Hankel operators between weighted Bergman spaces

Svante Janson

1. Introduction and main results

We will study Hankel operators on (weighted) Bergman spaces of analytic
functions on the unit disc. These spaces and operators are defined as follows.

Let m denote the Lebesgue measure on the unit disc D and let, for —1 <o < oo,

o+

4

urable functions on the unit disc for which the norm

1
1, be the measure (1—|z|®)* dm(z). Thus L2(dy,) is the space of all meas-

a+1
b1

(1.1 If1E = fD L)1 —1z]3)* dm(z)
is finite. (The normalization constant is chosen such that p, has unit mass.) The
Bergman space 4% is the subspace of all analytic functions in L2(y,); this is a closed
subspace so A* is a Hilbert space. The orthogonal projection of L%(u,) onto A*
(known as the Bergman projection) will be denoted by P,. We will also consider
the space A* of anti-analytic functions in L2(y,) and the corresponding pro-
jection P,.

There are (at least) two non-equivalent natural definitions of Hankel operators
on the Bergman spaces. These have become known as the big and small Han-
kel operators.

Definition. Let f be a (measurable) function on D. The big and small Han-
kel operators with symbol £, in this paper denoted by H, and H, respectively are
defined by

(1.2) H,(g) = (I-P)(f2),
(1.3) H,(g) = P.(fo).

(g is an analytic function. We discuss the interpretation of the right hand sides when
feqL2(n,) later.)
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We will in this paper only consider analytic symbols.

Note that H, maps into 4**, while #, maps into the much smaller space A%
In fact, P, P, is the one-dimensional projection f~ [ fdu, onto the constant func-
tions, so & +—P,H, has rank (at most) one. Consequently, if H + is bounded (com-
pact, in S, (see below)), then so is H,. The converse is not obvious, but we will see
that it holds in important cases.

We recall that an operator 7 in a Hilbert space, or from one Hilbert space
into another, belongs to the Schatten—von Neumann class S, if the sequence of
singular numbers {s,(7)}>_,= {inf | T— K| : rank (K)=n}:>_, belongs to /7.

Remark. S.. thus is the class of all bounded operators. Some authors prefer
to let S.. be the class of compact operators, but we find that definition less natural.
(The compact operators correspond to ¢,, not to /*=.)

The characterization of the symbols f such that the small Hankel operator
H, belongs to S, is due to Peller (1982a, 1932b) and Semmes (1984), see Section 4.
The big Hankel operator H, was first considered by Axler (1986) (p=< and «=0);
the general case was studied by Arazy, Fisher and Peetre (1986). The result by
Arazy, Fisher and Peetre shows a striking cut-off; If l1<p= e, then H + belongs
to S, iff H, does (iff f belongs to a certain Besov space), but if O<p=1, then H 5
never belongs to S, (unless f'is constant and thus H,=0).

The purpose of the present paper is to investigate this phenomenon further by
studying H, as an operator of one Bergman space into another. More precisely,
we use two parameters o, f€(—1, =), and study H s and # ¢, defined using P,
as above, as operators of A? into L2?(g,). (There is some arbitrariness in this
choice. One might use three parameters and study the operators from 4 into L2 (1),
but we will consider only the case y=a.)

We let S2* denote S,(4%, L*(u,)), i.e. the class of S,-operators of 4* into
L*(p,). Furthermore for O<p=co, and —eo<s<eoo, B, denotes the usual Besov
space of analytic functions in the unit disc; if m is a non-negative integer and
m=>s, then

(1.4) By = {f: (1—|z]"=*D" f(z)€ L*((1 —|2[) " dm)}.
(In particular, A*=B;@*M2) The main results then can be stated as follows.

Theorem 1. Let o, f=—1 and O<p= o,

() If lp<145(a—B), then H cSP* iff feBlp+G-i2,

Gi) If 1/p=14+3+(a—B), except in the case p=-co and P=o+2, then Hge She
only if f is constant ( and thus H;=0).

