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O. Introduction 

Recently in [3] Furstenberg gave a generalization of  the Borel density theorem 
[1] with a new proof. A careful examination of  the method together with a number 
of  additional observations enables one to prove the density theorem and related 
results for other large classes of  groups or group actions, to unify in this way all 
known density results for real or complex Lie groups and to derive a number of 
new results. The method is closely analogous to that of [4] and [6] but involves 
the use of invariant measures under an induced linear action this time on projective 
space rather than linear or affine space. It has the feature of  isolating exactly which 
properties of  the action of  G are relevant and of  essentially removing H from con- 
sideration. We prove theorems about the linear action of G on V in three stages. 
First that a G-invariant measure on the Grassman manifold o f  F has its support 
contained in the G-fixed point set; then that if G/H has finite volume then every 
H-invariant subspace of  F is automatically G-invariant; and finally that H is Zariski 
dense in G. The types of  groups we deal with include minimally almost periodic 
groups, complex analytic groups, solvable analytic linear groups all of  whose eigen- 
values are real and, more generally, linear groups whose radical has this property 
and whose Levi-factor has no compact part. 

1. Invariant measures and quasilinear actions 

In w 1 we prove under very general circumstances (1.11) that given a continuous 
linear action G •  V o  V on a real or complex vector space and a finite measure 
/t on i f (F) ,  the Grassman manifold, which is G-invariant under the induced action, 
then supp#  is contained in the G-fixed points of  fC(F). In particular, this result 
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holds for any linear action of a minimally almost periodic group, for any holo- 
morphic action of a complex analytic group and for any real analytic subgroup 
of GI(V) with radical R such that G/R has no compact factors and R has only real 
eigenvalues (1.12). 

Definition. As in [4] and [6], if G •  is an action of a locally compact 
group G on a space X we shall write Xc={xEX with orbit G x having compact 
closure} and X/i x (or X/~x)--- {x E X which are G-fixed}. 

Definition. Let V be a finite dimensional real or complex linear space of di- 
mension n, P(V)  the corresponding projective space and w - ~  the canonical map 
n: V-(O)-~P(V).  P(V)  is a compact manifold. If  W is a subspace of  V of d im>0,  
then W denotes the corresponding subvariety of P(V).  A finite union 1.3~=1 W~ 
is called a quasi-linear variety (q. I. v.). Since W~=P(WI) is compact each q. 1. v. 
is euclidean closed in P(V). 

Lemma 1.1. l f  Ac=p(v)  then there exists a unique minimal q. 1. v. Q containing A. 

Proof By considering n- I (A)  it is enough to show that any subset B ~  V is 
contained in a unique minimal set of  the form 1,3~= a Wi. Now B is contained in 
such a set, namely V. If  we show there exists a smallest such set this will also imply 
uniqueness. Since each Wi is algebraic, a finite union I]~=x Wi of  such sets is again 
algebraic. An infinitely descending chain in V would correspond to an ascending 
sequence of ideals in K[x1,  . . . ,  Xn] which is impossible by the Hilbert Basis Theorem. 

Now if gEGl(V) define ~: P ( V ) ~ P ( V )  by ~(~)=g(v). Routine calculations 
prove 

Lemma 1.2. ~ is well defined. 

~n =ztg. 

gig2 = gig2. 

if 7 ~ 0  ?--g=g. 

Now suppose one has a linear representation G •  V~ V of  G on V. By (1, 2) 
this induces a compatible action of  G on P(V) making the diagram below commuta- 
tive. 

G •  ~ V-(O) 

l" 1" 
GXP(V)  -~ P(V) 

Lemma 1.3. Let A be a G-invariant subset of  P(V) and ~-)~=1 ~ the minimal 
q. I. v. containing A. Then G permutes {Wi: i = 1 ,  ..., r}. 
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Proof. Since g~ = zcg for gC GI(V) we know re-1 ( A )  is also G-invariant, re-1 (A) c= 

U~=I Wi and this is the minimal linear variety containing it. But then 

g(ir-IA) =_ g-l(A ) c g([..J J~/) _-- g.W/. 
i = 1  i = 1  

The latter is a linear variety for each g~ G. By minimality 

U W I % G  g.Wi fo reach  g~G. 
i = 1  i = l  

This means 

W~ = U g .  W~ for all g. 
i = 1  i = 1  

The spaces involved in the unique linear variety containing a set are clearly also 
unique and g .  Wi is one of  them. Therefore g. Wi = Wj for somej .  

Lemmal .4 .  Let gkEGI(V) and suppose detgg/llgklIn~O as k~O where II II 
is any convenient norm on End(V).  Then there exists a map q~: P ( V ) ~ P ( V )  such 
that q~(P(V)) is a proper q. 1. v. of  P(V) and a subsequence gk, of  gk such that ~k Oq~ 
pointwise. 

