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1. Introduction 

Some studies about boundedness properties of maximal operators of Hardy--  
Littlewood type have been made recently (see [5], [6], [8]). In this note we study 
a very general operator which includes the known results as particular cases. 

Let U, V be two arbitrary sets. Suppose we have some topological structure 
in the cartesian products R"X U, R"X V and also suppose the existence of positive 
Borel measures &~(x,u) on R " •  and d~(x,v) on R'XV. 

We shall denote by LP(R'X U, de) the set of measurable functions in R"X U 
such that f r"xv  If(x, U)[P&~(X, U) is finite. 

The e-measure of a set E c R ' X  U will be indicated by e(E) and the Lebesgue 
measure of  E c R "  will be denoted by IE]. 

Throughout this paper ~, respectively 7/, will be a set function from cubes in 
R" into Borel sets in R"X U, resp. R 'XV,  satisfying: 

(I) If  Q1, Q~ are cubes with Q1 n Q2= 0 then �9 (Q1) n �9 (Q2)= 0 and 7 j (Q~) c~ 
~g(Q2)=0. 

(II) If  QIcQ2 then ~(Q~)c~(Q2) and 7J(Q~)cgt(Q2). 
(III) If  Q(x, r) denotes the cube with center x and side length r then, for any 

xER" 

U,>o ~(Q(x, r)) = R"x  U and U,,.o ~t'(Q(x, r)) = R"• 

We define the following maximal operator which applies functions in R"• U 
into functions in R"XV: 

{' ] (1) Tf(x, v) = sup ~ - f ~ ( a ) I f ( Y ,  u)l dc~(y, u): (x, v)E gt(Q) 

i.e. the supremum is taken over all cubes Q such that (x, v)s 7J(Q). 



328 Francisco J. Ruiz and Jose L. Torrea 

Particular examples are the following: 
A. If  R " • 2 1 5  d~(x,u)=dx, where dx is the Lebesgue measure 

on R n and ~ ( Q ) = - ~ ( Q ) =  Q, then T is the Hardy--Lit t lewood maximal operator. 
B. If  R " •  V = [ 0 , ~ ) ,  do~(x,u)=dx, @(Q)=Q and 7 / ( Q ) = O =  

{(x, t): x~Q, 0<-t~side length of  Q}, then T is the operator 

"f(x,t)=sup{~f. [f(y)[dy:xEQ, O~t~sidelengthof Q} 

introduced by Fefferman--Stein [3] and studied in [5] and [6]. 
C. I f  U=[0,  ~), R " •  ~, @(O)=~,  7 ' ( 0 ) = 0 ,  then T is 

operator 

Cf(x) = sup 7--~-c~, (0. If(y, t)[: xEQ 

the maximal 

closely related with tent spaces (see [1]). 

2. Main results 

Theorem 1. Let 09 (x, u) be a positive function on It"• U. The following con- 
ditions are equivalent: 
(i) T is bounded from LP(RnX U, ogd~) into weak-LP(Rn• V, dfl) for some p, 

l_<p< ~o, Le. 

fl({(x, v)ER"XV: [Tf(x, v)l > 2}) < = C we f a.xv If(x, u)lPa~(x, u) d~(x, u). 

(ii) The weight 09 satisfies that for any cube Q, 

fl(T/(Q)) ( f ).-1 _ L .  ,o(x, u)l-, ' a (x, u) <- c 
IQI [Q[ ca) 

i f  l < p <  ~.  
I f  p= 1 the condition is that for any cube Q 

/~0e(Q)) <- Coo(x, u) ~-a.e. (x, u)C@(Q). 
IQI 

We shall say that fl is a ~k-Carleson measure if there exists a constant C such that 

/ / (e (Q))  <_-clal for any cube Q. 

In this case, we can prove the following: 
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Theorem 2. Let l < q <  oo and fl a ~-Carleson measure. Then, for fl-almost every 
(x, v)~R"• g 

su'{I-~[ f~'(O) (T(ff)(y, w)) 1" dfl(y, w): (x, v)E ~g(Q)}-<- C(T(ff)(x,  v))VL 

Remark 1. If  we define on R"•  the maximal operator 

Mg<~, v) : sup f~(~> 

then Theorem 2 ensures that the function h(x, v)= (T(f f ) (x ,  v)) l'q satisfies 

(2) Mh (x, v) <= Ch (x, v) 

Observe that if R n X V = R  ", ~ ( Q ) = Q  and dfl=dx then (2) says that h(x) is 
a weight in the class A1 of Muckenhoupt. 

