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Jensen measures and analytic multifunctions

Evgeny A. Poletsky(!)

Abstract. This paper describes plurisubharmonic convexity and hulls, and also analytic
multifunctions in terms of Jensen measures. In particular, this allows us to get a new proof
of Stodkowski’s theorem stating that multifunctions are analytic if and only if their graphs are
pseudoconcave. We also show that multifunctions with plurisubharmonically convex fibers are
analytic if and only if their graphs locally belong to plurisubharmonic hulls of their boundaries. In
the last section we prove that minimal analytic multifunctions satisfy the maximum principle and
give a criterion for the existence of holomorphic selections in the graphs of analytic multifunctions.

1. Introduction

Analytic multifunctions, introduced by K. Oka in 1934, have found quite a
few of applications in recent years. The main driving force of this development
was Slodkowski’s theorem ([S1], see also Section 7) that characterized analytic mul-
tifunctions in many different ways. This result provided applications of analytic
multifunctions to operator theory, uniform algebras and other subjects.

One of the most impressive achievements in this area was the new proof of the
corona theorem by Berndtsson-Ransford [BR] and Stodkowski [S2]. The proof used
three major facts about analytic multifunctions over the unit disk:

(1) every polynomially convex analytic multifunction has a holomorphic selec-
tion;

(2) every analytic multifunction is contained in a polynomially convex analytic
multifunction with the same boundary values;

(3) there is an analytic multifunction whose boundary values satisfy the con-
ditions of the corona theorem.

For analytic multifunctions over the unit ball in C", n>2, (1) does not hold,
(2) loses its relevance, and only (3) is still true [S2].

Recent years have also seen the surge of interest in Jensen measures (see, for
example, [CCW], [CR], (R3] and [P1]}. They also happen to be useful in many
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applications. Many notions of complex analysis and pluripotential theory can be
expressed and studied in terms of Jensen measures.

This paper uses Jensen measures to study analytic multifunctions and related
objects. Another recent approach was developed by Ransford in [R2]. In Section 2
we present basic facts about plurisubharmonic functions and Jensen measures. In
many cases it is sensible to replace polynomial convexity and hulls by their plurisub-
harmonic analogs. Section 3 describes these notions in terms of Jensen measures.
Jensen measures are defined through the space of plurisubharmonic functions on a
domain. In Section 4 we show that in some cases, for example when the domain
is pseudoconvex and the measure is supported by a plurisubharmonically convex
compact set, the dependence on the domain is irrelevant. All this preparatory work
is needed for the next sections.

In Section 5 we prove Theorem 5.1: a multifunction K over a plurisubharmoni-
cally convex set F is analytic if and only if every Jensen measure on F' can be lifted to
K as a Jensen measure. Qur definition of analytic multifunctions follows Aupetit’s
paper [A]. Stodkowski calls them weakly analytic. Section 6 contains a standard
result describing smooth analytic multifunctions. The famous Stodkowski’s theorem
gets a new proof using Theorem 5.1 in Section 7.

Theorem 8.1 ties together the notions of plurisubharmonical convexity and
analytic multifunctions. It states that a multifunction is analytic if and only if its
restriction to every line belongs to the plurisubharmonic hull of its boundary values.
The last section deals with minimal analytic multifunctions. In particular, we show
that such multifunctions satisfy the maximum principle.

2. Plurisubharmonic functions and Jensen measures

Let us denote by A the measure df/27 on the unit circle {z=¢%:0<0<27}.
For a complex manifold M we denote by H(M) the set of all holomorphic mappings
f of a neighborhood W; of the closure U of the unit disk UCC into M.

An upper semicontinuous function v on an open set V .C C" is plurisubharmonic
if for every z€V and a vector v€C™ there is r>0 such that

™

2
(1) u(z)g% / w(z et do
0

for all t<r.
A probability Borel measure y on V' with compact support is a Jensen measure
with barycenter zeV if

u(z) S/udu
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for every plurisubharmonic function u on V. We will denote the set of all such
measures by J, (V).

