Weighted norm inequalities
for a general maximal operator

Francisco J. Ruiz and Jose L. Torrea

1. Introduction

Some studies about boundedness properties of maximal operators of Hardy—
Littlewood type have been made recently (see [5], [6], [8]). In this note we study
a very general operator which includes the known results as particular cases.

Let U, V be two arbitrary sets. Suppose we have some topological structure
in the cartesian products R*X U, R"X ¥ and also suppose the existence of positive
Borel measures da(x,u) on R"XU and dBf(x,v) on R*XV.

We shall denote by LP(R*X U, do) the set of measurable functions in R*X U
such that [gayy | f(x, 1)|Pda(x, u) is finite.

The a-measure of a set ECR"X U will be indicated by «(E) and the Lebesgue
measure of ECR” will be denoted by |E]|.

Throughout this paper @, respectively ¥, will be a set function from cubes in
R" into Borel sets in R*X U, resp. R*XV, satisfying:

O If 0., O, are cubes with 0, Q,=0 then @(Qy)N P(Q,)=0 and P(Q)N
¥Y(Q2)=0.

D) If 01<Q, then 9(Q,)CcP(Qy) and ¥(Q)¥(Qy)
(1) If QO(x,r) denotes the cube with center x and side length r then, for any

xeR" _
U,.e (@G, 1)) =R"XU and U,_, ¥(Q®, ) =R"XV.
We define the following maximal operator which applies functions in R*XU
into functions in R*XV:
1
m 7105, 0) = sup {1 [ 110 01 da 0, 0): (5, D P(@)

i.e. the supremum is taken over all cubes Q such that (x, v)€ ¥(Q).
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Particular examples are the following:

A If R°XU=R"XV=R", du(x, u)=dx, where dx is the Lebesgue measure
on R” and &(Q)=¥(Q)=Q, then T is the Hardy—Littlewood maximal operator.

B. If R*XU=R", V=[0, =), da(x,u)=dx, ®(Q)=Q and ¥(Q)=0=
{(x, t): x€Q, 0=¢=side length of @}, then T is the operator

Mf(x, ) = Sup{lQ%IfQ [fO)dy: x€Q, 0 =t =side length of Q}
introduced by Fefferman—Stein 3] and studied in [5] and [6].
C. If U=[0, =), R®XV=R", &(Q)=0, ¥Y(Q)=0, then T is the maximal
operator
1

cft) = sup {3 [, 10, i 5<0)

closely related with tent spaces (see [1]).

2. Main results

Theorem 1. Let w(x,u) be a positive function on R"XU. The following con-
ditions are equivalent:
(i) T is bounded from LP(R"XU, wdx) into weak-L°(R*XV,df) for some p,
1=p<eoo, ie.
C
B{Gs DR XV TS, )l = M) = =5 [ 1, w)P o, w) doc(, w).

(ii) The weight w satisfies that for any cube Q,

L , p—-1
—ﬂ—(lQ(l*Q)) [ﬁfcb(a) o (x, u)' 7% da(x, u)] =C
l:f. 1<p< oo,
If p=1 the condition is that for any cube Q

ﬂ(SIZ(IQ)) = Co(x, u) a-ae. (x, Wed(Q).

We shall say that f is a y-Carleson measure if there exists a constant C such that

B(¥(Q)) = C|Q| for any cube Q.

In this case, we can prove the following:
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Theorem 2, Let 1<qg<-< and f a W-Carleson measure. Then, for B-almost every
(x, )ER"XV

DT [ (TUD0: WP dB 0 w): (0¥ (@)f = TG,
Remark 1. If we define on R"XV the maximal operator

MeG o) = supf e [, 180, WG w): (s, DET(QY,

then Theorem 2 ensures that the function h(x, v)=(T(f9)(x, v))1"? satisfies
(2) Mh(x,v) = Ch(x, v)

Observe that if R"XV=R", ¥(Q)=0 and df=dx then (2) says that h(x) is
a weight in the class 4, of Muckenhoupt.

Theorem 3. Suppose that R*X U=R", &(Q)=Q, doa(x, u)=dx and B is a ¥-Car-
leson measure on R*XV. Then, the following vector-valued inequalities hold:

(i) For 1l <p,q<e
Jaoy G| Th e 0197 dB(x, 0) = € [ (ST, 11" dx.
(i) For 1 < g <o
B{(e ERIXV: ST TG it = 1) =5 [ (37, 1£,0ol

Our last result is the strong version of Theorem 1.

