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A topological rigidity theorem on open
manifolds with nonnegative Ricci curvature

Qiaoling Wang

1. Introduction

Let M be an n-dimensional complete Riemannian manifold with nonnegative
Ricci curvature. For a base point p€ M we denote by B(p,r) the open geodesic ball
with radius r around p and let vol[B(p, r)] be its volume. Let w, be the volume of
the unit ball in the Euclidean space R™ and define ap; by

ans = lim YOUB®: 1]
r—00 WpT™

It follows from the relative volume comparison theorem [BC|, [Gr2| that the
limit at the right-hand side in the above equality exists and it does not depend on
the choice of p. Thus ays is a global geometric invariant of M. The manifold M
has large volume growth if apr >0. Note that, in this case,

(1.1) vol[B(p, )] > apw,r™ for pe M and r>0.

The structure of complete noncompact Riemannian manifolds with nonnegative
Ricci curvature and large volume growth has received much attention. Let M be
such an n-dimensional manifold. Li [L] and Anderson [A] have each proven that
M has finite fundamental group. Li uses the heat equation while Anderson uses
volume comparison arguments to prove this theorem. Perelman [P] has shown that
there is a small constant e(n)>0 depending only on n such that if an>1—¢e(n),
then M is contractible. It has been shown by Cheeger and Colding [CC] that the
condition in Perelman’s theorem actually implies that M is diffeomorphic to R™.
Shen [S2] has proven that M has finite topological type, provided that

M:aM‘FO( n11>

Wp "
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and, either the conjugate radius conjr >¢>0 or the sectional curvature Kps > Ko >
—00. Recall that a noncompact manifold is of finite topological type if it is homeo-
morphic to the interior of a compact manifold with boundary [AG]. Generalizations
of Shen’s theorem have been made in [OSY], [SS] and [X1].

It should be mentioned that the first important result about topological finite-
ness of a complete open manifold with nonnegative Ricci curvature is due to Ab-
resch—Gromoll. They have proven that complete open manifolds with small diam-
eter growth, o(r'/™), nonnegative Ricci curvature and sectional curvature bounded
below have finite topological type. Their theorem is proven by using an inequality
referred to as the excess theorem (cf. [AG]) which has many interesting applications
(cf. [CX], [C], [CC], [G], [OSY], [SS], [$1], [S2], [So], [X1] and [X2]).

In [Pe], Petersen proposed the following conjecture.

Conjecture. ([Pe]) An n-dimensional complete Riemannian manifold with
nonnegative Ricci curvature and o M>% is diffeomorphic to R™.

It has been proven in [CX] and [X2] that Petersen’s conjecture is true when the
sectional curvature of the manifold is bounded below and if the volume of geodesic
balls around some point grows properly.

In this paper, we study complete manifolds with nonnegative Ricci curvature
and large volume growth. Our purpose is to prove the following topological rigidity
theorem which supports Petersen’s conjecture and contains no condition on the
sectional curvature of the manifolds.

Theorem 1.1. Gliven o€ (%, 1) , 00>0 and an integer n>2, there exist positive
constants ro=ro(a, 0o, n) and e=e(a, go,n) such that any complete Riemannian n-
manifold M with Ricci curvature Ricpr >0, apr>a, conjugate radius conjas > 0o
and

vol[B(p,7)]

W™ M= rn—2+1/n

(1.2)

for some peM and all r>rq, is diffeomorphic to R™.

2. Proof of Theorem 1.1

Throughout the paper all geodesics are assumed to have unit speed.

Let M be an n-dimensional Riemannian manifold. For a point pe M, we denote
the distance from p to = by d(p,z) and set d,(x)=d(p,2z). We denote by crit,, the
criticality radius of M at p, i.e., crit, is the smallest critical value for the distance
function d(p,-): M —R. The criticality radius of M is defined to be crit(M)=
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infpear crit,. We refer to [C], [Grl], [G] and [GS] for the notion of critical points of
distance functions and its applications.
In [W], Wei proved an angle version Toponogov comparison theorem for Ricci
curvature for which we need some notation.
A geodesic triangle {~o, 71,72} consists of three minimal geodesics ; of length
Llv:]=l; which satisfy
Yi(li) = i+1(0),

where the indices i and i+1 are taken mod 3.
The angle at a corner, say 70(0), is by definition Z(—7v5(l3),74(0)). The angle
opposite to ; is denoted by «;.

Lemma 2.1. ([W]) For any ;>0 and 9o>0 there exists a constant fo=
Bo(n, g0, 00)>0 such that if M is an n-dimensional complete Riemannian manifold
with Ricy >0 and conjugate radius conjpr>go, and {Yo,v1,72} i8 a geodesic trian-
gle contained in B(p,Bo) for some pe M, then for the geodesic triangle {7, %1, 72}
in the FEuclidean plane with L[¥;|=L[y;|=l;, we have

Goa+8, _51'2) e

2.1 >y —Eg =
(2.1) ;> 0 —Ep arccos( TR

Actually, Wei proved a comparison estimate for manifolds with Ricci curvature
bounded from below, but the above statement suffices for our purposes.
The lemma below is the key step for proving Theorem 1.1.

