
On an example of Wermer 

N. Levenberg 

O. Introduction 

In [W] J. Wermer constructed a compact set Y = C  2 which projects to the circle 
{z: Izl=l/2}, i.e., if n: C 2 ~ C  via rc ( z ,w)=z ,  then ~t(Y)={z: Izl=l/2}, which 
has the property that the polynomially convex hull 17" of Y projects to the disc 
{z: Izl<=l/2}=~(I?) and such that I ? - Y  contains no analytic variety of positive 
dimension. We show that by suitably choosing the parameters in Wermer's exam- 
ple, we can construct Y so that l?c~A is polar in A for any analytic variety A. We 
then discuss the consequences of this result. The author would like to thank Professor 
B. A. Taylor for many valuable discussions on this subject and Professor J. Siciak 
for pointing out a previous error in Proposition 1.2. 

1. Outline of Wermer's construction 

We proceed to sketch the details of  Wermer's construction, both for the con- 
venience of the reader and also to make later modifications clearer. 

Let al, a2 . . . .  denote the points in the disc {z: Izl<l/2} whose real and 
imaginary parts are rational (except for statement (1.3) below, we only use the 
fact that {as} is a countable dense set in the disc), Form the algebraic functions 

B i (z) = ( z -  al) . . .  (z - as- 1) 1/z - - ~ i  (i = 1, 2 . . . .  ). 
Given positive constants cl . . . . .  c, >0,  form the algebraic function 

g.(z) = Z "  c S,(z) 

and let ~ (el . . . . .  e,) denote the subset of  the Riemann surface of g. lying in 
{z: ]z[~=l/2}; i.e., ~ (c~ . . . . .  e,)={(z, w): [zl~1/2, w=w~,  i=1  . . . . .  2"} where w~, 
i =  1 . . . . .  2" are the 2" values of  g, at z. 

Lemma 1.1. (See Lemma 1, [W].) There exist  sequences {ci} and {ei} with ei+~= 
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e~/lO and a sequence of polynomials {p.} in z and w such that 

(1) {p.=0}n{lz[=<~-}=~ (Cx . . . . .  c.), n = l ,  2 . . . .  
(2) {Ip.+d-~.+~}n{Izl-<--x}c{lp.I ~-e.}n{lzl <1 =T}, n = l ,  2 . . . .  
(3) I f  lat_~--~ and lp,(a, w)l <-r then there existsw, with p,(a, w.)=O and l w - w . l <  

x ~, n=l ,  2 . . . . .  
1 Proof. For i=1,  set pl(z, w)=w~-c~(z-al);  we can choose, e.g., c 1 = ~  

~--4 so that (1) and (3) are satisfied. Suppose c~, r P~ have been chosen for 
so that (1)--(3) hold. Let w~(z), i=1  . . . . .  2", denote the roots of 
(i.e., the values of g, at z). For c=>0, define the polynomial 

p~(z, w) ~" = 

and 
i--1 . . . . .  n 
p.(z, .)=0 

so that 

Note that 

(1.1) 

where Qi = Q, (z, w) 
ciently small, 

{pc(z, w) = 0}n {[zl -<- 1[2} = • (cl . . . .  , c., c). 

Pc = p2.+c2Ql+-.. +(c~)2"Q2, 

do not depend on c. From (1.1) it follows that for c sufli- 

{i +} {i 1} ( 1 . 2 )  {ipci < e~/2} n zI <= c { lp . l  < ~.}  n zi  <-- y �9 

Fix c such that (1.2) holds and c<c,,/lO; put c=c,,+1 and p .+ l=pc;  then choose 
e.+l<min(e~/2, (1 /n+l )  2"§ so that (2) and (3) hold for i=1,  2 . . . . .  n + l  and 
the proof is complete. 

Withpn, ~., n = l ,  2 . . . .  as in Lemma 1.1, set 

AT.= {[P.[--<--r <= 1/2} (n = 1,2, .,.) and X =  O~=~X.. 

