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1. Introduction and main results 

We will study Hankel operators on (weighted) Bergman spaces of analytic 
functions on the unit disc. ~Ihese spaces and operators are defined as follows. 

Let m denote the Lebesgue measure on the unit disc D and let, for - l < a <  co, 
a + l  

/z~ be the measure (1-[z[2) ~ din(z). Thus L2(d/2,) is the space of all meas- 
rc 

urable functions on the unit disc for which the norm 

+ 1 
f~  [/(x)[2 (1 -Izl~)" din(z) (1.1) ll/ll~ = T 

is finite. (The normalization constant is chosen such that p, has unit mass.) q-he 
Bergman space A * is the subspace of all analytic functions in L2(p~); this is a closed 
subspace so A" is a Hilbert space. ~Ihe orthogonal projection of L2(/~,) onto A" 
(known as the Bergman projection) will be denoted by P,. We will also consider 
the space .4~ of  anti-analytic functions in L2(/2~) and the corresponding pro- 
jection P~. 

~Ihere are (at least) two non-equivalent natural definitions of Hankel operators 
on the Bergman spaces. "l-hese have become known as the big and small Han- 
kel operators. 

Definition. Let f be a (measurable) function on D. The big and small Han- 
kel operators with symbol f ,  in this paper denoted by Hj- a n d / 7  I respectively are 
defined by 

(1.2) Hy(g) = ( I - P , ) ( f g ) ,  

(1.3) /Ts(g ) = P~(fg). 

(g is an analytic function. We discuss the interpretation of the right hand sides when 
fgqL~(ll~,) later.) 



206 Svante Janaon 

We will in this paper only consider analytic symbols. 
Note that H: maps into A "• , while/7y maps into the much smaller space .~'. 

In fact, P,P, is the one-dimensional projection f-~ffd~ onto the constant func- 
tions, so ffI:--P~H: has rank (at most) one. Consequently, if  H: is bounded (com- 
pact, in Sp (see below)), then so i s /7 : ,  q-he converse is not obvious, but we will see 
that it holds in important cases. 

We recall that an operator T in a Hilbert space, or from one Hilbert space 
into another, belongs to the Schatten--von Neumann class Sp if the sequence of  
singular numbers {s,(T)}2=0= {inf II T-K][ : rank (K)<=n}~=0 belongs to l v. 

Remark. S .  thus is the class of  all bounded operators. Some authors prefer 
to let S= be the class of compact operators, but we find that definition less natural. 
CIhe compact operators correspond to Co, not to l ' , )  

~Ihe characterization of  the symbols f such that the small Hankel operator 
/7: belongs to Sp is due to Pellet (1982a, 1982b) and Semmes (1984), see Section 4. 
qVhe big Hankel operator H: was first considered by Axler (1986) (p=  ~o and c~= 0); 
the general case was studied by Arazy, Fisher and Peetre (1986). q-he result by 
Arazy, Fisher and Peetre shows a striking cut-off: I f  l<p=<~ ,  then H: belongs 
to S v i f f /7 :  does ( i f f fbelongs to a certain Besov space), but if  0 < p ~  1, then H: 
never belongs to Sp (unless f is constant and thus H:= 0). 

The purpose of  the present paper is to investigate this phenomenon further by 
studying H: as an operator of  one Bergman space into another. More precisely, 
we use two parameters e, fl~(--1, ~), and study H: and /Ty, defined using P, 
as above, as operators of  A # into L2(/t,). (There is some arbitrariness in this 
choice. One might use three parameters and study the operators from A # into L2(/zr), 
but we will consider only the case y=  e.) 

We let S~ ~ denote Sp(A #, L2(Iz,)), i.e. the class of  S :opera tors  of  A # into 
L~(/z,). Furthermore for 0<p<= 0% and - o o < s <  0% B v denotes the usual Besov 
space of  analytic functions in the unit disc; if  m is a non,negative integer and 
re>s, then 

(1.4) B~ = {f:  (1 -Izl~)'n-~D'f(z)~Z"((1 -Izl~) -1 din)}. 

(In particular, A~=B~-r The main results then can be stated as follows. 

T h e o r e m  1. Let ~, f l>- -  1 and 0 < p -  < oo. 

