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Introduection

Let 7 be a projective plane, L, M two lines of z, > the set of points on L
excluding the point of intersection of L and M, and I a point of = lying on
neither L nor M. If J is any point of # not lying on L or M we can define
a permutation # of > by first projecting L onto M through I and then pro-
jecting M back onto L through J. We denote the set of permutations # obtained
from every such J by R. R has the following properties which are characteristic
of projective planes.

I11€R
II If o, B,9,6 Ez, « # B, y % 0 there is a unique member r of R with
the properties r(x) =1y, r(f)= 29
IIT The relation ~ on R defined by r ~s if r =s or r(x) # s(a) for every
« € >, is an equivalence relation. Each equivalence class is sharply transitive on
>, ie.if «, B € each class contains exactly one member r with r(x) = p.

A set R of permutations on a set » which satisfies I, II and III will be called
sharply doubly transitive and if G is a group of permutations on > which contains
R we call R a sharply doubly transitive subset of G.

A consequence of the axiom of Pappus in a projective plane is that any pro-
jectivity of a line which transposes two points of the line must act as an involution
on the line. The converse of this result follows from a theorem of J. Tits [4]. The
unrestricted group of projectivities on a line in a projective plane acts triply
transitively on the points of that line and it is a simple consequence of the result
of Tits that a triply transitive group in which only involutions transpose symbols
must be a group PGL(2, F) of all bilinear transformations

1 This research was partially supported by National Science Foundation grant GP-11342
at the University of Notre Dame.
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over a field F. This is enough to ensure that Pappus’ Theorem holds in the plane.
Here we investigate the less restrictive situation suggested in the first paragraph.
Our main result is

THEOREM 1. Let G be a group of permutations on a finite set > . Suppose that
G contains a sharply doubly transitive subset B and satisfies

IV If g€G, 6€>, g(o) # o but ¢*o) =0 then ¢*=1.

Then G has a normal regular subgroup V and
(i) of o € 3 the stabilizer of ¢ in G conlains a subset R, such that R = VR,
(i) the stabilizer in G of any two elements of D 1is an elementary abelian 2-group

(possibly 1).

The proof relies heavily on M. Aschbacher’s classification of finite doubly
transitive groups in which the stabilizer of any two points is abelian.
Our result has the following consequence for the theory of projective planes

THEOREM 2. Let 7 be a finite projective plane and let L, M, >, I and B be as
in the first paragraph above. If R generates the subgroup G of the symmetric group
on > and G satisfies IV then = is the dual of a translation plane.

The proof is direct and will not be given here.

Proof of Theorem 1

We now suppose that G satisfies the hypotheses of Theorem 1. If «,f € >
and K is any subgroup of G we write K, for the stabilizer of « in K and K
for the stabilizer of « and g in K.

We note first that @ is clearly doubly transitive on .

Let «, 8 be any two fixed symbols of >. As G is doubly transitive G contains
a member @ which interchanges « and B. By assumption we then have a? = 1.
If re Gaﬁ, ah also interchanges « and f so that (ah)? = 1. Hence every member
of a@,; is an involution and so G, is abelian. We can now apply Aschbacher’s
result [1] and deduce that one of the following is true

(1) G’ has a normal regular subgroup.

(2) G = Ly(2).

(3) G = E(3) the smallest Ree group.

4) @ has a unique minimal normal subgroup M(G) with G C Aut M(G)

and  M(G) = Ly(q), Us(q), Sz(g) or R(q).
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By equality in each case we mean that G or M(G) is permutation isomorphic
to the given group where the latter has its usual representation as a doubly transitive
permutation group. However there is no loss in generality by assuming that this
relation is equality.

Our immediate task now is to show that conclusions (2), (3) and (4) cannot hold
unless (1) also holds.

L4(2) contains the matrix

01 0
1 01
0 01
which interchanges the vectors
1 0
0 and 1
0 0

but is not an involution. Thus G % Ly(2).

R(3) has order 28-27-2 and degree 28. Every involution of R(3) fixes four
symbols. Suppose that G = R(3). R contains a member interchanging two symbols
of > and 72 = 1. Thus r fixes four symbols of > which is impossible as 1 is
the only member of r fixing two symbols of . Hence G # R(3).

Now suppose that case (4) of Aschbacher’s result applies. We notice first that
in each case M(G) is doubly transitive on >. In each case the stabilizer M(G),
of & in M(G) has a characteristic subgroup, say @, which is regular on > — {«}.
As M(G) is doubly transitive on > we have G = G ,M(@). If a is a member of
G which interchanges « and f each coset of M(GF) in G contains a member of
all,s. As all the members of this set are involutions it follows that G/M(G) is an
elementary abelian 2-group.

We now consider the different possibilities for M(GF) in turn.

