it 

consists of finitely many bounded cells. Let us denote by 9tf(X;B) the subcategory of 

9t(X;B) consisting of the objects with a finite bounded CW-structure and their cellular 

maps. Let us call an object of 9t(X;B) (boundedly)finite up to homotopy if it is in the 

same connected component of bgt(X;B) as an object of ~f(S;B); in other words, if 

there is a chain of bounded homotopy equivalences going either way between (Y, r, s) 

and some object with a finite bounded CW-structure. Let 9luf(X;B) denote the full 

subcategory of 9t(X;B) consisting of those objects that are boundedly finite up to 

homotopy. Further let 

b~f(S;B)=~f(X;B)flb~(S;B) a n d  b~hf(S;B)=~hf(S;B)flb~tt(S;B). 

A morphism (Y, r, s)---)(Y', r', s') in ~f(S;B) is called a cofibration if it is isomorphic to 

a cellular inclusion. Define a map i: (Y, r, s ) ~ ( Y ' ,  r', s') to be a cofibration in ~hf(S;n) 

if it has the bounded homotopy extension property, i.e. every bounded homotopy 

YxlO Y ' •  may be extended to a bounded homotopy Y'xI - - ,Z .  Here we are 

considering Y, Y', and Z as objects of ~2ol)/B, i.e. we are ignoring the retractions to X. 

We shall also need weaker finiteness conditions. Namely we want to admit 

objects, which are finitely dominated in the bounded sense. Let us call an object 

(Y, r, s) of 9t(X;B) finitely dominated if Y has a finite dimensional bounded CW- 

structure and if there exists an object (Y', r', s') with a finite bounded CW-structure and 

a bounded domination, i.e. a morphism d: Y'---~ Y in 9~(X; B) which is a retraction up to 

bounded homotopy. Denote by 9tfd(X;B) the category of finitely dominated objects of 

91(X; B) and their cellular maps. There is also a homotopy version of this. Let us call an 

object of 9t(X; B)finitely dominated up to bounded homotopy if it is a retract of some 

object of 9thf(X;B). The full subcategory of 9t(X;B) of these objects is denoted 

9thd(X; B). Observe that 9lfd(X; B) is actually a subcategory of 9thd(X; B). In fact if Y' ~ Y 

is a domination map with Y' a finite bounded CW-complex we may consider the 

mapping cylinder T(Y---~Y') of a section of the domination map. It is finite up to 

bounded homotopy (since it is homotopy equivalent to Y'), and it contains Y as a 

retract. We define the notion of cofibration in 91fd(X;B) (resp. 9thd(X;B)) considered 

before. With these definitions one observes: 

LEMMA 1.1. The categories ~f(X;B), ~hf(X;B), ~fo(X;B), and ~)~hd(X,B) are 
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categories with cofibrations and weak equivalences, where the category o f  weak 

equivalences is given in each case by the bounded homotopy equivalences. [] 

Remark. It is a technical point of some importance that the morphisms in the 

category fft(X;B) are maps which are strictly compatible with the reference map to B, 

not just up to bounded distance. For otherwise it would not be clear how to define 

quotients, or more generally cobase changes in this category. This differs from the 

corresponding definition of morphisms in the category ~n(FR) (resp. ~B(FR)) of [PWl] 

(resp. [PW2]). In our definition the boundedness (which is of course essential) is 

encoded in the definition of bounded homotopy equivalences. 

Let (B, Q) and (B', Q') denote metric spaces. Recall that a map f." B--->B' is proper if 

the inverse image u n d e r f o f  a compact set is compact again. We say tha t f i s  Lipschitz if 

there exists a positive real number k such that p'(f(x),f(y))<~kQ(x, y) for all x, y EB. A 

proper Lipschitz map is also called controlled. A Lipschitz map f: B--->B' is called a 

Lipschitz homotopy equivalence if there exists a Lipschitz map g: B'--->B and homoto- 

pies gf=idB, fg=idB, which are Lipschitz maps. Finally let us call the m a p f a  controlled 

homotopy equivalence if it is a Lipschitz homotopy equivalence and in addition the 

homotopies and the map g are proper. 

LEMMA 1.2. The categories ~f(X;B) (resp. ~hf(X;B), 9tfd(X;B), ~hd(X;B)) define 

a covariant functor from the category o f  metric spaces and controlled maps to 

categories with cofibrations and weak equivalences, where the weak equivalences are 

given by the bounded homotopy equivalences. 

Proof. A proper Lipschitz map f." B--->B' of metric spaces induces an exact functor 

f,:~f(X;B)-->~f(X;B') by (Y,r, s)~-->(YUx•215 ...). The Lipschitz condition on f 

ensures that bounded homotopy equivalences are mapped to bounded homotopy 

equivalences. Since f is proper, boundedly finite objects are mapped to boundedly 

finite objects. Similarly the properties of homotopy finiteness and of finite domination 

are being preserved by f , .  [] 

LEMMA 1.3. I f  f:B-->B' is a controlled homotopy equivalence then the induced 

functor f , :  bS.gif(X;B)-->bS.~f(X;B') is a weak homotopy equivalence. The same is 

true in the case o f  the categories ~}~hf(X;n), ~)~fd(X;B) and ~hd(X;B). 

Proof. The proof is literally the same in all four cases. So we just treat the first one. 

It suffices to show that the projection map : r :Bx I~B  induces a weak homotopy 
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equivalence. There is a section of zt induced by the inclusion i:B• We 

shall show that for each n the endofunctor i,~r. of bSn~Rf(X;BxI) is homotopic 

to the identity. Define another endofunctor f of bSn~f(X;B• as follows. Let 

h:BxlxI-->B• be a homotopy between the identity map and i~. We first define f on 

objects of b~f(X; B xI )  by (Y, r, s) ~-->( Y• Lid  x (h(rx id)), (s, 0)) and on the morphisms of 

that category similarly. The definition clearly extends to filtered objects of 

b~f(X; B xI).  There are natural transformations of endofunctors of bS ,~ f (X;BxI )  

id---~f~-- i,er, 

which are given by the obvious inclusion maps. This shows that i.zl. is homotopic to 

the identity. Also it is easy to see that for varying n these natural transformations 

assemble to a simplicial natural transformation of endofunctors of the simplicial cate- 

gory bS.9~f(X;B• This proves the lemma. [] 

We now want to compare the various finiteness conditions. Recall that the approxim- 

ation theorem (Theorem 1.6.7 of [W2]) gives a sufficient condition for an exact functor 

of categories with cofibrations and weak equivalences to induce a hornotopy equiva- 

lence on K-theory. 

PROPOSITION |.4. The approximation theorem applies to the inclusion functors 

~f(X;B)--> ~)~hf(X;B) and fftfd(X; B) ---> ~)~hd(X;B). 