(i) I f  1 / p < l + l ( ~ - f l ) ,  then H:CS~ ~ iff fCB~/p+(#-~)/2. 
(ii) I f  1/p-->l+~(~-fl) ,  except in the case p = ~  and f l = ~ + 2 ,  then H:~Sg ~ 

only if  f is constant (and thus H:= 0). 

For p =  0% Theorem 1 gives necessary and sufficient conditions for H: to be 
bounded, except when fl=c~+2 (this exceptional case will not be treated here). 
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There are similar conditions for compactness (without exception). Define b~ 
to be the closure of polynomials in B~.  If  m is a non-negative integer greater than 
s then 

(1.5) b~ = {f: (1-lzl2)m-slDmf(z)l ~ 0 as [zl-* 1}. 

Theorem 2. Let ~, f l>--  1. 
(i) I f  f l < ~ + 2 ,  then H s is compact from A p into L2(/l~) /ff fEb~ -~)/2. 

(ii) I f  f l ~ + 2 ,  then H s is never compact from A p into L2(p~) unless f is constant. 

For the small Hankel operators there is no cut-off; otherwise the conditions 
are the same. 

Theorem 3. Let ~, fl> - 1 and O~p ~- ~. Then ITIC S~ ~ iff fEB~/p+(p-~)/2. 

Theorem 4. Let ct, fl> - 1. Then ~ I  is compact from A p it, to A~ iff fEb~ -~)/2 

We include ~heorems 3 and 4 although they are not new; as is well-known 
(cf. e.g. Rochberg (1985)), they are easily reduced to results by Peller and Semmes. 
(We do this reduction in Section 4.) See also Burbea 0987). (When f l=~ and p ~  1, 
"Iheorems 3 and 4 are given in Janson, Peetre and Rochberg 0987) and Arazy, 
Fisher and Peetre (1986).) 

Iak ing  f l=~ in ~Iheorems 1 and 2 we recover the result by Arazy, Fisher and 
Peetre. I f  fl ~ ~ we have a similar result, but with a different cut-off. In particular, 
if  ~ f l  then there is a positive result also for p--1. ~Ihis enables us to prove the 
theorem (in one direction) by interpolating between p =  1 and p =  ~ (see Sec- 
tion 7). Thus our approach gives a new proof of the theorem by Arazy, Fisher and 
Peetre, which in some parts is simpler than the original proof (where it was im- 
possible to use p =  1 directly), although it is fair to add that other parts are more 
complicated because the loss of (isometric) M6bius invariance when ~ ~fl. 

Our approach is inspired by Rochberg (1982), who introduced weights (cor- 
responding to Bergman spaces) in order to overcome a similar problem at the other 
endpoint p=oo  for Hankel operators on H ~. 

~his approach can also be applied to big Hankel operators in several complex 
variables. See Wallst6n (1988) for details. 

The remainder of the paper contains the proof of the theorems. This is organized 
as follows. 

Various preliminaries are taken care of  in Section 2. 
Theorems 1 (ii) and 2(ii) are proved in Section 3. 
In Section 4 we study the small Hankel operators and prove Theorems 3 and 4. 

Since H C S~=~/~s~ SP. ~, as we remarked earlier, ~Iheorem 3 shows that Hs~ S ~  
f j .  ~, 

fCB~ Ip+(~-')I2, which proves one implication in Theorem l(i). Similarly, "Iheo- 
rem 4 implies one half of  ~Iheorem 2(i). It remains to show that 
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l ip  < I + T ( ~ - - / ~ ) ,  then =~ HyESg ~ 

(1.7) f l - ~  < 2, then fEb~ -~)/~ =~ HI is compact. 

This is done in several steps. In Section 5 we prove (1.6) for p ~  1. "I-he case p =  oo 
is proved in Section 6. "Ihe remaining case l < p <  co is proved in Section 7, where 
we also prove (1.7). 

We remark that the case p = 2  (Hilbert--Schmidt) of  Theorem 1 may be 
proved directly by computing [[Hzm(z")l[~ , (cf. (3.2) below) and by then deducing 

2 
~H~rl[sg~ X Z ~  nP-~+~lf(n)[ 2 X llfl]B? . . . .  )/~, f i - a  < 1, 

but we will not use this. Observe, however, that when c~=fl, there is an interesting 
isometry IIHsl[~ =~y ~ nlf(n)] 2, see Arazy, Fisher and Peetre (1986). 