Proof. Let W be a nonzero subspace of  V and consider gdW: W-~ V. Denote 

by ?k,w=l/[Igk[W[I. Then [lYk, W.gklWll=l for all k. Since {AIA: W ~ V ,  I l a l l= l}  
is a compact set, there is a subsequence which we again call ?k,WgklW such that 
?k, WgklW~aw in norm and therefore pointwise on W. Here aw is a linear map  
W o V .  Since [[awl[=l, aw~0 .  Now since n is continuous and for w~W, 

?k, WgkIW(W)-~aw(W) we have ?k, WgkIw(W)~aw(W ). But ?k, Wgk[W(W)=~k(~) SO 

gk(~)--'aw(W) pointwise on W and in particular for v~r Ker aw. 
__  n I f  W =  V we have ?kgk -~ av and so det 7kgk-- ?k det gk = det gdllgklln-~ det a v. 

Since this sequence tends to 0, av is singular. Now inductively define subspaces 

W o, W 1 . . . .  , of  V by Wo=V, Wi+l=Keraw,,i>=O. Then K e r a v < V  since 
avr Similarly W i + I < W  i since aw~O. Thus the sequence V=Wo>WI>. . .  
... > W~> W~+~>... must  terminate after a certain number of  steps at 0; W~o= (0). 
For  each i and finer and finer subsequences, which are again called gk, gk(Wi) ~ 

aw,(Wi) pointwise for ~i~Wi. Define q~:P(V)oP(V) by r if 
v~Wi~'Wi+l,i:O . . . . .  io--1. I f  v = v  I then v = ? v l , ? ~ 0 .  I f  v6Wi~Wi+l the 

same is true of  v 1 s o  O'wt(D)=O'W,(~Vl):~O'wt(Vl):O'wi(Vl) since aw, is linear. Thus 
q~(~)=~o(~l), ~o is well defined and gk~q~ pointwise on P(V). Moreover q~(P(V))= 

i,_ji0 - 1  i=0 ave,(Wi) so the range of q~ is a q . l .v .  Since av is singular av(V)<V. 
For i > 0  a w : W i ~ V  so dimaw,(Wi)<=dimWi<dimV and aw,(Wi)<V for 
i-->0. Now the union of  a finite (or even countable) number of  subspaces each of  
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strictly lower dimension cannot equal V. For this it is clearly sufficient to take 
K = R .  If V=I,] i Vi, then take a finite d 0  measure v on V which is absolutely 
continuous with respect to Lebesgue measure, e.g., dv=exp  (-I[xll~)dx. Then by 
subadditivity v(V)<=~v(Vi)=O since each v(V~)=0, a contradiction. This means 

that P(v)~uI~ 1 aw (W~) and the range of  q~ is proper. 
= i 

Lemma 1.5. Let G •  be an action of  G on a metric space X. Suppose there 
exists a sequence gkEG and a closed subspace Y of X such that for each xEX, g k x o  
y(x)E Y pointwise. Then each finite G-invariant measure p on X has s u p p # ~ Y .  

Proof. Since I/~l is also G-invariant we may assume /~=>0. Let D(x)=dis t (x ,  Y) 
where dist is an equivalent bounded metric on X. Then D is a bounded continuous 
nonnegative function on X and D ( x ) = 0  if and only if xEY.  Now 
f x D ( g k x ) d # ( x ) = f x D ( x ) d p ( x  ) for all k. Since g k x ~ y ( x )  we have D(gkx)~ 
D(y(x))=O pointwise on X. Now D is bounded so fD(g,x)l<=c fora l l  k ,x .  
The finiteness of  p together with the dominated convergence theorem shows 
f xO(gkx)d l t (x )~O,  therefore fxO(x)dl~(x)=O so D = 0  on supp/a. Since 
D = 0  exactly on Y, s u p p / ~ Y .  

Theorem 1.6. Let G •  be a linear action and G •  be the 
associated action on projective space. Suppose 

( i )  V c = Vf,,, 
(ii) G has no closed subgroups of finite index, 

(iii) For each G-invariant subspace W of  V either the function 

detw (gt W) 
g j W ~  ilglWiidimw 

vanishes at ~, or else G acts on W as scalars. 
Then each finite G-invariant measure t~ on P(V)  has supp pc=P(V):i x. 

Remarks. In [9] we have given a number of  conditions implying (i). If  G is 
connected, (ii) holds. It detw(g I W)=  1 for all G-invariant W then (iii) holds. This 
is true in particular if G =  [G, G]- since g,-~detw(g[ W) is a continuous map G ~ R  x 
and is therefore trivial. I f  G is minimally almost periodic (m. a. p.) i.e., has no com- 
pact quotients then clearly, (i), (ii), and (iii) hold, (iii) because of  the remarks above 
since any locally compact abelian group is maximally almost periodic. 

Thus we have Furstenberg's formulation. 

Corollary 1.7. I f  G is minimally almost periodic then the conclusion of (1.6) 
holds. In particular i f  G is a semi-simple Lie group without compact factors this is so. 

In spite of  the fact that nilpotent and indeed solvable groups can never be 
m. a. p. we also have 
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Corollary 1.8. I f  GX V-~ V & a unipotent representation of  a connected group 
then the conclusion of  (1.6) holds. 

Definition. A linear action G •  V-~ V is called of type E if all eigenvalues ,~ 
of  every gEG lie off the unit circle except for 2 = 1. If  G is a solvable analytic group 
and its adjoint representation has this property one says G is of type E (see [2] or [12]). 