It is the set X in which we are interested; in Wermer's paper, X=I~ and Y = X n  
{]z[ = 1/2}; the rest of the paper consisted of the proof that 

(1.3) X contains no analytic disc. 

Note from condition (2) and (3) in Lemma 1.1 it follows that 

(1.4) (z, w)CX if and only if [z[ _~ 1/2 and there exists a sequence 

{(z, w.)} with (z, w.)E ~ (cl . . . . .  c.) and w. ~ w 

(Lemma 2 in [W]). 
To give an idea of the main result in the next section, we show that under mild 

assumptions on the parameters en, c. in the construction, the set X intersects each 
algebraic variety of a special form in a polar set. 



On an example of Wermer 157 

Proposition 1.2. I f  (eJ(c~"))l/m"~o where m,=(2n-1)2n-X=deg (p,), then 

(1) X is pluripolar (as a subset of C~); 
(2) A n X  is polar in A for each algebraic variety A which can be written as the graph 

of a polynomial in one variable. 

Proof. To show that X is pluripolar, we use the notion of  z-capacity (see, e.g., 
[LT]). Let P . = { q . = ~ = 0 - F k :  q. is a polynomial of degree n, liE.liB=l} where 
q.=F.+F._I+.. .+Fo is the decomposition of  q. into the sum of its homogeneous 
polynomials Fk of degree k, and IIF.,~=sup {If.(z, w)l: Izl~ For a com- 
pact set K c C  ~ set M.(g)=inf{llq.l[r=sup{Iq.(z,w)l: (z,w)EK}: q.Ee.} and 
z (K)=inf .  M.(K)l/"=lim._.o M.(K) 1/". The limit in the definition of z(K) exists; 
furthermore, z ( K ) = 0  precisely when K is pluripolar ([LT]). Thus we must show 
that z (X) = 0. From the construction, 

p.(z, w)= ll~L-~ [(w_w,(z)).-c~(~.(z))o] 

where wt(z), i=1  . . . . .  2 "-1, are the 2 "-1 values ofg,_a(z) .  Thus 

On On p.(z, w) = c. (B.(z)) + ... = c2nngmn--~-.Rn(Z, W) 

on where deg(P~)<m. .  Thus (1/c.)p.EPm; since 

X. = {(z, w): Izl <- 1/2, Ip.(z, w)l/c~" <- e./c~"}, x(X.) <= (e./c~)x/'~.. 

Since X c X . ,  z(X)<=x(X.) and the result follows. 

Case 1. A={(z,  w): w=Q2v(z)=~zS+Q2v_l(z)} where deg QN_x<-N-1. Then 

A n X  c A n X .  = {(z, Qu(z)): Izl <- 1/2, [p.(z, Qu(z))[ <= e.}. 
Now 

p.(z, Qu(z))= 

, - - '  rr~"-' [ (~:+ ~-1(z)-w,(z))"-c~.(B.(z))']. 1-1,=, [ ( Q ~ ( z ) - w , ( z ) ) '  . c~ . (B . (z ) )  o] = ~. ,=,  

Suppose 2 N < 2 n - 1  =deg  (B~.). Then p.(z, QN(z))=c~."zm.+R.(z) where deg R.<m..  
On Thus (1/c.)p.(z,  Qu(z)) is a monic polynomial of  degree m.; if we let Cap (K) 

denote the logarithmic capacity of  a compact set K c C ,  it follows that 

cap {~: (~, Q~(z))cx} <_- cap {z: (~, Q~(~))cx.} ~ (~./c~)". 

for n>N+l]2 and the result follows. 