Proof. Let us first treat the case of finite vs. homotopy finite objects. We have to 

verify the following property: 

Given an object (Y, r, s) in 3if (X; B) together with a morphismf." (Y, r, s)---~(Y', r', s') 

in ~Rhf(X;B ) there exists an object (Yl, rl, sl) in 9tf(X;B) and a factorization 

(Y, r, s)--->(Y 1, r 1, Sl)---~(Y', r', s') off ,  where the first map is a cofibration and the second 

is a bounded homotopy equivalence. 

It is sufficient to find a factorization 

(V, s),----> (El, $1) "---~ (Y,  s ') ,  

i.e. ignoring the retractions. For we may then define the retraction rl as the composite 

of Y1---~Y' with r':Y'---~XxB. 

Since Y' is boundedly finite up to homotopy we can find a finite I12 together with 

bounded homotopy equivalences (Y', s')--->(Y2, s2) and (Y2, s2)--~(Y', s'). By the bounded 
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cellular approximation theorem, cf. [AM, Corollary I1.10.3], we may choose a 

cellular map (Y,s)---~(Y2, s2) which is boundedly homotopic to the composition 

(Y, s)---~(Y', s')--)(Y2, s2). Define YI to be the mapping cylinder of this map. Then there is 

a bounded homotopy equivalence (YI, Sl)-'-)( Y', S') extending the map (Y, s)---~(Y', s'). 

This proves the first case of the proposition. 

Now let (Y, r, s) be an object of ~tha(X; B). By definition there is a retraction Y'-* Y 

where Y' is in ~Rhy(X;B). Choose a bounded homotopy equivalence Y"--,Y' with Y' 

finite. We obtain a map Y"--~Y which is a retraction up to bounded homot0py. 

Consequently there is a self-map a of Y" which is idempotent up to bounded homotopy. 

By bounded cellular approximation we may assume that a and the homotopy are 

cellular. Therefore the mapping telescope of a defines an object of 9tfd(X; B). Further- 

more there is a bounded homotopy equivalence Tel (a)~  Y. (Refer to the proof of 

Proposition 2.7 below for a more detailed discussion of the mapping telescope.) Now 

we may copy the previous argument to verify the hypothesis of the approximation 

theorem. This completes the proof of the proposition. [] 

To describe the relationship between the categories of finite and finitely dominated 

objects we introduce the following terminology. 

Let ~ denote a category with cofibrations and weak equivalences, and let ~ be a 

subcategory with cofibrations and weak equivalences. We say that ~ is cofinal in ~ if 

for each object C in ~ there exists C' in ~ such that CvC'  is isomorphic to an object of 

9 .  Here ' v '  denotes the sum in ~. Assume now that ~ and ~ have a cylinderfunctor, 

and consequently also a suspension functor, cf. [W2]. Let us call ~ a weakly cofinal 

subcategory of ~ if for each object C in ~ there exists C' in ~ such that z k c v c  ' is 

isomorphic to an object of ~ for some k. With this terminology we have 

PROPOSITION 1.5. The category ~hf(S;B) is a weakly cofinal subcategory o f  

~hcl(X;B). 

Proof. This is almost obvious. In fact, let (Y,p, s) be finitely dominated up to 

bounded homotopy, and let d: (Z, q, t)----~(Y, p, s) be a domination of Y with Z boundedly 

finite up to homotopy, and let further e: (Y, p, s)---~(Z, q, t) be a section of d. Define Y' to 

be the mapping cone of the map Ze, and let f: EZ---~ Y' denote the canoncial map. 

Clearly Y' is an object of 9~hd(X; B). Then Zdvf." ZZ---~Z Yv  Y' is a bounded homotopy 

equivalence. This proves the proposition. [] 

Let ~ be a category with cofibrations and weak equivalences and let w~ denote 
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the subcategory of weak equivalences. Recall from [W2] that the algebraic K-theory of 

is defined to be 

K(~, w~) = •lwS. ~1. 

Here wS. ~ is a certain simplicial category constructed from the cofibrations and the 

weak equivalences in ~. 

We are now going to give the definition of the algebraic K-theory of controlled 

spaces. Let X be a topological space, and let B be a proper metric space. There are two 

definitions corresponding to the different finiteness conditions. 

D E FI N I T I O N .  A(X;B) = ~[bS. ~Rhd(X;B) I 

A'(X;B) = g2lbS. ~hf(X;n)[. 

We call A(X; B) (resp. A'(X; B)) the algebraic K-theory of  the space X with control in B. 

Remark. Proposition 1.4. tells us that there is no point in giving a third and fourth 

definition by replacing the category ~hf(X;B) with ~)~f(X;B) and 9thd(X;B) with 

~fd(X;B): we would have ended up with the same functors up to homotopy. [] 

Let us now examine the relationship between the functors A(X;B) and A'(X;B).  

The answer is contained in the following cofinality theorem for algebraic K-theory. It is 

due to Thomason IT, Theorem 1.10.1 and Exercise 1.10.2]. For the convenience of the 

reader we shall explain this result here. 

Let ~ be a category with cofibrations and weak equivalences, and let ~ be a 

subcategory with cofibrations and weak equivalences of ~. Assume that ~ has a 

cylinder functor and that the weak equivalences in ~ satisfy the cylinder axiom. Let 

G=coker(Ko~---~Ko~), and let N. N denote the nerve of G considered as a discrete 

simplicial category, i.e. NkN (~G k) is viewed as a category with only identity mor- 

phisms for each k. Clearly, the geometric realization of N. N is homotopy equivalent to 

BG, the classifying space of G. 

THEOREM 1.6. Let ~ and ~ be as above. Suppose in addition that the following 

conditions are satisfied. 

(i) ~ is weakly cofinal in ~. 

(ii) ~ is saturated, i.e. every object which is weakly equivalent to an object in 

actually belongs to ~ .  
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(iii) ~ is closed under quotients, i.e. i f  Cl--->C2---->C3 is a cofibration sequence  in ~,  

and C1, C2 are actually objects o f  ~ ,  then C3 is also in ~ .  

Then there is a f ibration up to homotopy  

w S. ~---> w S. ~---~ N .  (~. 

Consequently,  there is an isomorphism Ki (~ ,  W~)--~Ki((~, w~)for  i>~l. 

Proof. Let  w ~  (resp. w ~ )  denote the category of weak equivalences in ~ (resp. 