As was remarked above, by [9], (i) holds for any type E linear action and in 
particular for a unipotent representation. By  the above, (ii) holds. As for (iii), since 
all eigenvalues are equal to 1 this would have to be true on any G-invariant sub- 
space W. In particular detw(g I W)=  1. Th i s  proves (1.8). 

Proof of Theorem 1.6. If G acts on V by scalars then P(V)=P(V)six and 
we are done. Otherwise, by (iii) detgk/[[gk[[n-~O, SO by (1.4) there exists tp: P ( V ) ~  
P(V) such that Q=q~(P(V)) is a proper q. 1. v. of P(V) and gk-~tp pointwise 
in P(V). Since Q is closed supp #=CQ by (1.5) and by (1.1) there exists a smallest 

r 

q. 1. v. which we shall call s=U~=l  ~ containing supp p. 

supp/~ c S c Q < P(V). 

Since # is G-invariant so is supp #. By (1.3) G permutes {W~}. But there are only 
a finite number of  Wt so each has a stability group of  finite index. Moreover, since 
G • V~ V is continuous and the W~ are closed, the stability groups are also closed. 
By (ii) G leaves each W~ stable. Let W be any one of  the W~ and consider the action 
of  G on W. Condition (i) descends to this action; W c = Ws~ x. (ii) is satisfied since 
it is a condition on G and not on the action. Condition (iii) clearly also descends. If  
we let v=#[W then we get a G-invariant measure on P(W)  and argue as before. 
Unless Gacts  on W by scalars we know there exists a proper q. 1. v. T of W=P(W) 
such that supp v ~  T. This contradicts the minimality of S. Otherwise G acts on 
W~ by scalars for each i. But then each ~ is G-fixed. This means supppC_S_  C 

U ~,:1 W,~P(V)s,x. 
In (1.9) V is a complex vector space and G a complex analytic group. We shall 

call the jointly holomorphic action G • V-+ V a complex linear action. 

Lemma 1.9. Let GX V-+ V be a complex analytic linear action, then the con- 
clusion of(1.6) holds. 

Proof. w e  first verify that conditions (i) and (ii) of  (1.6) are always satisfied. 
By considering the representation restricted to the C-subspace V c it is sufficient 
to prove that if a complex analytic representation 0 is bounded, then e is trivial. 
We may clearly consider G to be a subgroup of  GI(V). For XEg the Lie algebra 
of  G we have 

eexpzX = Exp e'(zX) = Exp ze'(X). 
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Since Oexp~X is bounded for zEC and the function z,-~Expzo'(X) is holomorphic, 
it is constant by Liouville's theorem. Hence it's derivative (d/dz)tz=o=O=o'(X). 
This means Q'(g)=0. The equation above tells us that Qexvzx=l for XEg, zEC. 
In particular, Qo=I for all g in a canonical neighborhood U of 1. Since 0 is a homo- 
morphism and U generates G, Qg = L (ii) follows from connectedness of  G. 

Since U generates G each g is of  the form k H i= l  Exp ziX i for some z~, X i 
and k. If  # is a G-invariant measure on P(V) then it is invariant under Gx= 
{expzX: zEC} for each XEg. If  we knew supp Itc=p(v)gg for all X then by 
the above 

supp # ~ 0 P ( V ) ~  = P(V)~x. 
XEg 

Thus we may assume G is a 1-parameter linear group {Exp zX}. We show that 
irt this situation (iii) holds and therefore by (1.6) the proof  would be complete. 
Let W be a G-invariant subspace of V. Then W is X-invariant and we may as well 
assume W=V. We show (detg)/llgll"~O as Ilgll-~o or alternatively that 
][gl["/[detgl-~oo as [Igl[ does. But Ilg"/detgll<=llglf/ldetgl . If IlExpzXl[-*oo then, 
by continuity, for some subsequence I z l - ~ .  We show [Ig"/detg[I goes to ~ as 
[Igll does. That is 

lim Exp znX -- ~o. 
izl-= det (Exp zX)  

But this is a holomorphic function of  z. By the maximal principle it tends to 
as Iz] does or it is constant. Thus g"/detg=AEEndcV. Taking g = l  we see that 
A = I  and g"=de tg I .  Let H = { g " :  gEG}. Since H={ExpnzX:zEC}=G we see 
that each gEG is a scalar. By (1.6) suppp~P(V)gg .  

Remark. One gets two immediate corollaries from the proof of  (i). 
1) A compact complex analytic group G is a torus. 
2) I f  the complex analytic group G has a bounded faithful complex analytic 

representation, then G is trivial. 
To see that 1) is true, take Q=adjoint representation. Then Ad is bounded 

so G/Z(G)=Ad(G)=I  and G=A(G). As a compact connected abeliart Lie 
group G is a torus. 2) is clear. 

Example 1.10. The converse of  (1.6) fails. 

