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We shall prove that a locally polar set in C" is globally polar which generalizes
a well-known result from potential theory for subharmonic functions and answers
a question posed by Lelong [2]. Our method differs from the ones frequently used
in potential theory, since it seems that there is a lack in the representation of pluri-
subharmonic functions by kernels, and the main step in our proof is to find, to
every given function which is analytic in a ball, polynomials which are sufficiently
small on the set where the given function is small (Proposition). From this the
theorem will follow (Lemma 3) because locally a plurisubharmonic function is
a Hartogs function. A consequence of the theorem is that an analytic set is globally
polar and the theorem also has applications in the theory for capacities and extremal
functions in C". See for example Siciak [3].

Definition. A set DcC" is called locally polar if there exist, to every z€D,
an open set V,cC" and u,¢ PSH(V,), where PSH(V,) denotes the set of all
plurisubharmonic functions in V,, so that z¢ ¥V, and such that «,/V,nD, the
restriction of u, to ¥,n D, is equal to — <. D is globally polar if we can take V,=C"
For details see [2].

We shall give C* the sup-norm and we shall let #(¥), where V< C” is open,
denote the set of all analytic functions on V. We note that f has a Taylor series
expansion f(z)=3a,z" if feA#(B(0, S)), where B(0, S) is the open ball in C”
with centre 0 and radius S, 4,€C, r=(r, ..., r,) is a multi-index and z'=zp... 2"
where z=(z, ..., z,)€C".

Theorem. 4 set D C" is globally polar if and only if D is locally polar.

From the theorem we obviously have the following,
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Corollary. A4n analytic subset of an open set in C" is globally polar.

We note that the “only if”” part of the theorem is evident. For the rest of the
proof we need a number of lemmas.

Let DcC" be a locally polar set. From the definition it follows that, for every
z€D, there exist r,>0 and u,€ PSH(B(z,r,)) such that u,/B(z,r)nD=—co.

Let from now on z be fixed. We shall first show that B(z, r,/32) n D is a globally
polar set. Without loss of generality we may assume that z=0 and r,=4. To
avoid too many subscripts we shall write u instead of u, and it is obvious that we
can take u such that u(z)<0 when |z||=2.

From Bremermann [1] we easily get the following:

Lemma 1. We can write u(z)=Tm,,_, Tim;__(1/j)log |f;(z)| where
FiDEH(BO ) and |flsaz = sup If;()] =1
Proof. From [1] it follows that
H = {(z, w)€¢ C**1; z¢ B(0, 4) and |w| < e~*?}

is an open pseudoconvex set. Since u<O when |z]|=2 we have that K=
{(z.w); llzll=2 and |w|=1} is a compact subset of H. The theorem of Bremer-
mann—Norguet—OKka gives that there exists an f¢#(H) which cannot be con-
tinued over H and so that |flix=sup, vk |f(z w)<l. We can write
fz, wy=3wf;(z) where f;¢#(B(0,4)) and

u(z) = B (117 log f;(2)

according to [1]. Since | fllx<1 it follows that | fjlze <1 Wwhich completes
the proof. Q.E.D.

There exists an integer ¢=>0 such that sup,, ., u(z)>—q+1. Hence there
exists an infinite set ScCN so that |fl 3(0'1/4)>e"” when j€S. Since
ﬁz_n_z,»zﬁnjgs(l/j) log |f;(z')}{=u(z) we may assume that equality holds, ie. u
is defined by (f});cs. We may also assume that (m)®<2/ when j€S.

Next we will find, to every f;, a polynomial g; of degree i; such that |g;(z)[""
is small when |f;(z)|"” is small. We cannot expect the Taylor series to give such
a good approximation in the set where (f;)"/ is small or such a good approximation
for example on a ball and have to find other methods.

