Whitney’s extension theorem
for ultradifferentiable functions of Beurling type

Reinhold Meise and B. Alan Taylor

Classes of non-quasianalytic functions on R” are usually defined by imposing
conditions on the derivatives of the functions. For example, if (3),¢n, is an ap-
propriate sequence of positive numbers, one defines

EMI(R"):={fcC=(R")| for each compact set K in R" and each h=>0
sup sup |/ (x)| (R M) 7 <<}

e NG x€K
&M (R") is defined similarly (replacing the all quantifier over & by an existence
quantifier). Continuing the classical work of E. Borel [5] many authors (see Bron-
shtein [7], Bruna [8], Carleson [9], Dzanasija [10], Ehrenpreis [11], Komatsu [15], Mi-
tyagin [22], Petzsche [24] and Wahde [30]) have investigated conditions on (M,,)peNo
and on sequences (4,).en; implying the existence of fc&M»(R™) (resp. &%+ (R”)
with
f®0)=a, for all «&Nz.

In the present note we study this question and a version of Whitney’s extension
theorem for the non-quasianalytic classes &,(R") which have been introduced by
Beurling [2] and Bjorck [3] using the Fourier transform. Most familiar function
classes, like the Gevrey classes, can be obtained by both methods (M,=(p!)* or
o (x)=|x["*, s>1). However, in general, the two definitions lead to different classes.

To define &,(R") we vary Beurling’s approach a bit. We assume that
@: R—[0, = is a continuous function having the following properties:

. . w(21) . logt
® e == 4 mgy =0
- +e (1) )

(i) f_.,, =7 dt <o

(iii) @: t—>w(e') is a convex function on R.
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By ¢* we denote the Young conjugate of ¢|[0, «[, and we put

6, (R):={feC=®)Isup sup 1 (o) exp[—mcp* [‘%‘—)] < forall men).
a€N] [xl=m
Then the main result of the present paper states that the following assertions
are equivalent :

(1) For each compact convex set K in R* with K0 a Whitney field f=(fDaenn€C(K)No
is of the form f=(g|K)uenn for some g€&,(R") iff for each meN

sup sup | £, (x)] exp [— me* [%l]] < oo,

aENg xeK

(2) The characterization in (1) holds for each set K= QCR", where Q is a bounded
open Set with real-analytic boundary.
(3) A sequence (a,)ucrxz€CNe is of the form B,(g):=(g®(0))aeny for some g€&,(R")
if for each meN
sup |a,| exp [— meo* (M)] < oo,
aENT m

7

K
(4) There exist K=1 and t,>0 with co(Kt)éE— w(t) for all t1=t,.
w(s)

(5) There exists C=0 with t [ —
s

ds=Ca(t)+C for all t=0.

Moreover, we show that for every continuous increasing function @: [0, e[~
[0, e[ with @(0)=0 and lim,, . w(t)=c which satisfies (5), the function
(s
x: t—t f by ——S—(Z—st is an increasing concave function with %(0)=0 which sat-
isfies (5) and
o) =x() = Co()+C for all >0

This implies that the class &™» coincides with a class of type &, as soon as the
sequence (Mp)peNo satisfies the conditions (M1), (M2) and (M3) of Komatsu [14].
As a consequence, our main theorem extends previous results of Ehrenpreis [11]
and Komatsu [15].

The proof of our main result is based on the methods which were introduced
by Carleson [9] and Ehrenpreis [11]. To sketch the idea, let &,(K) denote the space
of Whitney fields on K defined by the estimates in (1). Then we use an argument
of Taylor [26] and Whitney’s extension theorem to show that &,(K);, the dual
space of £,(K) equipped with the topology of uniform convergence on the bounded
subsets of &,(K), is isomorphic to a weighted space Ap_(C") of entire functions
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by the Fourier—Laplace transform. Since &, (R"), is also isomorphic to a weighted
space A,(C") of entire functions, a theorem of Dieadonné and Schwartz implies
that the restriction map gg: &,(R")— &,(K) is surjective if and only if the in-
clusion map J: 4p (C")~A,(C") is an injective topological homomorphism.
Because of this characterization one can use the Phragmén—Lindelof principle and
estimates of the harmonic extension P, of @ to show that gy is surjective if P,=0(w),
which is equivalent to (4) and (5). If this condition does not hold then one can use
Hormander’s L2-estimates for the solutions of d-problems to show that J is not a
topological homomorphism. :

To indicate a further consequence of our main theorem, assume that w sat-
isfies (i)—(iii) and (4) and let &,({0}, R") denote the Fréchet space of all sequences
(@)xenz in CNo which are defined by the estimates in (3). Then one would like to
know whether the Borel map B,: &,(R")—&,({0}, R”) admits a continuous linear
right inverse E,. Using a result of [19] we show that the condition

for each C>1 there exist >0 and Ry=0 with
(%) 0~} (CR)w (6R) = (0 *(R))* for all R= R,
is necessary for the existence of E,. In [21] we show that () is also sufficient.

Acknowledgement. The first named author gratefully acknowledges research
support from the Deutsche Forschungsgemeinschaft. The research of the second
author was supported in part by a grant from the National Science Foundation.