Let G={(2# 0 ) = g :  2>0 ,  p real}. Then G is theident i tycomponent  ofasolvable  

algebraic subgroup of  Gl(2, R), and gives a type E action on V--R 2. It follows 
that the action of G on V satisfies (i) and (ii) of  (1.6) [9]. Clearly if 2-* co and # 
is fixed, then Idetg[/llgll2-~ 1. Thus (iii) is not satisfied. 
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Suppose g[~]=~p(g) |~]  i.e., [~] spans a G-invariant subspace. Then ~ ( g ) = 2  

(0 / and a =0 .  Thus the only G invariant line is the one through . Let po = 1 

be its image in projective space. Then P(V):i~= {Po}. I f  vE V is not on this line then 
f / %  "x 

or / /x]" so if p l=~ ,  then G . p l  is the union of  the 

images of  these two sets. Since these subsets of P(V)  are equal, P ( V ) =  {po}U G "Pl, 
the disjoint union of two orbits. 

Now let # be a finite G-invariant measure on P,(V). I fpCsupp  # then G.pC= 
supp#.  We show # ( G . p ) = 0  if p~G'p l .  I f  not, # ( G . p ) > 0  and ~ restricted 
to the open set G . p  gives a finite G-invariant measure on G.p .  Now G . p =  

G/Stab~(p). We may assume p = ~  where v = [ l ] .  Then S t a b a ( p ) = / [ ~ ] | .  

This is a central and therefore normal subgroup of  G and G/Staba (p) is clearly 

( 1 0 )  i.e., R, the real line. Such a noncompact group cannot have isomorphic to # , 

a finite invariant (Haar) measure; therefore #(G.p l )=#(G.p)=O.  Since this set 
is open supp #~P(V) , , ,G  .p~= {P0} =P(V):i~. 

Hereafter we use the following notation. I f  0 is a representation of  G o n  V 
and r is an integer 1-<_r<=n=dim V we shall denote by A~0 the representation 
o f  G on A~V, the rth exterior power of  V, given by g~-*Og ̂  ... ^ Og. We can now 
give an extension of (1.6) to the higher Grassman spaces. Let (~(V) denote the 
Grassman space of  V. Then ff (V)=U~=I (g~(V), the disjoint union of open sets 
where ff~(V)={r dimensional subspaces of  V}. Here (q~(V) equals P(V). I f  
G •  V~ V is a linear action then there is an induced action of  G on each ff~(V). 
Thus one has an action G• under which each (g~(V) is invariant. 

Theorem 1.11. Suppose the action GX V~  V has the property that A~O satisfies 
the conditions of(1.6). Then each finite G-invariant measure # on ~ ( V )  has s u p p # ~  
~ ( V ) : ~ .  I f  the action satisfies these conditions for every r = l  . . . . .  n then each 
finite G-invariant measure # on ~(V)  has supp p c=~(V):i~. 

In particular, i f  G is m.a.p., if  G is connected and 0 is a unipotent representation, 
or i f  GX V ~ V  is a complex analytic linear action, then the conclusions of  (I.11) 
hold. 

Proof. It clearly suffices to prove the first statement, so let G•  
be the induced action. There is a canonical maptp: (~'(V)-~P(A~V) (For an r 
dimensional subspace W of  V choose a basis {wx . . . . .  w~}. Then w~ ̂  ... ^ w~ is a 
nonzero element of  A~V and therefore the line through it gives a point in P(A~V).) 
Now Gl(V) acts transitively and continuously on ff '(V). The latter is a quotient 
space Gl(V)/Staboi(v)(W ) where W is some fixed r-dimensional subspace of  V. 
Let ?: Gl(V)~(~(V)  the be corresponding projection. If  {wx . . . .  , w~} is a basis 
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of  W, then ~: g,---,.gw x A ... ^ gw, is a map GI(V)~ArV.  Clearly the map q~ factors 
as ~OlOrC where ~Ox: fr rr: A ~ ( V ) - ( O ) ~ P ( A ' V )  and the diagram 

below is commutative. 

cl(v) , A'V-(O) 

e ' ( V )  ~, -~ P(.4"V) 

since q~17 (g) = q~ (g IV) =gwt ^ ... ^ gw, = 0 (g)- To see that q~ is smooth it is enough 
to show ~01 is and hence that ~ is because y and ~ are smooth. But clearly 0 is smooth 
since the map g~-~ gwl |  | gw, is. Moreover q~ intertwines the actions 

c ~ ' ( v )  ~' , e ( a ' v )  

I g (gA...Ag)- 

~ ' ( v )  ~ - .  e ( a ' v )  

For  let g~(W) be any point of  ~ ' (V)  and g6G.  Then cp(ggt(W))= 

(ggx(Wl) A ... Aggl(w,))- ,  while (gA . . .  A g ) - ( q ) ( g l ~ / ) ) = ( g  A . . .  A g ) - ( g l W l A  . . .  

A glw,) = ((g A . . .  A g)(glwl A . . .  A glw,))-  = (gglwl A . . .  A ggl(W,))-. 
Since ~p is a G-equivariant measurable function the measure # can be pushed 

forward and can be regarded as a finite G-invariant measure on P ( A ' V )  (supported 
on the image of  ~'(V)). By (1.6) supp#C=fixed point set. By G-equivarianc~ 

supp # ~ ~" (V)s~x. 
Concerning particular cases: I f  G is m.a.p, then because of  the remarks follow- 

ing (1.6) any representation satisfies (i), (ii) and (iii). Also if 0 is a complex analytic 
representation then so is A'Q for each r. Hence, by the proof  of  (1.9) each A'Q 
satisfies (i), (ii) and (iii). If  Q is a unipotent representation of  a connected group 
then so is A'Q for each r and hence by the proof  of  (1.8) the conditions are also 
satisfied. For  if Ai~End Vi, i=1 ,  2, the spectrum of  AI| i , j }  where 
{2~} and {#j} are the spectrum of  A1 and A2 respectively. It follows that if A1 . . . . .  A, 
are unipotent the same is true of  At |  |  and therefore, since it acts on a quotient 
space, also of  A1 A ... A A,. These remarks also show that the exterior product of 
representations with only real eigenvalues again has the same property. 