Lemma 2.2. Given a€(%,1), 0o>0 and an integer n>2, there ezists a pos-
itive constant ro=ro(c, 8,n) such that any complete Riemannian n-manifold M
with Ricci curvature Ricas >0, apr>a and conjugate radius conjps > 00 satisfies
crit, >rg, for all pe M.

Proof. Let 6y=0(c,n)€ (0, £7) be the solution of

00 ™
(2.2) / sin"?tdt=(1-a) / sin™ ? t dt,
0 0
and set eg=4% (57 —0). Let 8o=00(n, 0, 20)=Bo(n, o, go) be as in Lemma 2.1 and
set

(2.3) 7 008 6o cos g cos(by+eo)

cos?(fy+cg) —sin ey

then T>1.
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We claim that

6
(2.4) crity, > 1o = ﬁoC_OSiT@ for ye M,

which will imply the conclusion of Lemma 2.2.

Suppose on the contrary that the above claim is false. Then there is a point
p€M such that crit, <rq and thus we can find a critical point ¢(#p) of d,, such that
r1:=d(p,q)<ro.

Let I'g;, (resp. I'pq) be the set of unit vectors in Ty M (resp. T, M) corresponding
to the set of normal minimal geodesics of M from ¢ to p (resp. p to ¢). For any
€ [0, 47], let Tpy(0)={ueS,M|ZL(u,T},)<H}. Since g is a critical point of d,, we
have Iy (37) =S, M which implies that I',, contains at least two distinct vectors.
Thus there exists a constant to>0 such that vol(I',,(60)) >v(00)+1to, where v(6y) is
the volume of a geodesic ball of radius 6y in an (n—1)-unit sphere. It then follows
from (2.2) that vol(T'pe(00))>(1—a)a,—1+to, where a,, is the volume of S™(1),
the unit m-sphere.

For each u€5,M, we denote by 7(u) the distance to the cut point of p along
the geodesic exp,,(tu), te[0, c0).

Sublemma. For any u€l'pq(6o), we have T(u)<35.

Proof. We proceed by contradiction. Suppose that there is a vel',,(fg) with
7(v)>%Bo. Then the geodesic v(t):=exp, (tv), te [0,180], is a minimizing one.
Take a vector wel'py with Z(w,v)<6y. Let v1:[0,71]—M be a minimal geodesic of
M from p to ¢ with 4{(0)=w. Let z=~($80), set r2=d(q,z) and take a minimal
geodesic y2(t), t€[0,rg], from g to z. Since max{d(p, q), d(p, Z)}:iﬁm one can see
from the triangle inequality that the geodesic triangle {v,v1,72} is contained in
B(p, Bo). Thus we can apply Lemma 2.1 to {~, 71,72} to get

192, .2 .2
Eﬁo'”"l""z) .
=1 | —¢o,

0 > Z(7'(0),v1(0)) > arccos( 2T hor,

that is,
(2.5) 2 <r%—%ﬂor1 cos(90+50)+-1%,6§.

Now we use the fact that ¢ is a critical point of d, to get a minimal geodesic
73 from ¢ to p such that Z(v5(0),74(0))<4m. Applying Lemma 2.1 to the geodesic
triangle {72,vs,7}, we obtain

2 2 1 32
i +Tz—ﬁﬂo>_60
b

™
— > arccos
2 < 27"1 To
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which is equivalent to
(2.6) L85 <ri+r3+2rirasine,.

Substituting (2.5) into (2.6), one gets

(2.7) Bocos(fp+eo) < 4ri+4rgsineg <4ri+44/r7 — 1 Bor1 cos(fp+e0) 1505 sinep.
Observe that for any t€ R, we have
2 180 cos(fg+e0)t+ 16% >0,

and

(2.8) ‘t—iﬁo 008(004—50){ < \/tT—%ﬂo cos(fg+eo)t+ 1—165(2) )

Now consider the function f:R—R defined by

_t+\/t2 o cos(Bo+eo)t+ 16,6’0 singg.

It follows from (2.8) that f is strictly increasing. Thus from (2.7) and ry <rg, we
have

Bo cos(fg+¢eq) < drg+4 — 1 Borg cos(fo+e0)+ 1503 sineg.