For a relatively closed set K CV and z€V let J, (K, V') be the set of all measures
in J,(V) supported by K. If ze K we define J,(K) to be the set of all measures p
such that u is in J, (K, W) for every open set W containing K.

We denote by C(V) the space of all continuous functions ¢ on V with the
topology defined by the seminorms

¢l = sup |¢(z)],
ze€K

where K runs over all compact sets in V. Any continuous linear functional g on
C(V) can be represented as (@)= [} ¢ du, where K is a compact set and p is a
non-negative regular Borel measure on K (see [C, Proposition 4.4.1]).

Since every continuous function on a relatively closed set K CV can be extended
to a continuous function on V', the weak-* topology of J,(K,V) in C*(V) coincides
with the weak-* topology in C*(K). In particular, the set J,(K, V) is metrizable
in this topology when K is compact (see [C, Theorem 5.5.1]). Evidently, the sets
JAK, V) and J,(K) are convex and weak-x closed in C*(V).

If feH(V) then we define the measure As as the push-forward of A=(1/2x) df
by f,ie, Af(E)=f AE)=\(f"(E)) for any set ECV. The measure As is a non-
negative regular Borel measure on V and if « is plurisubharmonic and f(0)=z,
then

u(z) §/ud)\f.

Thus As is a Jensen measure. We will call such measures analytic disk measures or,
simply, disk measures.

The following two theorems are proved in [P2] and [BS], respectively (see also
[CR, Theorem 7.2]}.

Theorem 2.1. If ¢ is an upper semicontinuous function on an open set VC
Cn, then the function

Dd)(z):inf{/¢d/\f:f67-[(V) and f(O):z}

1§ plurisubharmonic on V.

Theorem 2.2. The set J, (V) is the weak-+ closure of the holomorphic mea-
sures py with f(0)=z.

We will frequently use their corollary.
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Corollary 2.3. If ¢ is an upper semicontinuous function on V', then
qu(z):inf{/¢d;t:,u€JZ(V)}.

Proof. If ¢ is continuous then the corollary follows immediately from Theo-
rem 2.2. If ¢ is upper semicontinuous then there is a decreasing sequence of contin-
uous functions ¢; converging to ¢. The functions D¢; form a decreasing sequence
of plurisubharmonic functions converging to a plurisubharmonic function D¢. If
we let u(z) denote the right-hand side in the equation, then, clearly, D¢>u. If
ned,, (V), then

[ odu=Jim [ 6;du tim Doy(0)=Do)
j—o00 j—ro0

and this proves that u=D¢. O

3. Plurisubharmonic hulls and pseudoconvex sets

If K is a set in V then the plurisubharmonic hull of K in V is the set K of all
points z€V such that u(z)<0 whenever a plurisubharmonic functions v on V is less
or equal to 0 on K. We call K plurisubharmonically conver in V if K=K.IfVisa
domain of holomorphy and K is compact then “plurisubharmonically convex” means
“holomorphically convex”. If V is a Runge domain, then K is plurisubharmonically
convex if and only if it is polynomially convex.

Theorem 3.1. A point 20€V belongs to the plurisubharmonic hull KinV of
a compact subset K of an open set V' if and only if the set J,,(K, V) is non-empty.

Proof. It peJ,,(K,V) and u is a plurisubharmonic function on V such that
u<0 on K, then u(z)<0. Thus ZOGIN(.

Suppose that there is a point zp€K and J.o (K, V) is empty. Consider an
exhaustion of V' by increasing open sets V; such that V;€Vj41 and both zp and
K belong to Vi. The set J,,(V1,V) is weak-x compact and therefore there is a
neighborhood V; of K and a;>0 such that Vo,CVy and p(Vo)<l—a; for every
measure p€.J,,(V1, V).