We conclude w 1 with a considerable extension of  the unipotent case. 

Theorem 1.12. Let G be an analytic subgroup of  Gl(n, R) with radical R. I f  G/R 
has no compact factors and R has only real eigenvalues then each finite G-invariant 

measure # on (9(V) has s u p p # ~ ( V ) s ~  x. 

Proof. By the remarks above, the Levi decomposition G = R .  S and the fact 
that S has no compact factors we may assume by (1.7) that G=R.  Such an action 
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satisfies (i) and (ii) o f  (1.6) (See [9]). Since it is generated by /-parameter groups 
we may assume G is itself a 1-parameter group {Exp tX: tER} where 

has only real eigenvalues. As in (1.9) we may also assume W= V and I t [~ .  
We show det (Exp tX)/llExp txl l"~0.  Since 

IlExp tXll >= ". 
et;., 

we may clearly also assume X is diagonal. Now det(Exp tX)=e vtrx so it suffices 
to show [e~C"x'-trx)]-*oo as [tl-~o o for some i. If  t~oo choose 2~ to be the largest 
eigenvalue. Then n2~>=trX and the exponential function tends to oo unless all 
2i are equal. Similarly if t - * -  ~o choose 2~ to be the smallest eigenvalue. I f  all 
2~ are equal, G acts as scalars, proving that the action satisfies (iii). 

This deals with the action o f  G on P(V). To look at the higher fgr(V) we must 
verify that the linear group 

H = {g A... Ag: gE G} c GI(ArV) 

satisfies the hypothesis above. Since the mapg~-~gA ... A g is an anal3r homo- 
morphism, H is an analytic group, and its radical R(H) equals the image of  R. 
Therefore H/R(H) has no compact factors. The remarks immediately" preceding 
(1.12) tell us that R(H) acts with only real eigenvalues. But then the proof  of  the 
first par of  (1.12) shows that Are satisfies (i), (ii), and (iii). Since r was arbitrary 
an application of  (1.11) completes the proof  of  (1.12). 

2. Invariant subspaces and homogeneous spaces of finite volume 

In this section we consider a continuous linear action G •  V~ V of  a locally 
compact group G on a finite dimensional real or complex vector space and a (euc- 
lidean) closed subgroup H of  G such that G/H has finite volume. We show under 
general circumstances (2.1) that H-invariant subspaces of  V must be G-invariant. 
In particular (2.2), this is so in the cases corresponding to those of  w 1. As a con- 
sequence we prove that under these circumstances if G is an algebraic linear group 
then the identity component of  the hull of H is normal in G: 
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Theorem 2.1. Suppose G/H has a finite G-invariant measure and ~ is a finite 
dimensional continuous representation of G on V such that ~ together with all exterior 
powers Ar~ satisfy conditions (i), (ii) and (iii) then each H-invariant subspace W of 
V is also G-invariant. 

Remarks. If  G/H is merely compact but does not have finite volume then the 
conclusion of (2.1) need not hold [11]. Also if (G, ~) does not satisfy condition (iii) 
for all W then the conclusions of (1.6) and (2.1) do not necessarily hold. For one 
can always arrange that d e t v g = l  and therefore that g~-~detg/Hg]l" vanishes 
at ~ (by imbedding Gl(n) in Sl(n + 1) and preserving invariant subspaces). However, 
one m a y  not be able to do this so that detw (gl W) = 1 for every invariant sub- 
space W. In (2.2) b below a particular case is that of a solvable group acting with 
only real eigenvalues. However, there are examples of more general type E solvable 
linear actions where condition (iii) fails to hold and the conclusions of (1.6), (1.11), 
and (2.1) are false. An example of this type was pointed out to me in conversation 
by H. Abels. The reader will notice how the use of  (1.11) in the proof of (2.1) essenti- 
ally removes H from the field and makes this a question only about G and its ac- 
tion on V. 

Proof of Theorem 2.1. If  dim W=r form tlae rth Grassman space ~'(V) and 
consider the action G• W corresponds to a point poEff'(V). 
Since H leaves W stable, Po is H-fixed. So H ~  StabG (P0). Since G/H has a finite 
G-invariant measure, the same is true of G/StabG(po). This means that P0Esuppp 
for an appropriate G-invariant measure p on ff'(V) where supp#=G-p0 .  By 
(1.11) Po is G-fixed and this means that W is G-stable. 

Theorem 2.2. Suppose G/H has finite volume and ~ is a continuous representation 
of G on V. I f  

(a) G is minimally almost periodic or 
(b) G is an analytic subgroup of GI(V) with radical R, the elements of R have 

only real eigenvalues, and G/R has no compact factors, or 
(c) GX V~ V is a complex analytic linear action, 

then any H-invariant subspace W of V is G-invariant. 

