
The Cauchy problem for systems in L~ and Lp,~ 

PHIL~ ~RENNER 

O. Introduction 

We shall consider the Cauchy problem 

{ Ou/Ot-~P(D)u, xE12", 0 < t  < T ,  (0.1) 

u(x, o) = uo(x), 

where u and u 0 arc complex N-vector functions and where P(D) is an N •  
matrix of pseudo-differential operators, tha t  is, P(D)u is defined by 

where ~ is the Fourier transform of u and where P(y) is the symbol of P = P(D). 
We assume tha t  the operator P has order d > 0. The principal part  Pd of P 
is defined by the nonvanishing symbol Pd(y)= l imx_~-ap(xy) .  The operator 
P(D) is a partial differential operator if and only if P(y) is a polynomial. We 
define d ---- min {d, (d -- dl)/(l + s)}, where d 1 is the order of P - - P d ,  and 
where e ---- 0 if PaP ---- PPd, s = [1/2 -- lip] otherwise. Then d = d for homog- 
eneous operators P.  For details see [7] and section 5 below. 

For ~ > 0 we let w~(y) = (1 A- lylU) ~/z and define for 1 < p _< 

1 llull~,~ = IIF- (w~u)ll~, 

where ~-1 denotes the inverse Fourier transform. 
We say, with some abuse of language, tha t  (0,1) is well posed in Lp.~, if there 

is some constant C = C(T) such tha t  for all u 0 E ~ there exists a well defined 
solution u of (0.1) in L~ (cf. section 1) which satisfies 

Iiu(', t)ll, < C[luoll,.~, o < t < T.  (0.2) 

I t  is known tha t  (0.1) is well posed in L 2 if and only if 

sup {[exp (tP(y))I; y E.R n, 0 < t < T}  ~ C < oD. (0.3) 
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Kreiss [15] has given a complete characterization of the N •  which 
satisfy (0.3). In  particular, if the eigenvalues of Pd are imaginary, y E/~', then 
a necessary condition for (0.3) to hold is tha t  Pd(y) is uniformly diagonable on R ". 
:For d = 1, this is also sufficient. 

Even if (0.1) is well posed in L2, it need not be well posed in Lv for p ~ 2 
(cf. Li t tman [19] for the wave-equation, and also the more general results below). 
t towever,  provided that  (0.1) is well posed in L 2, and under the assumption that  
P(y) is in ~ ,  the problem (0.1) is well posed in Lp,~ for ~ > nd]l/2 ~ 1/pl 
(Theorem 5.5 below). In section 5 we will give necessary and sufficient conditions 
for (0.1) to be well posed in Lp.~, assuming that  (0.1) is well posed in Lu and that  
the eigenvalues of Pd(y) are imaginary, y E _R ~ (e.g. if O/~t -- P(D) is strongly 
hyperbolic; cf. [23] and section 6 below). The results are somewhat negative in 
character. Among the results proved in section 5 we mention the following for 
differential operators: 

TnEOI~EM 0.I. Let 0 ~ ~ < c~tl/2 -- lip I. Assume that 
operator and that the eigenvalues of Pd(y) are imaginary for 
is well posed in L~,~ and in L 2 if  and only i f  

Pd(D)=j~_Aj.= 0 ~ '  

P is a differential 
y C R n. Then, (0.1) 

where A 1 , . . . ,  An are commuting diagonable matrices with real eigenvalues. 

(o.4) 

For symmetric hyperbolic systems and cr = 0, Theorem 0.1 was proved in [3] 
and later, still for a ---- 0, for a larger class of hyperbolic systems by  Kops [13]. 
See also the paper [14]. 

We will also give analogues to Theorem 0.1 for pseudo-differential operators in 
section 5. 

As a consequence of Theorem 0.1 the Cauehy problem for the wave-equation is 
not well posed in Lp,~, 0 _ < c r  ]1/2--  1/1o E. f o r  ~ = 0  this result is due to 
Li t tman [19]. In  this particular case the bound ]1/2 -- 1/p I can be improved. Using 
the methods of Littman, Mnravei [22] proved that  the Cauehy problem for the 
wave-equation is not well posed in Lp,~ for 0 < ~ < (n -- 1)]1/2 -- 1/p]. We 
generalize this as follows: Assume for simplicity that  N = 1, and that  Pc(y) is 
imaginary. Define the rank r of Pd as the maximum rank of the n • n-matrix 
(a2Pd/ayiOyz)k,z. Then (0.1) is not well posed in Le, ~ for 0 < a < r~lll/2 -- lip I. 

The corresponding result for systems is proved in Theorem 5.4. For n > 1 
the rank of ]YL is n --  1, and this proves the above xesult of Muravei. ~or other 
examples, see section 5. 

Let  L~ denote the N-vector functions with components in L w and let M~ 'N 
denote the multipliers on FLp ~. The natural norm in M~ '~r is denoted M~'~(.). 
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To prove the results mentioned above, we notice that  (0.1) is well posed in Lp,~ 
if and only if 

M~' N(w~-~ exp (tP)) < C(T), 0 < t < T. (0.5) 

For ~o = 2, cr ---- 0, this reduces to (0.3) above. We shall prove that  (0.5) implies 
at  least locally on R ~ { 0 } ,  that  the m'th powers of exp (Pd) are O(m ~/d) in 
M ~  'N. For non-homogeneous operators, the lower order terms introduce an error- 
term for ~ > 0 and d is replaced by  [/; for details see section 5. Under suitable 
smoothness assumptions, the growth of powers of elements in M~ '~ is studied in 
sections 2 (for N ---- 1) and 3. The methods used rely on the technique developed 
by  HSrmander [6], and the methods used in [3], [4]. The results obtained will in 
particular imply theorems like Theorem 0.1 above. 

The author wishes to express his grati tude to Professor Lars t tSrmander,  who 
kindly pointed out a number of embarrassing mistakes and unproved statements in 
the original version of this paper, and whose constructive criticism has been of great 
help. The author also wishes to thank Professor Vidar Thom4e for his encourage- 
ment and for many helpful discussions, and thanks Professor JSran Friberg and Mr. 
Lars Wahlbin for reading various versions of this note. :For N = 1, some special 
eases (e.g. Proposition 5.2 for N = 1) have been obtained by  SjSstrand [27]. 

1. Multipliers on FLp 

For complex N-vectors u and v, <u, v> shall denote their scalar product and 
Iv] the Euclidean norm. The norm of an N1XNp-matrix A will be the operator 
norm JA I -= sup{lAy]; Iv] < 1}. The transpose of A is denoted '-4. 

By  ~ ( B )  we will denote the set of N-vectors, and occasionally N X N-matrices, 
with elements in C~(B). I f  g 6 C~(R ") and if 

snp { ixl'~lDkg(x)l; x e t~ n} < -t- 

for m - - - - 0 , 1 , . . ,  and for any multi-index k =  (kx , . . . , kn) ,  [k] = k  l ~ . . . + k n ,  
we say that  g e S .  Here Dk=(- -2Jd) - l k t (a /ax l )~ . . .  (O/axn) k,,. We give the 
linear space S the topology defined by  the above family of semi-norms. The set 
of complex N-vectors with components in S is denoted S N. The dual space S' 
of S is the space of tempered distributions. 

The convolution # , g  between a N2•  matrix # of tempered distributions 
and a function g q S •' is defined by  ~(g(x -- -)) (which has the obvious sense). 

The Fourier transform ~ of a tempered distribution ~t is defined by  ~(f) = #(f~, 
f fi S, where ~ is the function 

= Ff(y) = f exp 
Rn 
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The Fourier  t ransform is def ined for matr ix-  and  vector-valued tempered distri- 
butions b y  applying the t ransform elementwise. I f  K C S', then  F K  denotes 
the corresponding set of Fourier  transforms. 

B y  L~  we mean  the set of functions v---- ( v l , . . . , v N )  wi th  v i6L~,, 
j---- 1 , . . . , N .  For  p < oo we let 

(f .'1" IIvll, = Iv(x) l dx) 

Rn 

and for p---- oo 

[IvLo = ess  s u p  {Iv(x)[;  x e Z"}.  

We shall in the following assume tha t  1 _< p _< oo. 
Classically a multiplier on F L  e is a funct ion 2 such tha t  for each f 6 L e, 

1 _< p < 2, 2f is the  Fourier  t ransform of an L~-function. B y  the closed graph 
theorem this defines a bounded operator on L e. This operator  is obviously 
t ransla t ion invariant .  Following I-ISrmander [6] we make  the following definition: 
we say t h a t  an N 2 •  1 matr ix  /~, wi th  elements in S' ,  is a multiplier from FL~' 

~%,~v, i f  to FL~', and write /~ 6 __p , 

M~'~%(~) ---- sup {tl9 * f l l / f  6 S N~, llfllp -< 1} < + oo. 