For p=ce, Theorem 1 gives necessary and sufficient conditions for H, to be
bounded, except when f=a+2 (this exceptional case will not be treated here).
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There are similar conditions for compactness (without exception). Define b%,
to be the closure of polynomials in BS,. If m is a non-negative integer greater than
s then

(1.5) bl = {f: A=[z)"*ID"f(2)| -0 as [z > 1}.

Theorem 2. Let «, f=—1.
() If B<a+2, then H, is compact from A* into L*(u,) iff feb8=P,
() If f=a-+2, then H, is never compact from A into L2(u,) unless f'is constant.

For the small Hankel operators there is no cut-off; otherwise the conditions
are the same.

Theorem 3. Let o, f=—1 and O<p=co. Then HcS5* iff feB)Pr@-aP,
Theorem 4. Let o, f=—1. Then H; is compact from A® into A* iff feb&~0*

We include Theorems 3 and 4 although they are not new; as is well-known
(cf. e.g. Rochberg (1985)), they are easily reduced to results by Peller and Semmes.
(We do this reduction in Section 4.) See also Burbea (1987). (When =« and p=1,
Theorems 3 and 4 are given in Janson, Peetre and Rochberg (1987) and Arazy,
Fisher and Peetre (1986).)

Taking f=a in Theorems 1 and 2 we recover the result by Arazy, Fisher and
Peetre. If f=a we have a similar result, but with a different cut-off. In particular,
if a=f then there is a positive result also for p==1. This enables us to prove the
theorem (in one direction) by interpolating between p=1 and p=-< (see Sec-
tion 7). Thus our approach gives a new proof of the theorem by Arazy, Fisher and
Peetre, which in some parts is simpler than the original proof (where it was im-
possible to use p=1 directly), although it is fair to add that other parts are more
complicated because the loss of (isometric) Mébius invariance when a#p.

Our approach is inspired by Rochberg (1982), who introduced weights (cor-
responding to Bergman spaces) in order to overcome a similar problem at the other
endpoint p=- for Hankel operators on H?2.

This approach can also be applied to big Hankel operators in several complex
variables. See Wallstén (1988) for details.

The remainder of the paper contains the proof of the theorems. This is organized
as follows.

Various preliminaries are taken care of in Section 2.

Theorems 1(ii) and 2(ii) are proved in Section 3.

In Section 4 we study the small Hankel operators and prove Theorems 3 and 4.
Since H € Sf,‘"=>1’7 i€ Sﬁ"‘, as we remarked earlier, Theorem 3 shows that H ¢ Sﬁ“:>
feBpt6-al2 which proves one implication in Theorem 1(i). Similarly, Theo-
rem 4 implies one half of Theorem 2(i). It remains to show that
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If
(1.6) 1/p <143 (x—p), then feBLP+¢-212 = [ ¢cSpe
and

If
1.7 B—a<2, then [fecb¥-%2= H, iscompact.

This is done in several steps. In Section 5 we prove (1.6) for p=1. The case p=oo
is proved in Section 6. The remaining case 1<p<-oo is proved in Section 7, where
we also prove (1.7).

We remark that the case p=2 (Hilbert—Schmidt) of Theorem 1 may be
proved directly by computing [H,m(z")|, (cf. (3.2) below) and by then deducing

[H |2 3 ST m0=1 () < | f s -esvre, B—a <1,

but we will not use this. Observe, however, that when a= 8, there is an interesting
isometry |H f]|§z=2'f° n} f(n)]2, see Arazy, Fisher and Pectre (1986).

2. Preliminaries

We begin by recalling some facts about S,=S,(H,, H,), the class of S,-
operators from a Hilbert space H; to another Hilbert space H,, equipped with the
“norm” ]|THS =|{s.(T )}g°[|, For further details we refer to e.g. Simon (1979)
and McCarthy (1967).
(i) If p=1 then | | s, is a norm and S, is a Banach space.
@ii) If p<1 then | |2 £ is subadditive and S, is a Fréchet space. Thus

2.1 |s+Tl5, =1S[5,+IT]5,, O<p=1
(iii) There is a Holder-type inequality
(2.2) IST|s, = |Sls,1T s,

provided 1/r=1/p+1/q, SES,, T€S,.
(iv) If {e,} is any ON-basis in H,, then

(23) if 0<=p=2 |T[§, =2 |Tel".