Theorem 4. Let 1<p<e and w(x,u) a positive function in R*XU. The fol-
lowing conditions are equivalent:
(1) T is bounded from LP(R"XU, wda) into LP(R*XV, dp).
(ii) For any cube Q,

1-p P = et 4 o
o Tt ) P dB(r0) = C [ o, u) 7 du, u) <+
where C is an absolute constant.

Remark 2. If R"XU=R"XV=R" ®(Q)=¥(Q)=Q and du(x,u)=dx, then
Theorems 1 and 4 are very well known and due to Muckenhoupt [4] and Sawyer [8].
Theorem 2 is due to Coifman and Theorem 3 to Fefferman and Stein [3].

If R*}X U=R", V=[0, «), ?(Q)=0, P(Q)=0 and dx(x, #)=dx, Theorems 1,
3, 4 can be seen in [5], {6}, [7].

If R*"XV=R", U=[0, «), $(Q)=0, ¥(Q)=0Q then Theorem2 is due to
Deng[2].
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Remark 3. If the measure du is fixed we define the class W2(T) (resp. S%(T)) as
the set of pairs (df, w) such that the condition (ii) in Theorem 1 (resp. Theorem 4)
is fulfilled.

In general, it is not true that for p<g, Wi(T)cWi(T) as the following ex-

ample shows:
Take R"XV=R", df(x, v)=dx, P(Q)=0 and let u be a d-Carleson measure
on R*XU. Choose a function w{(x, u) such that for some Q and some p<gq

p-—~q == co
f o w(x, u) du(x, u) .
If we put de=w?~1du then it is clear that (dx, odo)cW2(T) but
(dx, woda)dWi(T).

However, if « is a @-Carleson measure on R"X U then T is bounded from
L>R"XU, wdwa) into L=(R"XV,dp) and so, by using Marcinkiewicz’s interpola-
tion theorem and Theorems 1, 4 we obtain

WHT) < ... C SHT)CWHT) C ... € SUT) CWET) C ... (1 < p < g <oo).

3. Proofs

Proof of Theorem 1. 1t is clear from the definition of T that for any cube O,

n . = ._1_
¥@ < | OeRxr: 705 ) = oo 1119
Then, if T satisfies part (i) of Theorem 1, in particular we shall have
©) BE@) =CIOr ([, 1N1d0)7" [, fPod.

Now, for l<p<ee, we obtain (ii) of Theorem 1 putting f=yg®'® in (3).
In order to have part (ii) of Theorem 1 for p=1, observe that (3) says that
B(7(Q)

J o =g = € [, /10 do

for any fin L*(R"XU, wda) and this implies that

—lillPQ(lL)) = Co(x,u) a-a.e. (x,uw)cd(Q).
For the converse we shall need the dyadic cubes, i.e., the cubes of the form
%, Ixi, x4+-25), where x€2%Z" for some k in Z.

i
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Let 1<p<e and A=0. We want to prove the inequality

@) B{(x, DER"XV: Tf(x, 0) > 4)) = —% S P2

For r=0 we introduce the operators

T f{x, v) = sup {T;—l f o | flde: (x, 1)EP(Q) and side length of Q0= r}.

Let A7 be the set
n = {(x, ER"XV: T"f(x,v) > A}.

If we can prove that

) B = 5 [y 1105 0P, ) dn, )

with constant C independent of r, then it is clear that the monotone convergence
theorem will give us (4).
For each (x, v)cé A} there exists a cube P such that (x, v)¢¥(P) and

1

l‘ﬂfm)'f'd“”'

Let & be the only integer such that 2¥~D"<|P|=2*_ There exists at most

2" dyadic cubes Q with |Q|=2*" and with nonvoid intersection with the interior
of P. Then there exists at least a dyadic cube g, with {Qy|=2*" and such that

7 oy O 1, 8 = 2277

In particular, this cube Q, verifies

1
4-n,
(6) 10l f¢(Qu) If(y, u)l dv(y, u) = A
Now, there exists a dyadic cube Q; such that QycQ; and Q; is a maximal

dyadic cube for the condition (6), since, applying Holder’s inequality and condition
W5(T), the inequality

1 1 , 4
4" < @f‘m’ Iflde = ar (fo@ IfPo doc)w (f‘p@ w-vr doc)llp

= Cr@) ([,  flPwda)?”

R®"XU
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for infinitely many dyadic cubes containing @y would imply that

PRV =5 [ I Pwds

and in case (4) is obviously satisfied.

Moreover it is clear that Pc3Q; (where 30 (x, r) = Q(x, 3r)).

In other words we have proved that A;cJ;¥(3Q;) where Q; are disjoint
cubes. verifying (6).