~) .  Define a map f:  C--->C' to be a v-equivalence iff the mapping cone C ( f )  of f 

represents zero in the group G. This defines a class of weak equivalences in ~,  and of 

course w r c v r .  By the generic f ibrat ion theorem (Theorem 1.6.4 of [W2]) one obtains 

a fibration up to homotopy 

wS. ~v___> wS. ~ ---> vS. fs 

Here ~v denotes the subcategory of ~ consisting of those objects which are acyclic with 

respect to the coarse notion of weak equivalence. We are left to identify the terms in 

this fibration with those in the assertion of the theorem. First observe that we have a 

map of simplicial categories 

p.: vS.  ~---> N.  (~. 

It is given in degree k by 

(-Yr )-> c i  ~ C2 >-->... ~ Ck) ~ ([Cl], [C2]-[C1] . . . . .  [Ck]-[Ck-l]). 

We claim that Pk is homotopy equivalence for each k. Observe that p~-l(0 . . . . .  0) is a 

contractible subcategory of vSk~.  In fact (-x- >---> * ~--> ... >---> -x-) is an initial object since 

[C]=0 in G implies that -x----> C is a v-equivalence. Next consider pkl(Xl ..... Xk) for any 

(x 1 . . . . .  x k) in G k. This category is not empty: Let  Ci be such that xi=[Cd. Then 

pk( C1 >-> C l v C 2 >-> C 1 v C 2 v C 3 >->... >-> C~ v ... v C ~) = (x~ . . . . .  xk). 

Since the category ~ has a cylinder functor, and consequently also a suspension 

functor [ ,  it follows from the additivity theorem (Theorem 1.3.2. of [W2]) that X acts as 

( -1)  on the group G. We can therefore define a functor 

9:  Pk- l(xl . . . . .  Xk)--'> pk l (0  . . . . .  0) 
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by 

(B l ~--~ .. .  ~-~Bk) ~ (B  1 v ~~,C 1 ~--~B 2 vZC 1V ~~C2 )---~ ... ~--~Bkv~,C 1 v . . .  V~Ck).  

There is also a functor in the other direction given by 

~:p;~(O . . . . .  O) ~ p - ; l ( x  1 . . . . .  x k )  

(A 1 ~ .. .  ~--~ Ak)~--~(Ai v C  1 ~--~ A2 v C I  V C  2 ~ ... ~ Ak V C 1 v . . .  vCk) .  

There are obvious natural transformations id~0q0 and id--~q0~. This implies that all 

fibres p-~l(x 1 ..... x k) are homotopy equivalent to p~-l(0, ..., 0) and hence are contractible. 

By Quillen's Theorem A, [Q], therefore Pk is a homotopy equivalence for each k, and 

hence p. is a homotopy equivalence by the realization lemma, cf. [Wl, Lemma 5.1]. 

The assertion of the theorem will follow if we can show that ~v is equivalent to ~ .  First 

observe that Z,k(CvZC) is in ~ for every C. This is true since cone(C)=-x- implies that 

cone(C) is in ~ ,  since ~ is saturated. Now choose C' so that C'vEkC is in ~ .  Then 

from the cofibration sequence C---~cone(C)~ZC we deduce another cofibration se- 

quence 

EkC v C' ~ cone(ZkC) v C' v EkC ~ ZkC v Zk+IC 

where the first and second term are objects of ~ .  Hence by property (ii) 

ZkCvZk+Ic=zk(CvZC) is in ~ .  Let Cr--~C2---~C3 be a cofibration sequence in ~. From 

this we obtain a cofibration sequence 

C I V E C  1 ~  C 1 V C  3 V y C  2 ~  C 3 V • C  3 

which is weakly equivalent to another sequence 

C 3 v Z C  a ~ E ( C  l v ZC1)  ~ Z ( C  1 v C 3 V ZC2) .  

From the preceding observation we conclude that the k-fold suspension of the first and 

second term are objects of ~ .  Therefore we conclude that ~,,k+l(flVC3v'~C2) is in ~ .  

Let K ~  denote the class group of ~ formed by introducing a relation only for split 

cofibration sequences, and let G'=coker(Ko~-~K~).  Then G is generated by isomor- 

phism classes of objects of ~ modulo the following relations: 

(i) [D]=0 for D E 

(ii) [C1] + [C3] = [C2] for each cofibration sequence C 1---, C:---, C 3. 

The group G' has the same generators and the following relations. 
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(i) [D] =0 for D E 

(ii) [Cl]+[C3]=[C~vC3] for C 1, C 3 in ~. 

Since we have shown that Y~k+I(CIVC3v]~C 2) is in ~ for every cofibration se- 

quence C~---~Cz---~C 3 we have that [C~vC3vZC2]=O, which implies that [C1]+[C3]= 

[C2]. Therefore  the relations are in fact the same and G=G'. Now suppose that CE ~v. 

This means by definition that [C]=0 in G, and hence also [C]=0 in G' ,  i.e. there exists 

D in ~ such that [D] = [C] in K ~ .  But by a well known argument this holds if and only 

if C and D are stably equivalent, i.e. there exists Co such that D v Co = C  v Co, cf. Lem m a  

1.1. of[M].  Choosing C~ such that CovC~ is in ~ we obtain that CvCovC~ is in ~ ,  and 

hence, by proper ty  (ii) again, also C is an object of ~ .  Therefore  the categories ffv and 

are the same. This ends the proof  of  the theorem. [] 

We have the following application: 

COROLLARY 1.7. Let G=coker(~oA'(X;B)---~JroA(X;B)). Then there is a fibration 

up to homotopy 

bS. ~Rhf (X; B)--* bS. ~Rhd(X; B)---> N. 

where N. ~ denotes the nerve of G considered as a discrete simplicial category. [] 

w 

In the second section we consider a special type of control spaces. Namely we assume 

that the control space is given as the open cone on a finite space. More precisely, we 

have the following definition: 

Let  K denote a finite PL subcomplex of  S n for some n. The open cone on K is the 

metric space defined as 

o(K) = { t .x lxEK,  tER+} 

with metric induced from the embedding into R "§ If K ~ L  is a map of  finite PL 

subcomplexes of  S n then there is an induced map o(K)~o(L)  of  the open cones and it 

is easy to see that this is a proper  Lipschitz map. In fact o(-) is a functor from finite 

subcomplexes of  the n-sphere to the category of metric spaces and proper  Lipschitz 

maps. Note however that it is not true in general that a homotopy  equivalence K--7-~L 

induces a controlled homotopy  equivalence o(K)~o(L).  With these notations we are 

now ready to state the main theorem of this section more precisely: 

The functor given by K~--)A(X;o(K)) is a generalized homology theory. 
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Recall that a homotopy functor F: (spaces)--*(spaces) is called a generalized re- 

duced homology theory if it is pointed (i.e. evaluated on a point it gives a contractible 

space) and excisive (i.e. it maps a cocartesian square to a cartesian square). It is well 

known that this implies that the homotopy groups Jr, F(-) satisfy the Eilenberg-Steen- 

rod axioms with the possible exception of the dimension axiom. We shall prove these 

properties separately. First we show that the functor is pointed. In fact our statement is 

slightly more general. 