Theorem 3. Suppose that R"• U= R", �9 (Q)= Q, d~(x, u)= dx and fl is a ~g-Car- 
leson measure on R"X V. Then, the following vector-valued inequalities hold: 

(i) For l < p , q < o o  

f~o• (27=i Ir:~(~, v)l~) ~/" d/~(~, v) <_- C f~o (ZT=~ l:Ax)l~) ''~ d~. 

(ii) For I < q <oo 

C 
~({(x,v)CR"• Z~.=I ITfflx, v)l q > L~}) <~-;fRo (Z j=l Ifj(x)[~) vgdx. 

Our last result is the strong version of Theorem 1. 

Theorem4. Let l < p < o o  and og(x,u) apositive function in R"XU. The fol- 
lowing conditions are equivalent: 
O) T is bounded from LV(R"XU, o~dc~) into LV(R"XV, dE). 

(ii) For any cube Q, 

f -< f ~0(x, u) ~-," d~,(~, u)< + co Y'(Q) (T(z~(Q)c~ v))" aft(y, v) = C r 

where C is an absolute constant. 

Remark2. If R"• U= R"• V= R", ~ (Q)= ~/ (Q)= Q and dc~(x, u)= dx, then 
Theorems 1 and 4 are very well known and due to Muckenhoupt [4] and Sawyer [8]. 
Theorem 2 is due to Coifman and Theorem 3 to Fefferman and Stein [3]. 

If  R"• V=[0, oo), ~(Q)=Q, ~(Q)_-(~ and dc~(x,u)=dx, Theorems 1, 
3, 4 can be seen in [5], [6], [7]. 

If R"XV=R",  U=[0,~o), ~ ( Q ) = ~ ,  ~ ( Q ) = Q  then Theorern2 is due to 
Deng [2]. 
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Remark 3. If  the measure de is fixed we definethe class W~,(T) (resp. S~(T)) as 
the set of  pairs (d/3, co) such that the condition (ii) in Theorem 1 (resp. Theorem 4) 
is fulfilled. 

In general, it is not true that for p<q ,  W ; ( T ) c W ~ ( T )  as the following ex- 
ample shows: 

Take R"XV=R",  dfl(x, v)=dx, 7/(Q)=Q and let # be a ~-Carleson measure 
on R"•  U. Choose a function c0(x, u) such that for some Q and some p < q  

f r co(x, u)~- : d , (x ,  u) = co. 

I f w e p u t  d~=coP'-~dp then it is clear that (dx, codoOEW~(T ) but 

(ax, code)r w~(r) .  

However, if  e is a O-Carleson measure on R"•  U then T is bounded from 
L~(R"•  U, coda) into L=(R"X V, d/3) and so, by using Marcinkiewicz's interpola- 
tion theorem and Theorems 1, 4 we obtain 

W~(T) c ... c S~(T) c W~,(T) c ... c S~(T) c Wg(T) c ... (1 < p < q < oo). 

3. Proofs 

Proof o f  Theorem 1. It is clear from the definition of  T that for any cube Q, 

{ l If Ida}. 7/(Q) c (x, v)ERn• Tf (x ,  v) >= Yof f ~(o~ 

Then, if  T satisfies part (i) of  Theorem 1, in particular we shall have 

(3) /~(~'(O)) =< c IOl" (f.,m Ill a~)-" f.o• Ill" co d~. 

Now, for l < p < ~ ,  we obtain (ii) of  Theorem 1 putting f=z~(o.)co 1-v' in (3). 
In order to have part (ii) of Theorem 1 for p =  1, observe that (3) says that 

f~(e~ lfl  p(7'(O)) de <- c f g ,  x v[flco de 
IOl 

for any f i n  LI(R"•  U, coda) and this implies that 

/~(~(Q)) ~ Cco(x, u) e-a.e. (x, u)E~(a).  
IQI - 

For the converse we shall need the dyadic cubes, i.e., the cubes of  the form 
1"ff=1 [x~,xi+2k), where xE2kZ" for some k in Z. 
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Let l < p <  ~ and ).>0. We want to prove the inequality 

C 
fl({(x, v)CR'XV: Tf(x, v) >it}) <_- --ff- f R,,XO [flP~176 

For r > 0  we introduce the operators 

T' f (x ,  v)= sup f~cQ) lfl  da: (x, v)E ~(Q) and side length of Q<- . 