Put  N(s)={fe#(B(,3); | flson=! and |f(0)[>e~*}. We note that
there exists, for every j€S, x'€B(0, 1/4) such that f](z)=f;(z—x’)€N(gj) since
f;€#(B(O, 4)), I fillpo,»=1 and ||ﬂ]|y(o,1/4)>e—qj'

Proposition. Let f€N(j), where jER™ is so big that (nj)*<2’, and let ¢ >100.
Then there exists a polynomial g such that 1=|g| B(o,l)-<_—2i, where i is the degree
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of g and so that |g(z)|<exp(—Cip"™) when |f(z)|<exp(—jo) and |z[|=1/2,
where C=1/2.10%n.

Proof. First we note that it is no restriction to assume that ¢ is an integer,
because if the proposition is true for every such ¢ with C=1/(10%n) (as we shall
prove), then it holds for every ¢=100 with C as in the proposition, since then
[¢"—1=1, where [ ] denotes the integer part. It is also easy to see that we may
suppose that j is an integer.

Furthermore, we may assume that ¢=j since we can always raise f to the
power ¢ and if g exists relative to /€ N(j) as in the proposition, g also has the
desired properties relative to f.

Let f(z)=2a,z" and let MCN" be the set M={r;r,<jp}. Itis clear that
M contains exactly j"¢" different elements. Put Q(2)=3,.,, x,z7 and H(z)=
f@QE)=2dz7, where d.=3,,,a,_,x, where we put a,_,=0 if
min, (r,—1t,)<0.

Now (d,=0),.,, is a system of linear equations in the variables x, and with
coefficients a,. There are j" " variables and equations. Let D(M) be the determinant
of the system.

We note that H(z) is small when f(z) is small since H is a product of a poly-
nomial and f. We shall show that x, can be chosen so that d,=0 when [r|="r.=
J-9/2 and max r;>A=i/n=100jp"" D" and so that at least one d,, with |r|=i,
is big (at least bigger than e™/"¢/%). Then it will follow that G(z)=> .. r=ad 2
is small when f(2) is small, since G is almost H, and that G has the desired pro-
perties, i.e. G is not small on the unit ball. That the variables x, can be taken in
the way described above follows from the fact that if all 4, are small when |jr|=i
then the system of equations {d,=0},.,, can be slightly changed so that the new
system has a non-trivial solution, thus the determinant of the new system is zero
since the system has as many variables as equations. But then it follows that there
exists a submatrix of {d,=0}, ., Wwith a determinant which is much bigger than
that of {d,=0} and since D(M) is big, a repetition of this argument will lead to
a contradiction because |a,|=1.

We shall first show that D(M)=(f(0))"*". This follows from the fact that
the coefficient for x, in d, is @,=f(0) and because the coefficient for x, in d, is
0 if ry<t, for some sc(l,...,n). Hence the matrix belonging to the system
(d,=0),¢) is zero on one side of the diagonal and with diagonal elements equal
to f(0) which gives that D(M)=(f(0))"*".

Let N and N'CM be such that ©(N)=t(N’), where 7 denotes the number
of clements. Let {d®?=0},.y be the system of linear equations .. a,_,x,=0,
réN and let D(N, N’) denote its determinant which exists since T(N)=1(N’).
We have that
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(1) [D(N, N')|<(j"@"y"®"<e™*'9" if j=e/ since @=j, the number of equa-
tions in the system is less or equal to (jo)" and since |a,|=1 because fEN(j).

Let M, and N,CcM be such that
a) (MY =1(N)=1(M)—k=j"¢"—k,
b) re M, if r€ M and max, r,>100jp"~V/"=4,
¢) |D(My, Np)| > exp (kjo/10—j"+1 7).
My=N,=M fulfil the requirements, since |D(M, M)|=|D(M)|=|f(O)}"*" >
e~ """ (Since fEN())).
According to (1) there exists a biggest integer m so that M,, and N,, exist and
satisfy the conditions a)—c). We also have from (1) that
) m < 20j"¢" 1.

There exists r°¢ M, such that max,r?=A4=100jp®~ """ This follows because
there are (A+1)">100/"¢" '>m different r¢ M with max r,=A, since A<jp
if =>100.