Let B denote a metric space. Consider the product B• equipped with the 

product metric. We have 

THEOREM 2, l. A(X;BXR+) is contractible for all X and B. 

Proof. This is a version of the so-called Eilenberg swindle. Namely there is an 

endofunctor T of b~fa(X;B• which is given on objects by 

(Y,p,s)~--~(Y, op, so -1) 

where e : X x B x R + - - . X x B x R +  is the shift map defined by (x, b, t)~--~(x, b, t+ l). On 

morphisms the functor is defined by T(f)=f.  Since the map o does not change 

distances, it takes c-bounded homotopy equivalences to c-bounded homotopy equiva- 

lences. We construct a two step homotopy from T to the identity. The intermediate step 

is provided by the endofunctor of b~fa(X;B• given by 

(Y,p, s)~--~(YxI, p, g) 

where/~: Y• is defined by (y, t)~--~(prx• pra+(p(y))+t), and g simi- 

larly. There is a natural transformation from the identity to this functor (front inclusion) 

and another one from T to this functor (back inclusion). The category ~(X;BxR+) has 

a composition law given by wedge sum (over XxB• Denoting this composition 

law by ' v '  we can form the functor 
oo 

T~= V T  ~ 
k 

where T i denotes the ith iterate of T. In fact, T~ defines an endofunctor of 

b3ifd(X; B x R+). To see this, one observes that over every compact subset of B x R+ the 

infinite wedge actually reduces to a finite one. Since the functor T i does not change 

distances, i.e. it takes c-bounded maps to c-bounded maps again, the functor T~ really 

takes bounded homotopy equivalences to bounded homotopy equivalences. Further, 

since T is homotopic to the identity, we have that T~=ToT o is homotopic to 
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idoTo=T o. But obviously we also have a natural isomorphism idVTl~T o which 

implies a homotopy idv T~=T 1. 

The functor T can be defined for filtered objects in much the same way thus giving 

an endofunctor of bSn9~fd(X;BxR+). Continuing to denote this functor by T we also 

obtain a homotopy as above for each n. These homotopies assemble to a similar 

simplicial homotopy of the simplicial category bS. 9tfd(X; B XR+). But this space is an 

H-space with a homotopy inverse. So we may cancel one term, and we finally obtain a 

homotopy between the identity map and the trivial map. This can happen only for a 

contractible space. [] 

COROLLARY 2.2. Let K be a finite subcomplex o f  S n, and let cK denote the 

(ordinary) cone on K considered as a subcomplex o f  S n+l. Then A(X;o(cK)) is 

contractible. 

Proof. This follows from the following observation in [PW2]: If '-x-' denotes the 

join, then there is a controlled isomorphism o(K.L)~-o(K)• This implies that 

o(cK)=o(K.(point))-~o(K)xo(point)=o(K)xR+ and hence proves the corollary. [] 

We now turn to the proof of the excision property of the functor A(X; o(K)). This is 

shown by means of a decomposition technique which is closely analogous to that used 

in [W1] to analyze the algebraic K-theory of generalized free products of rings. The use 

of the general framework of categories with cofibrations and weak equivalences makes 

this approach much more perspicuous than the corresponding technique in [Wl]. 

Consider the following situation. The control space B is given together with a 

decomposition B=B~ U soB2. Here we assume that the Bi are also metric spaces with the 

induced metric. We want to look at spaces over X x B  of the type considered before but 

which are decomposed according to the decomposition of the control space. To do this 

we add several technical conditions. First of all let us assume that B0 is bicollared in B, 

i.e. there are neighborhoods B0x[0, 1] in B2 and B0• in B1. Further let us 

suppose the maps Bo---~B1 and Bo--~B2 are cofibrations, and finally we ask that these 

maps are controlled, i.e. proper and Lipschitz. A decomposed space is given by 

definition as a pushout diagram Y= Yl U r0 Y2 in ~fd(X; B), where Yi is induced from an 

object of 9~fd(X;Bi), i----0, 1,2, and such that the maps Yo--*Y1 and Yo---~Y2 are cofibra- 

tions. Let us denote by 9tfd(X; B0, B1, BE) the category of spaces which are decomposed 

in this way. This is a category with cofibrations in the same way as ~fd(X;B). There are 

two natural choices of weak equivalences in 9~fd(X;B 0, BI, BE). Namely we can ask that 

a bounded homotopy equivalence respects the decomposition, i.e. it is a bounded 
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homotopy equivalence on each of Y0, Yl, Y2, or alternatively that it only is a bounded 

homotopy equivalence on the total space Y. Let V~fd(X; B 0, B~, B2) denote the subcate- 

gory of those bounded homotopy equivalences which respect the decomposition. 

Given a category with cofibrations and two notions of weak equivalences there is a 

general theorem which describes the relationship between the K-theories associated to 

these, the genericfibration theorem of [W2]. In our context the assertion is as follows. 

THEOREM 2.3. There is a homotopy cartesian square of  simplicial categories 

vS.~bd(X;Bo, BI, B2) ~ vS.~Rfd(X; Bo, B 1 , B2)  

1 l 
bS. ~ f~ Bo, Bx, B2) , bS. ~fd(X; B o, B l , B z) 

with lower left term contractible. (Here the superscript 'b' denotes the subcategory of 

b-acyclic objects, i.e. those spaces for which the structural retraction Y--~X• is a b- 

equivalence.) [] 

In the following we have to identify the three non-trivial terms in this cartesian 

square. 

The first observation is 

PROPOSITION 2.4. The forgetful functor bS. ~Rfd(X;Bo, BI,B2)--~bS. ~Rfd(X;B) is a 
weak homotopy equivalence. 

Proof. The idea of the proof is to use the collar of B0 to allow for more flexibility. 

The first step is to replace the decomposition of the control space B=B I U&B 2 by 

another one B=B~ U s,oB~ where 

B~=BoX[-1, 1], B'I=BIUBoBoX[-1,O], B~=B2U&Bo• 1]. 