Let A~ be the set 

A[ = {(x, v)ER"XV: T~f(x, v) > ).}. 

If  we can prove that 

(5) C 
afar) ~--~ f~xv lax, u):~(x, u)d.(x, u) 

331 

1 

Let k be the only integer such that 2(k--1)"<[Pl<=2k". There exists at most 
2 ~ dyadic cubes Q with [QI=2 k~ and with nonvoid intersection with the interior 
of P. Then there exists at least a dyadic cube Q0 with [Q01=2 k" and such that 

1 f~cQ: If(Y, u)l da(y, u) > ).2-". IPI 

In particular, this cube Q0 verifies 

(6) 
1 

- f~oo If(Y, u)l dr(y, u) > 24-". 
IQ01 

Now, there exists a dyadic cube Qj such that QoCQd and Qj is a maximal 
dyadic cube for the condition (6), since, applying H61der's inequality and condition 
Wp(T), the inequality 

1 1 dcx~':" [ f co-"/" d~)"" 24-" < - ~  f ,~,e, Ifld~ = TO( { f .,o, I f :~  . .--,e, 

<= c/Re(Q))-'/' (fR.• Ifl'~ "/" 

with constant C independent of r, then it is clear that the monotone convergence 
theorem will give us (4). 

For each (x, v)~A" z there exists a cube P such that (x, v)C~(P) and 
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for infinitely many dyadic cubes containing Q0 would imply that 

B(R" • v)< c f a =  ,• [flvcodo~ 

and in case (4) is obviously satisfied. 
Moreover it is clear that P~3Q~ (where 3Q(x, r) = Q(x, 3r)). 
In other words we have proved that A~c(J j~(3Qj)  where Qj are disjoint 

cubes verifying (6). " 
Now, standard techniques in weight theory tell us that for 1 < p  < ~o, 

: (AD < c z ,t~, = j r 

>_ cz, a=) c 
- IQA (f'<e; Ifl'~ (f'<'e; --<~-f..• 

So, (6) is proved and the proof of Theorem 1 is concluded. (Obvious modifications 
give the result for p =  1.) 

Proof of  Theorem 4. This follows along the same lines as in [6]. 
The implication (i)=~(ii) can be proved analogously to the corresponding one 

in Theorem 1. 
For the converse, the first step is to prove the result for the "dyadic" operator 

1 
Taf(x,v) = suP{i--~-/~(a , Ifld=: (x,v)C~/(Q), Q dyadic} 

and then the proof for T follows easily from t ie  ensuing lemma (see [6], [8]): 

Lemma. We define for each zER" the operator 

1 
~Tdf(x, v) = sup-v~-f~(Q ) If(Y, u)l d~(y, u) 

the supremum being taken in all cubes Q with (x, v)E ~ (Q) and such that the set 
Q - z =  {u - z :  u~Q} is a dyadic cube. Then, 

dz 
T=~ f(x ,  v) <= C f k ~ ~Tnf(x, v) 2,,(k+a) . 

In order to prove the theorem for T~, we introduce for r>O the operators 

1 
T,~f(x, v) = sup i-~-f~(Q ) If(Y, u)l d~(y, u) 

where the supremum is taken over all dyadic cubes Q such that (x, v)6 ~(Q) and 
with side length less than r. 
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Let l?k be the set 

Ok = {(x, v)ER"• T,[f(x, v) > 2k}, kEZ. 

It is easy to show that the set f2, can be decomposed into Ok= [--Jiesk T(Q~), where 
Q~, jEYk, are disjoint dyadic cubes with side length less than r and satisfying: 

1 2k" f ~(oy, [f] de > LQ}I 

Now, let us consider the disjoint sets 

Then 

fR.• lr[f(x, v)I" dfl(x, v) ~_ Zk, j fat [r,[fl'dfl 

<= Zk, j 2(k+ a)P fl(E)) ~- 2" Zk, i r )fl d~ . 