1. Weight functions

In this section we fix some notation and introduce the weight functions w
which will be used subsequently. Without further reference we shall use the stan-
dard notation from complex analysis (see Hormander [12]) and from functional
analysis (see e.g. Schaefer [25]). ‘

1.1. Weight functions . Let w: R—[0, o[ be a continuous even function which
is increasing on [0, <[ and satisfies w(0)=0 and lim,_ _ w(t)=<. We consider
the following conditions on w:

1= co

(@ 0=0() = o(s+)=w(s)+ @) for all s, 1€R;
(®) ©@)=0(w(r)) as t tends to oo

® [729

dt < oo
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() log(1+]t) =0(w(r)) as t tends 1o ==}

(3 lim 55 = 0;

) ¢: te>w(¢) is convex on R;

(¢) there exists C > 0 with f:—(i)—g—t)—dt = Co(y)+C foral y=0.

1.2. Remark. (a) The conditions 1.1(«)’, () and (y) are basically those which
are used in Bjorck [3] (see also Beurling [2]) to develop a theory of ultradifferentiable
functions and ultradistributions.

(b) Note that a function @ which satisfies the general conditions in 1.1 and

t
1.1(f) has the property Iim,_m%)—zo, since for =1

2@ _ o0 42 =20,
s2 — J: s2

t t

1.3. Proposition. Let w: [0, <[]0, [ be a continuous increasing function with
@ 0)=0 and lim, ,  w(t)=. Then the following conditions are equivalent:

t-—+oco

ew(®
) hm 11{{1. iup o)
(2) there exists K= 1 with Iign sup a;(([f)t) <= K;

(3) there exists C >0 with f:o wgt) dt = Co(y)+C for all y=0;

(4) there exists an increasing concave function x: [0, o[—[0, o[ with #(0)=0 and

D) o()=%() = Co(y)+C;

@ [ "fzy’) dt = Cx(»)+C.

14
Proof. (1)=(2): By (1) there is O<e<1 with limsup,_ (%<1 Hence

1
(2) holds with K=—.
&
(2)=(3): From (2) we get the existence of 7=0 and O<s<1 with

w(Kf) = (K—-e)w() for all t=T.
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This implies that for each y=T we have

= w(y?) w K oy w o(Kitly) . .
f 2 dt = 2]:0.[1(1 dt = 2,‘_—_0 sz—'(KJ+1“KJ)

1 t2

j+1
= KEK-Do0) I5, (£ = L kE-1)E-a()
Hence (3) holds.
(3)=(4): We define » by

«0=[] g di=y |

Then (i) and (ii) follow easily from (3) and the fact that w is increasing. It is also
obvious that x is increasing and satisfies x%(0)=0.
To show that x is concave, note that x is differentiable on 10, [ with »'(y)=
s d
f- w(s) do w(y) = (s)
s

() ds.

y S

. Hence »" is decreasing, so x is concave.

¥ S2 y
o o ex(1)
(4)=(1): Because of (4) (i) it suffices to show lim,, limsup, ., _%E)_: 0. To
. : %(2y)
prove this, note that x satisfies 5 =x(y) and hence
x(2"y) _ #(2"1y)
2n - 2n—-1

for each n€N and each y=0. Since x is increasing, this implies by (4) (ii)

#(2"y) o 2@ _ o ()
n'z—n‘ = 2/.21 2j = 42j=1f2j 12 dt

= 4f:°%—2ﬂdt =4C(x(»)+1) = 8Cx(y)

1 . 1 1
for y=y,. Next let 0<e§5 be given and choose n¢N with —2"—+1—§8<7-.

Then we have for all large >0 and =2"+1y

-
ex () _ ¥ J _ 2% (2"*1y) - 16C
x(e) — %[ 1 z] 22+l (y)y — n

41
P

ex(?) —0

which proves li lims —=0.
ich proves lim,, 11 S &)
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Remark. If in Proposition 1.3 the function o has the additional property that
t—w(e") is convex on R then the function » in 1.3 (4) has this property, too.

1.4. Corollary. If w satisfies one of the equivalent conditions in 1.3, then there
exists O<a<1 with o(H=0(").

Proof. By 1.3 (1) there exist K>1 and #,>0 with

w(KY) K _
—a)Tt)—<—2—,— fOI’ aH t:to.

Hence there exist 0<a<1 and m=0 with

w (K1)

PI0) = K* for all t= K™

This implies for all neN,

Q)(Km+") = Kamw(Km) — Ka(m+n) w]g{jn) .

Since w is increasing, we get from this for all re[K™**, Km+n+1]

oK™ _ , oK)

= 1y < K 1 __(u([("') =
CD(t) = w(Km+n ) - Ka mEnrh Kam - K(m-}-n)u Ka(m—l) - Ka(m—l) *

1.5. Definition. Assume that o satisfies the general conditions in 1.1 as well

as 1.1(f).
(a) The harmonic extension P,: C—[0, «[ of w is defined by

ol () )
j_w Tt for =0

co(x) for y=0.

P, (x+iy):=

(b) The radial extension &: C"—+[0, [ of @ is defined by @&(z)=w((zl).

1.6. Remark. (a) It is well-known that P, is continuous on C and harmonic
in the (open) upper and lower half plane.

(b) If o satisfies the general conditions in 1.1 as well as 1.1(§) then @& is a
continuous plurisubharmonic function on C* In this case we have &=P, for
n=1, provided that w satisfies 1.1(f), too.

1.7. Proposition. Assume that o satisfies the general conditions of 1.1 as well
as 1.1(P). Then the conditions (1)—(4) in 1.3 are equivalent to

(%) P,(2) = O(@(2)) as |z| tends to .
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Proof. If (%) holds then there exists C=>0 with
P,(2) = Co(z)+ C for all z€C.
Since @ is increasing on [0, <[, this implies for y=0

10

C+Ca(y) = C+Ca(iy) = R, (iy) = ;ty— / =y Byt

o0 w(y?)
=_f 71 ¢ nfl e dt
Hence  satisfies 1.3(3).

