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Torbj6rn Kolsrud 

O. Introduction 

The problem treated in this paper can be formulated as follows: Define W as 
the closure of  C~'(R a) in the norm {f lgradflZdx} 1/2. I f  E is open and bounded 
let H(E) be the subspace of W consisting of functions harmonic in E. I f  E is compact 
let H(E) be the closure in W of functions harmonic in some neighbourhood of E. 
(Here d->3; if  d = 2  we replace Co(R d) by Co(D) - -  D the open unit disc - -  and 

we assume that E c c D . )  
A point aEE for which the mapping J~f(a)  is bounded on H(E) is called 

a bounded point evaluation (BPE) for H(E) and our aim is to characterize these 
points. 

In Ferns t r6m--Polking [4] a similar problem is treated for a more general 
elliptic differential operator acting on LP(E), E a compact set in R d. (For a more 

detailed discussion on BPEs we refer to that  paper and the references there.) Com- 
pared to [4] we are here dealing with a special case; we can then make use of  other 
methods, specific to this problem. In particular we apply the operation of sweeping 
out a measure, balayage. We can also take care of  the case when E is an open set. 

We get several conditions characterizing the BPEs. Two of these are to be 
stressed cf. [4, theorems 1 and 3]): The first one is that the fundamental solution 
of the Laplace operator with a pole at a (the function x ~ c o n s t  ]x-al ~-d if d=>3) 
can be continued from E c to R d so as to be an element of  H(E). Moreover, this 

new function is the Newton potential of the Dirac measure b, at a swept out onto E c. 
The second one is a Wiener type condition, the BPEs are precisely the points for 
which E c is subject to a certain kind of thinness. 

The main references are Cartan [2] and Landkof  [6]. Also Hedberg [5] is a 
good reference for sections I and II. 

We will use the following notation: 
For  a (Borel) set B c R  d (d_->3 in sections I - - I V ,  d - 2  in section V) B ~ its 

interior, B its closure, OB its boundary and B c its complement. C o (G) is the space 
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of  all infinitely differentiable functions R a ~ R  with compact support in the open 
set G. A is the Laplacean (O/OxO2+...+(O/Oxa) ~ and gra4 is the gradient 
(O/Oxl . . . . .  O/Oxa). We will use the letter A to denote various positive constants 
(only depending on the dimension etc.). A may then denote different constants in 
the same chain of  inequalities. 

Before turning to the heart of  the matter, I want to thank Lars Inge Hedberg 
who initiated this paper and who has been helpful during the the work on it. 

I also want to thank Bent Fuglede for showing kind interest in this problem. 

I. The space W 

For J~ gEC o (R a) (d~3)  we define ( f [g ) - - f  g r a d f ,  grad gdx. This is an inner 
product and we define the real Hilbert 6pace W as the completion of  C o (R a) with 
respect to the corresp.0nding norm. It is well known that any function in W can 
be represented as the Riesz potential of an L2-function. This means that given f E W  
there exists a function FEL 2 such that 

(1) f(x) = f Ix--yl 1-d F(y) dy. 

We shall use the notation R=(x)=]x] =-d (O<~<d)  so (1) can be written 
J = R  1 * F. 

The (outer) capacity of  a set M c R  d is defined as follows, 

C(M) = inf f f(x) 2 dx, 

where the infumumis taken over all O~fEL 2 such that R l ~ f ( x ) ~ l  for all xEM. 
We say that a statement holds true quasi everywhere (q.e.) or for quasi all x if it is 
true outside a set M with C(M)=0. The elements of  W are equivalence classes of  
functions, two functions being equivalent if they coincide q.e. 

W is closed under truncations. More explicitly: if f E W  then f +  and f -  are 
both in W. Furthermore, if also f ~ 0  then inf ( f ,  A)E W for any positive con- 
stant A. (See Deny--Lions [3, p. 316]) 

Let G be an open and bounded set in R ~. Define Wo(G) as the closure in W 
of  C~~ By the spectral synthesis of Beurling and Deny, 

Wo(G) = {fEW: f - - 0  q.e. on GO}. 