For  N I = N  2 =  1, we also write M~ for M~ '1. We use the  convention t h a t  
M N-N' wi th  a M~'N'(/~)---- + oo i f  /~ ~ __pM N'rr176 For  p----- 1 and oo we ident i fy  __p 

subset of ~ ,  whenever  convenient.  

LEMMA 1.1. 
MlV. i% M'N. 1% (i) _._p = _ ~ p ,  , 1/p + 1 / / =  1, and c_g_ Mf,  
Further Mp(.) is a logarithmically convex function of 1/1o. 

(ii) M~ .N, is the set of essentially bounded measurable N~ • N 1 matrix functions, 
and M~"N2(-) ----csssup [.[. M~ "N" is the set of N ~ X N  1 matrices with 
elements that are Fourier-Stieltjes transforms of bounded measures. 

(iii) M~' N is a Banach algebra under pointwise matrix multiplication and addition, 
with norm M~'lv(.). I t  is non-commutative for N > 1. Further, i f  i ~ E _._pM N''lv" 

(iv) Let fl 6 M lv'N'- and M~'N'(f~) < C, i : 1, 2, I f  f~--+ f a.e. then - - - - - p  _ _  �9 �9 . .  

M~'~v'(f) .~  C. 
(v) Let a: R" --> R ' ,  m < n be an affine and surjective transformation, and let 

a*f(y) =f(ay) .  Then M~"~'~(a*f)----MN'N'(r~p ,j,, with norms in B" and 
l~", respectively. 

(vi) I f  f 6 M N*'lv' fl ~ ,  then the conclusion of (v) is valid for all affine maps. 

Proof. For  the case N 1 ---- .N~ ---- 1, these s ta tements  can all be found in Chapter  
I in [6], and  for (v) and  (vi) in [18]. Most of the generalizations to N 1 and/or  N 2 > 1 
are obvious, and in those cases we only give the  references to [6] and [18]. 
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(i) For  N 1 = N 2 : 1 ,  this is Theorem 1.3 in [6]. 
(ii) Theorems 1.3 and  1.5 in [6]. 

(iii) Corollary 1.4 in [6]. 
(iv) This is a special case of Corollary 2.7 in [18]. We give here another  proof. 

Le t  u E S ~' and  v C S N-~. B y  Parseval 's  formula and  HSlder 's  inequal i ty  
we have (lip + lip' : 1), 

l f <fi(y)u(y), v(y)>dy[ < 6'll t,,pll ll,,. 
R "  

B y  domina ted  convergence (we use (i) and  (ii)) then  

f <f(y)u(y), v(y)>dy <_ Cilull,livll,,. 
R n 

B y  the  converse of t tSlder 's  inequal i ty,  this  means t h a t  f i l m  ~v'~v' - , - p  , 

Notice t h a t  since f is the l imit  of a sequence of measurable functions,  f 
is cer ta inly measurable.  

(v) This is Theorem 1.13 in [6]. 
(vi) In  view of  (v) we m a y  assume tha t  m < n and  t h a t  a is the inclusion 

of ~ in /~". The s ta tement  is then  Proposi t ion 3.2 in [18]. The following 
proof was suggested by  Lars  HSrmander:  Wri te  R ' ~ :  R " @  V and  
let i : / ~  -->/~" and  j :  V --> R ~ be the  inclusions, l~'or e > 0 the mapping 
a ~ = i  @~j:.R"--~R ~ is affine and  surjective. Hence l ~ '  ta~J) = 
MN~'N~162 using (v), and  since a*f--->i*f as e-->0, (iv) above applies p ~ d l '  

and proves the s ta tement .  
I n  connection wi th  (ii) we notice (N~ = N2 : 1 and  with  the  convention t h a t  

M 1 C C )  tha t  # C M 1  if  and  only i f  

, ( y )  = fexp (-- 2 i<x, y>)d~t(x) 

Rn 

with  

F 
~ . ( ~ )  = J d I ~ C x ) l  < ~ .  

In  particular:  I f  f E L 1 then  f E M 1 and  Ml(f) = Ilflll. 
Le t  B be a closed set in R", wi th  positive measure. We say t h a t  an  N 2 X N1 

~rN1, N~ if  mat r ix  funct ion ~ is a multiplier from FL~  ~ to FL~  ~ on B, ~ . . ~ , p , n  , 
6 ~l~ N~' N2 there is a /x . . . .  p such tha t  ~ = / x  on B. We use the quot ient  norm 

.Me N'N'" " inf{M~"N'(#); # ~ on B}. 

For  N 1 = ~V 2 = 1 we also write Mp, n and  Mp, B('). We give some facts about  
Mp, n in the following lemma. 
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L E ~  1.2. 
(i) I f  B O B ' ,  then Me.~(9) <_Mp,,,(9) ). 

(iii) I f  a ~. RN{0 } and Yo E t~", then M,, ,(V) = Me,,-,,(a*9) = Me.s_,.(g,.), 
where ~oyo(y) = q~(y + Yo). 

(iv) I f  k E S vanishes outside B, then 
N "*" M~,,~,(vk) _< M~:~ '@)llkll. 

(v) I f  M~,~Jv'(qg) < C for all compact balls B ~ If',: then M~"~V'(q~) < C. 

Proof. The statements (i), (ii), (iii) and (iv) are all immediate consequences of 
the corresponding facts for M~ ''N' and the definitions. The proof of (v) was given 
in Lemma 3 in [3]. 

We will later have use for the following version of the H6rmander-Mikhlin 
theorem (for a proof see Theorem 2.5 in [6J). 

L w M ~  1.3. Let q~ E C'(R~{0})  for some v > n/2, be homogeneous of degree 
zero on R ~. Then q) E Mp .for l < p < oo. 

Under the assumptions in Lemma 1.3 we have for ]y] > 1, 

/)~o(y) = O(]yl-I~l), ]a] ~ v. (1.1) 

In  order to conclude that ~ ~ M 1 =/~E~, we have to strengthen (1.1). We then 
get the following variant of Bernstein's theorem (ef. Proposition 2 and Lemma 3 
in [24 --  III]). 

L E ~  1.4. Let r E C~(R ~) and assume that 

l~r(y) ----- O(lyl-'-t~l), Io,1 < ~', 

for some s > O, as lYl--*-oo. If v > n[2, then r E M 1 C  M ~. 

(i .2) 

Proof. (After H6rmander [6].) We will prove tha t  ~ E L r Let  ~oj(y) = ~(2-iy) 
where ~oEO ~ has support in 112< [YI<2 and where ~ _ ~ o  i = 1  for y r  
(ef. Lemma 2.3 in [6]). Let ~ o ~ - =  1 -  ~T=0~j. l~'rom the classical Bernstein 
theorem ~_~r E FL:, since ~_~r E C~, v > n/2. I t  is left to estimate (~ir) ̂  for 
j ~ 0 in L 1, and then add the results. Let  r i = ~fir, Then 

(f )'ff [ri(x)ldx < (1 + 2211xt~)-'dx (1 + 2~[xl~)'l'~Ax)E~dx. (1.3) 

But 

�9 < O ~ 12gy) 11~. 
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Using (1.2) and Leibnitz' formula we get 

[211~lD~(~i(y)r(y))I < C 2 -~i, 

and so by (1.3), since v > n/2, tha t  

f l~j(x)Idx <_C2- ' i  ( 

I-~ence 

I0r ~ V, 

2,Jdx ~ ~/2 

f (1  + 2Vlx[ y] _< C'2-< 

[I;111 < Ilw-=r[lx + IlP. ][1 < + oo, 
1=o 

which proves the lemma. 

(1.4) 

L ~ . ~  1.5. Let 9 = r + qo E C ~, where qo E C~(R"~{0}) is homogeneous of 
degree zero. If r satisfies (1.2) for some s > 0 as ]Y] -> oo, and i f  v > n/2, theu 

E Mp, 1 < ~a < oo. I f  qo is constant, then ~ E M 1 c_. Mp. 

I t  is clear tha t  if  ~0 6 M 1, then also qo E M 1_C C, and so qo is constant. 
Proof. The Lemma is an immediate consequence of Lemmas 1.3 and 1.4. 
We will need the following version of the Wiener-Levy theorem in Mp,s. 

PI~OrOSlTIO~I 1.1. Assume that [1//o -- 1/2[ > [ 1 / q -  1/2] and that B C  R n is 
compact. I f  f l , . . . , f l y  E Mp.n rl C and i f  F is analytic in a neighborhood of 
{(fl(Y),...,fN(Y)); Y E B), then F ( f  1 . . . . .  fN) E Mq, B,, where B'  is a closed ball 
contained in the interior of B. 