2. Preliminaries 

We begin by recalling some facts about  S~= Sp(H1, H2), the class of  Sp- 
operators from a Hilbert space/ /1  to another Hilbert space H~, equipped with the 
"norm" llTl[s=l[{s,(T)}o[lt ~. For further details we refer to e.g. Simon (1979) 
and McCarthy (1967). 

(i) I f  p_-> 1 then l[ ]Is, is a norm and Sp is a Banach space. 
(ii) I f  p <  1 then I[ 11~, is subadditive and Sp is a Fr6chet space. Thus 

(2.1) IJS+Zl1~ ~ l la[I ,~+IlZll~,  0 < p  ~ 1. 

(iii) There is a H61der-type inequality 

(2.2) 

provided 1/r=l/p+ l/q, SESe, TESq. 
(iv) If  {e,} is any ON-basis i n / / 1 ,  then 

(2.3) if 0 < p <-- 2, [ITI[~p ~ Z HTe, lf, 

(2.4) if 2 ~ p ~ oo IITII~p ~ Z IiTe.II p- 
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The Hilbert space A" has a reproducing kernel given by 

(2.5) Ks(z, w) = (1-zv~) -~-~ 

I.e. 

(2.6) f(z) = f f(w)K,(z, w)du~(w ) 

for fEA ~, and more generally 

(2.7) P=f(z) = f f(w)K=(z, w)d#=(w), fEL~(/t=). 

As a special ease of  (2.6) 

(2.8) llK~(', w)[[~ = K~(w, w) = (1-[w[=) -=-=. 

We will also write K=,w(z)=K,(z, w). 
We have defined H ,  by (1.2), although obviously P~(fg) is not always defined. 

To begin with, we note that PJ=f(o)  for any analytic func t ionfand  any reasonable 
extension of  P, .  Hence Hy(1)=f-f(O) for any reasonable definition of  HI ,  so if 
Hy maps A a into L~(/~) then necessarily f-f(O)EL~(#~) and thus fELZ(p~). 
Consequently it suffices to consider symbols in A ", and for such symbols (1.2) 
makes sense at least for all bounded g. If  (1.2) then defines an operator which is 
continuous in the norms [1 lip and tl 1I~, we extend H s to A g by continuity. 
In fact, we will see in Section 6 that when H s defines a bounded operator, and 
thus fEB~ -~I2 by Theorem 1 (or 3), then H s may be written as a well-defined 
integral operator on A p. We will now derive its kernel. First we note that by 
(2.7) and (2.6), assuming fEA ~, 

(2.9) P~(fK~.~)(z) = (fK,.w, K,..)= (fK,,~, K~,,) = f(w)K~(w; z) = f(w)K~(z, w) 

and thus 

(2.10) H s(K~,,~)(z) = ( f ( z ) -  f(w))K,(z, w). 

Since g = f  g(w)K,,,~ dp~(w) by (2.6), we have, at least formally, 

(2.11) H sg = f g (w) I-I s (Ks, w) (z) dkt~ (w) = f (f(z) --f (w)) K s (z, w) g (w) dl~, (w) 

= c~+ 1 f ( f ( z )  - f (w))(1  - - z k ) - ' - ' ( 1  -[wl~) "-a g(w)dlta(w). /~+1 

In fact, it is easily seen that, for each fixed z, and with P~ in the definition (1.2) 
extended by (2.7) to L~(/t~), both the left and right hand sides of  (2.11) are con- 
tinuous functionals of  gEA ~ and that they coincide when g=K,,r for some ~ED. 
Consequently (2.11) holds for all gEA', and in particular for gEH ~ (in which 
case the original definition of  P,  suffices). 



210 Svantc Janson 

We have thus represented H s as an integral operator, q-here are, however, 
many other representations that give the same result for analytic g; the difference 
is seen if we extend them to non-analytic g. In fact, the integrals in (2.11) are well 
defined for any gEL2(#~,), and they vanish for gEAr'• consequently they define 
the operator HyP,  on L~(p~). For us, it would be more natural to use the integral 
representation corresponding to the operator H s Pp (since it is equivalent to study 
H s on A p and H I P  p on L~(pp). Unfortunately, we do not know any simple expres- 
sion for the kernel of this operator, so we will instead use (2.11) or (2.14) below 
(the latter corresponds to H s P , +  0. We will see in Section 6 that, when a, fl a n d f  
are appropriate, (2.11) defines an integral operator mapping L~(iza) into L~(/~,) for 
most values of  a and fl, but for certain (small) values we need the alternative (2.14) 
which always defines a bounded operator on L2(/~a). 