) if 2=p=c, |T|E, =2 [Te,"
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The Hilbert space A* has a reproducing kernel given by

(2.5 K,(z, w) = (1 —zw)—*—*

Le.

(2.6) 1@) = [ W) K (z, w)dp,(w)

for f€ A% and more generally

@7 Pf(z) = [f()Ko(z, wdpa(w), fEL*(ky).
As a special case of (2.6)

(2.8 1K wE = Ko(w, w) = (1~ |w]?)~*~2

We will also write K, ,(2)=K,(z, w).

We have defined H, by (1.2), although obviously P,(fg) is not always defined.
To begin with, we note that P,f=f(0) for any analytic function fand any reasonable
extension of P,. Hence H,(1)=f—f(0) for any rcasonable definition of H,, so if
H; maps AP into L*(u,) then necessarily f—~f(0)eL%u,) and thus feL?(u,).
Consequently it suffices to consider symbols in A% and for such symbols (1.2)
makes sense at least for all bounded g. If (1.2) then defines an operator which is
continuous in the norms | || and | [|,, we extend H, to A* by continuity.
In fact, we will see in Section 6 that when H, defines a bounded operator, and
thus f€B%-92 by Theorem 1 (or 3), then H, may be written as a well-defined
integral operator on A%, We will now derive its kernel. First we note that by
(2.7) and (2.6), assuming f£ A%

2.9)  P(fK,)(2) = (TKyws Kayz) = (fKoyzs Kayuy = FW) K, (W, 2) = FW K, (2, W)
and thus

(2.10) H (K, ,)(2) = (f(&)—TW) K. (z, w).

Since g= [ g(W)K,,,, du,(w) by (2.6), we have, at least formally,

@.11) Hyg = [ g H (K, ) (@) du,w) = [ (F(2) —F (%)) K, (2, w)g(w)dpa ()

= S @ —T) A =20 (1 = = g (3) s ()
In fact, it is easily seen that, for each fixed z, and with P, in the definition (1.2)
extended by (2.7) to L'(y,), both the left and right hand sides of (2.11) are con-
tinuous functionals of g€4” and that they coincide when g=K, , for some (€D.
Consequently (2.11) holds for all g€A4% and in particular for ge H™ (in which
case the original definition of P, suffices).
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We have thus represented H, as an integral operator. There are, however,
many other representations that give the same result for analytic g; the difference
is seen if we extend them to non-analytic g. In fact, the integrals in (2.11) are well
defined for any g€L?(y,), and they vanish for g€A*l; consequently they define
the operator H; P, on L?(yu,). For us, it would be more natural to use the integral
representation corresponding to the operator H, P, (since it is equivalent to study
H;on A” and H, Py on L*(py). Unfortunately, we do not know any simple expres-
sion for the kernel of this operator, so we will instead use (2.11) or (2.14) below
(the latter corresponds to H, P,.,). We will see in Section 6 that, when a, § and f
are appropriate, (2.11) defines an integral operator mapping L?(y,) into L2(y,) for
most values of « and f, but for certain (small) values we need the alternative (2.14)
which always defines a bounded operator on L2(y;).

We derive this alternative expression as follows. We observe that

(2.12) W—ai)w—Ka(z, w) = w(a+2)z(1 —2w)~*2 = (a+2)(K,+1(z, w)—K,(z, w)).

Hence, differentiating (2.10) with respect to w,

C1) HKe) O =H )y e K )@

= (F@—F00) Kerr s W) =5 WG, W),
An argument similar to the one after (2.11) shows that, e.g. for g€ 47,
(2.14) Hyg(2) = [ g H; (Kyr1,) () dtosa (W)
= [(F@—F0) —(@+2)7 (1 = 2m)f W) (1 = 239)~*° g (W)d 1ty 1 (W)
= B+ D7 [ (@+2FE— ) — (1 — zw)wf (w)) (1 — 29~ (1 — [w]2)*+1~P

X g () dpty (w).