Proof. Let mp denote the closure of S in Me, and mp, n the corresponding 
restriction algebra on B. Since m~ has maximal ideal space R ~ (Theorem 1.17 
in [6]) and separates points on R ~, the maximal ideal space of me.B is B. l~urther 
Mq.B, Dmq, s,D__Mp.B N C if B'  is compact and contained in the interior of B, 
and with p, q as above (Theorem 1.16 in [6], where it is even proved tha t  
m~ D_Mp gl Co). Standard results from Banach algebra theory now prove the 
proposition (cf. [2], Chapter 1, section 4). 

Remark. For p = 1 or oo we can take p = q in Proposition 1.1, since in this 
case ml, B ----- M1.B for B compact (m 1 = EL1). We do not know whether this is 
allowed in general. 

A similar consequence of Theorems 2.6 and 2.7 in [6] is stated in the following 
proposition. 

PROPOSITION 1.2. Let f E C(R~{0})  be homogeneous of degree zero on, R ~. Assume 
that f E Mp for all p with 1 < p < oo, and that F is analytic in a neighborhood of 
{f(y) :yES"-1}.  Then F(f)  E M e for all p with 1 < I n <  oo. 
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Here S ~-1 denotes the unit  sphere in /~ .  We omit the details of the proof, which 
is close to tha t  of Proposition 1.1. 

2. Powers of multipliers on FLe 

In  this section we shall give some results on the growth of powers of elements 
in Mp, which are modifications and localizations of results proved e.g. by HSrmander 
[6], Leblane [17] and Kahane [9]. 

From now on we assume tha t  {Q~} is a family of functions which is bounded in 
Cl(.R"~So) where S o is a closed nowhere dense set in /~.  When we discuss Cauehy 
problems below, such families will be generated by lower-order terms in the symbol 
of a pseudo-differential operator, and in tha t  case S o = (0). 

The main results in this section are the following. 

T ~ E o ~  2.1. Let  0 ~ or < ]1/2 -- 1/p[. Let  B ~ . R  ~ be a closed ball. A s sume  

that ~,, = q~ ~ m-lQ,~ and that q~ e C2(B) is real. I f  

Mp,~(exp (ira q~m)) ~ Cm ~, m = 1, 2, . . . (2.1) 

then ~ is linear on B .  

For /o = 1, ~ and ~ = 0, the C2-condition is not necessary, as proved by 
Be~rling and ttelson [1]. For cr = 0 and B =/~n,  the above result is due to 
HSrmander (Theorem 1.14 in [6]), and the local C2-version, still for ~ = 0, can be 
found in [3]. As we will see from the proof, Theorem 2.1 is essentially ~)one- 
dimensionab). A more precise result in /~" is the following (cf. Leblanc [17]). 

TH]~ORE~ 2.2. Let  B c 2r n be a closed ball. A s sume  that 9~m = ~ ~- m-lQ,, ,  

that Qm is uni formly  in C~~ m :> 1, and that ~ E C~ is real. I f  r 
is the m a x i m u m  rank in B of  the Hess ian  matr ix  J (y )  = ((~2/aykayl)q~(y))k, z of q~ 
then there is a constant c => 0 ~r that 

Mp, B(exp (ira ~m)) ~_ cm "I~/2-1/pi, m = 1, 2 . . . .  (2.2) 

We proceed to the proofs of the theorems above. We tirst state a version of van 
der Corput's lemma (see [26], p. 197). 

L ~ I ~  2.1. A s s u m e  that u E C~(R) and that ~ E C 2 with 

the sul~laort of u. Then 

llF(exp (iq~)u)il~ _< Ca-lz21lDulll 

where C is independent of  u and of  q~. 

[~"(y)] > ~ > 0 o n  

(2.3) 
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Using this we can prove the following: 

L~I~cIA 2.2. Assume  that Bo C R is a closed interval, that q~ E C2(Bo) is real 
and that q~"(Yo) r 0 for some yo E B o. Then  there is a constant c ~ 0 such that 

Mp,~~ (exp (ira q~)) ~ cm 1112-~/pl, m = 1, 2 . . . .  (2.4) 

Proof. We m a y  assume t h a t  ~" ~ 0 on B o. Le t  0 ~: u E C~(Bo). B y  L e m m a  
1.1(i) we m a y  also assume t h a t  1 ~ p  ~ 2 .  We let l i p +  lip'---- 1. Then, by  
L e m m a  2.1, Parseval 's  formula and  I-ISlder's inequali ty,  

]IF(exp (ira ~)u)l]p, _~ [[F(exp (ira ~)]]~-2/p'llF(ex p (ira ~)u)]]~/p' (2.5) 

<__ Cm-1/2[1-x/e't = Cm-lXl2-1/pl.  

:By (2.5) and  Parseval 's  formula then  

f lui2dy = f e x p  (ira q~)u (im q~)udy < ][F(exp (ira (im exp  ~)u)[]~[IF(exp ~)u)][p, 

CM~,~~ (im q~))m -1112-I/PI , 

which proves (2.4). 
Proof  of Theorem 2.1. We m a y  assume tha t  B is compact.  We will prove t h a t  

all the  second-order derivatives of ~ vanish  on B ~ S o ,  which by  cont inu i ty  
implies t h a t  t h e y  vanish on all of B and  so proves the theorem. Le t  B 0 C B ~ E o  
be a ball. I t  is sufficient to prove t h a t  ~ is linear on all lines th rough  B 0. :By L e m m a  
1.1(vi) we m a y  then  assume t h a t  n = 1, and  so t h a t  B 0 is an  interval.  :By 
assumption Q,~ E CI(Bo) uniformly  in m, and  so Q ~  is un i formly  bounded in 
Mp, R (since n = 1). Hence 

Mp, s~ (im q)) _< M~,B0(exp (ira ~))Mp,~o(exp (-- iQ,,,)) < 

<_ CM~,,R(exp (im q~,,,)) < Cm ~, m = 1, 2, . . .  

B y  L e m m a  2.2 i t  then  follows, since ~ < 11/'2 --  1/pl, t h a t  ~0" = 0 on B0, and  so 
t h a t  ~ is linear on B 0. This completes the proof  of Theorem 2.1. 

Corresponding to L e m m a  2.1 we have the following result  in / ~  (cf. L i t t m a n  
[20] and  Leblanc [17]; the author  is indebted to u  Domar  and  Nofil Leblanc 
for these references). 

L ~ M ~  2.3. Assume that q~ E C ~ is real and that the Hessian J of q~ has ranb 
at least r on a ball B, and that u E C~(B).  Then there is a constant C = C(u, B)  
such that 

tlF(exp (ira q~)u)t[~ ~ Cm -r]2, m = 1, 2, . . . (2.6) 

f r o m  this Theorem 2.2 now follows as Theorem 2.1 followed from L e m m a  2.1. 
We omit  the details. 
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3. Powers of multipliers on FL~ 

In  this section we will first present some general multiplier theorems in M~ .iv'iv 
The proofs of the main results will be postponed till the next section. Here we will 
only prove some corollaries, and also give the first step in the proofs, namely the 
characterization of the eigenvalues (Proposition 3.1 below). 

T~EOREM 3.1. Let p ~: 2 and let q~ be an N•  in ~iv+~, for some 
v 7> 1. Assume that there is a constant C such that 

M~'IV(exp (im 70) --< C, m = -4- 1, • 2 , . . .  (3.1) 

Then there exist mutually orthogonal idempotents Ej E __pMiv'iv fl ~ +  ~ and real linear 
functions ocj such that 9 - - - -~=~jEj .  

As mentioned above, the proof is postponed till section 4. 

CO~Or,LARu 3.1. Let p :~ 2 and let P be a homogeneous matrix polynomial of 
degree d > 0 with real eigenvalues. Then exp (iP) E M~'N i f  and only i f  

P(y)  : ~ A j ~ ,  (3.2) 
j = l  

where A 1 , . . . ,  An are diagonable, commuting matrices with real eigenvalues. 

Remark. In [4 -- II] Theorem 3.1 was stated for p ~ 1, ~ without any 
regularity assumptions. The proof of this result was not correct, however, since 
Proposition 1 in [4 -- II] is only valid locally, not globally as incorrectly stated (of. 
the discussion in the end of section 4 below). But  the following result was proved: 

THEOREM 3.1'. Let 9 be an ~ • such that for some constant C, 

(3.1)' M~':iv(exp (ira 9)) ~ C, m = d= 1, 4- 2, ...~ 

Then there exist mutually orthogonal idempotents Ej C M~' iv and real linear functions 
" E ~j such that q~ = ~j=l~ i i" 

As Corollary 3.1 will follow from Theorem 3.1, Corollary 3 in [4 -- II] follows 
from Theorem 3.1' (that is, Corollary 3.1 for p = 1, ~ ,  assuming that  P is a 
homogeneous matrix function, not necessarily a polynomial). 

Before we prove Corollary 3.1 we s t a t e  and prove a lemma which may  be of 
some independent interest. 