We derive this alternative expression as follows. We observe that 

O K~,(z, w) = # ( ~ + 2 ) z ( 1 - z # )  - ' - 3  = (c~+2)(K=+l(z, w)-K=(z,  w)). (2.12) w-o~- 

Hence, differentiating (2.10) with respect to ~, 

1 0 
( 2 . 1 3 )  Hs(K,+l,w)(z) ) 

1 
= (f(z)  - f (W))  K, +1 (z, w) -- ~ # f '  (w) K= (z, w). 

An argument similar to the one after (2.11) shows that, e.g. for gEA ~, 

(2.14) Hsg(z  ) = f g(w) H r(K~,+~,w)(z)dp~+l(w ) 

= f ( f (z)  - f ( w )  - (a + 2)-1 (1 - z~) r~f' (w)) (1 - zff~)- ~-8 g (w)d,u~ +1 (w) 

= (fl+ 1 ) - ~ f ( ( ~ + 2 ) ( f ( z ) - f ( w ) )  - ( 1  -zw)~f ' (w)) (1  - z~) - ' -3 (1  - lw19 =+x-p 

X g (w) d/lp (w). 

Next we consider the action of  M6bius transformations on the Hankeloperators.  
Let q) be a M6bius function and define the operator V~ by 

(2.15) Vgg(z) = goq~(z)(~o" (z)) ~/2+1. 

Then V~ is an isometry of  L ~ (p~) onto itself which maps A" onto itself. Consequently 
P,,V~,=V~P,,. This yields, if M~, denotes the multiplication operator g--,-(q~')~g, 

(2.16) V~Hr(g) = (I-P~)V,~(fg) = (I-P~)(fotpgotp(c,o) "/~+~) 

= = 



Hankel operators between weighted Bergman spaces 211 

Hence, as operators from A a to L~(~Q, 

(2.17) H s is unitarily equivalent to H$o~,MCj -~)/'. 

Since qY and (cp') -~ are bounded, M,(, ~-~)/2 is invertible and we conclude that 

(2.18) HsES, iff H$oeESp, 

although the norms in general are different. (It is obvious that the situation is sim- 
pler when e=fi,  see Arazy, Fisher and Peetre (1986), where the MSbius invariance 
is effectively exploited.) 

We will also perform some computations with the monomials {z/1}. We set 
]).,~= ]lz"L, and find explicitly 

]).~,~ = [IzflI~ = ~ + 1 f Izl~ . (1 -Izl~)'dm (z) 

= (=+ 1)f x"(1 _x),dx = F(n+F(n+~+2)I)F(c~+2) X (n+ 1) -~-1. 

(2.19) 

] ) . ,~  ~ n - ( ~ + 1 ) / 2 ,  iV/ => 1. 

{z"/7.,~} is an ON-basis in A ~. 

Thus 

(2.20) 

We observe that 

3. The cut-off 

In order to understand the cut-off 1/p=>l+ 1/2(cc-fl), let us first consider 
the simplest non-trivial symbol, viz. z. It is easily seen that {H~ (z")}~~ are orthogonal, 
and since z"/?/1,a is an ON-basis in A a, it follows that the singular numbers of 
H~ are given by {llnAz"/]),,,a)L}o, rearranged in decreasing order. Furthermore, for 
n_~l, 

2 
(3.1) P~(zz/1) - <~z", z"-i>~ z/l_ I rn,~ z,_l 

iiz/1_111~ = ])~ ,----~ 
and, using (2.15), 

4 

- -  ])n + 1, 0~ 2 
])/1--1, 

(3.2) 
Hence 

(3.3) II H ,  (z"l]),,. p)ll ~, • n -  ~t~- ,+  ~,1~. 

Consequently, H:E S~ ~ iff p ( ( a -  ~)/2+ 1)> 1 (O<p< ~), H:E S~: iff (~ -  fl)/2+ 1 ->0 
and H, is compact iff ( a - f l ) / 2 + l > 0 .  
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We may now prove parts (ii) of Theorems 1.1 and 1.2. Now assume that l/p>= 
l+(~-f l ) /2 ,  with strict inequality if p =  0% and that Hs.ES~ ~. Define for ]~[~ 1, 

f, (f(:z)-S(O))l: : o 
f~ (z) = t f (O)z ~ = O. 