Next we consider the action of Mgbius transformations on the Hankel operators.
Let ¢ be a Mobius function and define the operator V7, by

2.15) Vig(z) = g0¢(z)(go’(z))“/2+1.

Then V7, is an isometry of L*(y,) onto itself which maps 4* onto itself. Consequently
P, Vo=V P,. This yields, if M, denotes the multiplication operator g—(¢')’g,

(2.16) ViH(8) = (I-PYVE(fg) = (I—P)(Fo pgop (@)**Y)
= (I-P)(fop (@) *~PIV[(g)) = Hyoy ME~PV(g).
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Hence, as operators from 4% to L2(u,),

(2.17) H; is unitarily equivalent to Hj.,MS P72

Since ¢” and (¢’)~* are bounded, ME~#" is invertible and we conclude that
(2.18) H/cS, iff Hpo,€S,,

although the norms in general are different. (It is obvious that the situation is sim-
pler when a=p, sce Arazy, Fisher and Peetre (1986), where the Mobius invariance
is effectively exploited.)

We will also perform some computations with the monomials {z"}. We set
Yn,o=12"ll,,» and find explicitly

2.19) e =121 = S0 [l (1 el dm )
T
- n(1 —x)idy = LA DI@+2) —a1
._(oc-l—l)fx (1 -x)dx = INCETE=) = (n+1) .
Thus
(2.20) P A LA

We observe that {z"/y, .} is an ON-basis in 4%

3. The cut-off

In order to understand the cut-off 1/p=141/2(x—p), let us first consider
the simplest non-trivial symbol, viz. z. It is easily seen that {/7,(z")}>_, are orthogonal,
and since z"/y, , is an ON-basis in A%, it follows that the singular numbers of
H, are given by {|H_(z"/7, pl.}s» rearranged in decreasing order. Furthermore, for
n=1,

. zz", 2" Y, LI
G.1) P,(22") = STTZ_:I_HZL o v;—} 1
and, using (2.15), '
4
(3.2 [H.(2)lz = |22"]G— | PaG2")E = v3+1,a“y;}j’: = nes,
Hence *
G3) V(2" )] = 20,

Consequently, H,€ 8% iff p((a—B)/2+1)>1 (O<p<-<), H,€S% iff (a—p)2+1=0
and H, is compact iff (x—f)/2+1=0.
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We may now prove parts (ii) of Theorems 1.1 and 1.2. Now assume that 1/p=
1+(a—pB)/2, with strict inequality if p=-<, and that H,€S5% Define for (=1,

_J(fC-fO)it =0
fi(2) = { £/(0)z ¢=0.

Then {~f, is analytic and {~H, I is anti-analytic in the unit disc, and if [{|=
then [H, IIS =|H fHS <o, Since the maximum modulus principle holds in S,,,
see Kalton (1986), it follows that H, ES”“‘ for every {eD. In particular, we may
take {=0, but since we just have shown that that H, QS”“, it follows that f7(0)=0.
We may apply the same argument to fo¢ for any Mobius function ¢, because
H,,,€8% by (2.18). Hence (fo)(0)=0 and f’(¢(0))=0. Since ¢(0) can be
any pomt in D, fhas to be constant. This proves Theorem 1.1(ii), and Theorem 1.2(ii)
follows by the same argument.

4. The small Hankel operator

We compute the matrix elements of H, relative to the bases {z"fy, ,} in A*
and {Z"/y,. .} in A*:

(4'1) <ﬁf2"/’)),,,ﬁ, Em/?m,a>a = m ayn ﬂ<f(Z)Zn Zm> = ym azyn ﬁ7m+n af(m+n)'
Hence, using (2.20), /€ S5 iff the matrix

((m+ D@D 1)EDR2 - Fm+n))m a0

defines an S,-operator on /2 By Peller (1982a) and (1982b) (the cases l=p=co
and O=<p=<1 respectively), or Semmes (1984) (0<p=<1), this holds iff {y,f,zf(k)}
is the Fourier transform of a function in BLPtE+DE+(+D2 e jff

feBYP+@ DR+ (B Dyz—at,

This proves Theorem 3. Theorem 4 follows by the same argument from the
remarks after Proposition 1 (and after Lemma 2) in Peller (1982a).

