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1. Introduction 

The object of  this note is to prove a theorem on the multiplicity of  a stochastic 
vector process. Before stating the theorem, it will be necessary to give some intro- 
ductory remarks. 

We shall be concerned with complex-valued random variables defined on a 
fixed probability space. Any random variable x considered will be assumed to have 
zero mean and a finite variance: 

Ex = O, E Ixl  ~ < ~o. 

I t  is well known that all random variables satisfying these conditions can be regarded 
as elements in a Hilbert space, if the inner product o f  two elements x and is defined 
by the relation 

(x, y) = Exy. 

A stochastic vector process of  finite dimensionality q will be denoted 

x ( t )  = {x l (O  . . . .  , xq(O} 

where the components x . ( t )  are random variables depending on a real parameter  
t, which may be regarded as representing time. By H(x)  we denote the Hilbert 
space spanned by the random variables x.(u) for all n and all real u: 

H(x)  = Sg{x,(u), n = 1 . . . . .  q, - co < u < + ~o} 

while H(x ,  t) is the subspace of  H(x)  spanned by the same x,(u) for all u<=t. The 
projection operator in H(x)  with range H(x ,  t) will be denoted by Pt. 

For any element z of  H(x)  we write 

z ( O  = l",z. 

z( t )  will then be the random variable of  a stochastic process with orthogonal in- 
crements such that  

~ z ( O  = 0, EIz (Ot  2 = F(O,  
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where the variance function F(t) is never decreasing, everywhere continuous to 
the left provided (A) and (B) below are satisfied, and such that F ( -oo )=0 ,  
F(+  oo)=E[zlL The Hilbert space spanned by the z(u) for all real u is a cyclic 
subspace of H(x) which we denote by C(z), while C(z, t) is the subspace spanned 
by the z(u) for all u<=t. It is known that every element of C(z) will be of the form 

f~_c(t)dz(t),  

where c(t) is a nonrandom function belonging to L~F(t), and the stochastic integral 
is defined as an integral in quadratic mean. 

In the set of all z, and in the set of  the corresponding variance functions F(t), 
we introduce a partial ordering by writing zl>-z~ and FI>-F~. whenever F~ is 
absolutely continuous with respect to F1. Every variance function defines in the 
well-known way a measure on the real axis, and F2 is absolutely continuous with 
respect to F1 if and only if  every set of F1 measure zero is also F~ measure zero. 
I f  simultaneously F I ~  F2 and F2~-F~ we say that F1 and F~ are equivalent, and 
also the corresponding z~ and z~. All variance functions F equivalent to a given 
/71 will be said to form the equivalence class of F 1. 

We shall consider a stochastic vector process x(t) satisfying the following two 
conditions (A) and (B): 

(A) The limits xn(t• ) exist for all n and t as limits in the norm of H(x), and 
xn(t -0 )=xn( t ) .  

(B) The limiting space H(x, --~o) contains only the zero element of H(x). 

It follows from (A) that the Hilbert space H(x) is separable, and consequently the 
subspace H(x, t), which is never decreasing when t increases, has at most an 
enumerable number of discontinuities. When (B) is satisfied, the x(t) process is 
called purely nondeterministic (or linearly regular). 

When (A) and (B) are satisfied, it is known that it is possible to find a finite 
or infinite sequence of elements of H(x) 

(1) z~ >. z~ >- ... >. z, ,  

such that the corresponding cyclic subspaces C(z~) are mutually orthogonal, and 
such that H(x) is the vector sum of all these orthogonal cyclic subspaces: 

(2) H(x) = C(zO@... @C(zN). 

The number N and the equivalence classes of the corresponding variance functions 
F x, ..., F N are uniquely defined by the given x (t) process, and N is called the multip- 
licity of  the process. Applying the projection Pt we obtain the relation 

H(x, t) = C(zx, t)~)...@C(zN, t) 
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for every t. As x,( t )  is an element of H(x, t), this gives the representation 

x,(t)  N = Z,=I f_=  c,.,(t, u)az,(u). 

This shows how the components of the x(t) process can be regarded as additively 
built up by N-dimensional innovation elements {dzl(u), . , , ,  dzN(u) } associated with 
every instant u in the "past and present" from the point of  view of  the instant t. 