7hen ~of:  is analytic and ~-+H& is anti-analytic in the unit disc, and if [([= 1 
then I[H&l[s=[1Hills<OO. Since the maximum modulus principle holds in Sp, 
see Kalton (1986), it follows that H&ES~ ~ for every (ED. In particular, we may 
take ~ = O, but since we just have shown that that H: ~ S~ ~, it follows that f ' (0)  = 0. 

We may apply the same argument to fo  go for any M6bius function go, because 
HIo~ES ~" by (2.18). Hence (fogo)'(0)=0 and f'(go (0))--- 0. Since go(0) can be 
any point in D, fhas  to be constant. ~Ihis proves Theorem 1.1 (ii), and ~heorem 1.200 
follows by the same argument. 

4. The small Hankel operator 

We compute the matrix elements of/7r relative to the bases {z"lT,,p} in A p 
and {~"/7,,.,} in Z~: 

--1 --1 ~ ~m --I --I 2 " ---- 7m,aTn,~e Tm+n,af(m Jr- n). (4.1) (ITIz"lT,,tl,~"lT,,,,)~ 7,, ,~7,,a(f(z),  >,-- 

Hence, using (2.20), /TIE S~" iff the matrix 

((m + 1)('+ ( .  + + +.. 3 ( m  + . ) ) : .  =o 

defines an Sp-operator on l ~. By Peller (1982a) and (1982b) (the cases l_<-pi i<~o 
and 0 < p <  1 respectively), or Semmes (1984) (0<p<  1), this holds iff {7~,,f(k)} 
is the Fourier transform of a function in RI/v+(~+:)I2+(~+I)I2 i.e. iff u p  

fE B~/v + (~'+ :)IS + (p + :)/,~-~-1. 

This proves Theorem 3. Theorem 4 follows by the same argument from the 
remarks after Proposition 1 (and after Lemma 2) in Peller (1982a). 

We remark that the matrix above defines / t sg  for polynomials g for any f. 
/Tig may then be defined by continuity (when Hj- is continuous), also when (1.3) 
is not directly applicable. 
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5. The case p <_- 1 

We will use the following atomic decomposition of B~, due to Coifman and 
Rochberg. q-he case s < 0  is a special case of Coifman and Rochberg (1980), "Iheo- 
rem 2 (with different notation); the general case follows by integrations (which 
increase s by 1 each time). Cf. also Rochberg (1985). 

Lemma 0. I f  O<p<~ 1, -- ~ < s <  oo and N is large enough ( N > l / p - - s  will do), 
then there exists a sequence {~i}cD such that every function f in B; can be decom- 
posed as a (countable) sum 

f ( z )  = Z i  2i(1 -l(,12) N+s-l/p (1 --( iZ) -N  
with 

Z i  I'~,1 p <= C[Ifil~f 

(We may take N to be a positive integer, but, in fact N may be any real number, 
except a non-positive integer.) 

In order to prove the direct part of "l-heorem 1 for p<-1, it is therefore suffi- 
cient to obtain good Sp-estimates for symbols of the form (1-~z) -N, with N large 
but fixed. We will do this in several steps. 

Convention. In this section ~ is an arbitrary point in D. C denotes constants 
that can be chosen independently of~ (although they may depend on a, fl, p, N, etc.). 

Let M~ ( - -oo<s< oo) denote the multiplication operator 

(5.1) M~g(z) = (1-~z)- 'g(z) .  

Lemma 1. I f  0<p_<-2, a--fl>2/p, s<~-[a--fl] and a - f l  is not an integer, then 

(5.2) [tM~llSpCAa, A=) <- C. 

Proof. Suppose first that s<  1/2. Then 

llMS(z~)l[~ = f I1 -~zl-2~lzl2"dl~=(z) <= c f2 r2"(1 - r ) ' d r  <- C(n+ 1)- ' -L  

Consequently, using (2.20), [IM~(z/~,a)ll~<-C(n+ 1) -(=-a)/2. Since p(c~-//)/2> 1, 
(5.2) now follows by (2.3). 

In general, let m=[c~-/~]_->l. We may assume that p<=2/m (otherwise we 

replace p by 2/m). If e ( i ) = / ~ + ~  (e- / / ) ,  the case just proved shows that 
m 

][M~/ml[s,,p(a~,) a,(,+,) ~- C, i = O, 1 . . . . .  m - l ,  

and (5.2) follows by the Schatten--H61der inequality (2.2). [] 
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Remark. The conditions in the lemma are not sharp. It is easily seen that 
s=~-[~-f l ]  will do as well; we guess that s<~- (~ - f l )  is enough. 