We remark that the matrix above defines H, g for polynomials g for any f.
g +g may then be defined by continuity (when ¥4 + is continuous), also when (1.3)
is not directly applicable.
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5. The case p=1

We will use the following atomic decomposition of Bj, due to Coifman and
Rochberg. The case s<0 is a special case of Coifman and Rochberg (1980), Theo-
rem 2 (with different notation); the general case follows by integrations (which
increase s by 1 each time). Cf. also Rochberg (1985).

Lemma @. If O<p=1, —co<s<-co and N is large enough (N>1/p—s will do),
then there exists a sequence {{;}CD such that every function f in B, can be decom-
posed as a (countable) sum

@)= 2,40~ BNt (1 -2~V
S =cif,

with

(We may take N to be a positive integer, but, in fact N may be any real number,
except a non-positive integer.)

In order to prove the direct part of Theorem 1 for p=1, it is therefore suffi-
cient to obtain good S,-estimates for symbols of the form (1—{z)~¥, with N large
but fixed. We will do this in several steps.

Convention. In this section { is an arbitrary point in D. C denotes constants
that can be chosen independently of { (although they may depend on ¢, 8, p, N, etc.).
Let M{ (—eo<s<eoo) denote the multiplication operator

(5.1 1g(2) = (1-{2)~g(2).
Lemma 1. If O<p=2, a—B>2/p, s<+[au—p] and a—p is not an integer, then
(5.2 1M Es (48,49 = C.
Proof. Suppose first that s<1/2. Then
I = [11=L21"|2dp(2) = C [ (1 =r)dr = C(n+ 1)1,

Consequently, using (2.20), | M;(z/y, Jl,=C(n+1)~@"P2  Since p(a—p)/2>1,
(5.2) now follows by (2.3).
In general, let m=[x—f]=1. We may assume that p=2/m (otherwise we

replace p by 2/m). If a(i)=p +% (x—p), the case just proved shows that

“Mg/m"smp(Au(i)'Aat(n-l)) = C, i= 0, 1, cany m—l,

and (5.2) follows by the Schatten—Hélder inequality (2.2). O
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Remark. The conditions in the lemma are not sharp. It is easily seen that
=4[a—p] will do as well; we guess that s<2(x—p) is enough.

Lemma 2. If o—f>—1, 2s<20-—f+3 and N=a+3, then
(5.3) |Ha- v Mg gpe = C.-
Proof. Let f(z)=(1—{z)". If ¢ is any point on the line between z and w, then
/OF = NILIT=LE1 = N(L=Lw]+|E—wh ! = CIL={wN 2+ Clz—w[V L
Consequently,
(54) [f@=fw)l = Clz—wl[l ={w[" 1+ Clz—wi¥
= C|1—zw|(|]1 = {w|¥ 1+ |1 —zw|V¥-1).

We use the kernel in (2.14) (the kernel in (2.11) can often be used, but not always),
and recall that the integrals in (2.14) define an extension H P,.; of H to L*(up).
Consequently we can estimate the Hilbert—Schmidt norm by (observing that s<a-+
2=N-1, and using (2.8) in the last inequality)

1 Ha - oy Mgﬁzﬁa = ﬂHfPaﬂMf”%ﬁ(z‘s(u,),m(u,)) =B+

@+ (F@) —fw)) —(1 — 2w wf(w)
= ff” ZWl (II_CWIZN 2+!1_ZWI2N 2)|1~CW|—2S(1*]ZW|2)2°‘+2_ﬂdm(W)dﬂa(Z)

=2 (1= Iwl2y+2=8(1 —Lw)~| dptg (W) (2)
Zw12a+6

=C f J =zl (L= [+ 2= dp, (2) dm(w)

+C [ [11—gwl =2 (1~ |w]?*+ 2~ dm(w)dp,(2)
=C [ (1=|wp*~Pdmw)+C [fa—lwhert=t-2dmw)=C. O
Lemma 3. If O<p=1, a—p>2/p—2 and Nz=ua+3, then
|Hg-ayv ME= 52 = C.
Proof. Define g by 1/g=1/p—1/2=1/2. Choose y such that a+ 1>y>f+2/q,
y=>a—p and y—p is not an integer. Let s=(y—pP)—1<<[y—pl. Then, by

Lemma 1,
| Ml s a8, an = C.