The basic facts of  multiplicity theory given above are stated here in the form 
in which they occur in my papers [1--3]. 

2. A theorem on multiplicity 

Theorem. Let x(t) be a given vector process satisfying (A) and (B), and suppose 
that the component Xn(t), regarded as a one-dimensional process, has finite multip- 
licity N n. Then the multiplicity o f  the x(t) process is N<=~=I  N n. 

I have stated this theorem without proof in a paper of  1961 [1, p. 265]. Al- 
though the theorem has been referred to in the literature [e.g. 4, p. 228], no proof 
has been published, as far as I know. It may be of  some interest to give a complete 
proof. As stated in my paper just quoted, the proof is slightly more involved than 
may possibly be expected. The proof will depend on two Lemmas. 

Lemma 1. Let zl ,  ..., z, and w be elements o f  H(x) such that the cyclic subspaces 

C(zl) . . . .  , C(zn) are mutually orthogonal. Then it is possible to f ind an element zn+ ~ 
o f  H(x) such that C(z,+l) is orthogonal to C(z,) for r= 1 . . . .  , n, and such that the 
vector sum 

(3) c ( z 3  e . . .  �9 C(z.+O 

includes the cyclic subspace C(w). 

Let w, be the projection of w on C(z,). Then define z,+ 1 by 

w = wl+. . .+wn+zn+x,  

P,w = P, wl+ ... + P ,w ,+ Ptz,+ 1. 

Here w, and Ptw, belong to C(z,), while z,+ 1 is orthogonal to C(z,) for all 
r = l  . . . . .  n. It follows [1,p. 259] that C(z,+~) is orthogonal to all these C(z,). 

Now every element of C(w) is the limit of a convergent sequence of  finite linear 
combinations of the Ptw. According to the above relation every such linear com- 
bination is a sum of finite linear combinations of elements of C(z~), , . . ,  C(z,+~), 
and since these subspaces are mutually orthogonal, the limit of any convergent 
sequence of this kind will be a sum of elements of the same subspaces. Thus the 
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vector sum (3) includes every element of  C(w), and the Lemma is proved. Note 
that, in the case when w belongs to the vector sum of C(zl) . . . . .  C(z.), the z.+l 
defined in the above proof  is equal to zero. 

It  will be seen without difficulty that, by repeated application of this Lemma 
to the vector process x( t )  satisfying the conditions of  the Theorem, we can find 
N = ~ = I  iV, elements Zl . . . .  , z N of H(x),  some of which may be equal to zero, 
such that  the corresponding cyclic subspaces are all mutually orthogonal, and the 
condition (2) will be satisfied. But the condition (1) may not be satisfied, and in 
order to complete the proof  of  the Theorem we shall require the following Lemma. 

Lemma 2. I f  Zl, ..., zN are a finite number of  elements of  H(x)  such that the 
cyclic subspaces C(z.) are all mutually orthogonal, and the relation (2) is satisfied, 
we can find N elements wx, ..., wN of  H(x),  some of  which may be equal to zero, such 
that the cyclic subspaces C(w.) are all mutually orthogonal, and we have 

(4) w~ >- w~ >-. . .  >- wN 

(5) H(x)  ---- C(w,)G. . .  ~ C(w~,). 

This Lemma being proved, it will be seen that the truth of  the Theorem follows 
from the remark made before stating the Lemma. 

Consider the variance functions F. corresponding to the z. given in the Lemma. 
The never decreasing function F( t )=~ f f= lF . ( t  ) defines a measure on the real 
axis, which we shall use throughout the proof  of  the Lemma. Expressions like 
'measurable' ,  'a lmost  everywhere (a.e.)', etc., will always refer to the F measure. 

We have F>-F ,  for every n, so that the R a d o n - - N i k o d y m  derivative F ' =  
dF./dF will be defined a.e. and measurable. Note  that, if t is a discontinuity point 
of  some of  the F . ,  we shall have F ' ( t ) > 0  for every F. which is discontinuous 
at t, and F~ ( t ) = 0  for the other F, .  For n, r - l ,  . . . ,  N we now define a function 

g. ,r(t)  by writing for n>=r 

1 if F ' ( 0  > 0 and there are exactly r - 1  positive 

g..,(t) = among F~(t) . . . . .  F~_l(t), 

0 otherwise, 

and g . , , ( t ) = 0  for all t when n<r.  Then g.,r(t) will be defined a.e. and measurable. 