L e m m a 2 .  I f  ~ - f l > - l ,  2 s < 2 ~ - f l + 3  and N=>a+3, then 

(5 3) IIH( M~I[ < c .  �9 1--~z)N S~ a : -  

P r o o f .  Let f (z )=(1-~z)  N. If  ~ is any point on the line between z and w, then 

[f'(~)[ = N [ ( l l l - ( ~ [  N-1 ~ N ( l l - ( w l + l ~ - w ] )  N-1 ~ C I 1 - ( w I N - l + C I z - w [  N-1. 

Consequently, 

(5.4) [f(z)-f(w)[ <= CIz-w111 -~wlN-l +CIz -w[  u 

<= CII--zrVI(II--~wIN-I +II--z~IN-1). 

We use the kernel in (2.14) (the kernel in (2.11) can often be used, but not always), 
and recall that the integrals in (2.14) define an extension HyP~+I of H I to Le0.t#). 
ConseqUently we can estimate the Hilbert--Schmidt norm by (observing that s <  e +  
2 ~ N - 1 ,  and using (2.8) in the last inequality) 

II H(1- r Mi'll~ < -  IIHIPa+IM~]I 2 , s~(z~(.~),L,(~)) = (fl + 1) -2 

(1.1wl2)~+1-'(1-[w)-~12dl.ta(w)d#~ (z) ffl( + 2 ) ( f ( z ) - f ( w ) ) - ( 1 -  zff,) ff~ f '(w) 
JJ I 0 ~  

< cff, 1 - z~l 2 (I 1 - ~w12N-2 _~_ I1 - zff~l zN- 2) 
= . , . ,  [1-zr~l 2 ~ + n  Ii-ffwl,S~(1-lzwlZ)S~+Z-Pdm(w)d#~(z) 

<- c f f  l1-zr~l-~=-a(1-[wl2)2=+e-t~d#=(z)dm(w) 

+ cffl l-~wl-Z~(1-1wlg~=+~-adm(w) dl~=(z) 

<= c f ( 1 - l w l g ' - a d m ( w ) + C f ( 1 - 1 w l ) ~ = + z - a - ~ d m ( w )  = C. [] 

L e m m a 3 .  I f  0<p<=l,  e - f l > 2 / p - 2  and N=>0~+3, then 

Proof. Define q by 1/q= I/p-- 1/2= > 1/2. Choose 7 such that a +  l>7>fl+2/q,  
;~>ce--fl and ~ - f l  is not an integer. Let 1 s=-ff(7--fl)--l<~[~--fl]. Then, by  
Lemma 1, 

IIM~It < c .  Sq(A tJ, A ~) = 

Since a , ~ , > - - I  and 2(a--f l--s)=2~--2fl-7+fl+2<2a--7+3, we have by 
Lemma 2 also 

rr a - o - s  .< [[n(1-;~) M~ IIs~(a~,n'(u.)) = C. 

Consequently the lernma follows by (2.2). [] 
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Lemma 4. I f  0<p-<_l, ~ - - t 3 > 2 / p - 2  and N ~ e + 3 ,  then 

- -  o C(1 

Proof. Let qo(z)= 1-~---~" Then 

1 - ( 9 ( z )  = ] - I ~ P  1-1~P 
1 - ( z '  and ( p ' ( z ) -  ( l _ ( z )  ~ . 

By (2.17), H~_r is unitarily equivalent to 

H((~_ I;lh/(~_~))-~ (1 -1~12)("-P)/2 M~ -~ = (1 -I~p)(~-P)/~-NH(~_;4~M~ -~, 

and the lemma follows by Lemma 3. [] 

Lemmas 0 (with s =  1/p+(B-cO/2 ) and 4 together with (2.1) now yield (1.6), 
and thus ~[heorem 1, for p<-1. 

6.  T h e  c a s e  p = ~o 

It is convenient to prove a more general result on boundedness of  H s on the 
Lq-analogues of  the spaces L2(p~) defined in Section 1. It will, however, be con- 
venient to use a different parametrization, whence we define, for - ~ < s <  oo and 
1 <=p<_- ~, 

(6.1) Lp = { / :  (1 -Izp)-Sf(z)~LV((1 -Izp) -x dm (z))} 

Thus L~(/~)=L~ -(~+1)/2. We have chosen the notation such that, if s<0 ,  then 
B; is the subspace of  analytic functions in L~. We begin by studying the integra ! 
operator (2.11). 