By (2.4), 4ro< By cos(fp+¢g) and so we get from the above inequality that
(2.9) (Bo cos(fy+e0) —470)? < (1612 —8Fgrg cos(Bg+-c0) +57) sin? gg.
Substituting (2.4) into (2.9) and simplifying, we obtain

(T—1)% cos?® (g +e0) < (T?+(1—2T) cos? (fp+¢0)) sin” &,
that is

(cos®(Bg+e0)—sin? £0)T% —2 cos?(By +ep) cos? £y T +cos? (Ap +ep) cos? e < 0.
Solving this inequality, one finds

cos(Bo+2e) cos gg cos(fg+gg) cos fg cos gg cos(fp+2o)

cos?(fg+€0) —sin’ gg cos2(Bg+ep) —sin® ey
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which clearly contradicts the choice of T'. This completes the proof of the sub-
lemma. O

Now we continue on the proof of the claim. Let

dV (exp, (t€)) = \/g(t; §) dt d, (§)

be the volume form in the geodesic spherical coordinates around p, where dp,(€)
is the Riemannian measure on S, M induced by the Euclidean Lebesgue measure
on T, M (cf. [Ch, p. 112]). Since Ricys >0, the Bishop—Gromov comparison theorem
[BC], [G12] gives \/g(t;v) <t"~* for all +>0. Thus, for any r>1/3, we have from
the sublemma that

min{r(£),r}
wollBp.r) = [ duy(e) [ Valt:6) dt

4

min{r(€),r}
:/ dup(§)/ Vy(t;£)dt
qu(eo) 0]
min{r(¢£),r}
(2.10) +/ dup(é“)/ Va(t;€) dt
SPM\FPQ(OO) 0

Bo/4 r
<[ ami [ e ) [ s
qu(gﬂ) 0 SPM_FPG(GO) 0

<vol[B(L60)] +(acn_i —to) / ey

0

:vol[B(}lﬁo)]+<awn—%)>r”,

where B(% ﬁo) denotes the %ﬂo-ball in R™.
It follows from (2.10) that

1 2
i YO [B(p, )] <a- to 7
r—00 WpT™ NWn,

which is a contradiction and completes the proof of our claim. UO

Before stating our next lemma, we fix some notation. Let M be a complete
open Riemannian n-manifold. Let R, denote the (point set) union of rays issuing
from p; then R, is a closed subset of M. Define a function h, by

(2.11) hy(z) =d(z, Ry).
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We set for r>0

2.12 Hp,r)= hp(z),
(2.12) (p,7) pnax p(T)

where S(p,r) is the geodesic sphere of radius r with center p.

Let M be an n-dimensional Riemannian manifold. If, for any point x€M and
any (k+1)-mutually orthogonal unit tangent vectors e, es,...,ex €T, M, we have
Zle K(ene;)>0, we say that the kth Ricci curvature of M is nonnegative and
denote this fact by Ricg\’fl) >0. Here, K(eAe;) denotes the sectional curvature of the
plane spanned by e and ¢;, 1<i<k.

Lemma 2.3. Given positive numbers pg, 1o and integers n>2 and k, 1<k<
n—1, there is a §=5(gy, 10, n, k) >0 such that any complete Riemannian n-manifold
M with Ricg\z)zo, conjas > 0o, crit,>rg and

(2.13) H(p,r) < st/ (k1)

for some peM and all r>rg, has infinite criticality radius at p and so is diffeomor-
phic to R™.

Lemma 2.3 is similar to Lemma 3.1 in [X2] where there is a lower bound on
the sectional curvature instead of a lower bound on the conjugate radius of M. In
the proof of Lemma 3.1 in [X2], one can use the Toponogov comparison theorem
owing to the lower bound condition on the sectional curvature. We will not include
the proof of Lemma 2.3 since it can be carried out easily by using the Toponogov
type estimate of Dai-Wei [DW] and modifying the arguments in [S2] and [X2].

Theorem 1.1 is a special case of the following more general result.

Theorem 2.4. Given o€ (%, 1), 00>0 and integers n>2 and k, 1<k<n, there
are positive constants ro=ro(a, go,n, k) and e=e(a, gg,n) such that any complete

Riemannian n-manifold M with Ricg\]}) >0, ay >, conjugate radius conjpy > gg and
vol[B(p,7)] :
(2.14) oo OM S TR

for some pe M and all r>rg, has infinite criticality radius at p and thus is diffeo-
morphic to R™.

Proof. Once we have Lemma 2.2 and Lemma 2.3, the proof of Theorem 2.4 be-
comes routine. We only give an outline of it. Let ro=7¢(c, 0, n) be as in Lemma 2.2;
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then crit, >rg. Let 6=6(go,ro,n, k)=0(c, 00,n, k) be as in Lemma 2.3. We define
the number e=¢(a, 9o, n, k) in Theorem 2.4 as

n—(n+k)/(k+1) n—1
Qar ad

2.15 =mi 0 ,

( ) € mm{ o ,4(3711)}

With the above choice of £, by Lemma 2.3, in order to prove Theorem 2.4, we
need only to show that

(2.16) H(p,r) <ort/ B+ for r>rq.

The condition (2.14) and the nonnegativity of the Ricci curvature of M enable
us to use the relative volume comparison theorem and the same discussions as in
the proof of Theorem 3.2 in [X2] to show that

(2.17) hy(z) <6rt/ D for 2. e S(p,r) and > rq.

From the definition of H(p,r), we know that (2.16) holds. O
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