We take a non-negative continuous function ¢; on V equal to 0 on K and to

1/a; on V\Vy. Then
[ orinz
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for every ueJ,,(V41,V). Let us prove by induction that for all natural j there are
non-negative continuous functions ¢; on V satisfying the conditions:

(1) ¢y=65-1 on Vyy;

(2) for every peJ, (V;,V)

/d)]d,u,_2 9"

We have already found ¢,. Suppose that the functions ¢; have been chosen for all
1<i<j. Let us prove that there exists a neighborhood W &V;1 of V; and a number
a;+1>0 such that for every pe.J, (Vjy1,V) either u(V;11\W)>a 41 or

1 1
/¢j dp > §+274;T

If not, then we can find a sequence of ux€J,,(V; 11, V) such that px(Vii1\V;)—0
as k—o0, and

/¢]dpk< +23+1

Since the set J.,(Vj1+1,V) is weak-+ compact we may assume that measures ug
weak-* converge to pt€.J,,(V;, V). Then

and this contradiction proves our statement.
Let us take a non-negative continuous function ¢;, such that ¢;.1=¢; on V;
and ¢;1=1/a;41 on V\W. Evidently ¢, will satisfy all conditions listed above.
Let ¢=lim;_, oo ¢;. The function ¢ is continuous and non-negative on V, equal

to 0 on K, and
1
dp> =
/¢ pzy

for every peJ,, (V). Thus D¢=0 on K and D¢(z)>3 and therefore 2@ K. This

contradiction proves the theorem. [l
Corollary 3.2. A compact subset K in an open set V is plurisubharmonically

convex in 'V if and only if the barycenter of every Jensen measure pi in'V supported
by K belongs to K.

In general, the plurisubharmonic hull of a compact subset K in an open set
V' need not even be closed. To see this we use an example of J.-E. Fornass as
it is exposed in [K, Example 2.9.4]. In the notation of [K] let K be the union of
aD(0, %) x{1/5}, 7=2,3, ..., arid aD(0, 3)x{0}. Clearly, the union of D(0, %) X
{1/3}, 7=2,3,..., belongs to K, but the plurisubharmonic function v from the
example is equal to —1 on K and to ~% on D(0,1).

However, the following form of the Kontinuitatssatz holds.
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Corollary 3.3. An open set V is a pseudoconvexr domain if and only if the
plurisubharmonic hull of any compact set K in V is compact.

Proof. To prove that plurisubharmonic hulls are compact we suppose that
points z; €K converge to a point 20€V. Then there are measures p;e.J, (K, V).
We may assume that p; weak-x converge to a probability measure p supported
by K.

To show that peJ, (K, V) we take a plurisubharmonic function u on V' and
find by [FN] a decreasing sequence of continuous plurisubharmonic functions uy
converging to u. Then

uk(zo):jlirglouk(zj)gjli)ngo/uk dujz/uk ds.

Hence
u(20) = lim uy(20) < lim /uk du:/udu.
k—oo k—o0

Thus zg €K and K is closed.

Let ¢ be a continuous plurisubharmonic exhausting function on V. If KC
{2:4(2)<r}, then K also lies in {z:¢(2)<r}. Hence K is compact.

To prove the converse statement we need to show that for any sequence of
mappings f; €H (V) such that f;(.S) lie in a compact set K in V the sets f;(U) also
lie in a compact set. Then the statement follows from the Kontinuitétssatz. But
since f;(U )CI? , which is compact, this is evident. O

The following theorem tells us that in the case of pseudoconvex open sets we
need only one continuous plurisubharmonic function to describe a plurisubharmon-
ically convex set.

Theorem 3.4. If an open set V is pseudoconvex, then a compact set KCV is
plurisubharmonically conver in V if and only if there is a continuous plurisubhar-
monic function v on V that is equal to 0 on K and positive on V\K.