Lemma5.  Suppose that ~ > - 1 ,  s < l ,  - 1 < 7 < ~  and - l < 7 + s < ~ .  Then, 
for any analytic f, 

(6.2) f ]ffz)-f(w)] (l_[zl~)Vdm(z) < C(1-lwp)~-'+~ltf[IB:. 
JD [1 -zvTp -2 -- " 

Pro@ We may assume that II flIB~---- 1. Furthermore, by symmetry, it suffices 
to prove (6.2) for w--0=>0. We study three cases separately. We will freely use 
the fact that 1- - r~=( l+r ) (1 - r )~ l - r ,  O<-r<l .  

(i) 0 < s <  1. By the definition of  B~,  

(6.3) If '(z)l <= (1 - Izp)~-L 
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We begin by estimating I f ( z ) - f ( o ) l ,  and claim that if z=re  i~ -zc<0_~rc then 

(6.4) [ f (z ) - f (o)[  <= C ( ( 1 - r ) + ( 1 - ~ ) + 1 0 1 y .  

To see this, suppose that r~Q (the case r:>0 then follows by symmetry). If 101_ <- 
l - r ,  then by (6.3), 

[ f ( z ) - f (o ) l  --<: [f(rei~ +[ f ( r ) - f (~)[  

:< 101 (1 - r )  ~ - 1  + f;  (1 - x) s-1 dx <: (1 + 1 / s )  (1 - r) ~, 

and if 101>l - r ,  then, with a =  max (1-101, 0), 

[f(z) - f (Q)  [ ~_ If(re i~ -f(aei~ + If(ae ~~ - f ( a ) l  + If(a) - f (0) l  

2 
_~ - - ( 1 - a Y + 1 0 l ( 1 - a Y  -~ <= ClOl ~. 

s 

This proves (6.4). Furthermore, it is easy to see that 

(6.5) I I -z01 • ( 1 - r ) + ( 1 - 4 ) + 1 0 1 .  

Consequently, since s -  ~ -  1 < - ~ -  1 < 0, 

[ f ( r e ' ~  f2 ( (6.6) f - ~  11-re'~ ~+~ dO <= C ( 1 - r ) + ( a - e ) + O ) ' - ' - ~ d O  

<= C ( ( 1 - r ) + ( 1 -  0)) ~- '-~ 

whence we achieve, substituting r =  l - x ,  

f I f ( z ) - f (o)]  (1 -lzl2)rdrn(z) <- C (1 - O + x ) * - ' - l x r d x  <= C ( 1 - 0 )  '-~+r, 
o I I - z o I  =+~ o 

proving (6.2). 
(ii) s<0.  In this case [f(z)l~_C(1-lzl~y.  Since 

I1 -re%Vl-~-~ dO x (1 -r lw])  -~-1, 

we obtain (with x = l - r ) ,  

f 1(1 -IriS) s+r(1-r lwl)  -~-xdr  <: If(z)l (1 - l z l~ydm(z )  < C fo  (6.7) l1 - zrV] =+~ = = 

<- c f ~  x~+K1 - lwl  + x ) - = - i d x  <= C(1 -lwlY +~-~. 

Similar/y, 

f If(w)l (1- [z l~ydm(z)  < Cf(w) l (1-1wlY  -~ < C(1-1wlY +~-~. (6.8) I I - z~l ~+~ = = 
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(iii) s=O. This case is similar to (i), with some logarithms entering in the 
computations. (Alternatively, one may interpolate between small positive and nega- 
tive values of  s.) [] 

Lemma 6. Suppose that - 1 < ~ <  co, - ~ < s <  1. Let fCB~ and define 

f(z)  --f(w) 
(6.9) K(z, w) -- ( l - z # )  "+2 

I f  0 < t < c ~ + l ,  0 < s + t < c ~ + l  and l<=q-~,  then the mappings u(z)~ 
f[K(z,w)lu(w)dp~(w) and u(z )~ fK(z ,w)u(w)dp, (w)  map Lq s-' into L~ t. 
In particular, H s then maps B~ s-' into L~ t. 