Put M, =M _\{°}. The system of linear equations

ZteNm Ay Xy = 09 rE Mm+1

has a nontrivial solution, since the number of variables x, is 7(N,,)=1(M)—m and
the number of equations is 7(M,.,)=1(M)—m—1. Let {1} be a solution such
that max, [4,|=1 and take f°€N,, so that |u.|=1.

We shall now prove that

(3) lar"! = IZKEN,,. ar"—tur‘ = e—Jje/10,

Put by 0=ae_o0—(Sien, p_ %)/t and b, ,=a,_, when r=r’ or
=10, We  have ZteNm bro,tutzaro—to uto_ZtENm Qpo_, U, +ZteNm,t;ét° Qyo_ U, =0
and .y b, u=2,n a, ,4=0, when r€M, ., according to the choice of {u,}.
Thus the system of linear equations 2.y b,,X,=0, r€M, has the nontrivial
solution {#,}, hence the determinant D of the system, which exists since the number
of variables is equal to the number of equations (t(M,)=t(N,)), is zero. Put
Nus1=N\{t°}. Then D=D(M,,, N,)+ (b, 0—a_y0) > D(Mp 41, N,y3)=0 since
b,,=a,_, when r#r® or ¢s#¢° Trivially it follows that

a) 1M, +)=T(Nps)=1(M)—m—1
b) réM,, ., if re M and max, r,>A, because max,re=A4 and M,=M, ., {r’}.

Because of the choice of m (m is the biggest integer so that a}—c) are fulfilled
for any sets M, and N,CM), we must have that [D(M,.y, Nuidl=
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By, 0—a_a|™ |D(M,, N, exp ((m-+1)jp/10—"1¢") hence that [b u—aye 4] =
€791 because of c). But B0 0= yo_ol =| S, @yo_ 4]/ ltia|=|d ], since fug|=1,
and thus (3) is established.

We shall now proceed to construct the polynomial g in the proposition.

Let H(z), Q(z) (resp. d,) be the functions (resp. complex numbers) which are
obtained from H(z), Q(z) (resp. d,) when we replace the complex variables {x,}
by the complex numbers {u}. Then |Q(z)|=(jp)" when |z||=1 since [y4|=1.
Hence |H@@)|<(o)'e /¢ if \f(z)]<e‘j“’ and Jz|=1.

Put  G@)=Snurzadsz, and rl=3Ir. Then H@-G@=
e jorz 42" because |[r|l <jp/2 when max r;=A4 and ¢=100, and because
d=0 if |r|=jp/2 and maxr,>A. The last assertion follows from the fact that
reM if ||r| =jo/2, hence that r€ M,, and also r€ M, ., according to b}, if max r,> A4,
and from the fact that d,=0 when r¢M,,,, (the construction of {u}). For every
r we also have that |d]=(jp)" since |4|=1 and |a|=1 (fEN(j)). Thus
H(Z)—G@)|=2,1 2 jpe (@) 27" if |z =1/2 since we have given C" the sup-
norm. But 3,027 " <3 0, 1727 <2700 since  100=¢=j and
j"<e'<e®. Hence |H(z)— G(z)|<e""’/4 and so |G(2)|<e 7® when |z]=1/2
and |f(2)|<e™7® since then, according to the above, |H(z)|<(jp)"e /?<e= o5,

Put d=max, _,|d,|. We have that d=>e™*" since |d,.|>e™/*" according
to (3) (maxri=4). Finally put g(z)=d1G(2).

Then g€ P,(C") where i=An, since G€P;(C*). It is also true that 1=] gl g ,, =2}
because max,, ., d7'|d,{=1 and because (nd)"<2' (Since (jn)"<2’). We have
further that

lg(2)| = el®10-Jel5 = ¢=Jo/1% = exp (ip'"n10%) when |f(z)| = e 7®

and |z =1/2, since d~'=e"" and |G(z)]<e 7 in that case. Thus g has the
properties in the proposition which completes the proof. Q.E.D.