Case 2. 
A = {(z, w): z = QN(w) = ctwr~+QN-l(w)}. 
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If  N ~ 0 ,  

~ x  ~ A ~ x .  = { ( ~ ( ~ ) ,  w): IQ~(~)I ~ 1/2. [p.(Q~(w), w)[ <_- 5.}: 

Now 

p. (Q~ (w), w) = ]IT=I' [(w - w, (Q~ (w))) ~ - c~ B. (QN (w)) ~] -- c~" (~wN) mn+ R n (w) 

where degR.<Nm~. Thus (1/c~."am.)p.(Q~(w),w) is a monic polynomial  of  
degree Nm. and we obtain that  

Cap {w: (Q~(w), w)cX} <- (../c~.~ = (1/~:~)[(../d")1:'-] 1:" 

which tends to 0 as n ~ o .  If  N = 0 ,  i.e., if  we set z =  c =  eonstant, t henp . ( c ,  w)= 
w~"+R.(w) with d e g R . < 2 " ,  so that  

Cap {w: (e, w)~ X} <= ~.~1/2" <_ e~/m. <= (e./c2."f/m. -" O. 

2. The  main  result  

To construct X so that  A n X  is polar in A for all analytic varieties A, not  
just for algebraic varieties, requires more work. The key ingredient is a modifica- 
tion of  Lemma 1.1. We retain the notat ion from the previous section; however, 
to avoid confusion, w i =  wi(z) will always denote one of  the 2" values o f  g.  at  z. 

Lemma 2.1. Given any sequence {b~} with b~+~>-b~>-... =>1, there exist sequences 
{q} and {e~}, and polynomials {p.} in z and w such that 

(1)  { p .  = o } n { I z l  =< �88 -- Z (Cl . . . . .  Cn) , n = 1, 2 . . . .  

(2) ~ . A . ~ O  where A. = (2"+2) ~" 

(3) {IP.+II--<--~.+i}c~ {lzl =< 1/2} c {IP.I =< ~.}n {lzl--<-- 1/2}, n = I, 2 . . . .  

(4) {IP.+d----< e~W} n {Izl ~-- 1/2} c {IP.I <----~.~"} n {Izl <= 1/2}, n = 1, 2, . .  

(5) I f  lal --~ 1/2 and Ip.(a, w)l --< e., there is a w. with p.(a,w.) = 0 
1 

and Iw-w. l  < - - .  
n 

po(z, w) = 11~21 [(w-w,(z))2-c~(e.+~(z))'] = p~+q .  

Proof. F o r  i =  1, set p~(z, w)=w ~-c~(z-al )  and choose, e.g., ci = 1/10, zl = 1/4 
so that (1) and (5) hold. Suppose cl, zi, pl have been chosen for i =  1 . . . . .  n so that  
(1), (3), (4) and (5) hold, and, say, eiAi<l/i, i=1  . . . .  , n. For  c>-_O, form 
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where q.=c~Ql+...+(c~) 2" Qv, with Q~ independent of c. We have the following: 

(2.1) There exists M . > 0  such that 

{Ip~l < ~]/2}c~ {Izl <- 1/2} c AM, = {Izl --<-- 1/2, Iwl ----< Mr.} for all 0 <= c <= 1. 

(2.2) For c sufficiently small, 

{Ip~l < e2n/Z}n {Izl <-- 112} c {Ip.I-<-5.}n {Izi ~ 1/2}. 

Furthermore if we assume that c1 + . . .  + c.<= 1, 

(2.3) 

I(w--Wi(Z))Z--c2(Bn+i(z))21 ~ 4M~ for (z, w)CAM. , 0 ~ C ~ 1, i = 1, ..., 2". 

This follows from the fact that lB,(z)] <- 1 if [z] <= 1/2, i =  1, 2 . . . .  ; hence, if c1+ ... + 
c,<=l, then ]w~(z)l<-I if Iz[<=l/2, i=1  . . . . .  2n. Thus from (2.3) it follows that 
[Iq,ll~M, <=c~ II QllbU, +- . .  +(c2) ~" IIQ~-tI~M. where [[Qi[[AM. depends only on n, M,  
( i= 1, ..., 2"). Choose c=c,+l sufficiently small so that (2.2) holds and 

(2.4) 

Set p.  + 1 =Pc, § Note that 
Choose 8,+1 so that 

[[q.llau. ~: (1/2)5~ b"- 

c.+1 depends on Cl . . . . .  c,; 5i . . . . .  5,; n, M, ,  and b,.  