Proof In case (a) we merely verify that the action satisfies the conditions of 
(2.1). Cases (b) and (c) follow from the proofs of (1.12) and (1.11) respectively. 

In (2.4) through (2.7) we deduce analogues of the remaining results of Borel 
[1] concerning the size of H in G, this time for any representation satisfying any 
of  the various hypotheses of (2.2). With respect to (2.7), however, the result has 
already been proven in [4] and [6] (in more genera/form) both in cases (b) and (c). 
In fact, since in (b) R has real eigenvalues it is simply connected by (3.2) and of 
type E by (3.1) below. This together with the fact that G/R has no compact factors 
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tells us by [4] and [6] that G has no automorphisms of bounded displacement. The 
same is true in case (c) ([4]), so we just give the proof in (a). Here G, H, Q and V are 
as in (2.2). We denote ZG(L) and NG(L ) the centralizer and normalizer, respectively, 
of the subgroup L of G. 

Lemma 2.3. Let G X V~  V be a linear action and consider the action tr of G 
on End V formed from this given by (g, T),-~og.T. Then the eigenvalues of  the 
operators are contained in those of  the corresponding Qgfor gEG. The action is clearly 
continuous and complex analytic or faithful, respectively, if(G, Q) is. 

Proof. Suppose 2EC is an eigenvalue and Tr  ) the corresponding 
eigenvector. Then ogT=2T for that gEG. Since (Qg--~J)-T=0 we must have 
det ( 0 g - 2 I ) = 0  otherwise Og-).I would be invertible. Multiplying by the inverse 
would imply T=0,  a contradiction. 

Corollary 2.4. I f  ~ is irreducible so is QIH. 

This follows immediately from (2.2). 

Corollary 2.5. The linear span of  ~ (G) equals the linear span of Q (H). 

Proof. It suffices to show each pg is in the linear span of Q(H). Consider the 
action a defined in (2.3) and let ~r span p(H). Since 

Oh" •i  Ci e~, = Z i  Ci~hh,, 

~"  is an H-invariant subspace of End Is. If  Q is either complex analytic or satisfies 
(2.2)b the same is true by (2.3) of a. By (2.2) ~ is G-invariant. Since IE~/F so does 

0a" I :  Oo" 

Corollary 2.6. The centralizer of Q (H) in End V equals the centralizer of Q (G) 
in End V. In particular, Zo(on(o(H) ) =Z(o(G)).  

Proof. If  TEEnd V and Tgh=ohT for all hEH, then T also commutes with 
any linear combination of these elements. Therefore Tcommutes with 0(G) by (2.5). 

Corollary 2.7. I f  G is an analytic minimally almost periodic group, then 
z~(H) =z(c). 

Proof. Let goEZ6(H). Then AdgoEZAd~(Ad(H)),  which equals Z(Ad(G)) 
by (2.6). This means that [go, G ] ~ K e r A d = Z ( G ) .  Now let cp be defmed on G 
by ~o(g)=[g0, g]. ~0 is continuous and takes values in Z(G). Moreover 

~o(g)q~(g') = goggoag-lgog' g~Xg '-1 = gog" g~gogg~ig-lg '-~ 

since [go, g]EZ(G). The latter is clearly q~(g'g). But Z(G) is abelianso ~o(g)~0(g')= 
cp (g')cp (g). This means q~ is a continuous homomorphism with values in an abelian 
group. Since G is a map, cp must be trivial and therefore goEZ(G). 
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We now specialize (2.2) to the case of the adjoint representation. Hereafter if 
A is a closed subgroup of GI(V) we denote by A0 its euclidean identity component 
and A* its algebraic hull. Hereafter, unless otherwise stated, connectedness and 
closure will always refer to the euclidean topology. 

Corollary 2.8. Let G be an analytic group and suppose that G/H has finite volume. 
I f  G is either m.a.p., nilpotent or complex analytic, then 

1) Each analytic subgroup L of G normalized by H is normal in G. 
2) In particular, if A is any closed subgroup of  G containing H then Ao is normal 

inG. 
3) In particular, i f  G is an algebraic subgroup of  GI(V) then (H*)0 is normal 

in G. For then G D= H* D= H and H* is closed since it is algebraic. 
4) I f  G/N 6 (L) has finite volume where L is an analytic subgroup, then L is normal. 

This result substantially strengthens the corresponding one of S. P. Wang [14] 
(where G/N G (L) has proven to be compact) in these cases. 

Lemma 2.9. Let G be a solvable analytic subgroup of  Gl(n, R) such that every 
eigenvalue of  each element is real. Then G has only real (positive) roots. 

Proof. Since G is analytic it is a subgroup of the real triangular group 

{(g~J)[gii real, gij = 0 if j > i, gii > 0} 

by Lie's theorem. Its Lie algebra g also consists of  real triangular matrices X. As 
is well known, A d g ( X ) = g X g  -1. Let Z: G ~ C  x be a root and X r  c, the 
complexification of  g, be the corresponding root vector. Then g X = x ( g ) X g  for 
gC G. When one calculates the gth coordinate of  each side, this yields 

Z~=j gikXkj x(g) i = Z~=i XikgkJ" 

Now consider the largest index j such that X~j~0 for some i. The equation above 
then yields x(g)=g~/g~i>O. Since X~0 ,  there must be such a pair. 