Since a—y=>—1 and 2(a—f—s)=20—2—y+p+2<2u—y+3, we have by
Lemma 2 also
1 H = goye MEP =% 5,4, L2guayy = C.

Consequently the lemma follows by (2.2). O
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Lemma 4. If O<p=1, a—f=>2/p—2 and N=a+3, then

1Ha-ty-wlsse = CA—[gR)Pr-N,

Proof. Let o(2)= lé':ZZz . Then
_ 1—1712 1—1z12
1-Cp(2) = 1_}?2, and <p’(2)=~—(1—:|§)~2'

By (2.17), Hy _g,y-~ is unitarily equivalent to
Hi-gpya-2ap-> (L= KPR P Mg =P = (1 =L@ -PE-N Hy g0 MEP,
and the lemma follows by Lemma 3. 0O

Lemmas 0 (with s=1/p+(8—0)/2) and 4 together with (2.1) now yield (1.6),
and thus Theorem 1, for p=1.

6. The case p=-oc

It is convenient to prove a more general result on boundedness of H; on the
L-analogues of the spaces L2?(y,) defined in Section 1. It will, however, be con-
venient to use a different parametrization, whence we define, for — co<s<oo and

E=p=co,
(6.1) L, ={f: A-|z®)~ fDeLr((1-121) " dm(2))}

Thus L2(u,)=L;®*V2 We have chosen the notation such that, if s<O, then
B; is the subspace of analytic functions in L},. We begin by studying the integral
operator (2.11).

Lemma 5. Suppose that a>—1, s<1, —l<y<a and —1l<y+s<a. Then,
for any analytic f,
62 [ YOI yamz) = o —wr | flps

p|1—zw[* %

Proof. We may assume that | fliz =1. Furthermore, by symmetry, it suffices
to prove (6.2) for w=90=0. We study three cases separately. We will freely use
the fact that 1—r2=(1+r)(I—r)=<l—r, 0=r<l1.

(i) O<s<1. By the definition of B ,

(6.3) ' 12 = (1 —|z1
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We begin by estimating | f(z)—f(0)l, and claim that if z=re®, —a<6=n then

(6.4) 1f(2) (o)l = C(1—n)+(1—o)+10])

To see this, suppose that r=g (the case r=¢ then follows by symmetry). If |6|=
1—r, then by (6.3),

[f(2)—f(2)| = 1fGre®)—f+1(r) =)
= 10/(1 —r)s”l—f-ff (1—xy—tdx = (1+1/s)(1—r),
and if |0|>1—r, then, with a=max (1—|6], 0),
11(2)=f(@)| = 1 f(re”®) —f(ae®)|+| f(ae®) ~f (@) +f(a) ~1(0)|
= %(1 —a)f+10|(1—a)~t = C|O}.

This proves (6.4). Furthermore, it is easy to see that
(6.5) [1—zo| <X(1=r)+(1—0)+|6l.

Consequently, since s—a—1<—y—1<0,

«o J7 MDD do = ¢ [7 (-0 +a-g+0y--2a0

|1 —refpl*t?
= C((l —r)+(1- Q))s_""'1

whence we achieve, substituting r=1-—x,

/ D'ifl(z)zggfg’ (-l dm(z) = C [* (1-g+2)~*=1x7dx = C(1—0F~**",

proving (6.2).
(ii) s<0. In this case | f(2)|=C(1-]z]?)*. Since

J711—re®=e2d0 s (1 —riw) =",
we obtain (with x=1-7),
_f@al N dm(2) = C [ (1= FB+7 (1 —rlwl)="—1dr =
(6.7) T (A=lzdm(2) = C [ 1=+ (A —rlw)=*"dr =

= C [ (1~ wl4+x)=*2dx = (L~ w7
Similarly,

(638) f T (-l am(z) = Iy = CL= ol 7=

Wrx+2
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(iii) s=0. This case is similar to (i), with some logarithms entering in the
computations. (Alternatively, one may interpolate between small positive and nega-
tive values of 5.) O