(2.5) 5n+ 1 <: min [5.~/2, ( (n+ 1)A.+~)-i]. 

Note that (2.5) implies that (5) holds for n +  1; conditions (1) and (3) are satisfied 
for n + l  by (2.5) and (2.2); and 5.+iA.+l<l/(n+l) by (2.5). It remains to verify 
(4) for n + l .  

Suppose (z,w) satisfies lz[<=l/2 and [p.+l(z,w)l<-8 b.+l Since b.+1=>1, 
. - -  n + l "  

< b n + l  - ~  -.~ 5.+i 5./2. {Ip.+ll=5,+,}n{lzl=l/2}c{Ipn+ll=e,+l}n{Izl<=l/2}cAu, by (2.1) since < ~ 
Thus, from (2.4), 

Iq.(z, w)l <= (1/2)52. b- 
and 

Ip.(z, w)l 2 <= [p,+l(z, w)l+[q,(z, w)[ <= o,+l~177176 <= 6. ~" 

since e.+1<~2,/2 and b,+l>=b.. Thus (4) holds for n + l .  We remark that as long 
as each e,<=l, 

(2.6) sup {Ip,(z, w)l: ]z[ <- 1, [w[ _<- 2"} =< A,,  

2 n since lw,(z)[<=2 "+1 so that [p,(z, w) [= / / i=  I Iw-w~(z)[ Af[~"= i (2n+2"+i)<A, .  
We next need a version of the two-constant theorem (see, e.g. [A]). Let [2 be a 

bounded strictly pseudoconvex domain in C"; P(f2) will denote the set of  pluri- 
subharmonic functions on f2. 
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Definition. For a compact subset K c  f2, define the relative extremal function 
UK(z)=UK(f2;z)=sup {u(z): uEP(f2), u < 0  on f2, u-<--1 on K}. 

If  K is not pluripolar, then the uppersemicontinuous regularization U; (z )=  
llqme~ UK (4) is a negative plurisubharmonic function in O satisfying limz,o~ U~ (z) = 0 
and U ~ = - I  on /~a={zEf2: u(z)<=sup~u(~), uEP(f2)} except perhaps on a 
pluripolar set (see, e.g., [BT]). Thus if L is a compact subset of g2 properly containing 
/ ~ ,  it follows that ~= - supe~L  U~(~) satisfies 0 < ~ < 1 .  

Lemma 2.2. (See [A], Lemma 3.2.) Let K, L be compact subsets of  a strictly 
pseudoconvex domain f2 with 1<~ ~ L and K not pluripolar. Then for any holomorphic 
function f i n  f2, [f(z)[<-l[fl[~[[f[[~ -~ for zEZ where ~ = - - s u p ~  L U~(r 

Proof From the definition of UK, if uE P(f2) then 

[ u ( z ) - s u p  u(~)]/[sup u ( r  u(~)] _~ UK(z) <= U~:(z), zEl2. 
~6O ~6I~ r 

Thus if zEL, u(z)<=~ supeE K u(~)+(1 -c0  supeEa u(~). Apply the above inequality 
to u(z)=log If(z)[. 

Remark. In the application of Lemma 2.2 below, we only use the case where 
12 is a domain in C; in this case, U~+I  is the harmonic measure of K relative to 12. 

We now state and prove the main theorem, using the same notation as in 
Lemma 2.1. 

Theorem 2.1. I f  b,t+ ~ and the set x = o ~ = i  X, is constructed using the 
parameters in Lemma 2.1, then for any analytic' variety A ~ C  ~, A n X  is polar in A. 

Remark. Each connected component of the set of regular points V ~ of a variety 
V is a complex manifold; in general we say that a subset S of ap-dimensional analytic 
variety V is pluripolar in V if SnW~ is pluripolar in W~ for each connected com- 
ponent W~ of V ~ of dimensionp. Since there are countably many such components W~ 
and since a countable union of (pluri)-polar sets is (pluri)-polar, we may assume 
that A is connected and can be written as the graph of a holomorphic function in 
one variable. 