We introduce the following notations (see [6] and references there): 

= ]Q~-I ' '  gJk=( 1 f ,[fladoO ' 
p 

X={(k,j): kEZ, jEYk} with atomic measure Yjk, and F(2)={(k,j)EX: gjk>2}. 
Then we can write 

<---- =2P  ~ Z fR.xV IT~flpdfl 2PZ1, kvjkg~k fo { (k,j)er(x)Yjk}d2 

- 2, f[ {Xk.jer(a)f~ (a(~(Q~)))'dfl(x, v)} d2. 
- t, IO}l ) 

Calling Q~ the maximal cubes of  the family {Q~: (k,j)EF(2)}, this is less than 

a, f :  (Z, f~'<e,> TS(~Zo,e,>)" d#)d~ 
and by hypothesis (ii) this is less than 

2, f: (Z, f - ,o ,>  ~ d~) d,~ = 2, f: o (U, ~(O,)) dX. 

The definition of  F(2) states that 

(..),~(Q,) c {(x, u)ER'• U: N(  f } ( x ,  u)" > 2} 
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where 
1 

Ng(x, u) = sup ,,(~(a)) f,,cQ> Ig(x, u)I ,,(x, u)a~(x, u) 

(the supremum being taken over all dyadic cubes in R" such that (x, u)~cb(Q)). 
Then we have 

:...., ,,<- ," :: ~ .>, {9 .>. > 

(9" = 2"fR,• ,~d~ <- 2Pf lflP - JR-xv ap crd~=2P.,,.xvlflPo9d~ f~ 

where the last inequality is due to the fact that N is bounded from LP(R"• U, ad~), 
l<p---~,  into itself. This can be seen by interpolating the trivial result for p =  ~o 
with the (1, 1)-weak type inequality (which can be obtained with standard argu- 
ments involving dyadic cubes). 

The monotone convergence theorem again gives (i) of  Theorem 4 for T a and 
the proof is finished. 

Proof of Theorem2. Let l < q < , ~  and g(x,u)=lf(x,u)]L If a cube Q is 
fixed we decompose 

g (x, u) = gl (x, u) + g~ (x, u) 

where gl(x, u)=g(x, u)zo~3a)(x, u). 
Since/~ is a 7'-Carleson measure, Theorem 1 (with o9 = 1) ensures that T is 

of  weak type (1, 1) and then by the Kolmogorov inequality, we have for any 6 
with 0 < 6 <  1, 

f~,,e, (Tgl)'dfl ~ Cfl(~[T-/(Q))I-' (Lnxu lgl(X' u)I dOC(X, I,l)) t~ 

In particular, 

(7) f~(~) (Tgl) a d]~ ~ C ~(a) Igl d~ <= C (rg(z, w)) ~ 

for any (z, w)6 kU(Q). 
Now, let (y,v)ETJ(Q). For any cube P such that (y,v)67t(P) and 

1 
i~-~ f~p  ) [g~ld~0,  we have ~(P)ca ~(Q)~0 ,  ~(P)c~ ~ ( 3 Q ) ~ 0  and then prop- 

erties I and II on ~, ~ imply that PraQr Pc~(3Q)~0.  This says that Qc3P. 
So, for any (z,w)CT~(Q) 

Tg~(y, v) <-- 3"Tgz(z, w). 
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Thus, 

(8) 

_~jyqo)(1. r dfl ~= C fl(~(Q))IQ] (~,w) c,~.(Q)inf (Tg~(z,w))~<C= (z,w)c ~,(Q)inf (Tge(z,w)) ~. 

Finally, it is clear that (7) and (8) conclude the proof. 

Proof of Theorem 3. We shall distinguish two cases: 
1) Part (i) with p>q. In this case, for some nonnegative hEL~'(R~XV, dfl) 

with ]lhl]l/(R~xv),a~=l (where r=p/q), we have 

(9) fR.xv(ZJlTf~(x,v)Iq)P/~dfl(X,V)= (fR.xv2JlTfj(x,v)lqh(x,v)dB(x,v)) ". 
If we define 

1 
T*h(x) = ; u p - ~  L(e) lh(y, v)l dfl(y, v )  

it is clear that the pair (hdfl, T'h) belongs to the class W~(T) (where da=dx) and 
then Remark 3 and Theorem 4 imply that the last member of (9) is less than 

(10) ( f  a~ 2 j  ]fj(x)[qT*h(x)dx) ". 

Moreover, the operator h~-~T*h is bounded from LP(RnX V, riB) into LP(R n, dx). 
In fact, it is bounded from L ~176 into L ~ (since fl is ~g-Carleson) and from L 1 into 
weak-L 1 (this can be deduced from Theorem 1). 