Next assume that o satisfies one of the equivalent conditions (1)-—(4) of Prop-
osition 1.3. Then it follows easily from 1.3(2) that o satisfies condition 1.1().
This and 1.3(3) implies the existence of positive numbers C, and C, such that for
z=x+iy with x=0, y=0 and x+y=1 we have

y 0 y o(?)
Fo(2) = T fltl§x+y (t—xP+y*? di+ T fl¢|>x+” (t—x)*+y* “

_ 2 o 0(x+sy)
= w(x+y)+?f1 —ie

=ox+p)+C(l1+o(x+y) = C(1+6(2)).

By the symmetry properties of @ and the Poisson kernel, this implies (*).

_ 2 = o(s(x+)))
ds = co(x—}—y)%——’;f1 —m——d

1.8. Examples. (a) It is easy to check that the following functions w satisfy
the general conditions in 1.1 and 1.1(x), (7), (8) and (¢) (after a suitable change on
[—4, A] for some A=0).

By Proposition 1.3 they are equivalent (in the sense of 1.3(4) (1)) to an increasing
concave function having the same properties

(D) o@) =(log(1+[)y, s=1;
(2 @) = (log(1+[t))y exp((log(1+]t]))"), O<p<1, 0=g=<eoo;
3) o) =|1?(log(1+]))t, O<p<1, 0=gq<eco.

(b) For a=1 there exists w satisfying the general conditions of 1.1 as well
as 1.1(a), (B), (v)" and () such that for all large [7] we have w(¢)=[f[(log [t])~"
By Corollary 1.4 this function does not satisfy condition 1.2(g).

In Section 2 we shall use the following lemma:

1.9. Lemma. For w asin 1.1 assume that 1.1(x) and (B) are satisfied. Then there
exists A=0Q such that for all z€C we have

P, (z+w)= AP (2)+A for all weC with |w]=1.



272 Reinhold Meise and B. Alan Taylor

Proof. 1t is easy to check that 1.1(«) implies the existence of k=1 with
¢)) o(t+x) = K(1+o@+o(x) for all 1, x€R

(see Braun, Meise and Taylor [6], 1.2). Hence there exists K;=1 with o(f+x)=
K,(1+w(x)) for all xéR and t€R with |f[=1. By the properties of the Poisson
kernel, this implies

2 P,(z+) =K, P,(2)+K, for all zcC and all R, [f|=1.
Furthermore, (1) implies for all y=0

+eo @(t+x)

. Wdt = K(1+o(x))+KP,(iy).

P, (x+iy) = —Z—'[

Then there exists K,=1 with
3) P, (z+iy) = K,P,(z2)+ K, for all zcC and all y€R, |y|=1.

Now the result is an obvious consequence of (2) and (3).

2. Spaces of entire functions

In this section we prove the main results of the present article, formulated in
terms of entire functions. To state them in an appropriate way, we first introduce
the (DF)-spaces which we are going to use. In doing this, we denote by A(C") the
algebra of all entire functions on C".

2.1. Definition. Let P=(p;);cn be an increasing sequence of continuous func-
tions on C” with limy,_ ., (pj+1(2)—p;(z))=< for all jEN. Then we put

Ap(C"):={fcA(C")]| there exists jEN with |[f];:= seug |f(2) exp (—p;(2)) < =},

and we endow 4p(C") with its natural inductive limit topology. If P=(jp);.n for
some function p on C", then we write 4,(C") instead of 4p(C").

Remark. From Montel’s theorem it follows easily that Ap(C") is a (DF.S)-space,
i.e. the strong dual of a Fréchet—Schwartz space.

2.2. Proposition. For w as in 1.1 assume that 1.1(«x) and () are satisfied. Let
g, h: R"~[0, o[ be continuous positive homogeneous functions with h=Mg for some
M=0 and define p and P=(p;);.n by

p(2):=g(Im2)+d(2), p;(z):=h(Imz)+ji(z), jEN, z€C
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If P,(2)=0(®(2)) then the inclusion map
J: Ap(C") ~ 4,(C")

is a topological homomorphism, i.e. J is a linear topological isomorphism between
Ap(C™) and im (J).

Proof. Since h=Mg, it follows easily that J is a continuous linear map. Since
Ap(C”) and 4,(C”) are (DFS)-spaces, the lemma of Baernstein [1], p. 29, implies
that J is a topological homomorphism iff for each bounded set B in 4,(C") the set
J ~1(B) is bounded in Ap(C"). To show that this holds, let B be fixed. Without loss
of generality we can assume that for suitable 4, D>0 we have :

(H B= {fEAp(C")“f(z)] =A exp (Dg(Im z)+Dd(z)) for all ZEC"}.

J ~1(B) will be bounded in 4p(C") if we show that there are positive numbers 4’
and D’ with

() TUB) < {fe4e(C)|I(D)| = 4’ exp(h(Im 2)+D'@(z)) for all zEC}.

To prove (2) let feJ ~*(B)<A4p(C") be given. Then there exist positive num-
bers 4; and D, with

(3) /()] = Ayexp(h(Im 2)+D;@(z)) for all zeC™

Next fix z=(215 ..., Z,)=(X1+ V15 ..r X +1p,)EC" with Im z=(yy, ..., ¥,) #Z0.