See Hedberg [5] for further details. If  f ,  an element of  W, is orthogonal to all func- 
tions in Co(G ) we get, by Green's formula and Weyl's lemma, that f is harmonic 
in G. Hence, denoting by H(G) the orthogonal complement of  Wo(G). we get 
H ( G ) =  {fE W: A f i G = 0  }. The projection fG onto H(G) of  a function f E W  is the 
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generalized solution of  the Dirichlet problem with boundary value f in the sense 
that f--fGE Wo(G) and thus equals zero q.e. off G. 

I f  F o R  a is compact  we put W0(F)=NG=v Wo(G), G open. We also define 
H(F) as the closure in W of  functions harmonic in some neighbourhood of F; 

i.e. H ( F ) = U ~ e H ( G ) ,  G open. H(F) is then the orthogonal complement of  
Wo(F). Let (G,)[  be an arbitrary decreasing sequence of open sets for which 
( ~  G,=F and dist (F, OG,) tends to zero as n approaches infinity. By using the 
parallelogram identity one can show that J ) = l i m ] ~  . (See [5, pp. 4 5].) 

Hence, if E c R  d is a bounded open or closed set, W splits into perpendicular 
subspaees, 

(2) W = Wo(E)OH(E). 

II. The space do 

W is closely related to Newton potentials of  signed measures ]~, that is, 

(3) U.(x) = f I x -  ylZ-a dt~(y) = Re* l~(x). 

We have A~(lx--ylZ-u)=-AO~ where 6y is the Dirac measure supported by 
{y}. Thus the kernel lx -y l  2-d is - -  except for a multiplicative constant - -  a funda- 
,mental solution of  A with a pole at y. 

I f  f U luL d ) ~ l < ~  we define the energy' of/~ as the non-negative number I ( # ) =  
f UUd# and we write ~tEg. If  also supp g e M  we write /~Eg(M). We use the 
notation g+ for all positive measures in do. 

The kernels R~ satisfy the relation 

(4) A .R~.R~ = R~+~, (0 < ~, [3, ~+[3 < d). 

We can then write (3) as U U - - R ~ . # = A R 1 . R I . # = R I . f  where J'EL ~ if pEdo. 
This describes the connection between d o and W. In fact, potentials of  measures 
in do are dense in W. 

We can also define, for sets M c R  a, an inner capacity, say C', as 

C ' ( M )  = sup I(p), 

the supremum being taken over all #Edo+(M) such that UU~l on M. In view 
of (4) it is not surprising that C'(M) ~-AC(M) for compact  sets M and by Choquet 's  
theorem this holds also for Borel sets. C and C '  being equivalent we will not take 
the trouble to distinguish them by different notat ion so, throughout this paper C 
will denote any o f  these capacities. 

I f  M is a bounded set there exists a measure )~MEdo+(_~) such that UzM=I  

q.e. on M and C(M)=I (2g) . - f  d2~u. )~t is called the equilibrium measure of M. 
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The form (#, v)=f U"d~ is an inner product on g so, 

(5) I(P, v)l 2 N I (p) .  I(v), (p, vEg"). 

(g is a pre-Hilbert space: it fulfills all the requirements for a Hilbert space except 
being complete.) 

The inner products (., .) and (. ].) are related by the identity 

(6) (p, v) ~- A.(UufUV), (p, vEg). 

In  particular, 

(6") I(p) = (it, it) = A.(UuIU~), (pEg). 

(See [6, p. 97].) 
The operation W3f-~ feEH(E)  has an analogue for measures. Assume that 

p is a positive measure and that U u ~ oo. Then there exists a measure pE~0 sup- 
ported by E ~ such that UuE~ U u everywhere and equality holds q.e. on Eq If  p 
is of  finite energy then so is p~. (If p is a signed measure we treat/~+ and /~-  sep- 
arately.) The operation p ~ p ~  is called "'sweeping out" or balayage. One sweeps 
# out onto EL 

A function V: Ra~(  - ~ ,  ~o] is said to be superharmonic if  it belongs to L~o c 
and if AV~O. In particular, for any measure p ~ 0  with UUEL~o~, U ~ is a super- 
harmonic function. We denote by S H  the class of  positive superharmonic functions. 
The potentials U u, # ~ 0  can then be characterized by 

UU~ =- inf {VE SH: V = U ~ q.e. on EC}, (p ~ 0). 