Suppose that M(G) = Ly(g). Let x be any member of G, Then x normalises
@, Suppose h € @ — {1}. From the properties of Aut L,(q) there is a member y
of PGL(2,q),; with the property h* = k7. Put z = zy~! so that #* = h. Now
let w be any member of L,(q),s. As both G, and PGL(2,q),; are abelian and
contain ILy(q),; we have (A") = h*. Ly(q),, contains either ¢ — 1 or F(g — 1)
members and none of these commutes with a member of @,. Hence z centralizes
either ¢ or £(q 4+ 1) members of @, As (g 4- 1) > 1¢ we find that in either
case z centralizes @),. As z centralizes Ly(q),; it now follows that z centralizes
Ly(q),. G/M(Q) is an elementary abelian 2-group so that 22 € M (). Thus 22 lies
in the centre of IL,(g), and so 22 = 1. Let @ be a member of L,(q) which inter-
changes « and . Then az also interchanges « and f so we have both a2 =1
and (az)® = 1. Thus 2z centralizes a. As L,(q), is a maximal subgroup of L,(q)
it now follows that z centralizes L,(g). But z € Aut Ly(q) so that z = 1. Hence
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x € PGL(2,q) and so either @ == Ly(q) or PGIL(2,q). In either case we get a
contradiction to the result in [3] unless @ = L,(q) where ¢ = 2 or 3. Both of these
groups have a normal regular subgroup.

In considering the groups Usy(g) we will adopt the notation of [2, p. 233 f]. If
k lies in the field with ¢? members SU(3, ¢%) contains the matrix

.o k~°
N
ko .

which interchanges the subspaces <{w;> and J{ws>. The square of this matrix is

Sl :
LRy
L K

and the conditions that this be a scalar matrix is k¢~ =1, or ¥*@~) = 1. This
is true when k is a primitive element of the field only when ¢ = 2. Hence we
cannot have M(G) = U,(q) except in the case ¢ = 2. Then Us(g) is a Frobenius
group and G would have a normal regular subgroup.

Suppose next that M(G) = Sz(¢g). Then M(G),s; has odd order and as G/M(G)
is an elementary abelian 2-group each coset of M(G),, in G, contains exactly
one involution and they all lie in different classes of G. Let z be an involution
of Gy — M(G),; and put 2 = {¢ € >; z(0) = o}. If a,b € 2 we can easily show
that

Clz) ={x €G; z(a) €2, x(b)€}.

This is because all the involutions of @, lie in different classes of . Hence C(z)
is doubly transitive on Q. Now z € ¢, so that z normalizes @, and so normalizes
Z(Qx). As Z(Q,) is a 2-group and 22 =1, A" =h for some h € Z(Q,) — {1}. If
w € M(Q)y, wz= 2w so that (h*)" = k*. From the properties of Sz(g) it follows
that 2z centralizes Z(Q,). Now Z(Q,) has order ¢ and @, has order ¢ We
may suppose that 2z centralizes mg members of ¢, where m divides ¢. =z
centralizes the ¢ — 1 members of M(G),;. Hence, because of the double transitivity
property of C(z), z centralizes (¢ — l)mg(mgq -+ 1) members of Sz(¢g). This
number must thus be a divisor of the order of Sz(g) which is (¢ — 1)g%(¢® + 1).
Because m and ¢ are powers of 2 we can deduce that mg - 1 divides ¢® + 1.
From this we easily deduce that m = ¢ and so z centralizes Sz(g). As z € Aut Sz(q)
we must have z = 1, a contradiction. Thus G = M(G) = Sz(¢) which contradicts
the result in [3]. Hence we cannot have M(G) = Sz(q).

Lastly under (4) we consider the possibility that M(G) = R(q), a group of Ree
type. The properties of these groups may be found in [5]. Let # be the unique
involution of R(g),5. As M(@),;<] Gy, t has no other conjugate in G5 Let £
be the subset of > fixed pointwise by #. As above we find that if a,b € 2, then
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Cit) ={x €G; x(a) €2, x(b)€ 2}

Hence Cf(f) is doubly transitive on Q. As C()N R(g) = {1,{} X K where K
is isomorphic to L,(g) we find that £ must have ¢ + 1 members and we must
have K permutation isomorphic to L,(¢) as a permutation group on £2. We
write K = L(q). Suppose now that z is a 2-element of G, — M(G),;. Then
22 € M(@),; os that either 22=1 or 22=1¢. In either case 22 centralizes K.
Clearly z normalizes K. Using the same considerations as we applied above to
the case M(G) = Ly(g) we can prove that either z centralizes K or acts on
K = Ly(¢) as an involution of PGL(2, q),;. Now consider the representation of
C(¢) as a permutation group on £. From the above it follows that the image of
C(¢) under this representation is either L,(9) or PGL(2, q). Theimage of R N C(?)
is then a doubly transitive subset of the group which occurs. This contradicts the
result of [3] except when ¢ == 3 and the group which oceurs is Ly(g). In this case
we get the only group of Ree type for the parameter ¢ = 3, namely the Ree group
R(3) of order 28 - 27 - 2 and degree 28. But R(3) ~ PI'L(2, 8) =~ Aut L,(8). Hence
Aut BE(3) = R(3) so that G = M(G) = R(3) and we have already shown that
we cannot have G = R(3).