Then choose an orthonormal basis {e;, ..., e,} of R* with (yy, ..., y)=ne, for
n—1 n—1

some #>0 and note that (¥, ..., %)= 23] ¢;e;+¢e,. Now put a:=2/;"; ¢;e;,
b:=e,, {:=¢&+in and note that
F: C~C, F(w):=f(a+wb)
is an entire function of exponential type and that
F(@) = f(a+b) = f(2).
The definition of a and b implies
la+wb[2 = |al2+ w2 = 37] 34wt = ¢+ |w]®.
Since w satisfies 1.1(e), we can assume w.l.o.g. that w(2¢)=Kw(¢) for all ¢=0.
Then the definition of & implies
&(a+wb) = o((c*+]w|H?) = w(c+1w]) = K(w(c)+d(W)).

Hence the choice of @ and b and the properties of h and g together with (1) and (3)
imply that F satisfies the following estimates for all weC with Imw=0:

@ |F(w)| = 4 exp [D(Im w) g(b) + DKw(c) +DKd(w)).
) [F(W)| = A4 exp [(Im w) k(D) +D; Kwo(c) + Dy K& (w)).
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Since o satisfies 1.1(8) and 1.2(b), the Phragmén—Lindel6f principle (see
Boas [4], 6.5.4) implies

< D e log|F()l
6) log |F(u+iv)] = —n—f_°° =0t dt+vd
_ v = DKa()+DKw(c)+log 4
=—[__ e dt+vd
= DKP,(u+iv)+ DKw(c)+log A+ vd,
where
@) d= '!lm - f log | F(re®)| sin 4O

= lim —-—f (log A;+ h(b)r sin ©+ D, K(w(c) + (r))) sin OdO

re>oo

2 DfK(n(r) f

= lim [ h(b) f sin® ©40 +— n@d@) = h(b),

because of 1.2(b).
Now note that by hypothesis there exists E=1 with
8) P, (w) = E&(w)+E for all weC.
Hence we get from (6), (7) and (8)
|F(w)| = 4 exp ((Im w) h(b)+ DKEG(w)+DKE+ DKw(c))
= AeP¥E exp (h(Im (a +wb)) + DKE(& (w) + o (c)))
= AePXE exp (h(Im (a + wb)) +2DEKG (a + wb))
and consequently
[f(2)l = 4’ exp (h(Im 2) + B’ &(2)),

where A’:=AeP*® and D’:=2DEK. This proves that (2) holds and completes
the proof.

2.3. Proposition. For w as in 1.1 assume that 1.1(a), (B), (), (6) are satisfied.
Let h: R"—>[0, <[ be a continuous positive homogeneous function and define p and

P=(pjen by

p(2):=[Imz]+&(2), p;(z):=h(Imz)+ji(z), jeN, zeC™
F,(2)
@(z)

If sup{ IzE C, [zlzl}= oo then the continuous inclusion map
J: Ap(C") > 4,(C")

is not a topological homomorphism.
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Proof. Obviously, the result follows from:

(1) There exists an unbounded sequence (g,);cn in Ap(C") for which (J(g)));en is
bounded in 4,(C").

To prove this, we use the hypothesis to find a sequence (a,);cy in C with
lim (@)

Jroo T

a(a;)
all jeN. We claim that the following holds:

=0, Without loss of generality we can assume that Ima;>0 for

Claim. There exist a sequence ( f});cy in C[z] and C, D=0 with

)] sup sup |fj(2)] exp (—DPu(2) = C <e=.
3) fi(a;) = exp(P,(a;)) for each jEN.

To show that our claim implies (1), we assume without loss of generality that
h(1,0, ..., 0O)=min {h(y)|y€R" |y|=1}. Then, for jEN, we define g;€A(C") by

(215 .-s 2,) = fi(z1) exp (— h(1, 0, ..., 0)izy).
By Braun, Meise and Taylor [6], 2.2, there exists A=1 with
P,(2) =Imz|+A4A&(z) for all z€C.
Hence (2) implies for each jéN and all zeC”
lg;(2)l = Cexp((D+1+h(1,0, ..., 0)) [Im z|+AD&(2))
= Cexp (4D p(2)),

which proves that (J(g;);¢n) is bounded in 4,(C").
To see that g; is in Ap(C") for all jEN, note that f; is a polynomial and that
our choice of the direction (1,0, ...,0) implies

lexp (—h(1,0, ..., 0)iz;)| = exp (h(Im zy, ..., Im z,))

for all z=(z, ..., z,)€C". Next note that (3) and our choice of the sequence (a,);¢n
imply that for each méN and all sufficiently large j€¢N we have

[g;(a;,0, ..., 0)| exp (— pn(a;, 0, ..., 0)
= |fi(ay)lexp (— ma(a;)) = exp Pw(aj)_m(b(aj))

= exp [Pm(a D [1’— r;fégs))) = exp (—;— P,(a j)] .

This shows that (g;);¢y is unbounded in 4p(C"), since lim; , |a;|= .

J

Proof of the claim. Since the function ¢-w(e’) is convex and since @ satis-
fies 1.1(B) by hypothesis, we can choose an increasing sequence (R));cn in 10, o[
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as well as sequences (4);cn in ]0, =] and (B));cy in R such that the following con-
ditions (4) and (5) are satisfied.

(4) For each jeN the function ¢#—w;(¢') is continuous, strictly increasing and
convex and satisfies w;=w, where w;: R~[0, <[ is defined by

_ {a)(t) if =R
()= A;logli|+B; if |i > R;.

J
(5) For each jeN we have

1
up_ 1P (2)—Fo, (] = -

lz-ajlél
Then we choose ¢€2(C) with supp o {z€C||z|=1}, 0=p=1 and ¢(z)=1
for |zj=4 and we define u;€9(C) by

1 —
©) u;(z):= [1 __;_J exp (P,(a;)) 0p(z—a;).