Using a deformation retraction of the collar of Bo one can easily show that the inclusion 

bS. field(X; B o, B1, B2)~bS. fftfd(X; B~, B' 1 , B~) is a homotopy equivalence. Also it is no loss 

of generality to assume that an object of (Y, Yo, Y,, Y2) of the latter category satisfies the 

condition that r-l(X• • [ -e ,  e])c Yo (and hence also r - l (x•  (B I U BoBo • [ -e ,  0]))c Yl 

and r-I(X•215 for some e. Namely just replace the object Y by 

Yt U r0 I10 • [ -  1, 1] tJ ~'0 Yz. This defines a map from b~fd(X; B o, B 1, B 2) to the subcategory 

of bg~f~(X;B~,B~,B~) of objects satisfying that condition. A deformation retraction of 

the collar again may be used to show that this map is a homotopy equivalence. 
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�9 ! t t t , ~' ! Denoting this subcategory of b~)~fd(X, B 0, B 1 , B 2) by b~fd(X, B o, B 1 , B~) we are left to 

show that the forgetful map 

p �9 t t t bS. ~)~fd(X, B 0, B 1 , B z)--> bS. 9tfd(X; B) 

is a homotopy equivalence�9 This will follow from an application of the approximation 

theorem of [W2]. We have to verify the following 

t �9 ! t Assertion. Given a map J2 Y---~Z, where Y is an object of ~ltfd(X, Bo, B1,B'2) and Z is 
! . ! r t in 9tfd(X;B), there exists an object Y' in ~fo(X, Bo, B1,B2), a cofibration Y~---~Y', and a 

bounded homotopy equivalence f ' :  Y' ~ Z  extending the map f. 

We shall assume without further proof the following related property of the 

category 9~fd(X; B): Given a map f: Y---~Z of (homotopy) finitely dominated objects over 

X x B ,  there exists Y' which can be obtained from Y by attaching of cells, and a bounded 

homotopy equivalence f ' :  Y'---~Z extending f. 

Using this property we can use a cell-by-cell argument to verify the assertion 

above. Namely let Y*= YUaDnD" for some n-cell D". We have to show that Y* may be 

decomposed in the required way to define an object of 9t~d(X;B~,B'I,B~). Let 

r: D ' ~ X •  denote the restriction of the structural retraction of Y* to D n. Choose e' <e. 

By using a suitable subdivision one may find a decomposition D 10 D0 D2 of D" such that 

r -m(XxBo•215  e]) and similarly with Dt and D2. With this 

decomposition of D n we may define ~=Y~UaoonolD~, and similarly with ~ and O- 

One checks that this decomposition actually defines an object in the category 

9~d(X; B~, B~, B~). (As an object may have infinitely many controlled cells, one has to be 

careful to choose the sequence of real numbers e' in such a way that their limit is 

greater than zero.) Hence we have verified the assertion above�9 This finishes the proof 

of the proposition. [] 

Notation�9 If the context is sufficiently clear we shall denote the category of 

decomposed objects over X x B  simply by ~fd(X;B) instead of 9~fd(X;Bo, B1,B2). The 

preceding proposition says that this does not make a difference if the category of weak 

equivalences is the category of bounded homotopy equivalences. The concept of v- 

equivalence is only defined for decomposed objects anyway�9 So this should cause no 

confusion. [] 

It is also rather easy to analyze the fine notion of weak equivalence, i.e. the 

category vg~fd(X;B). (Recall that vg~fd(X;B) is shorthand for Vg~fd(X; B o, B 1, B2).) 
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PROPOSITION 2.5. The forgetful functor 

vS. ~:fd(X; B) ~ bS. ~:fd(X; B o) x bS. ~)~fd(X; BI) X bS. ~):~fd(X; BE) 

induced by 

Y= Y, u yo r2 ( ro, r , ,  Y2) 

is a weak hornotopy equivalence. 

177 

Y0 ---~ YI U ro Y2--~ (Y~ U r0XxB0) UxxBo(Y: U roXXBo). 

Here the notation 9~fd(X;Bo, B 0 is an abbreviation of 9tfd(X;Bo, B1,B o) and similarly 

with the other category. Actually the quotient of this cofibration lives in a certain 

subcategory of 9~fd(X; B 0, B 0 x 9tfd(X; Bo, B2) whose objects are defined by the condition 

that the restriction to X• is trivial, i.e. equal to XXBo itself. Let us for the moment 

denote this subcategory by ~fd(X; B 0, B~)#x 91fd(X; B 0, BE) ~. This category is a subcate- 

gory of 9tfd(X; B) in a natural way. An application of the additivity theorem of [W2] now 

yields that the map given by 

r (ro, r,/ro, r;ro) 

induces a weak homotopy equivalence 

vS.9~fo(X; B) --~ bS.gtfd(X; Bo) x bS. 9~fd(X; B o, B1) n X bS.gtfo(X; Bo, B2) #. 

(The symbol ' / '  denotes the quotient in the appropriate category.) 

Using the collar of B0 together with Lemma 1.3. it is easy to see that the functors 

bS. ~fd(X; B0, B1) # ~ bS. ~fd(X; Ol) and bS. ~fd(X; B o, B2) # ~ bS. ~Rfd(X; B2) 

induced by inclusion are weak homotopy equivalences. It remains to show that this 

map is homotopic to the map of the proposition. Using the existence of an inverse on 

the H-space vS.gtfd(X;B) it follows that the map described by 

r ( ro, r ,  l ro v ro, r ;  ro V to) 

12-908283 Acta Mathematica 165. Imprim6 le 8 novembre 1990 

Proof. The category ~fd(X; B) may be identified with a certain category of cofibra- 

tions in ~fd(X;B) with subobject in 9tfd(X;B0) and quotient object in the category 

~fd(X; B o, B 0 • ~fd(X; B o , B2). Namely, to an object of ~fd(X; B 0 , B l , B 2) there is associat- 

ed the following functorial cofibration sequence 
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also is a weak homotopy equivalence (where ' v '  denotes the sum in the appropriate 

category). Finally another application of the additivity theorem shows that the maps 

Y~"~ Y1 and Y~--~ Y1/Yo v Yo 

are homotopic, and similarly with YI replaced by Y2. This proves the proposition. [] 

The main problem will be to analyze the category of bounded acyclic objects 

together with the fine notion of weak equivalence. There are exact functors defined a s  

follows: 

a: fired(X; B) --> ~)~fd(X; B 0 x ~Rfd(X; B2) 

Y~-~ (YI/Yo; Y2/Yo) 

~: ~:~fbd(X; B) -.-..-> ~fd(X; no) 

Y'-> Yo 

'~: ~fd(X;Bl) X ~}~fd(X;B2)---> ~)~fd(X;B) 

(Y,Z)~--) YUx• 

PROPOSITION 2.6. These functors induce the following diagram which commutes 

up to homotopy. Furthermore the diagram is homotopy cartesian in a way specified 

below. 

Ct 

vS. 9~d(X; B) , bS.~fo(X; B 0 x bS.~Rfa(X; B2) 

bS. ,~fd(X; B o) , bS. 9tfd(X; B) 

The bottom map is the natural inclusion followed by suspension. 

