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1. In 1915, (see [2] for an edition with added commentary), Lusin asked whether,
for every measurable function f on [0, 2], finite or infinite, there is a trigonometric
series, with coefficients converging to zero, which converges almost everywhere to f.

The problem was solved in the affirmative by Menchoff, [3], [4] (also, see [1]),
for the case where f is finite almost everywhere. Bari, ([2], p. 527), also solved the
problem for the finite case, with Haar functions instead of trigonometric functions;
an interesting but easier bit of mathematics.

By substituting convergence in measure for almost everywhere convergence,
Menchoff, [5], then answered Lusin’s question. He showed that for every measurable
f on [0, 2], finite or infinite, there is a trigonometric series, with coefficients . con-
verging to zero, which converges in measure to f. This work of Menchoff is difficult
to understand. Fortunately, Talalyan has given a brilliant and lucid treatment of
this problem, summarized in [7], where he proves Menchoff’s theorem for every nor-
mal Schauder basis in L,[a,bd], p>1. '

The original Lusin problem remains unanswered, not only for the trigonometric
functions but for any Schauder basis in any L,, p>1. It is not even known whether
any such series converges almost everywhere to - oo; in particular, this is not known
for the Haar functions.

Schauder, [6], originally introduced the idea of basis for the space C [0, 1] as
well as for the L, spaces. It is natural to ask whether Lusin’s problem has an
affirmative answer using this system of functions. It is our purpose here to show
that it does. The problem for this case is, of course, of a much lower order of
difficulty than for the original trigonometric functions, or even for the Haar functions.

Nevertheless, it turns out to be of technical interest in its own right.

(1) Supported by National Science Foundation grant number G-18920.
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2. In a separable Banach space X, a Schauder basis is a (countable) set {x,} in
X such that, for every x € X, there is a unique series >3, a,x, which converges to
z in the norm of X.

For X=C[0,1], for convenience, we define a Schauder basis in a slightly different
form from that given originally by Schauder. Let

2% =t tefo,1], ) 2t, 0<t<,
X, =
2B (H)=1—t, t€[o,1], ¢ 2-2t, i<t<l,
4t, 0<t<}, 4t—-2, }<t<3,
P ()=32—-4¢ i<t<}, P ()=134—-4t, 3I<t<l,
0, i<i<l, 0, 0<t<i,
k-1 2k—1
2" —2(k— 1), o <<
iy (1) = " 2k—1 k
" 2k —2m*¢, gt <t <gms
0, elsewhere,

k=1,...,2™ m=2,3,4,....
It is an easy matter to show that this countable set of functions ordered by

n @ M D @ 1) om
2@, 2B, 2, 2P, 2P, ..., 2%, ..., 22 L

is a Schauder basis for C[0,1].

We shall need the fact, also easy to show, that if f is a continuous function

which is zero at all the points 0, 1, %, %, %,..., (2™ —1)/2™*}, then if its expansion is
a® e a2+ ...
it follows that al=a®=...=af)=...=aP=0.
Moreover, if f€C[0,1] and £>0, there is a g€C[0,1] such that
gl <lifl, mlz:f @) +g@N<e

and g vanishes at 0,1, 1, }, §, ..., (2"*'—1)/2™", where |f||=max {|f(z)|:2€[0,1]}.
A point k/2", m=0,1,2,...;k=0,1,2,... will be called a dyadic poinf. An
interval will be called dyadic if its end points are dyé,dic points. The rank of a

dyadic interval of length 1/2™ is the number m. The rank of a dyadic point k/2"
(k odd) is the number m.
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3. Let Ec[0,1] be measurable and let f be the function which is + o on E
and 0 on the complement, ( E, of E. Let {e,} be a sequence of positive numbers
such that

nli_r)r;e,,=0 and n§18n= + oo,
Let {7} be a sequence of positive numbers such that >7.17,< + .