(See [2, pp. 255 and 260].) 
From now on we assume that E is a bounded open or closed set. By (6), g c ~  W 

so for any pEo ~ we can define U~:, 
Consider the following diagram 

e , S ( E  ~ 

' L l 
W , H(E).  

the projection of U u onto H(E).  

Here the rows are the projections #-~PE and f ~ f E  respectively. The vertical 
arrows represent the injection map p-+ U u. Knowing that this diagram is commuta- 
tive will be essential for what follows. For  the reader's convenience we include a 
proof  of  this known fact. 

We have to showtha t  U ~ = U  u~ for any measure p e g  and we can assume 
that p--~0. Suppose first that E is  open. We have peEg so UU~E W. But supp ~tEcE c 
implies that U uE is harmonic in E and thus U~EEH(E). Since U~(x)= UU(x) = 
UUE(x) for quasi all xEE ~, U~-UU~EWo(E) whence U~z--U"EEWo(E)n 
H(e) = { 0 } .  
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I f  E is compact,  choose a decreasing sequence (E,)~" of  open sets such that 
lira dist (E, OE,)=0, n ~ ,  and [~ E,--E. Let us, for a more convenient nota- 
tion, put u ,=UUe,  and u = U  u~. We know that u,=-Uf,  and by what was said 
in section I, U f - ~  U~ in W. By selecting a subsequence if necessary we can assume 
that this holds also q.e. Thus it suffices to show that u , ~ u  q.e. 

Letting J , - { r E  SH: v= U ~ q.e. on E,~}, (J,)~ is a decreasing sequence and 
u, is the infimum over J , .  Thus (u,(x))~ is, for quasi all x, an increasing sequence 
and therefore it has a limit q.e. This limit is q.e. equal to the infimum over c~J,. 
But since this also applies to u, u = l i m  u, q.e. and the assertion follows. 

Hence we get 

(7) U~ = inf{vESH: v = U u q.e. on E~}, (pEg+).  

The relation (6) has the following important  generalization 

(S) f g d p  : A(glV"), (gEW, u<g).  

A consequence of this is that {U", p~g(EC)} is dense in H(E) since the elements 
of  Wo(E) are precisely those in W which ~anish q.e. off E. 

IlL Bounded point evaluations 

Assume that aEE and consider the measure 6,E, b a swept out onto E c. (If  
E is open this is the harmonic measure.) We use the notation HE(- ,  a) for U ~-~. 
This function, harmonic in E ~ and equal to U6o(x)= I x - a l  2-d for quasi all xCE ~, 
will be thoroughly examined. The case when H~(. ,  a)EH(E), and thus 6,EEg 
by (6), will be of  particular interest to us. 

The swept out measure 6,E fulfills, by [2, pp. 264--265] and Fubini's theorem, 

(9) U (a) = f V"a o  = f a)d#, (pEg+). 

I f  /~Eg(E~), U ~ = U ~ = U  u and we get, by (9), 

UU(a) = f i l E ( . ,  a) dp + - - f i l E ( . ,  a) dp-,  

if U "+ and U u- are both bounded. From what has been said above it is clear that 
such potelUials form a dense subset of  H(E). Hence we can define the mapping 
J~f (a)  densely in H(E) and we say that  a is a bounded point evaluation (BPE) 
for H(E) if this mapping is bounded. 

Thus, a is a BPE for H(E) if and only if there exists a function gEH(E) 
such that, 

(10) fg~(., a) d/~ = (glS"), 

for all measures of  the above mentioned kind. 
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Theorem 1. Assume that E is an open or closed relatively compact set. Then 
aGE is a BPEJbr H(E) i f  and only if He( ' ,  a)EH(E). 

Proof Suppose H e ( - ,  a)(H(E). Bearing in mind (8) and (9) a is then clearly 
a BPE for H(E). 