Corollary 2.10. Let G be an analytic subgroup of  GI(V) such that G/R has no 
compact factors and R has only real eigenvalues and let H be a closed subgroup of  G 
with G/H of finite volume. Then all the conclusions of (2.8) hold. 

Proof. We must show that one can replace G, R and H by the corresponding 
adjoint groups. Now as far as questions of  invariant subspaces are concerned, 
one can always, by continuity, replace Ad (H) by Ad (H)- .  By an elementary 
argument Ad (G)/Ad (H) -  has finite volume. (In the case of  a lattice F in (3.4) below 
one has actually the fact that Ad (F) itself is a lattice in Ad (G). This is proven in 
[5]). Now let r be the radical of g. Since ad (g)/ad (r) is a quotient algebra of g/r it 
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clearly is semisimple without compact factors. This implies that ad (r) is the radical 
of ad (g). Thus rad Ad (G) = A d  (R), Ad (G)/Ad (R) is semisimple without compact 
factors and we are reduced to the following 

Lemma 2.11. / f  the elements of  R have only real eigenvalues then the roots of  
Ad (R) (acting on g) are all real. 

Proof. Suppose X ~ 0 E ~  c, the complexification of g, is a root vector for the 
solvable analytic group Ad(R);  Ad,(X)=x(r)X where Z: R -+Cx is the corre- 
sponding root. Let Y~r and consider the corresponding 1-parameter group. Now 
Adexp,r(X)=Exp t(ad Y)(X)=X+t[Y ,  X]+O(t~). Thus 

[Y,X] = x ( e x p t Y ) - I  X+O(t). 
t 

Taking the limit as toO yields 

[Y, X] = d (x(exp tY))l,=o. X. 

Consider the complex subalgebra of  ge generated by r and X. The above equation 
tells us that this algebra is r c + IX] and therefore this is a complex solvable Lie algebra 
of matrices. By Lie's theorem it can be simultaneously triangularized over C. In 
particular r and X can be simultaneously triangularized. Exponentiating, the same 
can be said of  R and X. Since A d r ( X ) = r X r - l = z ( r ) X  we can argue as in (2.9) 
to conclude that since X~0 ,  we have x(r)ER~ for all r E R. 

3. Zariski Density 

In w 3 we prove that under various circumstances H is Zariski dense in G. 

Theorem 3.1. Let G be 
(a) an algebraic subgroup of  Gl(n, R) which is m.a.p, or 
(b) a unipotent analytic subgroup of  Gl(n, R) or 
(c) a euclidean connected algebraie subgroup of  Gl(n, C). 

I f  G/H has finite volume, then H is Zariski dense in G. 

Proof. In all cases G is algebraic. In case (b) this follows from Engels' theorem 
and the fact that here the exponential map is polynomial. Thus HC=H ~ C=G. Now 
H * is euclidean closed and by [11], G/H ~* has finite volume. Also (H~)0 has finite 
index in H ~ hence G/(H~)o also has finite volume. In all cases the hypotheses of  
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(2.8) are satisfied. Hence by (2.8) we know that (H~)0 is normal in G. Therefore 
G/(H*)o is a compact group. 

In case (a) this is impossible since G is map so G/(He*)o=(1) and 
G=(H~)o=H ~. In case (b) G is simply connected. Since (H~)0 is connected 
G/(H~)o is also s~mply connected [7]. But as a quotient group of a connected solvable 
group G/(H~)o is also connected and solvable and therefore a torus, T n. Since it 
is simply connected n = 0  and G=(He*)o=H ~. In case (c) we have G/(H~)o 
is a compact complex analytic group. By the remarks following (1.9) G/(H~)o is 
a torus. Thus (H~)o~[G, G]. But then H ~ also contains [G, G] and so is normal 
in G. By [8], G/H ~ is an algebraic linear group and therefore a complex analytic 
linear group. On the other hand, the map G/(H~*)o - G/H ~ is surjective so G/H ~ 
is compact. Since this has a faithful representation the remarks following (1.9) 
tell us G/H ~ =(1) and G=H e*. 

In (3.1) (a) is due to Furstenberg, (b) is the classical result of  Malcev and (c) 
was very recently proven by S. P. Wang in [14] (using quite different methods). 

We next characterize those solvable algebraic groups which will be studied 
in (3.3). The present somewhat more general formulation of (3.2) was suggested 
by Gerhard Hochschild. 

Proposition 3.2. Let G be a solvable algebraic subgroup of Gl(n, R). Then Go 
is simply connected iff each element of Go has only real eigenvalues. 

To prove (3.2) it is sufficient to prove (3.2. a) and (3.2. b) below. 

3.2.a, I f  G is an analytic subgroup of  Gl(n, R) and every element of  G has only 
real eigenvalues then G is simply connected. 

One then takes for G the group G o of (3.2). 

3.2.b. I f  G is an algebraic subgroup of  Gl(n, R), X: G -~Cx a rational character 
and G o is simply connected then Z (Go) ~ R~. 