LV~MMA 3.1. Let q~ be an N • N-matrix function. I f  the eigenvalues of 9 are 
real on R n, and i f  for some constant C, 
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M~'N(exp (ira ~)) ~ C, m = 1, 2, . . .  (3.3) 

then (3.1) holds. Conversely, i f  (3.1) holds then the eigenvalues of 9 are real on 2". 

Proof. Since M~ 'N ~ M~ "N and M~ = L+, (3.1) implies tha t  the eigenvahes 
of exp (i ~) have bounded positive and negative powers on _~n, i.e. they have 
modulus 1 on R' .  This proves the last statement in Lemma 3.1. 

I f  (3.3) holds, then also det (exp (ira +)) and so det (exp (ira ~0)), is uniformly 
bounded in Mp for m = 1, . . .  Since all the eigenvalues of exp (i~) have modulus 
1, we also have 

exp (-- im ~0) = ~ det (exp (im qg)). 

Here the elements of v/~ are sums of products of elements of exp (ira q~), with 
the number of terms and factors bounded independent of m. Since by (3.3) the 
elements of exp (ira q~), and so y~, are uniformly bounded in Mp for m = 1, 2 . . . .  , 
this proves the lemma. 

Proof of Corollary 3.1. Assume first tha t  exp (iP) E M~'lv. We then prove 
tha t  the powers of exp (iP) are bounded in M~'N: For m ~ 0 we have 
mP(y) = P(ml/~y), and so the positive powers of exp (iP) are uniformly bounded 
in M~ 'N, by Lemma 1.1(v). By  Lemma 3.1 this means tha t  (3.1) holds, with 
~----P. 

Now P E ~  ~, ~nd so by Theorem 3.1 we can find continuous mutual ly  
orthogonal idempotents E i and real linear functions ~j such tha t  P = ~=~aiEj. 
This means tha t  d = 1, the c~i's are homogeneous, and so for t ~ 0, tha t  

P(y) = ~ o~j(y)Ej(ty). 
j = l  

I f  we let t--> 0 we get by continuity tha t  P(y) = ~.~=lai(y)Ei(O ), and so (3.2) 
follows. The converse follows as in [4] by the fact that  we can find a common 
diagonalization of the Ai's. 

I f  ~ is homogeneous and satisfies the regularity assumptions in Theorem 3.1 
only on R'~{0},  we have the following result. 

THEOREM 3.2. Let T ~ 2, and n ~ 1. Assume that q~ is homogeneous of degree 
d > O, that the eigenvalues of ~(y) are real for y E 1~ n, and that q~ E ~ + ~ ( R ~ ( 0 } ) ,  

_ ~ M N,N for some ~ ~ 1. I f  exp (i~) _ __p , then there exist mutually orthogonal idempotents 
E i e M N" N N ~ + I ( R ~ ( 0 } ) ,  homogeneous of degree 0, and real linear (homogeneous) - - p  

functions ~i such that q~ = ~.~=1or In  Tarticular d = 1. 

l~emarIc. For p = 1, co we have by convention tha t  M :r c (g, and then p - -  

Theorem 3.2 actually says that  the Ei's are constant, and so ~ can be written in 
the form (3.2). 
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We will now state analogues of Theorem 2.1 in M~'N. In  order to get useful 
results we have added the assumption that  we have boundedness in M N'N. For the 
applications we have in mind this is a quite natural  assumption, and it is 

N , N  N , N  automatically satisfied (by M~ ~ M2 ) in Theorems 3.1 and 3.2. We can then 
also replace the global condition corresponding to (3.1) by a local condition. This 
will be important in later applications. 

As before we assume that  {Q~} is bounded in ~(R=~So) ,  m > 1, where So 
is a closed nowhere dense set. We let a :  1 if ~ v Q ~ : Q , ~ ,  and let a :  1-l- 
otherwise. 

T~wo~wM 3.3. Let 0 ~ ~ /1/2--  1/pl, and let q ~ E ~ + ' ,  for some v ~ l, 
be an N • N-matrix function with real eigenvalues on R". Let q~,~ ~ qJ ~ m-"Q,~, 
with Q,, as above. Assume that for each compact ball B C_. t~n~So there is a constant 
CB such that 

N,  N M~,B(exp(ik~=)) < C B m  ~, 1 < k  < m =  1, 2 , . . .  (3.4) 

and further that for some constant C, 

M2(ex p (ira ~v)) _< C, m = 1, 2 , . . .  (3.4)' 

Then there exist mutually orthogonal idempotents E i E M ~  'N ['l ~+1 and real linear 
functions ~j such that q~ = ~ffil~jEj. 

COROLLARY 3.3. Let 0 ~ ~ ~ [1/2 -- lip[, and let P be a homogeneous N •  
matrix polynomial of degree d ~ 0 with real eigenvalues on _~. Let q~,, -~ P ~ m-~Q,,, 
with Q,~ as above. I f  for each compact ball B E  R ~ S o  there is a constant CB such 
that (3.4) holds, and i f  (3.4)' holds for q~ = P, then 

n 

P(y) = ~ AjYi 
j = l  

where A 1 . . . .  , A ,  are commuting, diagonable matrices with real eigenvalues. 

The proof of Corollary 3.3 from Theorem 3.3 is the same as the.proof of Corollary 
3.1 from Theorem 3.1. 

T ~ o ~  3.4. Let 0 ~_or < 11/2-- l/p], and let n >  1. Assume that q~ is a 
homogeneous N • N matrix function of degree d ~ O, that the eigenvalues of ~p are 
real on ~n, and that ~ EcCN+~(Rn~{0}), for some ~, ~ 1. Let, as above, 
qJm = q~ -~ m-"Qm. Assume that (3.4) holds for each compact ball B E  R " ~ S  o U {0}, 
and that (3.4)' holds. Then there exist mutually orthogonal idempotents 
Ej e ~'+l(Rn~{0}), homogeneous of degree zero, and real linear functions ocj such 
that q~ = ~ = 1  o~1Ei. I n  particular d = 1. 
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]~emark. :By Mikhlin's theorem (Lemma 1.3) we get t h a t  i f  v ~ n/2 - -  1, then  
E j e M ~  v'n for l < p <  oo. 

In  the remaining par t  of this section we will prove the par ts  of Theorems 3.1 
through 3.4 which concern the eigenvalues. 

LEMMA 3.2. Let A be a Banach algebra with norm [['[I. I f  a, b E A then 

]]exp (t(a + b))H ~ M(t)  exp (M(t)t[[bl]), 

where M(t)  = sup {][exp (sa)]]; 0 < s < t}. 

Proof. Le t  g(t) = exp (t(a + b)). Then 

g'(t) = ag(t) -{- bg(t), 

and so 

g(O) = 1, 

t 

g(t) = e x p  (ta) + f exp ((t - s)a)bg(s)ds. 

0 

This gives the est imate,  0 < ~ < t, 

[[g(~)[] --~ M(t) + M(t) /llbllllg(s)llds. 
0 

Gronwall 's  l emma then  implies tha t  

Hg(t)[I ~ M(t)  exp (M(t)tHbH), 

which is the wanted  inequal i ty.  

PROPOSITIO~ 3.1. Let Y2C_R ~ be open and connected. Let 0 ~__ or ~ ]1/2 --  l /p].  
Assume that q~ is a matrix funct ion in ~CN+I(Y2) with real eigenvalues on 1-2 and that 
for each compact ball B C [ 2 ~ S  o there is a constant C B such that 

N,N M~,,  (exp (ik~m)) < CBm ~', 1 ~ /C ~ m = 1, 2 , . . .  (3.5) 

where as above q~,~ = q~ + m-"Qm. Then there exist functions fil . . . .  , fi.~ of the form 

fiJ(Y) ----- fiio + ~ flj~yk, j = 1 , . . . ,  N ,  (3.6) 
j = l  

where fii~ are real constants such that f ix(Y), .-- ,  fiN(Y) are the eigenvalues of qg(y), 
counted with proper multiplicities, for y E Y2. 

Proof. Let  B c t g ~ S  0 be a compact  ball. Then there is a ball B '  c B such 
t h a t  the eigenvalues of 9 have constant  multiplicities on B' .  The eigenvalues fii 
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of ~0 can be chosen continuous on B '  and  such t h a t  exp (ifli) is an  analyt ic  
funct ion of the elements of exp (i9) on B' .  

We will f irst  prove t h a t  the functions flj are linear on B' .  I t  is sufficient to 
prove t h a t  the functions fli are linear on each line th rough  B' .  I n  view of L e m m a  
1.1(vi) i t  is then  no restriction to assume tha t  B '  is a compact  interval  and  t h a t  
n = 1 in this par t  of the proof. 

I n  L e m m a  3.2, let A = M~'ff  and II'll the  corresponding norm. Le t  a = im~,~ 
and b = im(q~ --  q)~), and introduce 

C(m) = sup {][exp (i/c~0m)[l; 0 < k < m, ]c integer}. 