Now, standard techniques in weight theory tell us that for 1 <p <o,

b = CS8(P00) 35 (57 g, V142)

. ¢ _ﬁ. (T(?’_Qf)) P —rip g )P = € P
=53 o] [j¢(Qj)l|f| o da) [j¢(3Qj)w do) = [ fPede
So, (6) is proved and the proof of Theorem 1 is concluded. (Obvious modifications
give the result for p=1.)

Proof of Theorem 4. This follows along the same lines as in [6].

The implication (i)=(ii} can be proved analogously to the corresponding one
in Theorem 1.

For the converse, the first step is to prove the result for the “dyadic” operator

T,f(x, v) = sup {TQIT J o 1142 (. 0)E¥(Q), Q dyadic}

and then the proof for T follows easily from the ensuing lemma (see [6], [8]):
Lemma. We define for each zER™ the operator
. _ 1
Taf (5, 0) = supr [ ) L0, )] Ay, )

the supremum being taken in all cubes Q with (x, v)€¥P(Q) and such that the set
O—z={u—z: u€Q} is a dyadic cube. Then,

dz
T#f(x,v) = C oo, gevrp 1S O V) ey

In order to prove the theorem for T,, we introduce for r>0 the operators

Tif,0) = D5 [ 10 0] 480 1)

where the supremum is taken over all dyadic cubes Q such that (x, v)¢ ¥(Q) and
with side length less than r.
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Let £, be the set
Q= {(x, 0)ER"XV: T f(x,v) > 2%}, k€Z.

It is easy to show that the set £, can be decomposed into &,={J;, s Y’(Q’}), where
Q:f, j€J,, are disjoint dyadic cubes with side length less than r and satisfying:

1
TQ’,‘TI 0o |1 do > 25,

Now, let us consider the disjoint sets

= ?(Q'J")\Qkﬂ, keZ, JeJy.
Then
Sansey | Tif G 0P dB G 0) = 3, [ 5TV a8

f1da.

We introduce the following notations (see [6] and references there):
ol(x, u) = ' (x, 1), o(®(Q)) = f o o du,

— pEn[2(2©0D) 1 Y
Yi = B(E)) (—-l'@];‘—) s B = (Wf¢(g';)70da] ,

X={(k,j): k€Z, jeJ,} with atomic measure y;, and I'(D)={k,)cX: gy=>1}.
Then we can write

fR"XV Iijlp dﬁ = 2p2j,k ?jkgjk = 2pf {Z(k,j)er(l) ?jk} di

- a(®(0%) ] }
r f {Zk jer(z)fEJ ( le . dp(x, v)¢dA.
Calling Q, the maximal cubes of the family {Q%: (k, )T (1)}, this is less than
z f : (2] ¥(Q) Ti (9%a))” 46) d2
and by hypothesis (ii) this is less than
2 [ (S o, od2) d2 =2 [ [0 (Ui 2(Q)) 2.

The definition of I'(4) states that

=3, 2 pEN =2 3, ﬁ(E")(IQ*I /

(0%

Ui®(@) < {(x, wER'X U: N[%] (x, u)? > 1}
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where

Ng(x, u) = sup;@l@)-fﬂm ig(x, )| 6 (x, uydulx, ©)

(the supremum being taken over all dyadic cubes in R” such that (x, u)€ d(Q)).
Then we have

fRnXV \Tifl?dp = 2”f: 0[{(x, u): N(—;_:] (x, u)? > /1}] di

=2f N(i)Padaszvf Iflpadoc=2"f P da
R"XU o - R"xU ¢? R™XU

where the last inequality is due to the fact that N is bounded from L7 (R*X U, odu),
l=p=oo, into itself. This can be seen by interpolating the trivial result for p=o
with the (1, 1)-weak type inequality (which can be obtained with standard argu-
ments involving dyadic cubes).

The monotone convergence theorem again gives (i) of Theorem 4 for T, and
the proof is finished.

Proof of Theorem 2. Let 1<g<o< and g(x,u)=|f(x,u)% If a cube Q is
fixed we decompose

g(x, u) = g1(x, W)+ g5(x, u)

where g;(x, U)=g(x, u) {o(g) (X, ).