For each k, let J, be a finite set of dyadic intervals such that

m (B~ U (Jie = E)] < } e

Let m, be the highest rank of end points of the intervals complementary to J,.
Let g, be a non-negative continuous function which vanishes on the complement of
J; and at all dyadic points of rank not exceeding m,+1 and which is equal to &
on a subset I,<J; with m(I;)>m(J;)—%#n,. The Schauder expansion of g, has a

partial sum o
M (D (2™1) 42"
Ay Ty + .o tag

with positive coefficients not exceeding & and

n, 2
E‘ S a’2’>1e on I,
i=m, j=1

=0 on (J;.

Let m, be the highest rank of end points of the intervals complementary to J,.
Let g, be a non-negative continuous function which vanishes on the complement of
J, and at all dyadic points of rank not greater than max (n;, m,)+1 and which is
equal to £, on a subset I,<J, with m(l,) >m(J,)— 47, The Schauder expansion of
g, has a partial sum

(1 D) (2") (")
Apliq Bl T tag Y 2

with positive coefficients not exceeding &, and

e

9t
> a’ xf’>4e, on I,
i=ny+1 j=1
=0 on (J,
By continuing in this way, we obtain a sequence n, <my<...<m< ... such that,
for every k, there is a series

(1) (1) aZM+1) . (27k+1)
ank+1 xnk+1 +...+ aznk+1 xnk+l

with positive coefficients not exceeding &,., and
5~ 642945 Acta mathematica. 111. Imprimé le 12 mars 1964.
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ng+1 26
PN E)
D ala’>%ersy on Iy
i=ng+1 j=1

=0 on GJ K+1e
We then obtain a series expansion in the Schauder functions

2% 2n
aV 2O+ . raP P+ a0+

CJ..

o8

Let R= ﬁ

n=1

et
128

I, and T=

3
]

n

Our series converges to + oo on R and to a finite function on 7'

Now, for each n, séﬂ I,<cEVUZ,,
where m(Z,)=0 and m(E —sfjn I,) <si 5.
It follows that m[(R—E)U (E—R)]=0.
Moreover, for each =, jjn CJ.<CEUY,,
where m(Y,)=0 and m( E _36,, GJ.) <s§ s
It follows that m[(T-CE)U (GE—T)]=0.

We have thus proved the

Lemma 1. If E<[0,1] is measurable, there is a sequence
a®, a3, af,...,a®,...,a%", ...

of non-negative mumbers, converging to zero, such that the series
a® a®+ .. +aP P+ .. el 2P+

converges to + oo almost everywhere on E and to a finite function almost everywhere on G E.

4. We turn now to a consideration of the finite case which rests on the following

two remarks.

Remark 1. Let I, ..., I; Jy, ...,Js be a partition of [0,1]} into dyadic intervals
such that the ranks of the J; are all the same number m, and the ranks of the I;
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are all smaller than m. Let f be a continuous function which vanishes on each I;,
and at the end points of each .J;, and is either non-negative or non-positive on each J;.
It follows readily from the definition of the functions 2%}, 2@, z{°,... that, in the

series expansion of f, @’ =0 whenever i <m, so that f has an expansion
43 0
f=a® P+ ... +aZ 2+ ...

Moreover, every partial sum of this series has norm not exceeding the norm of f,
vanishes on each I, is non-negative on those J; for which f is non-negative, and is

non-positive on those J; for which f is non-positive

Remark 2. If f is a continuous function on [0,1], ¢>0, and n is given, there
is an m>n, a partition I,...,I,; Jy,...,J; of [0,1], and a continuous function g
such that

a) mfz:f(x)Fg(@)]<e,
b) the intervals J; are of rank m and the intervals I; are of rank smaller than m,
¢) g vanishes on each I;, at the end points of each J;,, and is non-negative or

non-positive on each J;,

d) [lgll<lf]l

In order to prove this, let F=[x:f(x)+0].