Proof. The “if” part is trivial. To prove the “only if” part, for every point
z€V\K we take a non-negative plurisubharmonic function v, that is equal to 0
on K and is such that v,(z)=a,>0. By [FN] there is a decreasing sequence of
continuous plurisubharmonic functions v, ; converging to v,. Since the functions
v, ; converge uniformly to 0 on K, we can find & such that vz,k<%az on K. Let
uzzmax{vz,k — %az, 0}. The function u, is continuous, equal to 0 on K and u,(z)>
Lo,

Let us take a sequence of open sets V;, —oo<j<oo, such that: VeV,
U~ o V;=Vand ;- __ V;=K. Since the sets V;;\V; are compact we can find

j=—00 j=—00
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finitely many points zj in Y_/jH\Vj such that the function u;=maxy u., is positive
on Vi41\V;. Let b;=2717 ||u]||%11] Then the function
J

u(z)="Y bju;(2)

j=—o0

is continuous, plurisubharmonic, equal to 0 on K and positive on VAK. [

4. The relativity of Jensen measures

Clearly J,(K)CJ,(K,V)CJ,(K,C™). We are interested in cases when J,(K)=
J.(K,V). Let us start with a lemma which guarantees the extension of plurisub-
harmonic functions.

Lemma 4.1. Suppose that K is a compact set in an open set V' such that there
is a continuous plurisubharmonic function u on V equal to 0 on K and positive on
VAK. If v is a plurisubharmonic function defined on a neighborhood WCV of K
and bounded below on K, then there is a plurisubharmonic function v/ on V which
coincides with v on K.

Proof. Suppose that v>A>—0co on K. We take a neighborhood W' of K that
compactly belongs to W. Let B<oo be the supremum of v on W’ and let C>0
be the infimum of v on 9W’. Then the function

B—A
"9
u C

u+A

is smaller than v on K and greater than v on W’. Hence the function v’ equal
to the maximum of «’ and v on W’ and to v’ on V\W"' is plurisubharmonic on V.
Moreover, v'=v on K. [

Theorem 4.2. Suppose that K is a compact set in an open set V such that
there is a continuous plurisubharmonic function uw on'V equal to 0 on K and greater
than zero on VA\K. If a point zo€ K then J,,(K,V)=J,,(K).

Proof. We have to show that J, (K,V)CJ,,(K). Let v be a lower bounded
plurisubharmonic function on a neighborhood W of K. By Lemma 4.1 there is a
plurisubharmonic function »' on V equal to v on K. If pe.J,, (K, V), then

/vdu:/v’duzv’(20)=v(zO)-

Hence peJ,, (K).
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If v is any plurisubharmonic function on a neighborhood W of K, then we
take the sequence of lower bounded plurisubharmonic functions v;=max{v, —j}.
Clearly, v;N\w. If p€J, (K, V), then

/vdu: lim [ v;dp> lim v;(20) =v(2).
j—o0 oo
Hence pued, (K). O

The corollaries below follow immediately from Theorems 3.4 and 4.2.

Corollary 4.3. If a compact set K in a pseudoconver domain V is plurisub-
harmonically convez, then for every point z€ K we have J,(K)=.J,(K,V).

Corollary 4.4. Ifu is a lower bounded plurisubharmonic function defined on a
neighborhood W of a compact plurisubharmonically convex set K in a pseudoconver
domain V', then there is a plurisubharmonic function v on V which coincides with
u on K.

5. Analytic multifunctions

If K7 is a set in C™, then a multifunction K on K’ is a mapping of K’ into the set
of non-empty compacts subsets of C™. For our purposes it is reasonable to identify
a mapping K with the set {(z, w)eK'x C™:we€ K(z)}, which is the graph of K. We
will denote the graph of K also by K. If N=n+m and 2=(21,...,25)€CY, then
we define a projection p(z)=2"=(21, ..., z,). A set KCC¥ is a multifunction on K’
if p(K)=K' and the sets K(2/)={2€K:p(z)=2"} are compact. If ¢ is a function
on K, then we define the function

b ()= sup ¢(2)
z€K(z")
on K’.