Since § is a ¥-Carleson measure, Theorem 1 (with w=1) ensures that 7 is
of weak type (1,1) and then by the Kolmogorov inequality, we have for any &
with 0<é<1,

Joiy @&’ dB = CBEF@) ([ ..., 180 )] da(, )
= CIOM? ([ 18266 W) dax, )’
In particular,
1 s 1 8 s
M oS @er a8 = C (5[ 81d) = C(Tew)

for any (z, w)¢ ¥(Q).
Now, let (y,v)€¥(Q). For any cube P such that (y,0)é¥?(P) and
1

7 Sow |2l dx#0, we have ¥(P)n ¥(Q)=0, ®(P)n $(30)°=0 and then prop-

erties I and II on &, ¥ imply that Pn Q#0, Pn(30)°=0. This says that Qc3P.
So, for any (z, w)e¥(Q)

ng(}” v) = 3"Tg,(z, w).
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Thus,
®
! s e cBE@) o
—'él—f Rt (Te)"df = C=5= 10l @ w)e‘I’(Q) (Tgalz, W) = C(z I)IE]‘I’(Q) (Tea(z, W)Y’

Finally, it is clear that (7) and (8) conclude the proof.

Proof of Theorem 3. We shall distinguish two cases:
1) Part (i) with p>gq. In this case, for some nonnegative hA<L”(R*XV, df)
with [|h]l /@esry,ep=1 (Where r=p/q), we have

O [y CHATLG Y aB G, 0) = ([, 21T 0l h(x, ) dB(x, D))

If we define

T*h(x) = sup ——

gl 9001

it is clear that the pair (hdf, T*h) belongs to the class W{{T) (where da=dx) and
then Remark 3 and Theorem 4 imply that the last member of (9) is less than

(10) ([ Zi 16T () dx)'.

Moreover, the operator A—T*h is bounded from ILP(R"XV, dB) into L?(R", dx).
In fact, it is bounded from L* into L™ (since B is ¥-Carleson) and from L' into
weak-L! (this can be deduced from Theorem 1).
Then, by using Holder’s inequality, (10) is less than
f § (21 lf; (x)l") dx- “T*h”r/r' = Cf : (21 lj}(x)l")*”/qu,

L’ R?,dx)
and, therefore, the theorem is proved in this case.

2) Part (i) with p=q and part (ii). We shall make use of a general theory
of vector-valued singular integrals. We need the following proposition:

Proposition. Let R, V, « and B be as in Theorem 3. Let E, F be Banach spaces
and S a linear operator bounded from LZ(R", dx) into LP(RXV, df) for some py,
l<p,=-ce. Suppose that there exists a function

K: R*XR*XV -~ Z(E, F)

(Z(E, F) denotes the set of bounded linear operators from A into B) such that:
@) For feLy(R" dx) with support contained in a cube Q, S has the repre-
Sentation

S, 0) = [ K 2, 0f0)dy for (x, )¢ P(Q)-



336 Francisco J. Ruiz and Jose L. Torrea

(b) There exist a natural number N and a constant C such that for any cube Q
and kEN

IKGs 3, 9)~K s 7, Dl = mergr

for (x,v)¢ ¥(N*Q), y,y'€Q.
Then,

(i) For 1<p=q=p,
Jarey (S5ea 186:Ge i) dB(x, o) = € [ (ST, 158 dx.
(ii) For 1<g=p,
B{(x, ERXV: 35, If;(x, 0)|s = 29)) = fj— o (S @ dx.

Before we sketch the proof of the proposition, we shall finish the proof of
Theorem 3.

First of all, observe that in the definition of T we can restrict us to a numerable
family, say I, of cubes (for instance, cubes with rational radius and center). If we
consider a sequence {I,},n with I,(finite) /I, and we put

571G ={[

Rn

I_éi Xy (X, 0) X (N F() dy}

QeI
then it is clear that
1 1S fCx, D=y /~ Tf(x, 0) (1> o).

In particular, || S"f(x, v)l;=q,=Tf(x,v) and then, Theorem1 says that S”
is bounded from L*(R" dx) into Lf., SR*XV,dp) for l<p<eo (with bounds
independent of n). »

On the other hand, the kernel of the operator S* (in the sense of the proposi-
tion) is the £ (C, I=(1,))=I=(I,)-valued kernel given by

1

K*"(x,y,v) = {_—XW(P)(xa U)XP(J’)}

[P Pel,

Unfortunately, this kernel satisfies that for any cube Q and k€N
" n ’ C
(12) 1K™ (x, y, )— K" (x, ¥, 0=y = 0T

for (x,v)¢¥(3*Q) and y,y’cQ

and this condition is weaker than condition (b).
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In order to have an operator in the conditions of the proposition we must
smooth the kernel K”: take a function ¢: R—R, ¢€0Q*(R) such that

X1 = Q= q-1,1 and  @’()] = (.
We define the operator (y,=center of P, r(P)=radius of P)

Sn _ 1 |y =¥l
S0 = [ w0 o[ L2l sra),
It is easy to check that
(13) IS"f(x, Di=qr,y = [ 8" f(x, 0)li=ar,y = CTSf(x, v)
and
(14) for any cube Q and keN
C

|y — el [ — el _
"’( (P) ]_"’( (P) ]} =y 30|
for (x,0)§¥P(3*Q) and y,y’€Q.