Proof. Consider the following diagram: 

vS. ~ (x ;  B) 

l 
bS. ~bd(x; B) x bS. ~]~fd (X; B o) 

, vS. 9]f~(X; B) 

, bS.~tfd(X; B) x bS.9tfd(X; B o) 

, bS.ff~fa(X; B) 

1: 
.. ,bS.9tfd(X;B ) 
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The left and middle vertical map are given by Y~(Y, Y0)- The lower right hand map is 

the projection. The diagram is clearly commutative. Both rows are fibrations up to 

homotopy, the upper row by Theorem 2.3, the lower one for trivial reasons, since 

bS.~d(X;B) is contractible. Hence the left hand square is homotopy cartesian. Now 

consider the diagram 

1 
bS. 9t~d(X; B) X bS. 9tfd(X; B o) 

cl 
) vS.gtfd(X;B) , bS.gtfd(X;B~)xbS.gtfd(X;Bz)xbS.gtfd(X;Bo) 

,bS.~tfa(X;B)xbS.9tfa(X;Bo ) c �9 bS.~t fa(X;B)xbS.~fd(X;Bo ) 

where the left hand square is identical with that of the preceding diagram, a is the map 

of Proposition 2.5, b is given by Y~-~(Y, Yo), c by ( Y , Z ) ~ ( Y v Z Z ,  Z) and d by 

(Y,Z, W)~(Y/YovZ/Zo,  W). The right horizontal maps are homotopy equivalences. 

This is true for a by Proposition 2.5 and for c since it is a shearing map, using the H- 

space structure of the spaces involved and the fact that Z represents a homotopy 

inverse. The right hand square commutes up to homotopy, by an application of the 

additivity theorem. Namely we have the following functorial cofibration sequences in 

~ f d ( X ; B )  

Yo >-) Y-~ Yll Yo v YJ Yo" 

This gives a homotopy between the functors Y ~  Yv Z Y0 and Y ~  Y1/Yo v Y2/Yo. Choose a 

specific homotopy. Then the right hand square is clearly homotopy cartesian. Since a 

and c are homotopy equivalences the choice of the homotopy does not matter. Hence 

the outer square of this diagram is homotopy cartesian in a well defined way. Compos- 

ing the right horizontal maps with the projection maps away from bS.gtfd(X;Bo), and 

using that bS.~fbd(x; B) is contractible, finally gives the assertion of the proposition. [] 

To proceed further we introduce the following terminology. Given an object 

(Y, r, s) of 9tfd(X; B) we define the support of Y to be the set 

supp(Y) = {b EBIp-a(X• {b}) =I:X}. 

We say that Y has bounded support with respect to B0 if there exists a positive real 

number c such that supp(Y) has distance at most c from B0, i.e. for each b E supp Y 

there exists b' EB0 such that Q(b, b')<.c. Denote hy 9~bd(x;B0)b.s. the subcategory of 

those objects of 9tbd(X; B) which have bounded support with respect to B0. We claim 
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that any bounded acyclic object is in fact v-equivalent to an object with bounded 

support with respect to B0. 

PROPOSITrON 2.7. The inclusion vS.ff~bd(X;Bo)b.s---~vS.fftbfd(X;B) is a weak homo- 
topy equivalence. 

Proof. We deduce this from the approximation theorem. It suffices to verify the 

following property: Given a map f: (Y, Yo, Y1, Y2)---~(Z, Zo, Z1,Z2), where (Y, ...) is an 

object of~bd(x;B)b.s and (Z .... ) is in 9~bd(X;B), there exists an object (Y', Ie~, Y'I, Y~) of 

9tbd(X;B)b.s. together with a cofibration (Y,...)---~(Y',...) and a v-equivalence 

g: (Y' .... ) ~ ( Z  ....  ) such that the following triangle is commutative: 

f 
(Y, Yo, Yl, Y2) '(Z, Zo, Zl,Z2) 

r v' ~ v' v '~ / i~g~g ~ - - '  *0~ --I~ "2I 

Replacing Z by the mapping cylinder of f shows that it is no restriction to assume t h a t f  

is a cofibration. Also it is no loss of generality to assume that 

r-l(X• x [0, e])=Z0• [0, e] 

(cf. the proof of Proposition 2.4). Choose a bounded contraction h: Z• of Z which 

exists by definition of the objects in 9tfbd(x; B). 

Since h is bounded we may find a subcomplex Z[ of Z~-Z0x [0, e] such that 

supp(Zi) avoids a bounded neighborhood of Bo and such that h(Z~ • Namely let 

c t : Z ~ R +  denote the distance from B0, i.e. f(z)=p(p(z);Bo). For each d r R +  let 

zd=a-~([d, oo))UXxB. Since h is bounded there exists a number c such that 

h(Zdl• d-c, if d is sufficiently large. By definition the objects of 9~fd(X;B) are finite 

dimensional and also there is a global bound for the diameter of the cells. Therefore 

there exists a number e (independent of d) such that the smallest subcomplex of Z~ 

generated by Z d is contained in ZI d-e. If d is large enough we may therefore define Z~ to 

be the smallest subcomplex containing Z1 d. (Of course it may happen that supp(Z~) is 

empty.) Since Yj has bounded support with respect to B0 it is also no restriction to 

assume that supp(Z~) is disjoint from supp(Y0. Now define a bounded map 

hi :  Z l  • as follows. 

(i) h l l Z  1 • 

(ii) hllZo• [0, e] xI=projection to I 

(iii) hllZ~ xI=h 



ALGEBRAIC K-THEORY OF SPACES, WITH BOUNDED CONTROL 181 

(iv) On the remaining part of Zlx I  choose some extension (which exists by 

bounded homotopy extension). 

Since hl((ZI-Z'O • has bounded support one can find another subcomplex Z~ of 

Z~ with support in a (potentially bigger) bounded neighborhood of B0 such that 

hl((Zi-Zi)xl)cZ6. The end map of the homotopy hi maps Z6 to itself. (In fact ff z EZI 

then hi(z, 1)=h(z, 1)=r(z)EZ~ since all spaces are considered as spaces over XxB.)  Let 

Pi denote the restriction of ht to Z6x1. We claim that p~ is an idempotent up to 

homotopy. Namely we have the following commutative diagram 

(hllZl x l)• 
Z~XI----~ZlXI , ZlXI 

I 

t , h 1 

Z; , Zl 

which defines the broken arrow. In fact, if zEZiNZ~ we have that hi(hi(z, 1),t)= 

h~(r(z), t)=r(z), and for z in Zi -Z i  the map hi takes values in Z6 anyway by construction 

of the latter. Hence the left vertical arrow defines a homotopy from p~ to p~. Now form 

the mapping telescope ofpl .  It is defined as the following (iterated) pushout: 

Pl P! P! 
Tel(pl) = pushout(Z~x [0, 1] ~--Z~x 1 --~ Z~x[1,2] ~--Z~x2--~ Z~x [2, 3] ~-...  --,...). 