Then, in the no ta t ion  of L e m m a  3.2, 

M ( 1 )  = s u p  {Hexp (is~m)[I; 0 < s < m} < C(m) exp ([]q0~,[[). 

L e m m a  3.2, wi th  t---= 1, then  gives 

Ilexp (im~)N _< C(m) exp (II~=II + r  exp ([ISOmt[)tl~ --  9roll). 

7l~rN, N Since {Q~} is uni formly bounded in ~I(B') ,  and  ~I(B')_c--~p.B for n = I, 
formula (3.5) and  the above est imate show tha t  i f  ~oQ= ~ Qmq), t hen  
M~lv'ff (exp (img)) < Cm ~ exp (Cml+~'m -~) < Cm% I f  9Q~ = Q=9, we have 
t r ivial ly 

_ M ~ ' N  M~'ff,(exp (im~o)) < M ~ ( e x p  (imqo)) exp ( , , , ,  (Q)), 

and  so we have in both  cases t h a t  

M~,'~,(exp (im~o)) < Cm ~', m = 1, 2, . . .  

B y  Proposit ion 1.1, exp (ifli) belongs to M~,B,, where we take  

c~ < 11/2 --  1/q] < 11/2 --  1/pl 

( and  where we m a y  have to shrink the ball B'  somewhat).  I n  the same way  we 
can f ind  eigenvectors v i E M~jB N, corresponding to the eigenvalues exp (i~j) such 
that lvjI = 1 on B' .  On B ' .  

exp (imflj)v~ = exp (imqD)vj. 

Multiplying by  v* from the left we get, still on B',  

exp (imflj) = (exp (im~o)vj, vj). 

B y  L e m m a  1.1(iii) and  the above remarks,  we then  have 

M+B,(exp (imflj)) < M,.~,(v*(exp (img)5)) < 

_< M~,N(exp (imqz))M~:~,(v)M~'B~,(v *) < CM~ff(exp  (img) <_ 

< CM~'~(exp (imq))) ~ Cm c', m = 1, 2 , . . .  
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Since ~0 E q~N+1(tP) C ~(Y2), we have t h a t  fli E Ce(B'). Theorem 2.1 then  proves 
t ha t  the (by assumpt ion real) eigenvalues fli of ~0 on B'  can be chosen to be 
linear functions. As ment ioned above, we can then  drop the assumpt ion t h a t  n = 1. 

Thus we have proved: for any  open ball B 0 C  tP, we can f ind  a ball B ' c  B 0 
such t h a t  ~ has real linear eigenvalues on B', t ha t  is 

N 

det  (q(y) - -  = ] - [  ( gy) - -  y E B' ,  (3.7) 
1 = 1  

where flj are of the form (3.6). This means t ha t  the  set S where (3.7) does not  
hold for some set of real linear functions fli is nowhere dense in /2. Since the 
N + l ' s t  derivatives of det  (9(y) --  fl) E ~+~(s  vanish on ~2~S,  by  (3.7), it  
follows by  cont inui ty  t ha t  the de te rminan t  is a polynomial  so t h a t  (3.7) holds for 
all y E tP, which proves the  proposition. 

F ina l ly  we give the counterpar t  of Theorem 2.2 for N •  mat r ix  functions 
E ~ .  Assume t h a t  an eigenvalue c~j of ~ belongs to C2(B) on some ball B, 

and  define then  r(o~j;B) = in f~es rank  (O2/OykOy~)~i(y))k,t. We say t h a t  9 has 
rank r on B 0 ff  and  only if  r is the  largest integer such t h a t  there is a ball  B ~ B 0 
and  a r ea le igenva lne  ~1 of ~ on B such t h a t  r(o~i;JB)~r. We let a =  1 if  
~Q~ ~ Q=~, and  let a = 1 + r[1/2 --  1/29 [ otherwise. 

P~OPOSITIO~ 3.2. Assume that q~ 6 ~ '  is an N • N matrix function with rank 
atleast r on some ball Bo C R ~, and that q~,~ ~ q~ -}- m-~ E ~ ( R " ~ S o )  uniformly 
for m > 1. Then there is a constant c > 0 such that 

sup M~,~(exp (ik~0~)) >_ cm rll/2-1/pl, m = 1, 2 , . . .  (3.8) 
O<~k<_m 

Since the proof of Proposit ion 3.2 is similar to t h a t  of Proposit ion 3.1, we omit  
the details. We only notice t ha t  we here use the fact  t ha t  ~ ( B ) _ q  Mp.s for B 
compact ,  instead of Proposi t ion 1.1. 

4. Proofs of Theorems 3.1 through 3.4 

We begin wi th  two lemmas, which are common to all the proofs. 

LEMMA 4.1. Let fl be a real linear function on R n and assume that 

sup M~'N(exp (iraqi)) < C. 
mEZ 

-M~'N((r --  1)(r exp (ifl) --  exp (i~0)) -1) < C, r > 1. 

Then 

(4.1) 

(4.2) 
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Proof. B y  (4.1) all the eigenvalues of ~(y) are real, y C R" (cf. L e m m a  3.1). 
Hence for r >  1, 

(r exp (ifl) - -  exp (i~)) -1 = ~ (r exp (ifi)) -J-1 exp (ijq~). 
1_>o 

But ,  since Mp(exp (ifl)) = 1, 

M~' N((r exp (ifl)) -~-1 exp (ijq~) ) < r-J-~Mp(exp ( - - ( j  q- 1)ifl))M~'C(exp (ijT)) ~ Cr -j-1.  

I t  follows tha t  (r exp (ifl) - -  exp (i~)) -1 r M ~  'N for r > 1, and  also t ha t  (4.2) 
holds. 

LEMMA 4.2. Let [2 C R ~ be open and connected. Assume  that q~ is an N •  
matrix funct ion in ~N+,(~) ,  for some v > 1, which has a set fix . . . . . .  fl, of real 
linear functions as all of its eigenvalues on $2. I f  ~o satisfies (4.1)for p = 2, then 

" E there exist mutually orthogonal idempotents E i E M ~  'N A ~+l( f2) ,  with ~i=~ i = E,  
such that 

q~(y) = ~ flj(y)Ej(y), y e ~ .  (4.3) 
1=1 

Proof. B y  L e m m a  4.1, (4.2) holds wi th  fl = fli, J = 1, . . . ,  r, and for p = 2. 
Then  (4.2) shows t h a t  9 (or, which is the same, exp (i~)) has only linear factors 
on ~2, i.e. 

q~(y) = ~ flj(y)Ej(y), y E ~2, 
j = l  

for some set of mu tua l l y  orthogonal  idempotent  matrices E l , . . . ,  E r wi th  sum E.  
Following Strang [23], we have a.e. 

(r --  1)(r exp (ifli) --  exp (i~)) -1 = (4.4) 

--  ~k  (r -- 1)(r exp (ifli) - -  exp (iflk))-lEk -~  exp (-- i[Ji)Ei, as r --> 1+ 

and  so by  L e m m a  4.1 t h a t  E i E M~ "~r I-Ience E i is a bounded solution of  
(q~ - -  fli)Ei = 0 on ~2. I t  remains to prove t h a t  E i E ~C~+1(/2). Since 

exp (i~) --  exp (iflk) 
Ej 

L~ exp (ifli) --  exp (ifik) 

this follows from the  fact  t h a t  i f  f ,  g E C "+~ and if  g = 0 ~ f = 0 and  dg # 0, 
then  f ig  C C'. (This follows from Taylor 's  formula..) 

CO~OLL~_~u 4.2. Let ~ be open, connected, and dense in R ~. Assume  that (4.1.) 
holds with p # 2 and that q~ C c~N+~ (~) fl ~ (R~), for some ~, ~ 1. Then (4.3) 

N, N holds for  y e R n with Ej e M~ . 
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Proof. B y  Proposition 3.1, (4.1) implies that,  for p ~: 2, the conditions of Lemma 
4.2 hold on f2. A s  in the last part  of the proof of Proposition 3.1, the fli's are 
real linear functions on ~ = / / n ,  too. As above it follows that  (4.3) holds on //n, 
and by  Lemma 1.1(iv), (4.4) and (4.2) that  Ej E M~ -'1~, and the corollary is proved. 

Proof of Theorem 3.1. By  Corollary 4.1, with f2 = R n, (4.3) holds on /~n with 
E1 ~. M~,NN q~+l and with real linear functions fij by Proposition 3.1. This 
proves the theorem. 

Proof of Theorem 3.2. By  homogeneity and Lemma 3.1 it follows that  (4.1) holds. 
We can again apply Corollary 4.1 (now for I2 = R ~ , {  0}, which is connected since 
n > 1) and Lemma 4.2, together with Proposition 3.1, to prove that  (4.3) holds 
on /~,  with real linear functions flj and with E i E M7 'N [3 ~r That 
E i is homogeneous of degree zero follows from (4.3) and so Theorem 3.2 is proved. 