Lemma 6. Suppose that —1<o=<oo, —cog<1. Let fEBS, and define

f&-fw)
(6.9) K(z,w) = 1= ZW)“+2 .
If O<t<g+1, O<sti<a+l and 1=q=-, then the mappings u(z)—
[ Kz, W) uw)du,(w) and u(z)~> [ K(z, wyu(w)du,(w) map L;** into L"
In particular, H; then maps B;*" into L'

Proof. By interpolation, it suffices to consider the cases g=1 and g=-o
These two cases follow easily from Lemma 5 with y=¢—1 and y=oa~—s—t, respec-
tively. We omit the details. O

Taking g=2, t=(x+1)/2 and s=(f—a)/2, we obtain (1.6) (for p=-o), pro-
vided s<1 and s+t<a+1, ie. p—a<2 and B—a<a+1. In order to avoid
the restriction f—oa<a+1 (which is restrictive only when «~<1), we consider
instead the integral operator (2.14). The following analogue of Lemmas 5 and 6
holds, and the choice g=2, t=(o+1)/2 and s=(f—a)/2 gives a complete proof of
(1.6) with p=-co

Lemma 7. Suppose that o=—1 and s<1. Let fcB: and define
(6.10) K(, )_—f(—z-)——f)%)?—(wrz)—l?”_”—f-z%‘%.
If —1<y<a and —l<y+s<o-t+1, then
(6.11) S 1K@ w1212 dm(z) = C(1=|wl2)'=*=2**| f] ps -
If —l<y<a+1 and O<y+s<o-t+1, then
(6.12) S 1K G (1= dm(w) = C(1—|z[2)7~*~2+*| fps .

Consequently, if O<t<a+1, O<s+t and 1=q=oo, then the mappings u(z)—
flK(z, wluWw)du, ., (w) and u(z)-»f K(z, wyuW)dp,+1(w) map L7°7F into L*.
In particular, H; then maps B;*~" into L*.

Proof. K(z,w) is defined in (6.10) as a difference of two terms; we estimate
the two terms separately in (6.11) and (6.12). The estimates for the first term fol-
lows by substituting «+1 for o« in Lemma 5; the estimates for the second term
follows by substituting f” for fand s—1 for s in (6.8) and (6.7).

The final assertions are proved as Lemma 6, using (6.11) with y=¢—1 for
g=1, and (6.12) with y=a+1—s5—1¢ for g=o. [J
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7. The case 1 <p<oco and compactness

We have proved (1.6) and thus Theorem 1 for p=1 and for p=-c-. The inter-
mediate case l<p<< follows by interpolation, but because of the cut-off we
have to be a little careful.

Suppose that «, f>—1, l<p<e and 1/p<I1+(a—p)/2. The case f=<o is
no problem; in general we choose y and ¢ with f=y—26/p, —1<y<a+2 and
—1l<y—28<ua. (The reader may verify that this is possible.) Define the fractional
integration I*, for any complex s, by

Fg(z)= 27 ¢(mA+n—z",

and define T,(f) to be the operator H I,

Then, by (2.19), I is an isomorphism of 4” onto 4”~2R*s (provided y—2 Re s>
—1). It follows that the family {7,} of anti-linear mappings map B%~®2 into
S when Rez=0, and B}+0~-%-9/2 jnto S7* when Rez=1. By the abstract
Stein interpolation theorem (see e.g. Cwikel and Janson (1984)),

Ty, maps BLP+O-2r=9/2 jnto Sie,

Thus, if fEBYP+E=92 H =T, (f)I-%PcSb.

This completes the proof of Theorem 1.

It is now easy to prove (1.7) and thus Theorem 2. Suppose that f—a<2. Then,
by Theorem 1, f~H, maps B~9" continuously into S#*, and if fis a polynomial,
then H, belongs to the closed subspace of compact operators (in fact, H ¢S, for
sufficiently large p). Consequently, f~H, maps b¥~*/ into the space of compact
operators.
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