Then F is the union of pairwise disjoint open intervals K,, K,,.... Let K, ..., K; be
such that m(Ui-1 K;)>m(F)—}e. Shrink and partition each K;, i=1,..., #, so that
it is composed of dyadic intervals.. Then partition the complementary intervals so
that they are dyadic and comprise I,,...,I,. Then further partition the subintervals
of the K; so that they have the desired rank and comprise J,...,J;. The above
shrinking should be of an amount less than }e. Now alter f on a set of measure
less than ¢ so that the resulting function g has properties ¢) and d).
We are now ready to prove the

Lemma 2. If f is continuous, ||f||=Fk, and E=[x:f(x)=0], then for every ¢>0
and m there is a series
a® gD+ .+ a2 22, n>m,

such that mone of the coefficients are greater than k in absolule value,

D WD iy . - i
|a® P+ ... +a? | <k, t=m,...,n, j=1,...,2)
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the functions a® gD ol P
all vanish on a set F with m(E—F)<e, and
[f(@)— (@R 2@ + ... +aF" a3") | <&
on a set of measure greater than 1—e.

Proof. Let g be the function of Remark 2 corresponding to f, m, and ¢&. By
Remark 1, the Schauder series for g has a finite subseries with the desired properties.

LeEMmA 3. If f is conitnuous and E=[z:f(z)=0], then for every >0 and m

there is a series
n: t.2
a® 2P+ . +al? 2

such that all the coefficients are no greater than 7 in absolute value,
|f(x) — (@ 2P + ... +a 27) | <y
on a set of measure greater than 1—1, and all functions
al P+ .. +afa, i=m,..,n, j=1,...,2,

vanish on a set F, where m(E — F)<n.

Proof. There are continuous functions f;,...,f,, all vanishing on E, such that

lfll<m, i=1,..,7, and f=f,+...+f.
Apply Lemma 2 to f,, with e=%/r and m=m,. Obtain a finite sum
aP 2P+ .. +ad 2
Apply Lemma 2 to f,, with e=7/r and m =mn, + 1. Continue in this way. The series

27y

a,(,,,)‘ :L‘(m) + cee + a(,,,) x(m) + cee + Ay Ly
ha,s the desired pr Opel‘ties.

Lemwma 4. If f is measurable and finite almost everywhere, £>0, and m is a

positive integer, then if E=[x:f(x)<e] and n>0, there is an expansion
al 2P+ ... +af 2

such that all coefficients do not exceed &+ 1 in absolute value,
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la@ 2 () + ...+ > (1) |<e, i=m,...,n, j=1,...,2,
for every t€D, where D<E and m(D)>m(E)~n, and
[£0) ~ (a2 22 1) + ... + a3 &5 ()| <,
for every t€ H, where m(H)>1—1.

Proof. Let fi=Xg-f and f,={—f,, where Xz is the characteristic function of E.
There are continmous functions g, and g, such that

mlt:fi O +g,O]1<in, mit:f,(O)+F9,(O)<}n, and |g]<e
By Lemma 2, there is a series
bY aP + ...+ bEV 227,
whose coefficients are less than ¢ in magnitude, such that
[6R 2R (@) + ... + b 2 (t)| <e, i=m,...,n, j=1,...,2},

for all t€D<E, where m(D)>m(E)—n, and
lg: (6)— O a2 () + ... + 557 @) | <37

for every t€K, where m(K)>1—1}1.

By Lemma 3, there is a series
” t 3
PR+ ...tk 2

whose coefficients are less than 7 in magnitude, where the same n can be taken for

both cases by allowing enough coefficients to vanish, such that
[g(t) — (¢ 2R () + ... +c27 237 (1)| <37
for every t€G, where m(G)>1—1}1.
The series O + Ry aw + ...+ (b7 + V) 227

has the desired properties with H=K n Q.
We may now prove the

TuroreM 1. If f is a measurable function, finite almost everywhere, there is a

series
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a® 2® +a® 2B +af’ 2P+ ...,
whose coefficients converge to zero, which converges to f almost everywhere.