We say that a multifunction K on K’ is upper semicontinuous if for every open
set W C™ the set {2/ € K":K(2")CW?} is relatively open in K. A multifunction
K is upper semicontinuous if and only if for every compact set FCK’ the set
p~H(F)YNK is compact. It is easy to see that if K is an upper semicontinuous
multifunction and a function ¢ is upper semicontinuous on K, then the function
¢k is also upper semicontinuous.

A function u on a compact set K CCV is plurisubharmonic if u is upper semi-
continuous and for every z€ K and pu€J,(K) we have

u(z) g/u(w) p{dw).
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If F/ is a subset of K’, then we define the restriction of a multifunction K to F’ as
the set F=p~{(FNK.

An upper semicontinuous multifunction K is analytic if for every open set
V' containing K and every plurisubharmonic function v on V' the function ug is
plurisubharmonic. The function u can be assumed to be C'°° because any plurisub-
harmonic function can be approximated by such functions.

Theorem 5.1. Suppose that K CCV is an upper semicontinuous multifunction
on a relatively closed set K’ in an open set VCC™, Then K is analytic if p.J(K)=
J(K") for every ze K’ and every we K(z). If K is analytic and K’ is the union of
relative interiors of compact subsets K;CK such that the restrictions of K to K j
are also analytic, then p.J,(K)=J,(K') for every ze K’ and every we K (z).

Proof. To prove the first part we fix a point 2,€K’, a Jensen measure ve
Jop (K ) and a plurisubharmonic funection « on a neighborhood W of K. For some
£>0 we find a point zp€ K (z{) such that uy(z))<u(zp)+e. Take pu€J,, (K) such
that p,pu=v. Then

uK(z{))—s<u(zo)S/ud,ug/uKd(p*u):/uKdz/.

Since ¢ is arbitrary we get the plurisubharmonicity of ux.

To prove the second part we suppose that there is a point zj€K’, a Jensen
measure ve.J,, (K') and a point 20€K(z;) such that the set p.J.,(K) does not
contain v.

Let F’ be a compact subset of K’ containing the support of v and such that Kz
is analytic. The set F=p~1(F')NK is compact and, therefore, the set H=p..J,,(F)
is a weak-x closed convex set in C*(F”’). Since v¢ H, there is a function ¢€C(F”)

and 6>0 Such ‘ha‘
(éd 1“1 Qsd —&.
/ V<H H/ [1; £

By the same letter ¢ we will denote a continuous extension of ¢ to V. Let
=¢op. By Corollary 2.3 the function

z)= inf dp
=, iy, [ v
is plurisubharmonic on a neighborhood W of F and clearly u<t on W. Since F is
analytic the function up is plurisubharmonic on F’ and up <¢.
We can find a neighborhood W of F' such that
(2)> inf /M S inf [ pdu°
n ——= ——.
we) = =5~ en BTy

.UE']Z()(F)
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/ude§/¢dV<u(Zo)—§SUF('Z(/))_%‘

But this contradicts the plurisubharmonicity of up and, therefore, there is a
measure u€ J,, (F') such that p.p=v. Since, evidently, .J,, (F)CJ,,(K), our theorem
is proved. O

Now our goal is to find reasonable situations when the condition on the set K’
from the second part of Theorem 5.1 holds. We start with a basic lemma.

Lemma 5.2. Suppose that a set KCCY is an analytic multifunction on o
relatively closed set K’ in an open set V.CC™, If for a compact set F'CK' there
exists a continuous non-negative plurisubharmonic function ¢ on V such that F'=
{z:¢(2)=0}, then the restriction of K to F' is analytic.

Proof. Suppose that F' C K' is a compact set and ¢ is a continuous non-negative
plurisubharmonic function on V' such that F'={z:¢(z)=0}. Let u be a lower
bounded plurisubharmonic function on a neighborhood W of F=p~!(F')NK. Let
a be the maximum of u on F. Take a neighborhood W, of F' compactly contained
to WNp~H(V) such that u<b=a+1 on W;. Then take an open set W}, eW/{=p(W)
containing F’. As in the proof of Lemma 4.1 choose a continuous plurisubharmonic
function ¢ on V which is smaller than ux on F’ and greater than b on W]\ Wa.
Let ¢p=¢;p and an open set Y =p~H(V\W). Let v be equal to max{u,v} on W,
and to ¥ on Y. The function v is plurisubharmonic on W;UY and vg=ur on F’.
Hence up is plurisubharmonic.