Since w satisfies 1.1(y) we get from (5) and Lemma 1.9:
There exist L=1 and M=0 such that for all j¢éN

O fli -ajl=1 lu; (2)1* exp (— 2Lij(Z)) di(z) = M.

Now note that w;: C—~[0, o[, defined by

P,(2) if Imz>0;
®;(z) f Imz=0;

®) w;(2) = {

is a continuous subharmonic function because of (4). From Lemma 1.9 it follows
that we can assume w.l.o.g. that Ima;=1 for all jeN. Hence (6) and (8) imply
by (7)

) [ @R exp (= 2Lwy(2))di(z) = M for all jeN.

Since _5uj=0, it follows from Hormander [12], 4.4.2, that there exist »,6C=(C)
with dv,=u; satisfying the estimate

(10) fc [v;(2)I2 exp (—2Lw;(z) — 21log (1+z1%) dA(z) = 5 for all jeN.
Now note that the function f;: C—~C, defined by

1@ = p-a) exp (Patap)—(1-2) 0,(2)
J
is holomorphic and that (10) implies:
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There exists D’=1 and M’=0 such that for all jEN
8] fc |fi(2)2exp (—=2D'w;(z)—Slog (1+|219)) di(z) = M".

Since w;=0(log (1+z]?) it follows by standard arguments that f; is a polynomial.
By (4) and 1.6(b) we have w;=P, for each jEN. Hence it follows from (11) and
Lemma 1.9 that (f));¢x satisfies condition (2). Since f;(a;)=exp (P,(a))), condi-
tion (3) also holds.

3. Extension of ultradifferentiable functions

In this section we introduce the classes &,(R") (resp. &,(K)) of w-ultradif-
ferentiable functions of Beurling type on R” (resp. on a compact subset of R").
Then we use the results of the preceding section to derive necessary and sufficient
conditions on o for the restriction map gg: &,(R”)~&,(K) to be surjective.

3.1. Definition. (a) A function w: R—~[0, o[ will be called a weight func-
tion if it satisfies the general conditions in 1.1 as well as 1.1(2), (8), ()" and (J).

(b) For a weight function w let ¢ denote the function defined by 1.1(5). We
define its Young conjugate ¢*: [0, <[]0, [ by

@*(x) := sup {xy—@ )|y = 0}.

3.2. Definition. Let o be a weight function and let QCR”" be open. Then
we define

v 8,(Q):= {feC‘”(Q)]for each meN and each compact set Kc Q:

Pron(f) = SUp sup | /@ ()] exp [— mg* [%‘]] <o)

*ENR X€K

where @ denotes the a-th derivative of f. We endow &, (Q) with the L.c. topology
which is given by the system of seminorms {py,,|[Kc cQ, meN}.
Furthermore we define

2,@):= ind 2,(K),

where for a compact set K in R* we put

Do(K) = {f€8,(R")| supp (f) < K},

endowed with the induced topology.
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3.3. Remark. Note that in Braun, Meise and Taylor [6], the following was
shown:
(1) &,(2) and 2,,(K) are nuclear Fréchet spaces and 2,,(€) is non-trivial.
(2) For p: C"=[0, =, p(z):=|Imz|+ &(z), the Fourier—Laplace transform
F: 8RR, ~4,(CN, FW=p: z—{u,, e ™), is a linear topological iso-
- morphism.
(3) If the weight function o satisfies also 1.1(x)" then the spaces Z,,(2) and 6,(2)
in 3.2 coincide with those which were introduced by Beurling [2] and Bjorck [3].
(49 Without restriction we can assume that for all «€Nj and all méN we have
|of

o (Lo 2 (2o ().

nm m

3.4. Definition. Let o be a weight function and KcR”" a compact set.
(a) If K is the closure of its interior, then we define

8o (K) = {f = ey € CK)E | fio)| K C=(K),
(f((,)llé)(“) =ﬁ,l1% for each a€N3 and for each meN:

[flm = sup sup | /2 ()] exp (— me* (lal/m)) <eo}.

(b) If K={a} then we define
Eo({a}) = {f = (F)uerg€C™|If = sup |fi] exp (—mo* (lal/m)) <<

aENG
for each mEN}.

Both spaces are endowed with the l.c. topology which is induced by the norm-
system (| |)men- From 3.3(4) it follows easily, that (| |, )nen is equivalent to
(H Hm)mENs Whel'e

1flm:= sup sup |fu()l exp (= m 2} _ 0% (a;/m)).

(¢©) For K as in (a) or (b) we define the restriction map
0g = E,(R") = E,(K) by ox(f):=(f®|K)senp-
Obviously, ¢ is continuous and linear.

3.5. Lemma. Let o be a weight function and let K be a compact convex subset
of R" with K=0. Then 0k: E,RMN~E,(K) has dense range.

Proof. Without loss of generality we can assume 0€XK. Then for each 0#
1.
f€€,(K) and O<t<1 we define f;: x— fio)(tx) for xET K. By the definition of
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8,(K) we have for each acN"

@ £OG) = 1o £ 1) = ML), v &,

1 . 1 .
which implies f,€ &, (—t— K } . By Braun, Meise and Taylor [6], there exists ¥,€ 2., [~t— K ]
with x|K=1 so that y,f,€&,(R"). This implies that (/?|K), isin im g¢ for
each O<t<1. Hence it suffices to show &, (K)—lim,, f,|K=f.