Proof of Theorem 3.3. By  assumption (4.1)and so (4.3)holds for p = 2, /2 = R ~. 
I t  follows that  E 1 E M f  'N [3 ~,+1, by  Lemma 4.2. That ~0 has linear eigenvalues 
on R", follows as above from Proposition 3.1. 

The proof of Theorem 3.4 is similarly a modification of the proof of Theorem 3.2. 
We take this opportunity to remark that  the projections E i E M [3 ~ |  

in general cannot be diagonalized globally in ~ (R '~{0} )  (as was incorrectly stated 
in Proposition 1 in [4 -- II]  for p ~ 1, oo; the proof there is actually only valid 
locally). As an example we notice that  if E i E Cr is homogeneous of 
degree zero, then E i E M~ 'N [3 ~r174 by  Lemma 1.3. But  as for odd n 
there is a nontrivial vectorbundle over S "-~, the unit sphere in /?=, these Ej's 
can in general not be diagonalized globallyin O~(_R~{0}), or even in ~(_R=~{0}). 
Hence there seems to be little hope to go much further than in the statements of 
Theorems 3.1 through 3.4. 

5. Initial value problems in L~ and L~.~ 

Let us consider the Cauchy problem 

Ou/Ot=P(D)u, xE_R n, O < t < T ,  
(5.1) 

u(x, o) = Uo(X) 

where P is an N XN-matr ix  of pseudo-differential operators with constant coef- 
ficients, and where u and u o are complex N-vector functions. This means that  
we define P(D)u for u E S  N by 

=fox, (_ 2~ri(x, y>)P(y)~(y)dy, (5.2) 

Rn 

where P(y), the symbol of P(D), is an N X N-matrix function, by  our convention 
in ~1, such that  for a sequence Pd-j of homogeneous matrix functions in 
~l(Rn~{0}) of degree d - - j ,  j > 0, we have for each integer m 
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m - - 1  

D~(P(Y) - -  ~ Pd-j(Y)) ---- 0(/Y]d-I~l-~), [~I _</~, (5.3) 
j=o 

as [y[--> oo. We say that  P~(y) is the principal part  of P(y),  that  /)d(D) is the 
principal part  of ~O(D), and that  d is the order of P (and P~) provided Pd ~ 0. 
We will assume below that  in (5.1) P has order d > 0. 

Any constant coefficient partial differential operator P(D)  is of the above 
type. By (5.3) P(y)  is in general bounded by some polynomial, and so -P(y)~(y) 
is in Z~ for u E S N, and hence _P(D) is well defined by (5.2). For more details 
about pseudo-differential operators, generally with # ~ oo, and for operators 
with variable coefficients, we refer to HSrmander [7], [8]. 

We say that  the Cauchy problem (5.1) is well posed in L~ if P(D)  is 
the infinitesimal generator of a strongly continuous semi-group of operators E(t) 
on Lp, that  is: the family E(t) (of solution operators of (5.1)) satisfies 

E(0) = E ----- identity, E(t  + s) = E(t)E(s),  t, s > O, 
and 

[IE(t)uotl~ <_ C(T)llu0]lp, 0 < t < T,  ~o e S N, (5.4) 

and 

II(t-~(E(s + t) - -  E(s)) - -  P(D)E(s))uo[Ip --> O, t --> O, u o E S N. (5.5) 

:For 1 ~ p  ~ oo this is the usual definition of a well posed problem (5.1) and for 
p : oo, we say that  (5.1) is well posed in L~, although the standard terminology 
should be ))well posed in C0~). 

Symbols for systems such that  (5.1) is well posed in L~ have been completely 
characterized by Kreiss [15]. In  particular, if the eigenvalues of the principal part  
P~ are imaginary (e.g. when d is odd), then a necessary condition is that  there 
exist uniformly bounded matrix functions S, S -1 on R n such that  S-1PdS is 
diagonal. For d : 1, this is also a sufficient condition. 

We will see below that  in general systems that  are well posed in L~ are not 
well posed in Lp for p r 2 (cf. [3]). For a system such that  (5.1) is well posed in 
L2, one might t ry  to replace the L~norm of u 0 in (5.4) by the norm 

1 Hu0tPe,~ ~--HF- (w~u)lIp, 

where ~ ~ 0 and w~(y) ~ (1 ~ ]yI~) ~/2. We denote the completion of S ~ in 
this norm by L~N.~ (and also write Lp,~ for N : 1). Hence we replace the condition 
(5.4) by 

l[E(t)Uollp ~ C(T)lluol]e,~, 0 <: t < T,  u o r S iv. (5.6) 

I f  the solution of (5.1) exists in the sense of (5.5), and if (5.6) holds, we say for 
short that  (5.1) is well posed in Lp,~, although the standard notion should be 
  well posed 4 )  
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We will now present the main results. The proofs will be postponed till the end 
of this section. First some more notations, however: I f  d 1 is the order of P -- pd, 
we define ~t = rain {d, (d -- dl)/(1 ~- e)}, where e ~ 0 if PdP ~- ppd, 
e~-- 11/2~ I/p] otherwise. Then ~t-----d if the order of P - - P d  is ~_- - ed ,  
e.g. if P is homogeneous. 

THEOREM 5.1. Let 0 ~ or < dll/2 -- l/p[. Assume that 
operator and that the eigenvalues of Pd(y) are imaginary for 
is well posed in Lp,~ and in L~ i f  and only i f  

P is a differential 
y E R". Then (5.1) 

Pd(y) = ~. &a/axj, (5.7) 
j = l  

where A1,.  . ,  An are diagonable, commuting matrices with real eigenvalues. I n  
particular d = 1. 

Remark. I f  (5.6) holds and if the order of P is odd, then it is well known tha t  
the eigenvalues of Pd(y) are imaginary, y E R ~ (cf. also Lemma 5.1 below). 

I f  the problem (5.1) is well posed in Le for some p, 1 ~ p < oo, then (5.1) 
is also well posed in L 2. Again we refer to Lemma 5.1 below. 

THEOREM 5.2. Let p # 2, and let n > 1. Assume that Pd E ~N+~(R"~{0}), 
for some v > 1, and that the eigenvalues of Pd(y) are imaginary for y E I~ ~. I f  
(5.1) is well posed in Lp, then 

Pd(D) ~- ~ ~kj(a/~xj)Ek(D), (5.8) 
k,j  

where aki are real constants and where Ek(D) are operators with symbols which 
are mutually orthogonal idempotents in M ~ ' N f I ~ + I ( / ~ { 0 } )  and which are 
homogeneous of degree zero. I n  particular d -~ 1. Conversely, i f  P E ~"  for some 
tt > n/2, then (5.8) implies that (5.1) ks well posed in Lp, 1 < p < oo. 

Since M~ 'N ----- M~ 'N ~_ ~ ,  we have the following corollary for p ~ 1, or. 

COROLLA-RY 5.1. Let p -~ 1, oo, and let n > 1. Under the assumptions in Theorem 
5.2 it follows that (5.7) holds for a set of diagonable, commuting matrices Aj with real 
eigenvalues. I n  particular, P~ is a first order differential operator. Conversely, i f  
(5.7) holds, with A 1 . . . .  , AN as above, and i f  the term of degree zero in (5.3) is constant, 
then (5.1) is well posed in L 1 (and L~),  provided P E c@ for some tt > n/2. 

t&mark. As mentioned in section 3, although Theorem 1 in [4 -- II] is incorrect 
as stated, the result of Corollary 3 in [4 -- II], and so also Theorem 2 there holds. 
Hence Corollary 5.1 actually holds without any regularity assumptions on Pd. 
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T~EOR~M 5.3. Let 0 < ~ < dl l /2  -- I/p], and let n > 1. Assume that Pd 6 ~N+v 
On /~n~{0}, for some v >_ 1, and that the eigenvalues of Pd(y) are imaginary for 
y E R ~. I f  (5.1) is well posed in L~.~ and in L2, then (5.8) holds where again ~kj 
are real constants, and where Ek(D) are operators with symbols which are mutually 
orthogonal idempotent matrices, which are homogeneous of degree zero on t~ ~, and 
which belong to MN'lv f'l I n  particular d = 1. 

I f  ~, > n/2 -- 1, then Ek also belongs to M~'N for 1 < p < ~ .  Conversely, 
i f  P 6 ~C, for some # > n/2, then (5.8) implies that (5.1) is well posed in Lp, 
l<p< r 

I n  general the bound d i l l 2  - -  1/pl above is not  the best possible, in the sense 

tha t  the problem (5.1) need not  be well posed in Le, a for ~ > ~/11/2 --  1/pl, 
even if  i t  is well posed in L 2. ~owever ,  to obtain results of the type  (5.7) and  

(5.8), the bound dl l /2  -- I/p[ is essential. This will be clear from an example 
given in the end of this section, for N = 1. 

