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Introduction 

Let  ~ be a projective plane, L, M two lines of ~, ~ the set of points on L 
excluding the point of intersection of L and M, and I a point of ~ lying on 
neither L nor M. I f  J is any point of ~ not  lying on L or M we can define 
a permutat ion r of ~ by  first projecting L onto M through I and then pro- 
jecting M back onto L through J .  We denote the set of permutations r obtained 
from every such J by B. ~ has the following properties which are characteristic 
of projective planes. 

I I ~ R  
I I  I f  ~,fi, y , $ E ~ ,  ~ #  fi, y #  ~ there is a u n i q u e  member r of R with 

the properties r(~) -~ 7, r(fi) = (~ 
I I I  The relation ~ on J~ defined by  r ~ s if r = s or r(cr  s(c~) for every 

a C ~ ,  is an equivalence relation. Each equivalence class is sharply transitive on 
~ ,  i.e. if  a, f i e  ~ each class contains exactly one member r with r(~) = ft. 

A set ~ of permutat ions on a set ~ which satisfies I, I I  and I I I  will be called 
sharply doubly transitive and if G is a group of permutations on ~ which contains 
B we call R a sharply doubly transit ive subset of G. 

A consequence of the axiom of :pappus in a projective plane is tha t  any pro- 
ject ivi ty of a line which transposes two points of the line must act as an involution 
on the line. The converse of this result follows from a theorem of J.  Tits [4]. The 
unrestricted group of projectivities on a line in a projective plane acts tr iply 
transit ively on the points of tha t  line and it is a simple consequence of the result 
of Tits tha t  a t r iply transit ive group in which only involutions transpose symbols 
must be a group PGL(2 ,  F)  of all bilinear transformations 
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ax -~ b 
x ~ -  ad -- bc =/= 0 

cx §  

over a field F. This is enough to ensure tha t  Pappus'  Theorem holds in the plane. 
Here we investigate the less restrictive situation suggested in the first paragraph. 

Our main result is 

THEO~n~ 1. Let G be a group of permutations on a finite set ~ .  Suppose that 
G contains a sharply doubly transitive subset 17 and satisfies 

IV I f  g E G, a E ~ ,  g(a) :/: a but g~(a) = a then g2 _~ 1. 
Then G has a normal regular subgroup V and 

(i) i f  a E ~ the stabilizer of a in G contains a subset 17, such that 17 ~ V1?, 
(ii) the stabilizer in G of any two elements of ~ is an elementary abelian 2-group 

(possibly 1). 

The proof relies heavily on M. Aschbacher's classification of finite doubly 
transitive groups in which the stabilizer of any two points is abelian. 

Our result has the following consequence for the theory of projective planes 

T~EORE~ 2. Let ~ be a finite projective plane and let L, M, ~ ,  I and t t  be as 
in the first paragraph above. I f  17 generates the subgroup G of the symmetric group 
on ~ and G satisfies I V  then ~ is the dual of a translation plane. 

The proof is direct and will not be given here. 

Proo! of Theorem 1 

We now suppose that  G satisfies the hypotheses of Theorem 1. I f  ~, fi E 
and K is any subgroup of G we write K~ for the stabilizer of ~ in K and K ~  
for the stabilizer of cr and fl in K. 

We note first that  G is clearly doubly transitive on ~ .  
Let  ~, fi be any two fixed symbols of ~ .  As G is doubly transitive G contains 

a member a which interchanges ~ and ft. :By assumption we then have a 2 --~ 1. 
I f  h E G.a, ah also interchanges a and fi so that  (ah)~ = 1. Hence every member 
of aGaa is an involution and so G~a is abelian. We can now apply Aschbacher's 
result [1] and deduce tha t  one of the following is true 

(1) G has a normal regular subgroup. 
(2) G : L 3 ( 2  ). 
(3) G ~--17(3) the smallest l~ee group. 
(4) G has a unique minimal normal subgroup M(G) with G C_AutM(G)  

and M ( G ) =  L2(q) , U3(q), Sz(q) or 1?(q). 
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B y  equa l i ty  in each case we mean  t h a t  G or M(G) is p e r m u t a t i o n  isomorphic 
to  the  given group where  the  l a t t e r  has  its usual  represen ta t ion  as a doub ly  t rans i t ive  
pe r mu ta t i on  group.  I-Iowever there  is no loss in genera l i ty  b y  assuming t h a t  this 
re la t ion is equal i ty .  