To do this, first note that 1.1(x) implies the existence of 4¢N with w(x)=

Ao [i] for all large x=0. Hence we have ¢(t)=A¢(t—1) for large t=0 and
e
consequently
o*(y) = y+4o* (%] for all large y = 0.

This implies:
For each meN there exist /N and C=0 such that for all jEN,:

@) exp {— me* (#]] = Ce~ exp [— Io* (’7]]

Since K is convex and contains the origin it follows easily from (1) that f; converges
to fon K with all its derivatives as ¢ tends to 1. Hence (2) implies that for each meN
and jEN we have

1 - =1i —f@® — * _|9‘_|)]
lm |/ filw = li sup sup|f,(x) =/ ()] exp[ me [m
= Ce™J|f—fl; = 2Ce~ | f1;,

which completes the proof.

3.6. Proposition. Let w be a weight function and let K be a compact convex sub-
set of R with 06 K. Let Hy: R"~[0, o

Hy (x) = sup {{(x]§)|£€ K}
denote the support functional of K and put P:=(p,),,cn> where p,: C'—>[0, o[ is
defined by p,,(z):=Hg(Im z)+m@d(z). Then the map 4: &,(K),—~Ap(C") defined by
G(u): z— (p, oxe~ 1)),

is a linear topological isomorphism.

Proof. 1t is easy to check that % (u) is in Ap(C") for each u€&,(K) (see Braun,
Meise and Taylor [6]) and that ¢ is a continuous linear map. Lemma 3.5 implies
the injectivity of . Hence the result follows from the open mapping theorem provided
that we prove the surjectivity of 4. To do this, we use the idea of proof of Taylor [26],
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2.8. If g€ Ap(C™) is given then there exist mEéN with
) |g(2)] = exp (Hy(Im z) +md(z)) for all zeC™

Since w satisfies 1.1(x) and (y)” it is easy to check that a slight variation of
the proof of Hormander [12], 4.4.3, can be used to prove the existence of A4=0,
I, véN and of a function G€A(C"XC") which has the following properties:

2) G(z,z) = g(z) for all ze(";
3 IG(z, W) = A(L+12%)" exp (Hg(Im 2)+1 3} &3(w)))
for all (z, w)eC"XC".
If we fix z€C” then G(z, -) is in A(C"). Hence we have
@ Gz, W) = 3, QoW

where

1Y G(z, ”
) 0.(z) = [%] [ . ; 1+1—(€—§)? dly ... dC,, ueNE

for r=(rs, ..., r,)ER" . Estimating (5) by (3) we get for each a€Nj

6) 10,(2) = A(1+]z]2)" exp (Hx (Im z)) irrlf exp [12’;;1 [cb(rj) —%logrj])

= A(1+|z]%)" exp (Hg(Im 2)) exp (=1 3} _; 0™ (;/1))-

By the theorem of Paley-—Wiener—Schwartz, (6) implies that for each «€Nj
there exists 7,6C=(R") with supp (7,)cK such that the Fourier—Laplace trans-
form T, of T, satisfies (—i)T,(2)=Q,(z) exp (I 3}_, *(2;/1)). Moreover, (6)
implies the existence of t¢N and D=0 such that:

For each «acNg and each feC~(R"):

@) KT, f)I=D sup sup [fP(x)].
18|=t—1 x€2K

Next note that by Whitney’s extension theorem (see Malgrange [16], 1.3) there
exists a continuous linear extension map R: C*(K)—~C*(R"). Hence (7) and the
proof of Hérmander [13], 1.5.4, imply:

There exists E>0 such that for each a€N; there exists

®) UECH(KY with [y, /)l =E sl[Jp sup | fz(x)] for each
1Bl=t x€K

feCH(K) and (., 0x(f)) = (T,.f) for all feC=(R").
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Next we use 3.5(2) to choose k>1 and M=0 such that

o Shaeafw e () -u

Then we note that the multiplication operator M,: A,(C)—A4;(C),
M_.(f): z—zf(2) is continuous. Hence its adjoint 1s also continuous. By Meise {17],
2.4, and Meise and Taylor [18], 1.10, 4,(C); can be identified with the sequence
space &,({0}) (O€R). With this identification M} equals the backward shift opera-
tor. It is easy to check that the continuity of this operator implies:

There exist pcN and L=0 such that for each j€N, and

(10) l=t=t we have exp [-— ko* (%]] = Lexp [—p(p* (i_;—t—”

Hence we get from (8), (9) and (10) and each f=(f)cnp€ 60 (K):

<ua exp [— 120" (%]]f>

n aj
= 2,eny E sup sup |f45(x)| exp [—IZ’,-=1 @ (——l’)]
1Bi=t x€K

ZaEN{,‘

n o
= Jeny Ecxp [—Iijl o~ (—l}‘)

sk 200 (2)) 2 s sup s exp [0 3,0 (S311)| = mrars,

|8l=t x¢
o;
This proves that p: frrZueng (Ha» foy €Xp [ =1 27, 0 [—i’—J is a contin-

uous linear form on &,(K). By the definition of T, we get from (8), (4) and (2)

g(ﬂ)[zl = ZuEN{)‘ <ﬂa,x9 QK(e—i<sz))> €Xp L_ l Z;=1 (P* (:‘;L)J (_ iz)a

= Zueny L@ exp (-1 J7_, 9™ (@) (= iz = 3 ey Cu(D)2" = G(z, 2) = £(2)-
This shows that 4 is surjective and completes the proof.