There is a canonical map Tel(pl)--~Z~ defined as the colimit of the following diagram, 

where g denotes a homotopy PI~-P~. 

Z~x[O, 1]~ Z~xl ,Z~x[I,2]~ 

= z;  ~ z;  Z ~  --,.-----------~ . . .  

.o. ' , , ,  

Tel(p0 is considered as a space over X x B  via the composition Tel(pO-~Z6-~XxB. The 

bottom inclusion defines a map Z6-~Tel(pl) in the other direction. The composition 

Tel(p3--~Z6--~Tel(p3 is homotopic to the identity. This implies that Tel(p3 is a retract 

up to (bounded) homotopy of Z6 and hence is itself finitely dominated. Now consider 

the following diagram: 

y1---~ Z~-----~ Zt 

Yr Z;--,Z, 
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The map hllZl• obviously factors over the subcomplex Z6 which gives the oblique 

arrow. Also Pd Yl=identity by construction. Since Tel(-) is a functor we obtain from 

this diagram a map 

Tel(P1) ~ Tel(h IIZ 1 x 1). 

This map is actually a bounded homotopy equivalence. A homotopy inverse is pro- 

vided by the map of telescopes induced by the oblique arrow. Moreover hllZlxl  is 

clearly a bounded homotopy equivalence (since it is homotopic to the identity). 

Therefore the map Tel(hllZ~x 1)---~Z1 is a bounded homotopy equivalence. Altogether 

we obtain the following commutative diagram: 

Y1----,Z1 

[ 
Tel(pl) 

A similar construction may be performed for the Z2-part of Z leading to an idempotent 

p2 and a corresponding telescope. Now define 

Y' = Tel(p 2) U z0x[_,, ,] Tel(p1). 

By construction Yv-..,,Y' and Y' maps to Z by a v-equivalence. This verifies the approxi- 

mation hypothesis and hence proves the proposition. [] 

The next step will be to analyze the category of bounded acyclic objects with 

bounded support with respect to Bo. Let us begin with the simplest case where B is 

just the product of Bo with an interval. So suppose B=BoX[-1, 1], BI=BoX[0, 1], 

B2=Bo x [ -  1,0]. There is an exact functor 

qo: ~fd(X; Bo) x ~fd(X; Bo) --o 9~bd(X; Bo, B l, B2) 

given by 

(Y,Z)~-.-~((XXBoU r Yx[-1,O]) Ux• 1] UzXXBo); 

YU XXBo Z; (XxB o U r Y• [ -  I, 0]) U XXno Z; YU XXBo(ZX [0, 1 ] tJ zBo)). 

In other words, associated to a pair (Y, Z) there is an acyclic decomposed object over 
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X x B ,  which has Y (resp. Z) sitting over XxB~ (resp. XxB2) and which is determined 

more or less by this condition. Let us call an object in the image of q~ a standard acyclic 
object. 

PROPOSITION 2.8. l f  the control space B is of  the form described above the functor 

q~ induces a weak homotopy equivalence 

tp: bS. 9tfd(X; B 0) x bS. ~fd(X; B 0) --~ vS. 9lfbd(X; B). 

Proof. Consider the composite 

a 

bS.~fd(X; B0) x bS. ~fd(X; B 0) ~ vS. 9tfdd(x; B) --~ bS.gtfd(X; B~) X bS.gtfo(X; B2) 

where a is the map Y~-~(Y1/Yo; Y2/Yo). The composite atp is given by 

( Y, Z) ~'->(EBt Y; Y B2Z) �9 

Since in the case at hand B~ and BE are both controlled homotopy equivalent to B0, and 

suspension induces a homotopy equivalence on the category bS.~f~(X;Bo), the com- 

posite map is therefore a weak homotopy equivalence. Hence q0 is a homotopy 

quivalence if and only if a is one. The map a is just the top map of the diagram of 

Proposition 2.6. Since Bo-~B, the bottom map of that diagram is a homotopy equiv- 

alence and hence so is a. This was to be shown. [] 

We now wish to extend this result to a more general context. The first observation 

is the following 

LEMMA 2.9. Let (B, B 0, BI, B2)--->(B', B~, B~, B~) denote a v-equivalence, i.e. all the 

maps Bi--~B~ (i=0, 1,2) are controlled homotopy equivalences. Then the induced map 

vS.~tf~d(X; b . . . .  B 0, B l , B2) ---> v S .  ~fd(X,  B 0, B 1 , B 2) 

is a weak homotopy equivalence. 

Proof. By an application of the generic fibration theorem, one reduces to proving 
�9 r t that the map vS.gtfd(X;Bo,B1,B z) vS.9~fd(X, Bo, Bi,B~) is a weak homotopy equiv- 

alence. This in turn follows by an application of Lemma 1.3. together with Proposition 

2.5. [] 

Now suppose that B=B~ UBoB 2 and Bo>-->B ~ and Bo)-->B 2 are both controlled homo- 



184 w. VOGELL 

topy equivalences. Then the conclusion of Proposition 2.7 still holds, because there is a 

v-equivalence (B 0, BoX [0, 1], Box [-1,0])--->(B 0, B~, B2). Consider again the case of open 

cones. Let Kor-->K 1, Kor-->K 2 denote inclusions of finite subcomplexes of some sphere 

S n, and let K denote the pushout K~ O x0 K 2. Assume that K0 is bicollared in K. Let B 

(resp. B 0, B l, B 2) denote the open cone on K (resp. K 0, K~, K2). There is a filtration 

B 0 = B(O)cBO)c... cB(Oc... 

inducing fdtrations B~ ~ (resp. "1~176 "2u~ of B 0 (resp. B~, B2) satisfying that 

(i) B=UB (i), Bk=LIB~ ~ (k=O, 1,2) 
(ii) ]~(~ u(i+ l) uk ~ ' k  is a controlled homotopy equivalence (in fact a controlled deforma- 

tion retraction). 