I f  we merely wan t  criteria for the non-existence of est imates of the form (5.5) 
we can use Proposi t ion 3.2. Consider the system (5.1). We have defined the  rank  
of Pd as the largest integer r such tha t  there is some ball B and  an imaginary  
eigenvalue ~j of Pd on B such tha t  a i 6 @(B) and such t h a t  

> r  (Y) \vykoy/  k,l 

on B. Also, let now d = rain {d, (d -- dl)/(1 -4- re)}, e as above. 
We then  have the following result: 

THEOREM 5.4. Let r be the rank of Pd. Assume that P E cC~ Then the 
Cauchy problem (5.1) is not well posed in L~,~ for 0 ~ ~ < rd] l /2  --  lip[. 

Applications of Theorem 5.4 to specific cases, such as the wave- and  the 
SchrSdinger equation, will be given below. 

A Canchy problem (5.1) which is well posed in L2, is also well posed in Lp, a 
for ~ large enough, provided the symbol is smooth. In  view of Theorem 5.4 the 
following result  is in a sense the best possible (cf. L e m m a  1.4). 

THEOREM 5.5. Let P be an N • N-matrix of pseudo-differential operators of order 
d > 0 on R ~, with symbol P E q~ .  Assume that the Cauchy problem (5.1) is well 
posed in L 2. Then (5.1) is also well posed in Lp,~ for ~ > ndi1/2 --  1/p[. 

Before proving the  theorems, we give some examples. 
As a first  example we consider the Cauchy problem for the wave equat ion 
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u(x, O) = Uo~(X), 

~u/~t(x, O) = Uo~(X). 

0 < t < T ,  

(5.9) 

I t  is easy to reformulate (5.9) as a Cauehy problem for a first order system of pseudo- 
differential operators, where the principal part  P1 of the symbol has eigenvalues 
of the form ~ 27dly I. The Hessian is Jn(y) = =~ 2~ilyl-3(lyl~E - -  (y~y~)). 

As a second example we take the Cauchy problem for a SehrSdinger type equation. 
Let  a~t be real and symmetric and consider 

{ au/~t = i ~k~=~ akza~u/~xk~xz, x e R ~, 0 < t < T, 
(5.10) 

u(x, o) = Uo(X). 

Here Pd(y) = -- (2~)2i ~k~.l=l aktykyl. Hence J(y)  ~ 2(ak0 determines the rank 
of pd. 

There is a general problem, which in a sense includes (5.9) and (5.10). Let  fl > 0 
and let P~(D) be the pseudo-differential operator which has the symbol 

P~(y) = i( i aklykYl) ~12, 
k,l=l 

where akl --~ al~ and ~k~,t=l aktykyl ~ O, y ~ R ~. Consider the Cauchy problem 

{ O u / ~ t = P ~ ( D ) u ,  x e R  ~, 0 < t < T ,  (5.11) 

u(x, O) = Uo(X). 

Since an orthogonal change of variables does not  alter the property of being 
well posed in Lr.~, and since (a~0 is symmetric and non-negative, we may assume 
that  P~(y) = i ( ~ = ~  y~)a~:, where r = rank (a~). The matrix Ja,~(y) which 
determines the rank of P~ is in this case 

Ja,,(y) = ifi[yla-~(iyl~E -~ (fl - -  2)(y~y~)), y ~ R ". 

LEMMA. Let  r > 1, fi > 0 and J~,r be as above. Then the rank of  J~,, is for  
y r  

(i) r - 1  for ~ = 1  
(ii) r for  fl--/: 1. 

Proof. We may by  homogenity assume that  IYl = 1. Since the columns of 
(ykyz) are of the form y~(Yl, �9 �9 �9 , Y,), it follows that  (YkY0 has rank 1. I-Ience this 
symmetric matrix has only one non-zero eigenvalue. As the trace of (Y~YO is 
lyIg'= 1, the eigenvalue i s  ly]2~- 1. Hence the symmetric matrix J~,,(y) has 
for [Yl ~ 1 a diagonal form which is a multiple of 
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(:, o) 
1 . . . 

1 

which proves the lemma. 
From this lemma and Theorem 5.4 we then have the following result: 

P~OPOSITmN 5.1. Let n > 1, n = rank (akt). Then the Cauchy problem (5.11) 
is not well posed in Lv, a for 

nfl]l/2 1/pl, fl =/= 1, 

o < ~ ,  < (n  - 1 )11 /2  - 1 / p l ,  fl = 1. 

For the wave-equation (5.9) this result was obtained by  other methods 
by  l~auravei [22], who also proved that  (5.9) was well posed in Lp, a for 
~ ( n -  1 ) [ 1 / 2 -  1/p I. For the SehrSdinger equation eL Lanconelli [16]. By  
Theorem 5.5, (5.11) is well posed in L~.~ for ~ ~ nfl[1/2 -- l/p[ for fl =/: 1, and 
so Proposition 5.1 is in a sense best possible also in this case. Cf. also [27]. 

We now proceed to the proofs of the above theorems. We first transform (5.6) 
to multiplier form (cf. Theorem 2 in [3]). As above w~(y) ~- (1 q- lylU) ~/~. 

L~.MMI 5.1. I f  the Cauchy problem (5.1) is well posed in Lp, a then 

M~'N(w~le 'e) ~ C(T), 0 < t ~. T. (5.12) 

Conversely, i f  P r cC" for /~ ~ n/2, then (5.12) implies that (5.1) is well posed in Lp,~. 

Proof. Assume first that  (5.1) is well posed in Lp,~. Since by  (5.6) 
u(t, x) ~ E(t)uo(x ) belongs to L~, we can take Fourier transforms in the distribu- 
tion sense, of the elements of (5.1) with respect to x (t fixed) and get 
by  the definition of P(D) that  

I au(y, t)/at : P(y)u(y, t), y e/~,  0 < t < T, 

~(y, o) = ~o(y) 

and so with 

~,(y) = exp (tP(y)), ~(y, t) = q~,(Y)~o(Y). 

Then (5.6) implies by  definition (5.12). 
On the other hand, assume that  (5.12) holds. With ~t ~ ~t, we have 

u ( x ,  t) = ~ ,  �9 uo(x)  

and so u(., t) E ~ since the elements of /~t E S' and since differentiation is con- 
tinuous in S. From 
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it follows that  

09, 
at --  Pq~'' q~o = E, 

t + h  

= q~t q- hPq~t ~- / ( ~  --  t)P2%dT. 

t 

Hence, using (5.12) we have 

l!h-~(u( , t + h) --  u(., t)) --  P(D)u(. ,  t)]ip _< [h] sup ][P(D)2u(., ,)lip _< C[h[]]P(D)2uollv,~. 
t<<_t<_t+h 

I f  P(D)2uo E L~N~ for fixed % C S N, this will prove (5.5). 
For 2 < p  < oo, P(D)2uoEL[~,  for any a > 0  by the Kausdorff-Young 

inequality. For 1 < p < 2 this is certainly the case if P(y) C ~@ for some ff > n/2, 
by Lemma 1.4 (Bernstein's theorem). Together these results prove Lemma 5.1. 

Remark. I f  2 < p < o% then (5.12) alone implies that  (5.1) is well posed in 
Ep,~, by the above proof. For ~ =  0 this is also the case for l < p <  oo if 

--1 N , N  % E M~ , 0 < t < T, e.g. if P is homogeneous and has imaginary eigenvalues, 
cf. L~mma 3.1. 

We use Lemma 5.1 to obtain necessary conditions for the Cauchy problem (5.1) 
to be well posed in Lp and in Lp,~. 

N, N LEMMA 5.2. Assume that (5.1) is well posed in Lp. Then exp (Pd)E M~ . 

Proof. I f  (5.1) is well posed in Lp, then (5.12) holds for ~ : 0. L e t  t = s ~ 
and ~v,(y)= e 'P('-'y). By Lemma 1.1(v) then 

M~'NOf,) <_ C(T),  0 < s <_ T l/d, 

and since by (5.4), %(y)--> exp (P~(y)), at least for y :A 0, and since P~ is con- 
N, N tinuous (d > 0) we have by L~mma 1.1(iv) that  exp (Pd) C M~ . 

For ~ > 0 we have the following local result as a consequence of (5.12). Here 
s ]1/2-- 1/1ol, and d ( r ) = m i a ( d , ( d - - d l ) / ( 1  +re ) ) ,  r >_1. 

LEM~aA 5.3. Let ~ >_ 0, d > O. Let B C R ' ~ { 0 }  be a compact ball. Assume that 
(5.12) holds. Then 

N 

M~'~(exp (j(Pd + m-(l+r~)Q~))) ~< Csm ~/d(r), 1 < j < m, (5.13) 

where {Qm} is bounded in <~l(Rn~{0}) and where Q,n-->Ps~ or 0 as m--> co, 
on R ~ \ { o } .  