Conversely, suppose a is a BPE for H(E). If  u is a suitable multiple of  the 

representing function g, we get by (8) and (10), 

(ll) UU(a) = f i l e ( . ,  a)d# = f a#, 

By (11) u = H E ( ' ,  a) q.e. on E ~. 
We know that qg~0 implies ~0e=>0 and f or any ~PECo(R a) we get, Au(~o)= 

u(A~o)=-(ulq~)=--(ul~oe)--(ulq~--~oE)=-A~pE(a) since u and ~P-~Pe are ortho- 

gonal. Thus Au<=O and u is a superharmonic function. 
It is well known (see e.g. the proof  of  theorem 6.4 in [6, pp. 360---362]) that 

functions in W fulfill 

(12) f = AU - ~ ,  ( fEw).  

Applying this on u, we get uE SH. Thus, by (7) and the above observation, 

03) u = inf{v6SH: v = He( ' ,a )  q.e. on E c} 

which means that u=HE(. ,  a). Q.E.D. 

Remarks 1. The theorem can be formulated in the following manner: a is a 
BPE for H(E) if and only if the fundamental solution of  A with a pole at a can be 
continued from E c so as to be an element of H(E). 

This means that we can solve - -  in W - -  the Dirichlet problem with boundary 
data x o  Ix-a] ~-d given on OE, the boundary of E. Furthermore, this unique 
solution (or continuation) is nothing but the potential of  5, swept out onto E c. 

Note also that by (6) a is a BPE for H(E) iff 6,e is of  finite energy. 
2. We assume, with no loss of  generality, that a---0 is a BPE for H(E). Put 

#=6oe and Q=EL Let Q'={x'=x/[x]2: x(Q} be the inversion of  Q in the unit 
sphere S d-1. 

We can transform # to a measure #' on Q' by the formula d#'(x')-~ 
[x-a]2-ad#(x). Then I (# )= I (# ' )  and the latter quantity is (if 50e~60 which 
is necessary in order that 0 be a BPE) equal to the capacity of  Q'. (See [2, pp. 275-- 
277].) 

Hence a is a BPE for H(E) iff (EC)" has finite capacity. In the terminology of 
Brelot [1, p. 31] a is a BPE iff (E 0,  is thin at the point of infinity. 
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IV. A Wiener condition 

E c is by definition said to be thin at a point a if 6,~ r 6 a. Recalling what was 
said above it is clear that this condition will not guarantee that a be a BPE. (Thinness 
is actually a regularity condition for the Diriehlet problem.) 

The points of  this kind are completely characterized by Wiener's criterion: 

(14) Z•  C(A,(a)~E) 
C(A,(a)) < co 

where we have denoted by A,(a) the annulus {x: 2 - " - l < ] x - a  I-<2-"}. 
It is surprising that there is, in fact, a condition similar to (14) which turns 

out to be the proper one. 

Theorem 2. a is a BPE JOt H(E) i f  and only if  

C(A,(a)~E) 
(15) ~ C(A,(a)) 2 < ~ .  

Proof. Note first of  all that C(A,(a))~2 -"(n-~). We assume (15) for a = 0 .  
Then for any #Eg+(E ~) we get, letting A,=A, (0 ) ,  

v.(o) = Y. f ao\E Ixl~-d d~(x) ~ A 2 2"(d-~) f a.\Ed" 

= A 2~ 2"("-z)fa,,\ ~ UZ"dP, 

where 2. is the equilibrium measure for A . \ E .  Cauchy's inequality gives 

c,(o) ~= A Z {2"'"-~'(f u~-~r (Lo\E u" du) ~/~} 

= A Z {(2~"'"-~)C(A.\E))I/~{L.\,U"a,)~/~} 

A {~ 22n(d-2'C(A.~E)} 1/2 {~a f..aE u. a,} 1'~ 

= a { ~  C(A.\E)/C(A.)Z} 1/z �9 I(p) 1/2. 

Let (Ej) be a sequence of  open sets decreasing to E, and apply this to # = p j =  
J0,~j~#. Then UuJ(O)=I(/tj), SO I(#j) has a uniform bound. It follows that fi0,E~o ~, 
so (15) is sufficient. 