Our immedia te  task  now is to show t h a t  conclusions (2), (3) and  (4) cannot  hold 
unless (1) also holds. 

L3(2 ) contains the  ma t r ix  

ti l i)  oo 
which interchanges  the  vectors  

and  

bu t  is no t  an  involut ion.  Thus  G v~ L3(2 ). 
_R(3) has order  28" 27 �9 2 and degree 28. E v e r y  involut ion of R(3) f ixes four  

symbols.  Suppose t ha t  G ~ _R(3). R contains a member  in terchanging two symbols 
of  ~ and  r 2 ~ 1. Thus  r f ixes four  symbols  of  ~ which is impossible as 1 is 
the  on ly  member  of  r f ix ing two symbols  of  ~ .  }fence G :# R(3). 

Now suppose t h a t  case (4) of Aschbacher ' s  resul t  applies. We notice f i rs t  t h a t  
in each case M(G) is doub ly  t rans i t ive  on ~ .  In  each ease the  stabil izer M(G)~, 
of  a in M(G) has a character is t ic  subgroup,  say  Q~ which is regular  on ~ - -  {a}. 
As M(G) is doub ly  t rans i t ive  on ~ we have  G ~ G~M(G). I f  a is a m em b er  of 
G which in terchanges  ~ and  fi each coset of  M(G) in G contains a m em b er  of 
aG~. As all the  members  of this set are involut ions  it  follows t h a t  G/M(G) is an 
e l ementa ry  abel ian 2-group. 

W e  now consider the  different  possibilities for M(G) in turn .  
Suppose t h a t  M ( G ) ~  Le(q). L e t  x be an y  member  of  G~. Then x normalises 

Q~. Suppose h E Q - {1}. l~rom the  proper t ies  of  Aut  L2(q) there  is a member  y 
of  PGL(2, q)~ with  the  p r o p e r t y  h * :  h r . P u t  z ~ xy -1 so t h a t  h * :  h. Now 
let w be any  member  of  L2(q)~. As bo th  G~ and PGL(2, q)~ are abel ian and 
contain Le(q)~z we have  (h~) = :  h w. L2(q)~a contains e i ther  q -  1 or � 8 9  1) 
members  and none of  these commutes  wi th  a m em b er  of O~. Hence  z centralizes 
e i ther  q or �89 ~- 1) members  of Q~. As �89 -{- 1) ~> �89 we f ind  t h a t  in e i ther  
case z centralizes Q~. As z centralizes L2(q)~ it  now follows t h a t  z centralizes 
L2(q) ~. G/M(G) is an e l ementa ry  abel ian 2-group so t h a t  z 2 E M(G). Thus z ~ lies 
in the  centre  of L2(q)~, and so z 2 ~ 1. L e t  a be a m em b er  of L2(q ) which inter-  
changes ~ and  fi. Then  az also in terchanges  ~ and  fl so we have  b o th  a 2 : 1  
and (az)2: 1. Thus  z centralizes a. As L2(q) ~ is a max ima l  subgroup of L2(q) 
i t  now follows t h a t  z centralizes L~(q). B u t  z E Aut  L2(q) so t h a t  z ~--1. Hence  
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x E .PGL(2, q) and so e i ther  G =-L~(q) or PGL(2, q). In  e i ther  case we get  a 
cont rad ic t ion  to the  resul t  in [3] unless G ~ L2(q) where q ---- 2 or 3. Both  of  these 
groups have  a normal  regular  subgroup.  