By the Lie--Kolchin theorem one knows that G ~ the Zariski connected com- 
ponent of  the G of (3.2), is in simultaneous triangular form over C, 

?, 0) 
2~(g) �9 

But GonG ~ and is its euclidean compact of 1. Taking Z=2i we find 2i(g)>0 
for all i and g E Go. 

Proof of 3.2.a. Let K be a maximal compact subgroup of G. Since K is con- 
nected KC= SO(n, R) and each element of K lies on a l-parameter group of K. 
It  follows that each element of  K can be put in block diagonal form With blocks 
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1" Cos 0 Sin 0) 
of the type [ - S i n  0 Cos 0) or ones. Since the eigenvalues must be real, K=(1)  

and G is simply connected by Iwasawa's Theorem�9 

Proof of 3.2.b. Let CX=R~XT be the polar decomposition and z denote the 
projection CX~T. Suppose z(G0)~R~. Then to;(: G0--T is a non-trivial homo- 
morphism of analytic groups. Hence its differential is not the zero map. Since T 
is 1-dimensional, it follows that zox(Go)---T and therefore Go/K~T as a topolog- 
ical group where K denotes the kernel of  ~o Z on Go. We regard C ~ as the reaI al- 

gebraic group /[_~Oal/C=Gl(2, R ) a n d  R ~ as the real algebraic subgroup 
�9 . N  I J  

{(~ 0 } : a r  Since • is rational ~-a(R~) is algebraic. Since K e r ~ = R ~ , K = G o c ~  

Z-I(R~). Now G/Go is finite hence so is Z-I(R~)Go/Go~-Z-X(R~)/K. But Z-I(R~) 
has index 2 in Z-I(RX). It follows that Z-I(RX)/K and therefore since K ~ c=Z-X(R~) 
that K~/K is finite. Hence Ko~=Ko so that K/Ko=K/Ko~C=K~*/Ko ~. Since the 
latter is finite so is K/Ko. But Go is simply connected, therefore H~(Go/K)=K/Ko 
is finite�9 On the other hand it is H~(T)=Z,  a contradiction�9 

Theorem 3.3. Let G be a connected solvable algebraic subgroup of Gl(n, R) such 
that each element has only real eigenvalues. If  G/H has finite volume then H is Zariski 
dense�9 

Proof. By the proof of  (3.1) b Ho ~ is normal in G and G/(H*)o is a torus. Since 
G is simply connected by (3.2) and Ho ~ is connected, G/(H~)o is also simply connected 
and hence trivial. 

Remark. For any closed subgroup H of G (as in (3�9 let S denote the smallest 
analytic subgroup of G containing H. Since G is of type E by (3.2) such analytic 
subgroups exist by [13]. Following Mostow [10] one says H is analytically dense 
if S =  G. Since G has only real roots, Theorem 2 of  [13] tells us G/H is always homeo- 
morphic to R k• S/H and S/H is compact. It is easy to see that this implies that 
the conditions G/H is compact, G/H has finite volume, and H is analytically dense 
in G are all equivalent. In contrast to the unipotent case however H being Zariski 
dense is definitely weaker. 

Example�9 We now give a simple example of  an abelian, in fact, diagonal sub- 
group of  GI(2, R) and an analytic subgroup which is Zariski dense but which is 

not cocompact. Let G={(02 0):  2, # > 0 }  and S be the 1-parameter subgroup 

{/0 e~ 
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where c~ is an irrational number. Then G is the identity component  of  an algebraic 
group. Let p(2, p )=~ ' i j a i jAi#  j be one of  the polynomials defining S ~. Since 
2~:/~ on S we have ~'~jaij2~+~J-0. Now the exponents i+~j  must  be distinct 
because ct is irrational. I f  ~=l f l k2~_~O for all 2 > 0  where ~k and flk are real 

and ~ l < ' " < ~ m ,  then all flk must be 0. For the latter equals 2~a(fl~+f122~-~+...  
+f lm2~'-~) .  Since the first factor is positive the second must  be identically 0. Letting 
2 ~ 0  we see that fl~=0 and then reason by induction on m. Thus a~j=0 for all 
i , j  a n d  p = 0 .  Since p was arbitrary S * = G  ~. On the other hand, G is simply 
cormected and solvable so the analytic subgroup S is closed and clearly proper 
This means G/S is noncompact  and has no finite invariant measure. 

In the case of  lattices one can go somewhat further using a result o f  H. C. 
Wang. 

Theorem 3.4. Let G be a connected algebraic subgroup o f  Gl(n, R) such that 
each element in the radical R has only real eigenvalues and G/R has no compact factors. 
l f  F is a lattice in G then F is Zariski dense. 

Proof. By (8.28) of  [11] F c~ R is a lattice in R. By (3.3) (F c~ R)* = R *  = R  since 
R is algebraic. Thus F*D=R, Let ~: G ~ G / R  be the canonical map. By (8.27) 
of  [11] ~z(F) is a lattice in G/R. Since G/R is an algebraic linear group, the Borel 
density theorem (or (3.1) a) tells us that n (F)  ~ =G/R. Now n ( F * ) = F * R / R = F * / R  
is an algebraic subgroup of  G/R which contains rt(F). This means rc(F*)=G/R. 
This together with the fact that F*  D R  means that F * =G.  
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