Proof of the theorem continued. Take, for every fj’ (defined as before the Pro-
position) and every integer r=10, i(j, r)€N and g; ,€P;; ,,(C") as in the Proposi-
tion such that

(1) 1g,-(2)| < exp(—=Ci(j,r)r*) when |f{(2)] <exp(—jgr*) and [z| =1/2.
Put t;=]]/_ i(j,r) and e;,(2)=(g;,(z+x))" 9", We note that

@ 27% = llej, o,y = 4

since sup le;, (z—x%)| = sup |g; (D[ = ;71 (3/4)s > 27
) Izl =5/ 1zl =54

and since

sup e (z—x7)| = 1;(5/4)s2 < 45 because 1 = ||g;,lpe,1 = 270
izl =5/

We also note that
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Y le; (l<exp(=Ct;r*) when |fj(2)|<exp(—jgr™) and |z =1/4 which
follows from (1).
Put 1;(2)=]l10xrs; (e i A2))”" and finally

o@=Fm W _(1t)log k()]

1
z/>z

where S is as before the Proposition.
Lemma 2. v€ PSH(C") and v(z)=—< if zeDnB(0, 1/8).

Proof. We have that v(z)<8k when |[z|=k=1 because (2) gives that
le; Moo y=t;k147<(8k)" and because 2., r "<l

Put D, ={z€B(0,1);le; (2)[""=1-27"} and let L(D;,) be the Lebesgue
measure of D; .

Because of (2) there exists "€ B(0, 1) such that le; ,(3*)Y"%=2""" and
since log |e; ,(»""+2)| is plurisubharmonic we then have that

1

@y fllzlléz (1/rt)log le;, (y*"+2z)|dz = —r"log 2.

Furthermore, since |e; |l go,5=24" according to the above we have that

1
(@ny

Together with the inequality above this gives that

f"z"sz A/rtplogle; , (y""+2)|dz = r~"log 24+ L(D; ) log (1—27").

L(D;,) =r""log48/log(1-27") < r=r*12"+1 < 27" if r=10.

Thus it follows from the construction of h; that [kl ,>2"" since
B0, D)\U,=10D;,, is not empty because [[,.,,(1—27")=>1/2. Hence [1] or
Hartogs’ Lemma gives that vz —e, that is, o€ PSH(C").

We shall now show that v(z)=-—o when z¢Dn B(0, 1/8). Assume that this
is not true. Then there exist z€ Dn B(0, 1/8) and a constant —oo<T<0 such
that v(z)>T+1. Hence there exist, for every meN, a vector z"€ B(0, 1/4) and
an infinite set S,,C .S such that z"—z as m—o and so that |h;(z™)|=e™ when
JES,,.

Take I¢N so big that —I'C<T—2 where C is defined in the Proposition.
According to (2), le;,(z")|<e™s and hence [],o5,<; . le;, (2™ <e*. But
lhj(z™)|=e™ when j€S, so it follows that |e; ,(z™|=exp(T—2)¢;!")>
exp (—Ct;1"). Thus (1) gives that |f;(z™)|=exp (—jgl*) when j€S,,. That implies
that u(z)>—gl® since u(z)=Iim,_ Tim, _ (1/j)log|f;(z")| which contradicts
the fact that z€ DA B(0, 1/8) and completes the proof. Q.E.D.
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We have proved that Dn B(0, 1/8) is globally polar hence that Dn B(z, r,4,)
is globally polar. Since z is arbitrarily taken in D it is enough to prove the following
lemma to complete the proof of the theorem.

Lemma 3. If there exists, to every z€D, a ball B(z,r,) such that DnB(z,r,)
is globally polar then D is globally polar.

Proof. Obviously | J,.p B(z,r,) is open and hence o-compact. Thus there
exist countably many z/€ D such that Dc B(z/, r,,). But it is well known and easily
seen that a countable union of globally polar sets is a globally polar set, which
proves the Lemma and thus completes the proof of the Theorem. Q.E.D.
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