Proof. Write P = Pd + Q where (the principal part of) Q has degree 
dl ~ < d - -  1. By (5.12) 
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M/'N(w~ 1 exp (t(Pd ~- Q))) ~ C, 0 < t < T. 

P u t  t : Tj#-L From (5.3) we have after a change of variables t ha t  

MN'N(w~I((T-1/~)I/d.) exp (j(Pd ~- [~--l+di/dQ~)) ~ C, 1 ~ j ~ /~, 

where Q , ( y ) :  T#-d/d'Q(T-~/~/dy) is bounded in ~X(R~{0}) .  Le t  B be a closed 
ball, wi th  0 g B. Then 

M~:~(exp (J(Pd ~- #-l+d~/dQ,)) ~ CMe,B(W~(#~/d.)) ~ CB#~/d, 1 ~ j ~__ #. 

Let  now m : #~)/d, and let Q,, ~-m(l+~)~-l+d'/dQg. Then 

d ( r ) ( l + e r ) - - ( d - - d l ) =  l ~- er) d(r) l § ~r <-0' 

and hence Q,~ has the properties s ta ted in the lemma. Fur ther ,  
and m </~ ,  and so (5.13) is proved. 

/z a/d :_ m~/d(O 

LE)IMA 5.4, Let P = P'  ~- P" where the degree of P" E ~@ is ~_ O, be > n/2. 
I f  p = 1 or ~ ,  we also assume that the zero-order term of P" is constant. I f  

then 

M~"N(exp (tP')) <_ C', 0 < t < T, 

M~'N(exp (tP)) ~_ C(T), 0 < t < T. 

Proof. Immedia te  from L e m m a  1.5 and the formula proved in L e m m a  3.2. 
Proof of Theorem 5.1. B y  L e m m a  5.1 and 5.2, or 5.3 and 5.2 (for p = 2), if  

> 0, we see t ha t  the conditions of Corollary 3.1 and 3.3, respectively, are satisfied. 
This proves (5.7). Here we used r = 1 in (5.13). 

To prove the converse, notice t ha t  (5.7) implies t ha t  exp (tPd) E M~ 'x uniformly 
for 0 < t < T (e.g. by  Corollary 3.1). Since d = 1 and  P is a polynomial,  L e m m a  
5.4 implies t ha t  (5.12) holds; by  L e m m a  5.1 and the regular i ty of P,  (5.1) is then  
well posed in L e. 

Proof of Theorem 5.2. The proof of (5.8) is similar to the proof of (5.7), now 
using Theorem 3.2. Also the proof of the converse of Theorem 5.2 is similar to the 
above proof of Theorem 5.1. 

N,N C c C The proof of Corollary 5.1 is evident  from the  fact  t ha t  M~ _ for p ~- 1, ~ ,  
and  so the projections Ej are constants.  

Theorem 5.3 follows from Theorem 3.4 and  the converse from L e m m a  1.3, in 
analogy wi th  the above proofs. 

Proof of Theorem 5.4. By  L e m m a  5.3, if  (5.1) is well posed in Lp,~ then  for 
each compact  ball Bo__C/~"~{O), we have 

N, N Mp, Bo(exp (j(Pd -~- m-(l+r~)Qm))) ~ CBo maid, 1 < j < m. 
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I f  ~ < rd 1 1/2 --  l /p  I, this contradicts  the  assumptions of Theorem 5.4 and Proposi-  
t ion  3.2. Hence  (5.1) is not  well posed in Lp.~ for 0 _<~ < r/ /[ l /2 - -  ]/Pl in this 
c a s e .  

To prove Theorem 5.5 finally,  it  is sufficient to prove  the following result.  

PROI'OSITIO2q 5.2. Let q~ E ~C ~ be the symbol of an N x N  matrix of pseudo- 
differential operators of order d > O. AsSume that exp (iqp) E M ~  "N. Then 

JJ/[N'N(w~leit~) < CT, 0 < t < T, (5.14) 

for  ~ > nd]l /2 --  1/p[. 

Proof. We will provide bounds for p = ~ ,  ~ > nd/2, and  then  in terpola te  
with the  known bound  for p = 2. To handle  the n o n -co m m u ta t i v i t y  we proceed 
as follows. Le t  ~, = exp (its). Then 

dt --  iq~q~,. 

Multiplying with wg I and then  different iat ing we get t ha t  

7"~0 

The  summat ion  is over all 7', 7" such tha t  7' d- y" = 7, wi th  y'  ~= 0. Solving 
this we have 

t 

D'/(w~l~t) = q~,Drw~ 1 + f q~_~ ~ D/(i~)D~" (w~lcf,) d~, y' + y" = y. 
d y'#O 
0 

Using (5.3) we get for lyl ~ 1 tha t  

sup /D'(w~-l~,)l < CT(]y[ -~-iri) + C ~ [yi (a:[r sup !Dr"(w~a~,)l, ~/' + y" --  ~. 
O~t<T y'TLO 

After  ]y[ steps we have for O < t  < T ,  ]Yl >--1, 

]D,(u,~l~,)[ _< CTlY[( d=l)'~i-~ . (5.15) 

Hence we may apply Lemma 1.4 as soon as (d-- I)17]--~<-- [71 for ]y] _<v, 
some v > n/2, i.e. for ~ > nd/2. Hence (5.14) is proved for p = I, oo and also 

holds for p = 2 (~ = 0) by assumption. The general case then follows by an 

interpolation argument (see e.g. [21]). Another proof is based on the Carlson- 

]3curling inequality 

M+(f)  < C( ~ IiD'/fll21lD,"fllu) 1/2, 

with summat ion  over  multi- indices y', y" with sum ( 1 , . . . ,  1). F r o m  (5.15) and  
a simple computa t ion  we then  have tha t  (with ~v i as in L e m m a  1.4, now wri t ing 

~v o for ~v o d- ~v_ +) 
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M~N'N(W a-ly~j~t) - -  < CT 2-j(-n/2§ j ~ O, 

a n d  hence b y  L e m m a  1.1(i) and our a s sumpt ions  t h a t  

N,N --1 M~ (w~ ~j~,) ~ C~2 -j<~ ~,~/2-~/~:> j > 0. 

Adding  these inequalit ies,  (5.14) follows for ~ > n d ] l / 2  - -  1/p]. 

B y  the m e t h o d  used, we can also p rove  t h a t  w~ 1 exp  (ity a -  ty 2) 6. M p  for 
0 < t  < T ,  if  ~ >  ] 1 / 2 - -  1/p[ = d [ 1 / 2 - -  l ip] .  Since d---- 3 in this example ,  
i t  follows t h a t  the  fac tor  ~/ cannot  be replaced  b y  d in Theo rem 5.1, even  for 

N- - - -1 .  

6. Corrections to the papers .Power bounded matrices of Fourier-Stieltjes 
transforms I, II- 

We give here a shor t  list of  correct ions of  some of the  incorrect  s t a t emen t s  in [4], 
mos t  of  which were po in ted  out  for the  au tho r  b y  Lars  t t 5 r m a n d e r .  

[4 - -  1]: The o rem  1 is only  p roved  for /" = R", and  as s t a t ed  does no t  even 
ho ld  for F = T". The  error  occurs in the  last  sentence in the  p roof  on top  of page  

120. 
Theorem 2, which was p roved  b y  a s imilar  a rgumen t ,  is for the  same reasons 

on ly  p roved  for F ' =  R" or T". 
The  example  on p. 125 is correct ,  in spite of  the  erroneous p roof  of  the  fact  t h a t  

Z(1 - -  2) C B. Us ing  the  m e t h o d  of the  s t a t i o n a r y  phase,  one can however  p rove  
this in a s t r a igh t fo rward  way,  as was suggested b y  Lars  H 6 r m a n d e r .  

[4 - -  I I ] :  P ropos i t ion  1 in section 2, p. 41, is p roved  only  locally, no t  g lobal ly  
as incor rec t ly  s t a t ed  (cf. the  discussion in section 4 above) .  Kence  nei ther  Corol lary  
1 nor  Theo rem 1 are  proved.  B u t  f rom the  p roof  of  fo rmula  (4) on p. 44 we have  
the  resul t  s t a t ed  as T h e o r e m  3.1' of  the  presen t  pape r  (see section 3 above).  Hence ,  
as men t ioned  in connect ion  wi th  Theo rem  3.1', b o t h  Corol lary 2 and  Theorem 2 
are correct .  F inal ly ,  Corol lary  1 on p. 44 is not.  correct ,  and  the  s t a t e m e n t  ))H in 
fl)) should be  replaced b y  >)H in filo%. The  error  here comes f rom not  t ak ing  in 
accoun t  the  wel l -known fact  t h a t  B is not  s y m m e t r i c  on its m a x i m a l  ideal space 

( the Wiene r -P i t t  phenomenon) .  
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