Remark. From the proof of Proposition 3.6 one can easily derive the following
result on the local structure of ultradistributions in Z,(R")’, which corresponds
to Komatsu[14], 8.1: For every T€2,(R"Y and each compact convex subset
KcR" there exist meN and a family (i,)senz in C(K) with

Seulg' J ]l cexy €xp (_ m > ;=1 o (a;/ m)) <o



282 Reinhold Meise and B. Alan Taylor

such that for each f€9,(K) we have
(T, )= Zaeng (as ).

3.7. Proposition. Let w be a weight function which satisfies 1.1(e). Then the
restriction map gg: €,(RMN—~E,(K) is a surjective topological homomorphism for
each compact convex set K in R" which is either a singleton or has non-empty interior.

Proof. 1t suffices to prove this for 0K (resp. K={0}). Assuming this, we de-
fine p: C"~[0, <[ by p(z)=|Im z|+ &(z) and P=(p,,), where p,(z)=Hg(Im z)+
m®(z). Then we have the following commutative diagram

ok

€.(K3 o (R
M v l &
4p(C") > 4,(C")

where & denotes the Fourier—Laplace transform, J denotes the inclusion and
where ¢ is defined in 3.6 if K»0. If K= {0}, then we identify &,({0}); in the usual
way with the sequence space 1(4, Nj);, where

A4, Np) == {(ya)aeNSECNgi 1Vl i= 2 eeng 17 €xp (=m 3, @* (a;/m)) <o
for each meN}

and we define 4: A(4, N),—~ 4p(C")=A44(C") by

g((ya)aeN) [Z] = ZaEN’& y,,(— iZ)a.

It is easy to check that % is a linear topological isomorphism and that the
diagram (1) is also commutative in this case. Since ¢ and & are linear topological
isomorphisms it is obvious that g% is an injective topological homomorphism if
and only if J has this property. Since o satisfies condition 1.1(g), Proposition 1.7
implies that the hypotheses of Proposition 2.2 are satisfied, which proves that ¢y
is an injective topological homomorphism. This implies that g is a surjective to-
pological homomorphism (see e.g. Schaefer [25], IV, 7.8).

3.8. Corollary. Let o be a weight function which satisfies the conditions 1.1(g)
and let QCR* be an open bounded set with a real analytic boundary. Then the restric-

tion map
0a: 6,(R") - 6,(Q)

is a surjective topological homomorphism.

Proof. First we treat a special case: Put Q:=(]—1,1[)" and assume that U
is an open set in R” for which there exists a real-analytic diffcomorphism ¢: Q—-U
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with

Un@ = o({(E, -r E)EQ|E, > 0) = p(@.)
() {

UndQ = o({(&, .., £)EQ|E, = 0)).

Furthermore, assume that for g€é&,() there exists a compact set LcU
such that g,(x)=0 for all «¢N} and all x€Ln Q. Since ¢ is real-analytic, there
exists f€&,(2,) with fo,=geo0e by Braun, Meise and Taylor [6]. Since Q..
is a compact convex set with non-empty interior, Proposition 3.7 implies the exis-
tence of Feé,(R*) with g, (F)=f. Of course we can assume that supp (F) is
contained in a compact subset of Q. Then the function G: R*~C, defined by

0 if x¢U;
Gl = {F(qo‘l(x)) if xeU;
is in &,(R") and satisfies ¢5(G)=g.
For the general case let g=(g,)€&,(2) be given. Then the compactness of
0Q implies the existence of NEN so that for 1=j=N we can find open sets U;
in R", maps ¢;: Q—~U; and functions ¢;€9,(U;) which have the following
properties

(1) 02U, Us
) Z’}‘Ll ¢;(x)=1 for all x in some open neighbourhood ¥ of 4Q;

(3) ¢; is a real-analytic diffeomorphism which satisfies (*) if U in (%) is replaced
by Uj.

Then it is easy to check that ¢;g:= [Zﬂéa (oﬁ‘] <p§."‘"’)gﬁ] o 810 £,(2) and

has the properties which we required in the special case. Hence there exists G;€&,,(R")
with 05(G;))=¢;g for 1=;j=N. Because of (2), the function G,:= (1—2’?;1 ®;) &
has compact support in Q. Hence it can be considered as a function in 2,(Q)C

&,R). Then G:=3 G, isin &,(R") and satisfies

22(G)x] = 37, 0a(G)lx] = (1= Z7_, 0;(0) go()+ 7, #;(x) £0(x) = go(x)
for each x€Q, which implies 05(G)=g.

Remark. The proof of Corollary 3.8 shows that the following more general
version of 3.8 holds, too: Let Q be an open set in R* with a real-analytic boundary,
which means that for each x€9Q there exists an open neighbourhood U of x and
a real-analytic diffecomorphism ¢: Q—U which satisfies 3.8(%). Then the restric-
tion map ¢g: &,(R")~&,(Q) is surjective, where we extend Definition 3.3 in an
obvious way to the present sitnation.
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3.9. Proposition. Let o be a weight function and assume that the restriction
map gx: E,(RM~E,(K) is surjective for some compact convex set K in RY with
K#0 or for some singleton K. Then o satisfies 1.1(g).

Proof. Since &,(R™) and &,(K) are Fréchet spaces, the surjectivity of gx implies
that g is a surjective topological homomorphism. Hence ¢} is an injective topologi-
cal homomorphism. By the commutative diagram 3.7(1) this implies that J: Ap(C")—~
A4,(C") is an injective topological homomorphism. Hence the result follows from
Proposition 2.3 and Proposition 1.7.