I n  considering the  groups Ua(q) we will adop t  the  no ta t ion  of  [2, p. 233 f]. I f  
/c lies in the  field wi th  q~ members  SU(3, q2) contains the  ma t r ix  

which interchanges the  subspaces ~wl} and  ~wa}. The  square of this m a t r i x  is 

and the  condit ions t h a t  this be a scalar m a t r i x  is /c 3(~-1) = 1, or k 3(~-1) = 1. This 
is t rue  when  k is a pr imi t ive  e lement  of the  f ie ld  only  when q = 2. Hence  we 
cannot  have  M(G) = U3(q) excep t  in the  case q = 2. Then  U3(q) is a :Frobenius 
group and  G would have  a no rma l  regular  subgroup.  

Suppose n e x t  t h a t  .M(G) = Sz(q). Then  M(G)~ has odd order  and  as G/M(G) 
is an e l ementa ry  abel ian 2-group each eoset of  2~F/(G)~ in G~ contains exac t ly  
one involut ion  and t h e y  all lie in different  classes of  G. Le t  z be an involut ion  
of  G~--M(G)~r a n d p u t  D = { o E ~ . ;  z ( ~ ) = o } .  I f  a, b E D  we can easily show 
t ha t  

c(z)  = ix  E a; x(.,) e x(b) C 

This is because all the  involut ions  of  G~ lie in different  classes of  G. Hence  C(z) 
is doub ly  t rans i t ive  on /2. Now z E G~ so t h a t  z normalizes Q~ and  so normalizes 
Z(Q~). As Z(Q~) is a 2-group and  z 2 ~  - 1, h ~ :  h for some h E Z ( Q ~ ) -  {1}. I f  
w E M(G)~,  wz -~ zw so t ha t  (h~) ~ -~ h ~. :From the  proper t ies  of  Sz(q) i t  follows 
t ha t  z centralizes Z(Q~). Now Z(Q~) has order  q and  Q~ has order  q~. We 
m a y  suppose t h a t  z central izes mq members  of Q~ where m divides q. z 
centralizes the  q - -  1 members  of  M(G)~z. Hence,  because of the double  t r ans i t iv i ty  
p r ope r ty  of  C(z), z central izes ( q - -1 )mq(mq~  1) members  of  Sz(q). This 
nu mbe r  mus t  thus  be a divisor of  the  order  of  Sz(q) which is (q - -  1)q2(q 2 -~ 1). 
Because  m and  q are powers of  2 we can deduce t h a t  mq-~ 1 divides q2 ~ 1. 
:From this we easily deduce t h a t  m --~ q and so z central izes Sz(q). As z E Aut  Sz(q) 
we mus t  have  z : 1, a contradic t ion.  Thus  G ~-- M(G) -~ Sz(q) which cont radic ts  
the resul t  in [3]. Hence  we cannot  have  M(G) : Sz(q). 

Las t ly  under  (4) we consider the possibi l i ty t h a t  M(G) --~/~(q), a group of  Ree  
type.  The  proper t ies  of  these groups m a y  be found  in [5]. Le t  t be the  unique  
involut ion of  ~R(q)~. As M ( G ) ~  G~, t has no other  con juga te  in G~. Le t  ~2 
be the  subset of ~ f ixed  pointwise b y  t. As above we f ind  t h a t  i f  a, b E ~9, t h en  
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C(t) : {x E G; x(a) E .(2, x(b) E/2}. 