Then, by using H61der's inequality, (10) is less than 

JR- (~'J If1 (x)[')" dx. HT*hlI~(R~,e, ) <= C f R~ (Z j  [f j(x)l') "/q dx, 

and, therefore, the theorem is proved in this case. 
2) Part (i) with p~q and part (ii). We shall make use of  a general theory 

of  vector-valued singular integrals. We need the following proposition: 

Proposition. Let R", V, a and fl be as in Theorem 3. Let E, F be Banach spaces 
and S a linear operator bounded from L~o(R ", dx) into LP0(RXV, dfi) for some P0, 
l<p0<= oo. Suppose that there exists a function 

K: R 'XR~XV ~ ~ ( E ,  F) 

(~(E, F) denotes the set of bounded linear operators from A into B) such that: 
(a) For fE L~ (R", dx) with support contained in a cube Q, S has the repre- 

sentation 

Sf(x, v) = fR K(x,y, v)f(y)dy for (x, v)~'(Q). 
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(b) There exist a natural number N and a constant C such that for any cube Q 
and kEN 

C 
IlK(x, y, v) -K(x ,  y', v)llz(E,r ) <= NklNka I 

'C for (x,v)r y , y  Q. 
Then, 

(i) 

(ii) 

For l<p<=q<-po 

f,~-x,. (Z;'=, I1 SfAx, Oils) .'~ d~(x, ~) <= c fR. (ZT=~ Ilfj(x)ll~) "/" &" 

For 1 < q-<po 
C 

a({(x, v)CR"• Z7=111S~(x, v)ll} > ~")) ~ T f - -  (ZT=, llk(x)ll~) v~ dx. 

Before we sketch the proof  of  the proposition, we shall finish the proof  of  
Theorem 3. 

First of  all, observe that in the definition of  T we can restrict us to a numerable 
family, s a y / ,  of  cubes (for instance, cubes with rational radius and center). I f  we 
consider a sequence {In}.~N wi th / . ( f i n i t e ) / / 2  and we put 

then it is clear that 

(i1) Ilsnf(x, v)ltm(i,O / Tf(x, v) (n ~ o~). 

In particular, I1 S"f(x, v)]ll~(r.) <- Tf(x, v) and then, Theorem 1 says that S" 
is bounded from U'(R",dx) into Lf~aO(Rn• dfl) for l < p < o o  (with bounds 
independent of  n). 

On the other hand, the kernel of  the operator S" (in the sense of  the proposi- 
tion) is the ~ ( C ,  l~176 kernel given by 

1 
Kn(x, y, v) = { - ~  Z~,(P)(X, V) Zp(Y)}p6I n �9 

Unfortunately, this kernel satisfies that for any cube Q and kCN 

C 
(12) llK"(x, y, v ) ,K"(x ,  y', v)l[,~(i.) <= 13kQ I 

for (x , v )~(3kQ)  and y,y'EQ 

and this condition is weaker than condition (b). 
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In order to have an operator in the conditions of  the proposition we must 
smooth the kernel K": take a function r R ~ R ,  ~pCQ:(R) such that 

Z[0,1] <= ~P~ Z[-:,21 and I~o'(t)l --< C/t. 
We define the operator (yp=center of  P, r (P)=rad ius  of P) 

1 [Y-Ypl 

It is easy to check that 

I1S"f(x, v)llr(,o> -< II ~"f(x, v)II,=(,.) <- CTf(x, v) (13) 

and 

(14) for any cube Q and kCN 

[-~ X~,(p)(X, v) q~ t r---~-~}-q~ r(P) ~(i.) = 3kl3kQI 

for ( x , v ) ~ ( 3 k Q )  and y,y'(Q. 

The second inequality in (13) implies that ~n is bounded on L p" (with any P0, 
l<p0<oo)  and this fact together with (14) says that the proposition can be 
applied to S". Now, by the first inequality in (13) we obtain part (i) with p<-q and 
part (ii) of  Theorem 3 for NS"f(.,.)[]l=(1.). 

Finally, note that all the constants are independent of  n, and so the monotone 
convergence theorem and (11) conclude the proof of  Theorem 3. 