It  will be seen that g,,r(t) has the following three properties a.e. 
(6) For  given values of  n and t, we have g . , , ( t ) = l  for at most  one r. 
(7) For  given values of  r and t, we have g . , r ( t ) = l  for at most  one n. 
(8) I f  g . , , ( t ) = l  and n>=r>l, there is exactly one m < n  such that  g , . , , _ l ( t )= l .  

The sum of  stochastic integrals 

N 
w. = Z , = I  
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is a well-defined element of  H(x),  and we have 

w.(t) P,w~ N f'_~ = = 2 . = 1  g.,.(u)dz.(u), 

c,(O = elw,(t)l' N f,_= = ~ ' .=1 g.,r(u)dF.(u). 

We shall now show that  the sequence wl . . . .  , WN satisfies the conditions of the 
Lemma. 

In order to show that the cyclic subspaces C(wl) . . . . .  C(wN) are orthogonal, 
it will be sufficient to show that w,( t ) •  ws(u ) for r r  and all t, u. Clearly we may 
suppose t<=u, and then have by (6) 

Ew,(Ow,(u) ~ f '  "~- Z n = l  gn,,(V)gn, s(v) dFn(v) = O. 

Further we evidently have, since all the w, are elements of  H(x) ,  

H(x)  D C(Wl)~. . .  @ C(WN). 

In order to show that the two members of  this relation are identical, we have to 
show that every element of  H(x)  belongs to the vector sum of  the C(w,). Now by 
hypothesis every element of  H(x)  is of  the form 

N Y = 2.=1 f_= c.(t)dz.(t) 

where c.(t) belongs to L2F ..  By (6) we have for every n and t 

Z - �9 =1 g.,,(t) = 1 or 0. 

In the set o f  values of  t where this sum is equal to zero, it follows f rom the defini- 
tion of  g., ,(t)  that F~( t )=0 ,  so that the integral of  c.(t)dz.(t)  over this set is 
zero. Thus we have 

N N 
Y = 2 , = 1  .~.=1 f~_= c.(t)g., ,(t)dz.(t).  

Now define a function b.(t) by writing 

b,(t)=jc.(t) when g , , , ( t ) - - 1 ,  

~ o  when g.,,(t) ---- O. 

By (7) this b,(t) is uniquely defined a.e., and we have 

Y = Z , = I  b,(t) N - ~  2 . = 1  g., ,(t)dz.(t)  Z~.=l f=_= b.(t)dw,(t). 

As it is easily seen that b,(t) belongs to L2G,, this shows that y is an element of  
the vector sum of  the C(w,), so that  (5) is satisfied. 
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I t  remains to show that (4) is also satisfied. We consider the variance functions 
G,(t)  of  the w, and have to show that  G,>-G,+ 1 for r = l  . . . .  , N - - 1 .  Let S be 
a set of  positive measure such that  

(9) f s  dc,(t) = N 2 , = 1  f s g , . , ( t )dF. ( t )  = O. 

It  will then be proved that  

( ,o) fs dG'+l(O = N = fs g " t + l ( t ) d F ' ( t )  O. 

In every term of  the sum in the last member,  the integral extended over that part  
of  S where g . , r+ l ( t )=0  is obviously zero. I f  g . , , + l ( t ) = l ,  there is by (8) exactly 
one m < n  such that g= , r ( t )= l .  But it follows from (9) that, for every m, the 
integral 

f a F , = f F ' a F  

extended over that  part  of  S where g = , , ( t ) = l ,  and thus F~ ' ( t )>0,  is equal to 
zero. Consequently this set is a null set for the F measure, and the integral 

f dF. = f  F'dF 
extended over this set, is also equal to zero. As this holds for all n and for all m < n ,  

the relation (10) follows, and the proof  of  the Lemma is completed. 
As already remarked above, the truth of  the Theorem immediately follows 

f rom the two Lemmas. 
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