(iii) Let Ui (B0) = {b E BI o(b, B0)~<i}. Then Ut (Bo)~ B (~ 
Bo--->B 1 , Bo--->B 2 for all i. In particular there are controlled homotopy equivalences (0 (0 

The filtration is defined as follows. Let oa(K) = K x  [a, oo) considered as a subset of o(K) 

with the induced metric. Likewise let ca(K)=Kx[O,a]/KxO, i.e. the closure of 

o(K)-o~(K). Recall that Ui(Bo) denotes the set of points of B with distance ~<i. For 

each i there exists a real number a(i) such that Ui(B o) n o~(o(K)co(collar(Ko)). Using the 

linear structure of the collar we may deformation retract this space to its "core" ,  i.e. 

o~(o(Ko). Furthermore, this is a controlled deformation since the points of Ui(Bo) have 

all bounded distance from B0. Now let Bc~ o) fl o~(o(K))U ca(o(K), and B~ ~ similar- 

ly. 

In the preceding we insisted on the condition that B0 be bicollared in B. This 

condition is not satisfied in the case of open cones. But we may replace the control 

space B by B'=B~ UBoxlB 2. Since the map B'--->B retracting the collar inserted is a 

controlled homotopy equivalence, it will suffice by Lemma 1.3 to prove excision for B'. 

Using the collar of B0 it is possible to extend the definition of the map q0, and we claim 

PROPOSITION 2.10. With notations as above, the map 

9: bS. ~)~fd(X; B o) x bS. ~)~fd(X; B o) --> vS ARfbd(X; B') 

given by the inclusion o f  standard acyclic objects is a weak homotopy equivalence. 

Proof. The map q0 actually takes values in the simplicial subcategory 

vS.fft~d(X;B')b.s, of objects with bounded support with respect to B0. Since by Proposi- 

tion 2.7 the inclusion of this subcategory is a weak homotopy equivalence it suffices to 

show that q0 is a homotopy equivalence when considered as a map with range in that 
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subcategory. The filtration of B' described above induces a corresponding filtration of 

the category ~=vS.{R~d(X;B')b.s" by property (iii) above. Let ~0 denote this filtration. 

By Lemma 2.9. the inclusions ~0__.~Ci+l) are weak homotopy equivalences (for i~>1). 

But the control space (B'~~176176 ~~ is v-equivalent to (B0x[-1,1] ,B0x0,  

B0x[0, 1],B0x[-1,0]) (for i~>1). Hence by Lemma 2.9. again and by Proposition 2.8. 

the map :bS.{Rfd(X;Bo)xbS.gifd(X;Bo)---~ ~o is a weak homotopy equivalence if i~>l. 

Since ~=  tJ~ ~~ the inclusions ~t0___~ are also homotopy equivalences. This proves that 

cp: bS.9tfd(X;Bo)xbS.!Rfd(X;Bo)---~ is a weak homotopy equivalence as asserted. [] 

We are now ready to conclude 

THEOREM 2.1 1. The functor from (finite PL subcomplexes of  S | to (spaces) given 
by 

K ~-+ A(X; o(K)) 

is a reduced generalized homology theory. 

Proof. We already know by Corollary 2.2. that the functor K~A(X;o(K))  is 

pointed. So we have to show that it has the excision property and that it is a homotopy 

functor, i.e. it takes a weak homotopy equivalence K-~K' to a weak homotopy 

equivalence A(X; o(K))---~A(X; o(K')). As to the first part, consider the excision situa- 

tion as above: K = K  1 U Ko K2; K 0 is bicollared in K; K0 and KI are subcomplexes of K. We 
must show that the square 

A(X; o(Ko)) ,A(X; o(K1)) 

A(X; o(K2)) , A(X; o(K)) 

is homotopy cartesian. Consider the following diagram. (Let Bi denote o(Ki) again.) 

bS.gifd(X;Bo)XbS.9]fd(X;Bo ) qJ , vS.9]bd(X;B, ) a ,bS.~fd(X;BOxbS.~Rfd(X;B2) 

bS.gifd(X; B 0) = , bS.~fa(X; B0) , bS.9]fd(X; B) 

The right hand square is homotopy cartesian by Proposition 2.6, the map q0 is a weak 

homotopy equivalence by Proposition 2.10. Hence the outer square is homotopy 
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cartesian. This implies that the following square (which is obtained from the preceding 

one by crossing the lower row with the identity functor on bS.~fd(X;B2) and adjusting 

the vertical maps accordingly) is also homotopy cartesian 

bS. 3tfd(X; B0) X bS. ~Rfo(X; B 0) 

1 
bS. 9tfd(X; Bo) x bS.9tfd(X; BE) 

arp 
, bS. 9tfa(X; B~) x bS.3ifd(X; B 2) 

1 
, bS.~tfd(X; B) x bS.9tfd(X; BE). 

Using again the fact that (the geometric realizations of) the spaces in this diagram are 

H-spaces with an inverse, we may cancel one factor bS.~fd(X;Bo) in the left column 

and one factor bS.~Rfd(X;B2) in the right column. We obtain a diagram which upon 

geometric realization and looping gives the desired excision diagram. 

For the second part of the theorem observe that it is sufficient to show that the 

map A(X; o(KxI))---~A(X; o(K)) induced by the projection is a weak homotopy equiv- 

alence. Now from the cofibration sequence K>-~KxI--~cK and from the excision 

property just proved, we obtain a fibration up to homotopy 

A(X; o(K))--~ A(X; o(KxI)) ~ A(X; o(cK)). 

(Actually it is not quite correct to apply the excision property directly to this cofibra- 

tion sequence because K is not bicollared in cK. Therefore to be quite precise one 

should replace cK by cKOxKXI  which is isomorphic to cK.) By Corollary 2.2. the 

bottom term of this fibration is contractible. Therefore the map A(X;o(K))--. 

A(X; o(KxI)) is a weak homotopy equivalence, and hence so is the map induced by 

projection which is a retraction of this map. This ends the proof of the theorem. [] 

Remark. One checks that the argument still works for K = ~ .  Then o(K)=-x-. In 

view of the decomposition R--R+ 0,R_ this implies that the square 

A(X; , )  , A(X; R+) 

1 1 
A(X; R_) , A(X; R) 

is homotopy cartesian. By Theorem 2.1. the lower left and upper right terms are 

contractible. The upper left term is clearly the same as A(X). Hence we obtain a weak 

homotopy equivalence g2A(X; R)=A(X). It is also easy to verify that the decomposition 
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technique also works for a control  space of  the form B x R ,  where B is not assumed to 

be an open cone. By the same argument as above we obtain: 

THEOREM 2.12. For every proper metric space B there is a weak homotopy 

equivalence 

ff2A(X;B• A(X;B). [] 

Remark. From the theorem it follows that ~2"A(X;o(S",I))=~)"A(X;Rn)=A(X). 

Furthermore it is true that �9 " -  zriA(X,R )-Ki_n(Z[~IX ]) for i<~n. The proof  of  this 

statement is given in [V]. Hence  [n]~A(X; R n) is a non-connective spectrum whose 

connective cover is the usual spectrum of  A(X). 
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