Proof of the Proposition. (Sketch.) For details in the case ~ ( Q ) = 0 .  see [7]. 
Given a function f (L I (R  ", dx) and a positive number 2, we consider the set 

f2~ = {(x, v)ERnXV: Tn(IIf][E)(X, v) > 2}. 

There exists a collection of  dyadic cubes {Qj} such that f2~=[Jy ~(Qj), 
2< I/IQj[ f Q~ ][ f(x)l]Edx<=2"2 and [If(x)[[e<-2 a,e. x~Uj Q~. 

We decompose the function 

f =  g + b  = gq-~ ' j  bj 
where 

1 

Now, we estimate the measures 

fl({(x, v): flag(x, v)[Ir > 2}) and fl({(x, v): HSb(x, v)[lr > 2}). 

Using that llg(x)llE<C~, and the boundedness of  S on L po, it can be seen that the 
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first measure is less than 

C < C  
(15) T fR" II g(x)ll~ dx = T f ,~ Ilf(x)IIe dx. 

About the second, we put t2~= [.Jj 7.'(NQj) and 

fl({(x, v): [[Sb(x, v)llr > 2}) <= [3(Q*z)+fl({(x, v)gif2~: [ISb(x, v)llr > ~.}). 

We already made in the proof of Theorem 1 the computation that shows 

C 
(16) /~(f21) <--T f.~ [[f(x)[[E dx. 

Finally, the properties of K can be used in order to prove 

(17) fi({(x, v)~ f~ :  IlSb(x, v)llr > ~.}) <- C --# f . .  Ilf(x)llg dx. 

Pasting up together inequalities (15), (16), (17) we get that S is of weak type 
(1, 1) and then S maps L~(R", c/x) into L~(RnXV, dfl) for l<q~p0 .  

Now, we consider the sequence valued operator 

g({fA;--0 = {Sk>x. 
It is obvious that S maps L~q{E)(R", dx) into L~q{F)(R"• d/~) for l<q-<po. 

Moreover, ~ has a kernel 

K: RnXRnXV --" .s l"(F)) 

given by R(x, y, v)[{aj}J= {K(x, y, v)~jh, {~j}cE. Then IIR(x, y, v)ll = IlK(x, y, v)ll 
and so R satisfies conditions (a) and (b). In particular, we can reproduce the proof 
made for S and we shall have that ~ maps L~(e)(R", dx) into L~'q(F)(R"XV, d~), 

< " < :  < 1 P=q=Po and 1 n Ltq(r)(R, dx) into weak-L~(r)(R"XV, dfl), l<q<_-po. 

4. Examples 

In addition to the examples A, B, C named in the introduction we shall mention 
the two following: 

D. If R"XV=R", U=R a, 7t(Q)=Q, ~(Q)=QXQ'  (where Q' is the cube 
in R a with center 0 and radius Q'=radius Q) and da(x, u)=dxdu=dz (Lebesgue 
measure on R"+d=Rn• then the operator 

1 
Tf(x) = s u p - - f  If(z)l dz x~QcR-IQI exe' 
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is the trace on the hyperplane R" o f  the maximal  fractional  operator  on R "+d 

M , f ( y )  = sup - 1 f lf(z) ldz, rEQcR"+d ]Q[X--Cd/n+d) aQ 

tha t  is, Tf (x )=Maf (x ,  0). In  fact, it is e n o u g h t o  observe that  I Q •  Q'I 1-(a/"+a)= IQI, 

Q c R " .  
Then the general results can be applied and,  for  instance, Theorem 4 gives the 

following weighted n o r m  inequalities: 

Proposition. Let l < p < ~ .  

fR ,  IMdf(x, 0)l p v(x) dx <= C f . . .  If(z)lPo~(z) dz 

i f  and only i f  for cube Q in R" 

f e (Md(zexe ,  (x, O))"v(x)dx <- c f Q• dz  < + 

E. I f  R " •  V = R " ,  ~ ( Q ) = Q ,  7 t (Q)=Q•  and do~(x,u)=dx, then 

the operator  T defined in (1) satisfies 

Tf(x ,  y) ,.. ~l f (x ,  ]x--yl), x, yER" 

where J / i s  the opera tor  in t roduced in the Example B, and  so, by applying Theo-  

rem 4 we can get inequalities o f  the type 

f ..• ,/gf(x, Ix--yl)  g dfl(x, y) <= C f R" lf(x)lr' v(x) dx. 
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