3.10. Theorem. Let w be a weight function. Then the following assertions are

equivalent:

(1) For each nEN and each compact convex set KCR" with K0 the restriction

' map gg: E,(R"—E,(K) is surjective.

(2) For each neN and each bounded open set QCR" with real-analytic boundary
the map o0g: €,(R")—~&,(Q) is surjective.

(3) There exists neN and a compact convex set KCR" with K#9 such that Ok
is surjective.

(4) For each n€N the Borel map B,: 6,(R")~6,{0}, B,.(f):=(f®()uenz, is
surjective.

(5) There exists ncEN such that B, is surjective.

(6) There exists C=0 with [ i“%dt = Co(y)+C forall y=0.

- sw(f) _
™ 13(1)1 hrtllﬂlp w(er) 0
(8) There exists K> 1 with lirtn sup ww((lf)t) < K.

(9) There exists a weight function x which satisfies 1.1(g), which is concave on [0, e[
and which is equivalent to o in the sense of 1.3(4) (i).

Proof. The implications (1)=(3), (2)=(3) and (4)=(5) hold trivially. By Prop-
osition 3.9 we have the implijcations (3)=(6) and (5)=(6). The implications (6)=(1)
and (6)=(4) hold by Proposition 3.7, while (6)=-(2) holds by Corollary 3.8. The
equivalence of (6), (7), (8) and (9) was proved in 1.3 and the remark following 1.3.

3.11. Remark. Let (M});cy, be a sequence of positive numbers which has the
following properties:
M) M3=M;_,M;,, for all jEN;
(M2) there exist 4, H>1 with M,=AH" ming=;=, M;M,_; for all n€N;

M, _ M;
(M3) there exists A>0 with 3=, ~2"=d4j—L for all j¢N; and define
4 M, My,




Whitney’s extension theorem for ultradifferentiable functions of Beurling type 285

wy: R—[0, [ by

suplo I My
w3 (1) = 1ieN, g M;

0 for ¢t=0.

for f >0

Then w,, is a continuous even function with ®,(0)=0 and lim,,.. @y (t)=-co,
which satisfies 1.1(y)" and 1.1(8). By Komatsu [14], 4.4, (M3) implies that w,, sat-
isfies 1.1(¢). Hence Proposition 1.3 implies the existence of a weight function x
which satisfies 1.1(g), which is concave on [0, [ and which satisfies

4] wy () =x(t) = Coy(@®)+C for some C=>0 and all ¢t=>0.
Since x is subadditive, this implies

)] @, (20) = %(28) = 2%(f) = 2Cwy ()+2C for all ¢t = 0.

By Komatsu [14], 3.6, (M2) implies the existence of D=0 with

3) 20(D) = 0y (DN+D for all t=0.

From (1)—(3) it follows that for each open set Q (resp. compact set K) in R" we have

(@) (x
£,(Q) = 690(2) = {feC=()] sup f??_lhfm% o

for each h >0 and each K < Q compact}

and &,(K)=&M?(K), where £M)(K) is defined similarly as in 3.4.
Because of this, Theorem 3.10 extends the results of Ehrenpreis [11], p. 447,
and Komatsu [15], 4.5.

Remark. It is an interesting question to know if Whitney’s extension theorem
holds for the classes &, and arbitrary compact subsets K of R” when o is a weight
function satisfying 3.10(6). For the classes &} Bruna[8] has shown this to be
the case, provided that the sequence (Mp)pENo satisfies some conditions which are
stronger than (M1), (M2) and (M3). We suspect it is also the case here. However,
our use of Fourier transform methods makes it difficult to treat the case of arbitrary
compact sets.

By Theorem 3.10 we know that the maps g and B, are surjective in many
cases. In these cases one would like to know whether they also admit a continuous
linear right inverse, i.e. whether one can do the extension with a continuous linear
operator. For the ordinary C=-functions on R" it is known that B, does not admit
a continuous linear right inverse (see Mityagin [23]) and that a continuous linear
extension operator exists for compact convex sets KCR" with K0 (see Tidten [27],
4.6). For the present classes of functions we shall treat this question in [21] (see
the announcement [20]). Here we use a result of our paper [19] to derive a necessary
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condition for the existence of a continuous linear right inverse of the Borel map B, .
In [21] we prove that this condition is also sufficient.

3.12. Corollary. Let o be a weight function. If the Borel map B,: &,(R"~&,({0})
admits a continuous linear right inverse then o has the following property:

For each C =1 there exist 6 >0 and R, =0 with
o Y(CR)wo ™ (0R) = (0 *(R))? for all R=R,.

Proof. Let &£2*(R") denote the closed linear subspace of &,(R") consisting of
all functions which are periodic with respect to hypercube [—=, =]". Since £27(R")
is the kernel of a system of difference equations it follows from Meise [17], 3.7,
that £2*(R") is isomorphic to a power series space of infinite type (for subadditive
weight functions w see Vogt [29], 7.7). If B, admits a continuous linear right inverse,
then B,:=B|&2"(R") has this property too, and hence &,({0}) is isomorphic to a
linear topological subspace of &2*(R"). This implies that &,({0}) has the property
(DN) of Vogt [23]. In the proof of Proposition 3.7 we have already remarked that
&,({0}),=4,(C"). Hence w satisfies () by [19], 3.1.

(%)

3.13. Example. For l<s<eo define w,: t—>(max (0, log|¢])F. Then o is a
weight function which satisfies 1.1(g). It is easy to check that @ does not satisfy
3.12(%). Hence the Borel map B,: &,(R")—&,({0}) is surjective but does not
admit a continuous linear right inverse.
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