Proof. By interpolation, it suffices to consider the cases q=  1 and q=  co. 
These two eases follow easily from Lemma 5 with 7 = t -  1 and 7 = e -  s -  t, respec- 
tively. We omit the details. [] 

Taking q=2,  t = ( e + l ) / 2  and s=( f l -~ ) /2 ,  we obtain (1.6)(for p = ~ ) ,  pro- 
vided s < l  and s + t < ~ + l ,  i.e. f l -c~<2 and f l - ~ < ~ + l .  In order to avoid 
the restriction / ~ - ~ < e + l  (which is restrictive only when e < l ) ,  we consider 
instead the integral operator (2.14). The following analogue of Lemmas 5 and 6 
holds, and the choice q=2,  t---(~+ 1)/2 and s=( f l -c0 /2  gives a complete proof of  
(1.6) with p =  ~. 

Lernma 7. Suppose that c~>- 1 and s< 1. Let f 6B~  and define 

(6.10) K(z, w) = f (z ) -~(w)  (c~+2)_ 1 fir'(W) 
(1  - z k )  "+8 (1  - z # )  ~+ z " 

I f - - l < 7 < e  and - l < 7 + s < ~ + l ,  then 

(6.11) f IK(z, w)l(1 - Iz lZydm (z) <= C(1 -Iwl~) r-~-l+~ ]If liB.=- 

If--1<7<~+1 and 0 < 7 + s < ~ + l ,  then 

(6.12) f lK(z, w)l(1-lwlZy dm(w) ~- c(1-1zl~)r-=-~+sllfllB~. 

Consequently, i f  0 < t < e + l ,  O < s + t  and l<=q~oo, then the mappings u(z)~ 
f ]K(z, w)lu(w)d#,+l(W) and u ( z ) o f  K(z, w)u(w)dlt,+l(w) map L~ ̀ -t  into L~'. 
In particular, H s then maps B~ ~-t into L-~ t. 

Proof. K(z, w) is defined in (6.10) as a difference of  two terms; we estimate 
the two terms separately in (6.11) and (6.12). ~Ihe estimates for the first term fol- 
lows by substituting e + l  for c~ in Lemma 5; the estimates for the second term 
follows by substituting f '  for f and s - 1  for s in (6.8) and (6.7). 

q-he final assertions are proved as Lemma6,  using (6.11) with y = t - - 1  for 
q = l ,  and (6.12)with ? = a + l - s - t  for q = ~ .  [] 
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7. The case 1 < p  < ~ and compactness 

We have proved (1.6) and thus Theorem 1 for p<= 1 and for p =  co. The inter- 
mediate case l < p < ~ o  follows by interpolation, but because of the cut-off we 
have to be a little careful. 

Suppose that e, f l > - l ,  l < p < ~  and 1/p<l+(c~-fl)/2. ~Ihe case fl<~ is 
no problem; in general we choose 7 and 6 with fl=7-26/p, - 1 < 7 < e + 2  and 
- 1 < 7 - 2 ~ < e .  (The reader may verify that this is possible.) Define the fractional 
integration I s, for any complex s, by 

Pg(z) = ,~'o ~, (n) (1 +n)-Sz ", 

and define Tz(f)  to be the operator t t f P  z. 
Then, by (2.19), P is an isomorphism ofA v onto A ~-2R~ (provided 7 - 2  Re s >  

- 1 ) .  It follows that the family {T~} of anti-linear mappings map B~ -~'3/2 into 
S~ when R e z = 0 ,  and Bi +Cv-2~-~/~ into S~ TM when R e z = l .  By the abstract 
Stein interpolation theorem (see e.g. Cwikel and Janson (1984)), 

7'1/9 maps ~pR 1/p+(~'-2'~/p-~ into S~ ~. 

Thus, if fEB~/1'+~#-~')/~, Hf= Tt/p(f)I-~/PE S~ ~. 
~Ihis completes the proof of ~Iheorem 1. 
It is now easy to prove (1.7) and thus Theorem 2. Suppose that fl-c~< 2. Then, 

by Theorem 1, f ~ H f  maps B~ -~)/2 continuously into #~ S~ ,  and if f is a polynomial, 
then H:  belongs to the closed subspace of compact operators (in fact, HfE Sp for 
sufficiently large p). Consequently, f ~ H  z maps b~ -~)/2 into the space of compact 
operators. 
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