Proof Case 1. A = {(Z, f(z)) : f is holomorphic in a neighbourhood of {Izl < 1}}. 
There exists M > 0  such that [f(z)l<=M if Iz l~ l .  Let 

K. { II [p ( s()jl } K; { ii Ip ( .>) = z: z -< 1/2, , z ,  z <_-e,  and " =  z: z <= 1/2, z, = e -  

If  we set K={z :  (z,f(z))EX}, then by (3)in Lernma 2.1, K,+,cK ,  and nK.=K;  
also, from (1.4) and (4) in Lemma 2.1, K'.+icK~, and nK '=K.  

We prove the theorem by contradiction. I f  A n X  is not polar in A, then the 
set K is not polar. Thus, by the above paragraph, K, and K" are not polar for all n. 
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Let pS.(z)=p,(z,f(z)). Then p,~ is holomorphic in [z[<l.  Apply Lemma 2.2 
top . fwi thK~,  L={z :  [zl~l/2}, and O={z:  [zl<l}. We obtain 

-I/ 11  IIp.IlK: 

for lz[~_l/2 where ~,=-suPlet~l /2U~,(~ ). Since K[,~K, U~,:UK and ~ , ~ =  
--supI~[~_I/~ UK(~) with 0 < ~ < 1  since K is not polar. Thus 

<= max [1, sup {Ip.(z, w)l: Izl -<- 1, Iwl <= M}].  ~- ' -  <= 

_ b:  for Izt <= 1/2. < max [1, sup {lp.(z, w)[: Iz[ <= 1, lwl <= M}] .8,, 

For n sufficiently large, M<2",  and we obtain, using (2.6), ]p,(z,f(z))] <-=.%s.b: 
for [z[<=i/2. Since A : , ~ 0 ,  c~>0, and b , t + ~ ,  it follows that b,c~t+~o so that 
for n sufficiently large, 

(2.7) [p,(z,f(z))i <= s, for lz[-<- 112. 

However, (2.7) says that 

{(z,f(z)): Izl -<- 1/2} c {(z, w): Izl <-- 1/2, Ip.(z, w)l <= , .} 
for n sufficiently large and hence 

{(z,f(z)): Izl ~ 112} c X. 

This contradicts (1.3), i.e., X contains no analytic disc. 

Case 2. A = {(f(w), w) : /holomorphic} .  Since X is compact, there exists M >0  
such that XcAM={(z, w): [z[<=l/2, [w[<=M}. Since we are only interested in the 
part of  A that hits X, we may assume [f(w)l<=l if [w]-<_2M. Let 
L.  = {w: If(w)l ~ i/Z, Ip.(f(w), w)l < ~.} and L; = {w: IS(w)l~_l/2, Ip.(f(w), w)l 
<=::}. 

As in Case 1, if we let 

L = {w: w)CX}, 

then Ln~,L , L'~L. Again we proceed by contradiction; assume that L is not polar. 
Then for each n, L, ,  L" are not polar. Let p~(w)=pn(f(w), w) so that ps is holo- 
morphic; apply Lemma 2.2 to p :  and L ' ,  DM={w: ]w[<_-M}, and D2M= 
{w: [wl<2M}. We obtain 

iPn(f(w), w)i : ' "" IIP.IID,,~ liP.ilL: 
for ]wI<=M where/7.=-supl,~l~u UL'(W) (here, UL.(.)=UL,(D~u; .)). Note that 
~.~,/3--- -suplwl~_u UL(w ) where 0</7<1 since L is not polar. Thus 

[p,(f(w), w)l ~_ max [1, sup{lp,(z, w)[: [zl ~= 1, Iwl <-- 2M}]. e.Pb. 

for [wl~_M. If 2M<2",  we obtain, from (1.6), [p,(f(w),w)i~=A,s~, b., [wl~=M. 
The rest of  the proof proceeds as in Case 1. 
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3. Applications of main theorem 

We now discuss some applications and open problems related to the Wermer 
example. Let K be a compact set in C" and let L denote the class of functions u 
which are plnrisubharmonic in C" and satisfy u(x)<-log Ixl +O(1), Ixl-~oo. 