For  the converse, supposing 0 to be a BPE for H(E), we have by theorem 1, 
HE(x, O)=R~.h(x) for some h~L z. This gives q.e. 

(16) f R l ( x -  y)lh(y)] dy ~_ HE(x, O) ~ A2 "(d-2), (x6 A.~E).  
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Letting B , = { y :  Iy l<2 -"-= or ly l>2- '+a},  we get 

f . R~(x-y)lh(y)l dy ~ f Rl(x-y)lh(y)l dy 
n !x--YJ - ~ 2 - n - 2  

<= A { f  ,,,>_=_~ Ri(y)~dy}a/~.llhll 2 <= A2 "(a-2)/2, 

for all x~A,. This estimate gives, invoking (16), 

f <  Ra(x-y)Ih(y)L dy ~ A2 "(a- 2), 

for quasi all x E A , \ E  which means that 

C(A.~E) <= A f B (Ih(y)l 2 -"(d-~))2 dy. 

Multiplying with 2 ~"(a-~) and summing over n, one finally gets 

2 22"(a-z) C(A,~E) <= A --~ f [h(Y)[~ dY <= A f lh(y)l~ dY 

and (15) follows. 

Remarks. 1. It so happens that one can use a result of  D. R. Adams [7], on 
functions of  finite capacity, to deduce theorem 2. in fact, the Adams theory can 
be used to obtain quite general extension theorems for non-linear potentials of  
positive measures. The result is in the spirit of  theorem 2, but we omit the precise 
formulation. 

2. In the language of  probability theory, (15) is quite suggestive. Let Px denote 
the probability measure of  a Brownian motion {X(t), t_>0} starting at xCR a 
and let z M denote the hitting time of  the set M, ZM=inf { t>0:  X(t)EM}. Then 
(15) is equivalent to 

f {22 2"(e-2) P" (ZA.(,)\~ < ~)} dS < ~,. 

Here dS denotes the uniform probability measure on the unit sphere sd-a= 
{lX{=I}. 

On the subject of  Brownian motion in this connexion, see e.g. Port and 
Stone [9]. 

3. In [8] B. Fuglede introduces the space H(E) where E is allowed to be a quasi- 
coanalytic set, i.e. E c differs from an analytic set by at most a set of  capacity zero. 
Then the " H "  in H(E) refers to finely harmonic functions. 

It turns out that the "BPE-points" of  a set E are precisely the set of  removable 
singularities for functions in H(E). Hence this set forms, in a sense, a natural domain 
of  definition for finely harmonic functions. 
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4. Let, for  a given set E, E '  denote the points where E c is thin, and let E "  
denote the set o f  BPE ' s  for H(E). I f  the dimension d=>4, the counterexample in 

[4] can be seen to have E "  as a proper  subset o f  E ' .  In fact, E " = 0 ,  and E=E'. 
This is however  impossible in two or  three dimensions. See [8] for a discussion of  
this phenomenon .  

See also [2, p. 277] for  an  example o f  a point  aEE'\E".  

V. The planar case 

Most  o f  what  is said in sections I - - I V  remains true - -  after some necessary 
alterations - -  also in the case d = 2 .  The functions considered are assumed to have 

their supports  in the open unit  disc D = { l x ] < l  }. Then W will be the closure o f  

Co(D) with respect to the no rm {f  Igradfl2dx} lm and we still have, for  E an 
open or closed relatively compact  subset o f  D, 

W = W0(E) e / ~ ( E ) .  

Newton  potentials are replaced by Green potentials, i.e. 

u (x) = f G(x, y) dp(y), 

where p is a signed measure with its support  in D and G is Green's function for  D, 

G(x, y)  = log [(1 --2y)/(x--y)], (x, yED). 

I f  we replace E c by D \ E  and H ~ ( - ,  a) by the Green potential  o f  6, then every- 
thing in sections I and I I  remains true. In  section I I I  we cannot  per form the inversion 

under remark 2 but  apar t  f rom this there are no  changes. 
Section IV can also be left a lmost  as it is but  we want to point  out  that  for 

d = 2 ,  C(A,(a)) behaves as n, so explicitly (15) reads 

Z2 < 
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