H e n c e  C(t) is doub l y  t r ans i t ive  on /2. As C(t) N R ( q ) = { 1 ,  t } x K  where  K 
is i somorphic  to  L~(q) we f ind  t h a t  /2 m u s t  have  q ~- 1 m e m b e r s  and  we m u s t  
have  K p e r m u t a t i o n  i somorphic  to  L~(q) as a p e r m u t a t i o n  g roup  on /2. We  
wri te  K = L2(q). Suppose  now t h a t  z is a 2-element  of  G ~ z -  M(G)~z. Then  
z ~ E M(G)~  os t h a t  e i ther  z 2 - -  - 1 or z~-----t. I n  e i ther  case z ~ central izes K.  
Clearly z normal izes  K .  Us ing  the  same  considerat ions as we appl ied  above  to 
the  case M ( G ) ~  L~(q) we can  p r o v e  t h a t  e i ther  z central izes K or ac ts  on  
K ~ L2(q) as an  involu t ion  of  PGL(2,  q)~. N o w  consider the  r ep re sen ta t i on  of  
C(t) as a p e r m u t a t i o n  g roup  on /2. F r o m  the  above  i t  follows t h a t  the  image  of  
C(t) under  this r ep resen ta t ion  is e i ther  L2(q) or PGL(2,  q). The image  of  R rl C(t) 
is t h e n  a doub ly  t r ans i t ive  subse t  of  the  g roup  which  occurs. This  con t rad ic t s  the  
resul t  of  [3] excep t  when  q = 3 and  the  g roup  which  occurs is L2(q). I n  this  case 
we get  the  on ly  g roup  of l%ee t y p e  for  the  p a r a m e t e r  q ~ 3, n a m e l y  the  Ree  g roup  
R(3) of  order  28 �9 27 �9 2 and degree 28. B u t  _R(3) _~ PILL(2, 8) _~ Au t  L~(8). Hence  
Au t  _R(3)= _R(3) so t h a t  G = M ( G ) ~  R(3) and  we have  a l r eady  shown t h a t  
we canno t  h a v e  G = R(3). 

We  have  now shown t h a t  conclusions (2), (3) and  (4) of  Aschbache r ' s  resul t  
canno t  hold  unless (1) holds also. We  now inves t iga te  conclusion (1) in more  detail .  

Assume  f r o m  now on t h a t  G has  a regular  n o r m a l  subgroup  V and  let  a be  
a f ixed  m e m b e r  of  ~ .  I f  H is the  s tabi l izer  o f  a in G we have  G =  V H  a n d  
V N H = 1. As G is doub l y  t r ans i t ive  V is an  e l e m e n t a r y  abe l ian  g roup  and  
we m a y  t ake  V as a vec to r  space over  a p r ime  f ie ld  2, of  order  say  p a n d  H as 
a group  of  l inear  t r an s fo rm a t i ons  over  V. I f  v E V, h E H we will denote  the  
e lement  vh of  G f rom now on also b y  (v, h). W e  m a y  iden t i fy  the  e lements  of  

wi th  those  of  V in such a w a y  t h a t  we m a y  assume t h a t  G is d o u b l y  t r ans i t ive  
on V and  (v, h) is the  m a p p i n g  V --> V given b y  w --> v ~ h(w). W e  shall  wr i te  
(v, h)w ~ v -}- h(w). U n d e r  this  iden t i f i ca t ion  a corresponds  to  0. 

Suppose  v E V - -  {0}. The  m e m b e r s  of  G which  in te rchange  0 a n d  v are  the  
e lements  (v, h) wi th  h(v) ~ v ~ O. Such an  e lement  of  G m u s t  be  an  invo lu t ion  
a n d  the  condi t ion for this  is h ~ =  1. 

W e  now spli t  our  considera t ions  into two pa r t s  depending  on whe the r  p is 
odd or even.  

F i r s t  suppose  t h a t  p is odd. L e t  S be  a n y  sha rp ly  doub ly  t r ans i t ive  subset  
o f  G. Then  S conta ins  a m e m b e r  (v, h), h ~ = 1 which  in te rchanges  0 and  v r 0. 
I f  h(w) = w  for some w E  V - - { 0 }  we have  

(v, h)(�89 + ~,w) = i v  + ~w 

for  each cr E 2,. B u t  1 is the  on ly  m e m b e r  of  S which  f ixes two  m e m b e r s  of  V 
so t h a t  no such w can exist .  B u t  H is a g roup  of  l inear  t r an s fo rma t ions  on V, 
h ~ =  1 and  char  2 '  :~ 2. The  only  poss ib i l i ty  is h = -  1. Hence  S contains  all  
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the  vec tors  ( v , - - 1 ) , v r  0. Suppose  v r  0. Then  the  set  ( v , - -  1)-1S is also a 
sha rp ly  doub ly  t r ans i t ive  subset  of G and  so conta ins  eve ry  vec to r  of  the  fo rm 
(w, - -  1), w~= 0. Hence  S conta ins  eve ry  vec to r  of  the  fo rm (v, - -  1)(w, - -  1) 
(v - -  w, 1), v, w ~= 0. As v has  more  t h a n  two  e lements  this is enough to  ensure  
t h a t  V _c S. I f  g C S g - i S  is also a sha rp ly  doub ly  t rans i t ive  subset  of  G so 
t h a t  V c g - i S  or g V  c S.  N o w  consider R and  p u t  R ,  = R[7  H.  We  then  
get  ~ VR,. :Finally suppose  (0, h) f ixes  0 and  v. (v, - -  l)  in te rchanges  0 and  
v so t h a t  ( v , -  1)(0, h) does also. Hence  this is an  involu t ion  so t h a t  h e =  1. 
This  proves  T h e o r e m  1 in the  case t h a t  p is odd. 