Proof. Let {e,} be a sequence of positive numbers such that 27 1&,< + oo.
There is a series

a® 2® + a® 2B+ A aR D+ a2l
such that [1t) — (@B D @) + ... + a5 25> (t) | < &,
for t€E,, where m(D,)<¢, with D,=(E,.
Let fi=f— @ a8+ ...+ a5 ae ).
By Lemma 4, there is a series
a® . 2P+ a2
such that laf*| < e, + ey
and a1 2D 1 (8) + ... +a 2P ()| <&y, t=my+1, ., my, =1,...,2,
for every t€H,, where m{H,)>1-2¢,. Moreover,
| (0) = @1 250 () + ..+ 0 20 ()| <&
for all t€ E,, where m(D,)<¢, with D,=(E,.
Let fa=fi— @0 2P + ... +aE? aZ™),

By Lemma 4, there is a series

1 1 2M3) 2M3)
as,‘=)+1 x;,,3+1 + ...+ ag,,, xs,,,
such that |af?| < eyt &4
1 1 j j s > __ i
and [a® 1 a® i () + ...+ al o (1) | <&y, i=my+], .., mg j=1,...,2),

for every t€H,, where m(H,)> 1-2 £,. Moreover,
12 (0) — @1 2@er () + .. + 0l 22 () <éq

for all t€ E,, where m(D,) <e, with Dy=(E,.
In this way, we obtain an increasing sequence {m,} and sequences {Hy}, {Ey} of
sets such that, for every k, there is a series
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1) (¢ @™E+1) ,2"k+1)
Bmy+1 z”‘k+1+ ctan Mipp1  Tmpey

with laﬁ“|<8k+ek+1.

®» W O L .
(a5 1 2501 (8)+ ... +af O|<er, i=mp+1,...,mg, §=1,...

for all t€ H,, where m(H,)>1—2¢g,. Moreover,

(1) 1y @7 +1) , 2™k+1)
[Fe(®) — (@51 T 1+ oo a0 2 5D (6) | < £ra1

for all t€Ey, . where m(Dy.1) < é&x11, where Dy, 1=0 Ex,; and
_ 1 o @) . 2"‘1:)
fr=fr1— (a5 125 st ... +ag )-
We now show that the series
a® 2B+ a® 2B a2+ ...

converges almost everywhere to f.

We first observe that, for every £,
m .
f=fta® e+ .. a2 ah .

For every r>k+1 and ¢=1,...,2", we have

[F&)— @B () + ... + a2l ()| =|fe @) — (@5, 250, () + ... +af 25 (6)) ]

My41 x”‘k-}-l
<8k+1+8k+1+ .t &,
for every t€ Exi1 N (NsZxyr Hy).

71

But the measure of this set exceeds 1—3 >24,1¢,. The almost everywhere con-

vergence of the series to f then follows since limy_, o >Pres=0.

That the coefficients converge to 0 is obvious.

5. In conclusion, we may state

THEOREM 2. If f is a measurable function, finite or infinite, on [0,1], there is

a Schauder series, with coefficients converging to zero, which converges almost every-

where to f.

Proof. First f=f,+f,+f;, where f, is finite, f; is + o on a set E;, and 0 on
CF, and f, is —cc on a set K, and 0 on ( Z,. By Lemma 1, there are Schauder

series

2
a® 28 +a® 2% +afP 2P+ ... and bY 2B b2 2B+ P 2P+ ...,
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the first of which converges almost everywhere to a function g, which is + oo on B,
and finite on { E,, the second of which converges almost everywhere to a function
g, which is —oco on E, and finite on ( E,, and are such that the coefficients con-
verge to 0 for both series. Let

g=f3_gl xcEl—g2xcE:'
Then ¢ is finite and measurable so that, by Theorem 1, there is a Schauder series
D 2+ B B+ g’ + ..,

with coefficients converging to 0, which converges almost everywhere to g. The

Schauder series
@2 +5Y + D) 2 + (@B + %+ cB) 2B+

has coefficients which converge to 0 and converges almost everywhere to f.
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