If  n = l  and Ki s  polar, then there always exists a function uEL, uN - %  with 

(3.1) /~ = {x: u(x)= _oo}, 

e.g., the Evans' potential for K (see, e.g. [T]). We say that a set K is complete L-polar 
if there exists uEL such that (3.1) holds. In C", n > l ,  it is not true that an arbitrary 
pluripolar compact set K is L-complete; a typical non-example occurs if we let K 
be a compact subset of an analytic variety A with K not pluripolar as a subset of 
A. Then any uEL which is -~o  on K is automatically -oo  on (a component 
of) A. 

Given a compact, pluripolar set K c C  ~, we call Kp = n {x :  u(x)= _oo}, where 
the intersection is taken over uE L with u [ K = -  0% the L-polar hull of K. In some 
sense, Kp should be the smallest complete L-polar set containing K, but due to an 
example of Gamelin and Sibony [GS], Kp is not necessarily complete L-polar. Clearly 
if K is complete L-polar, then K=Kp; the condition that K=Kp is equivalent 
to the following: given xo~K, there exists uEL, u ~ - ~ o ,  with u l ~ = - o o  but 
U(Xo)# _co. 

From the above remarks, we see that a necessary condition for a compact 
pluripolar set K to satisfy K=K v is that A n K  be pluripolar in A for all analytic 
varieties A. Using Theorem 2.1, it follows that this condition is not sufficient. 

Proposition 3.1. There exists a compact pluripolar set K c C  2 with 
(1) A n K  is polar in A for all analytic" varieties A 
(2) ~;~K,. 

Proof. With X as in Theorem 2.1, we set K =  {(z, w)EX: Re z~0}. Condi- 
tion (1) follows from Theorem 2.1. To verify (2), we show that if uEL, u p - 0 %  
with u[r=--,~,, then Ulx=--oo, i.e., XcKp .  

For fixed z, let X(z)={w: (z, w)EX}. Given uEL, the function U(z)= 
sup {u(z, w): wEX(z)} defines a subharmonic function in [z[-~ 1/2 (see [R], Proposi- 
tion 12.6). 

If  u ] r = - o o ,  then U ( z ) = - o o  for Rez=~0; thus U ( z ) = - o o  on ]zl~=l/2; 
i.e., u(z, w ) = -  co for all (z, w)EJ(. 

In all our calculations thus far, in order to show that a set was "small", i.e., 
polar or pluripolar, we used estimates from above on the size of certain analytic 
functions on the set. To show a set is not small seems to be a more difficult problem. 

For example, one cannot detect "pluripolarity" via intersection with affme 
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subspaces. Kiselman ([K]) has given an example in C ~ of  a non-pluripolar set E with 
the property that every complex line in C 2 hits E in at most four points; we can take 
E =  {(z, w)E C z : Im (z + w ~) = Re (z + w + w 2) = 0}. However, if  A is the analytic vari- 
ety A={(z ,  w)6C~: z+wZ=0},  then E n A  forms a nonpolar  subset of  A. 

This leads to the following questions: 

Question 1. Let K be a compact set in C" and suppose K n A  is pluripolar 
in A for all analytic varieties A. Must K be pluripolar (as a subset of  Cn)? 

Question 2. Can a pluripolar set X be constructed tL la Wermer which inter- 
sects some variety A in a non-polar set? Such an example would be interesting 
from the viewpoint of  analytic multifunctions (see [R]). 

Note that the proof  of  Theorem 2.1 required much more effort than that of  
Proposition 1.1. 

Question 3. Can a set X be constructed a la Wermer which intersects each 
algebraic variety in a polar  set but intersects some transcendental variety in a non- 
polar set? 
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