The second inequality in (13) implies that S" is bounded on Lo (with any p,,
l<p,<<) and this fact together with (14) says that the proposition can be
applied to S”. Now, by the first inequality in (13) we obtain part (i) with p=¢g and
part (ii) of Theorem 3 for [[.8”f(., M=q -

Finally, note that all the constants are independent of #, and so the monotone
convergence theorem and (11) conclude the proof of Theorem 3.

!
{m Xw(P) (x, v)

Proof of the Proposition. (Sketch.) For details in the case P(Q)=0 see [7].
Given a function f€LL(R" dx) and a positive number 1, we consider the set

Q, = {(x, )ER"XV: Ty(|flp)(x, v) = A}.

There exists a collection of dyadic cubes {Q;} such that Q,=lJ; ¥(Q),

2<1/10)l fo, 1 f)zdx=2"2 and | f@)I;=2 ae. x¢U; Q;.
We decompose the function

f=g+b=g+2;b;
where

b, = (1007 [, 1) 0,9
Now, we estimate the measures

B({(x, »): |SgCx, v)|r > 2}) and B({(x, ): |SbCx, v)lr > 4}).
Using that ||g(x)|;=C2 and the boundedness of S on L%, it can be seen that the
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first measure is less than

as) L Nelpdx = [ 1z d
About the second, we put QF=J; ¥(NQ;) and
B({(x, v): [Sb(x, 0)]r = 4}) = @D +B({(x, )4 QF: |Sh(x, 0)|r > A})-

We already made in the proof of Theorem 1 the computation that shows

(16) p@) =S [ 1f@lsdx.

Finally, the properties of K can be used in order to prove

an B({( EQL: 15bCo o)l = ) = [ 1/ @z dx.

Pasting up together inequalities (15), (16), (17) we get that S is of weak type
(1, 1) and then S maps LL(R" dx) into LL(R"XV,dp) for 1<g=p,.
Now, we consider the sequence valued operator

S({fi¥en) = S}

It is obvious that § maps L, (R", dx) into LiyR"XV, df) for 1<=g=p,.
Moreover, S has a kernel

K: R*XR"XV - £ (1(E), 11(F))

given byNI?(x, ¥, Ol{a}1={&(x, y, vy}, {a;}<E. Then | K(x, y, v)|=1K(x, y,v)|
and so K satisfies conditions (a) and (b). In particular, we can reproduce the proof
made for S and we shall have that § maps L}y, (R, dx) into Ly R"XV, df),
l<p=g=p, and Ljg(R" dx) into weak-Li,zR*XV, df), 1<q=p,.

4. Examples

In addition to the examples A, B, C named in the introduction we shall mention
the two following:

D. If R"XV=R", U=R%, ¥(Q)=0, ¢(Q)=0X Q" (where Q' is the cube
in R? with center 0 and radius Q’=radius Q) and dua(x, u)=dxdu=dz (Lebesgue
measure on R"*?*=R"XRY), then the operator

T/ = swp o[, o fNdz

x€QCR®
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is the trace on the hyperplane R” of the maximal fractional operator on R"+4

1
M = —_— dz,
P10 yeQSSIE)nM lQ|t=win+d fQ [f2ldz
that is, Tf(x)=M,f(x, 0). In fact, it is enough to observe that |QX Q' ~¢+)=|Q),
QcR"
Then the general results can be applied and, for instance, Theorem 4 gives the
following weighted norm inequalities:

Proposition. Let 1<p< oo,
Je MafGe, )P o()dx = C [, /(D 0(2)dz
if and only if for cube Q in R”
,ot—? 4 = 1—p < 4+ oo
fQ (M;Giox g @) (x, 0)Po(x)dx = CfQXQ, o@D Pdz <+

E. If R*XU=R", V=R", (0)=0, Y(Q)=0XQ and du(x, u)=dx, then
the operator T defined in (1) satisfies

Tf(x,y) ~ Mf(x, [x—y]), x,yeR"

where ./ is the operator introduced in the Example B, and so, by applying Theo-
rem 4 we can get inequalities of the type

Laosen H7Gs 12= D B (x, ) = C [ 1f0)IP0(x) dx.
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