N o w  suppose  t h a t  p --~ 2. I f  v =~ 0, (v, 1) in te rchanges  0 and  v. I f  h(v) ~- v, 

(v, h) also in te rchanges  0 and  v and  so is an  involut ion.  Hence  h 2 - -  - 1 aud  we 
deduce t h a t  the  s tabi l izer  of  a n y  two points  is an  e l e m e n t a r y  abe l ian  2-group. N o w  
refer  to  the  r e m a r k  of [1, p. 114]. E i the r  G is a group of semil inear  t r an s fo rma t ions  
over  a f ie ld  or V has  order  q2 and  H is i somoiph ie  to  L~(q), Suppose  t h a t  the  
f i rs t  is t rue .  W e  m a y  t ake  V as the  add i t ive  g roup  of  the  f ie ld and  H is t hen  the  
set  of  t r an s fo rma t i ons  of  the  fo rm x ~ ax  ~ where ~ is a f ie ld a u t o m o r p h i s m .  The  
t r ans fo rma t ions  which f ix  0 and  1 are those  of  the  fo rm x --> x ~ and  the  condi t ion 
t h a t  this  be  an  involu t ion  is a ~ - -  - 1. A f ini te  f ie ld  contains  a t  m o s t  one au to-  
m o r p h i s m  which is an  involut ion,  so t h a t  the  s tabi l izer  of  a n y  two points  has order  
a t  m o s t  two.  Suppose  t h a t  the  s tabi l izer  of  0 and  1 has  two m e m b e r s  1 and  x - +  x ~. 
Then  G conta ins  two m e m b e r s  in te rchanging  0 and  1, n a m e l y  x--> x ~- 1 and  
x - ~  x ~ zr 1. The  la t t e r  is con juga te  to x - ~  x ~ and  so the  only involut ions  of  G 
f ix ing less t h a n  2 symbols  are those of  V. The  same is c lear ly t rue  if  the  s tabi l izer  
of  a n y  two  points  has  order  1. Now consider the  o ther  case when  V has  q2 m e m b e r s  
and  H is i somorphic  to L2(q). I f  a is an  involu t ion  of  H then  a f ixes exac t ly  
q symbols  of  V and  as C ( a ) N  H has  order  q, C(a) has  order  q2. Thus  a has  
q(q2 _ 1) conjugates .  The  n u m b e r  of  conjugates  in H is q~ - -  1 so t h a t  the  n u m b e r  
in G -  H is ( q -  1)(q ~ -  1). As G is doub ly  t r ans i t ive  each of the  q 2  1 cosets 
o f  H in G - -  H conta ins  the  same n u m b e r  of  these  involut ions .  This  n u m b e r  is 
q - -  1. As each such coset conta ins  q involut ions  each  contains  exac t ly  one m e m b e r  
f ix ing less t h a n  2 symbols  o f  V and  th is  is a m e m b e r  of  V. I n  a n y  case we h a v e  
shown t h a t  i f  p ~ 2 t h e n  the  only  involut ions  of  G which f ix  less t h a n  2 symbols  
are those  of  V. L e t  S be  any  sha rp ly  do ub ly  t r ans i t ive  subset  of  G. Then  S 
conta ins  one such involu t ion  f rom each coset of  H in G. Hence  V c_ S. As in 
the  case t h a t  p is odd  this  is suff ic ient  to es tabl ish  Theo rem 1. 

The  p roo f  of  T h e o r e m  1 is now complete .  
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