We have now shown that conclusions (2), (3) and (4) of Aschbacher’s result
cannot hold unless (1) holds also. We now investigate conclusion (1) in more detail.

Assume from now on that G has a regular normal subgroup ¥V and let o be
a fixed member of >. If H is the stabilizer of ¢ in G we have @ = VH and
VNH=1. As G is doubly transitive V is an elementary abelian group and
we may take V as a vector space over a prime field F of order say p and H as
a group of linear transformations over V. If v € V, h € H we will denote the
element vh of G from now on also by (v, k). We may identify the elements of
> with those of ¥ in such a way that we may assume that @ is doubly transitive
on V and (v, h) is the mapping V — V given by w— v + h(w). We shall write
(v, Ayw = v 4 h(w). Under this identification ¢ corresponds to 0.

Suppose v € ¥V — {0}. The members of G which interchange 0 and » are the
elements (v, k) with A(v) + v = 0. Such an element of G must be an involution
and the condition for this is 4% = 1.

We now split our considerations into two parts depending on whether p is
odd or even.

First suppose that p is odd. Let § be any sharply doubly transitive subset
of G. Then 8 contains a member (v, k), h%2 = 1 which interchanges 0 and v = 0.
If h(w)=w for some w €V — {0} we have

(0, B)Ev + ow) = $v 4+ aw

for each « € F. But 1 is the only member of S which fixes two members of V
so that no such w can exist. But H is a group of linear transformations on V,
h? =1 and char F 2. The only possibility is 2 = — 1. Hence 8§ contains all
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the vectors (v, —1),v == 0. Suppose v s 0. Then the set (v, — 1)18 is also a
sharply doubly transitive subset of ¢ and so contains every vector of the form
(w, — 1), ws 0. Hence S contains every vector of the form (v, — 1)(w, — 1) =
(v —w, 1), v,w 3£ 0. As v has more than two elements this is enough to ensure
that V€ 8. If g€8 ¢'8 is also a sharply doubly transitive subset of G so
that V€ g8 or gV €8. Now consider R and put R, = RN H. We then
get B = VER_. Finally suppose (0, k) fixes 0 and ». (v, — 1) interchanges 0 and
v so that (v, — 1)(0, ) does also. Hence this is an involution so that A% = 1.
This proves Theorem 1 in the case that p is odd.

Now suppose that p = 2. If v £ 0, (v, 1) interchanges 0 and v. If A(v) = v,
(v, k) also interchanges 0 and v and so is an involution. Hence A%2=1 aund we
deduce that the stabilizer of any two points is an elementary abelian 2-group. Now
refer to the remark of [1, p. 114]. Either @ is a group of semilinear transformations
over a field or ¥V has order ¢® and H is isomorphic to Le(g). Suppose that the
first is true. We may take V as the additive group of the field and H is then the
set of transformations of the form x — ax” where ¢ is a field automorphism. The
transformations which fix 0 and 1 are those of the form x — 2° and the condition
that this be an involution is ¢% = 1. A finite field contains at most one auto-
morphism which is an involution, so that the stabilizer of any two points has order
at most two. Suppose that the stabilizer of 0 and 1 has two members 1 and » — 2".
Then G contains two members interchanging 0 and 1, namely z—x + 1 and
x—2" + 1. The latter is conjugate to x -+ 2° and so the only involutions of ¢
fixing less than 2 symbols are those of V. The same is clearly true if the stabilizer
of any two points has order 1. Now consider the other case when V has ¢2 members
and H is isomorphic to Ly(g). If « is an involution of H then a fixes exactly
g symbols of ¥V and as C(e) N H has order ¢, C(a) has order ¢2. Thus ¢ has
q(q® — 1) conjugates. The number of conjugatesin H is ¢ — 1 so that the number
in G — H is (g — 1)(¢? — 1). As G is doubly transitive each of the ¢ — 1 cosets
of H in G — H contains the same number of these involutions. This number is
g — 1. As each such coset contains ¢ involutions each contains exactly one member
fixing less than 2 symbols of - V' and this is a member of V. In any ease we have
shown that if p == 2 then the only involutions of ¢ which fix less than 2 symbols
are those of V. Let S be any sharply doubly transitive subset of G. Then 8
contains one such involution from each coset of H in G. Hence VCES. Asin
the case that p is odd this is sufficient to establish Theorem 1.

The proof of Theorem 1 is now complete.
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