If % is not bounded below then let w,,=max{u, —m}, m=1,2,.... Then up
is the limit of a decreasing sequence of plurisubharmonic functions (u,,)r and,
consequently, also plurisubharmonic. [

This lemma has two corollaries that describe most reasonable situations. The
first one is applied to analytic multifunctions on open sets.

Corollary 5.3. If K is an analytic multifunction on an open set VCC™, then
its restriction to any compact subset of V is also analytic.

Proof. Let F’ be a compact set in V and let u be a plurisubharmonic function
on an open neighborhood W of F=p~}(F')NK. For 2, F' we take a closed ball
B=B(z},r) of radius r centered at z{, such that p~*(B)NK CW. Since the closed
ball satisfies the condition of Lemma. 5.2, the function u is plurisubharmonic. Since
IV can be covered by such balls, ur is also plurisubharmonic. O

The second corollary has sense when we are talking about, say, analytic varieties
in pseudoconvex domains.
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Corollary 5.4. Suppose that a set KCCY is an analytic multifunction on
a relatively closed plurisubharmonically convex set K' in a pseudoconver domain
V.CC™. Then K' is the union of relative interiors of compact subsets K;CK such
that the restrictions of K to K’ are also analytic.

Proof. Let ¢ be a continuous exhausting function of V. The sets
Fi={z:4(z) <r}nK’

are plurisubharmonically convex and their interiors exhaust K’. The rest follows
from Theorems 3.4 and 5.1. O

To prove that an upper semicontinuous multifunction K over an open set V is
analytic it suffices to verify that for every point z€V, every vector v€C™ and every
point we K (z) there is a Jensen measure v with barycenter at w such that p.r=g,
where 1 is the measure (27)1d# on a circle z+rve®. That means that u can be
lifted to J,, (K) for all sufficiently small >0. Note that the support of v lies over
the line {z+wv(:(€C}. This implies a corollary.

Corollary 5.5. An upper semicontinuous multifunction K over an open set
VCC" is analytic if and only if its restriction to any complex line is analytic.

The following theorem, due to Hartogs, is well known and its proof is brought
here to demonstrate how Theorem 5.1 works.

Theorem 5.6. Let K be an analytic multifunction over an open set V.CC”
such that the fibers K(z) are singletons for all zéV. Then K is a graph of a
holomorphic mapping.

Proof. Let f(2)=K(z). Since K is upper semicontinuous, the mapping f is
continuous. We take a point zg€V which we assume to be the origin, a vector
v€C™ and a number >0 such that the disk {z:2=20+¢v and |[¢|<r} isin V. For
the measure u=(2m)"1df on a circle {z:2=29+te"v and 0<t<r} we denote by v
the lifting of 1 to Jy, (K), where wo=f(z¢). Clearly, v=f,u. If z=(21,...,2n5) and
f=(fn+1, -, fn), then by holomorphicity of z

1 2m ) )
0= / zpdp= o fe(te®v)e® do
0

for all k>n. By Morera’s theorem f} and, consequently, f are holomorphic. [
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6. Smooth analytic multifunctions

Theorem 5.1 is rather theoretic and hard to use to recognize analytic multi-
functions. We now present a result that allows us to do this. This result is known
to specialists but we have never met it in the literature in an explicit form.

A domain DCCV is strictly n-pseudoconver at a point 2€9D if there is a C?
function ¢ defined on a neighborhood V of this point such that DNV ={z:¢(z)<0},
V¢(2)#£0, and there is an n-dimensional complex space in the complex tangent space
to 8D at z, where the Levy form of ¢ is strictly positive.

The open disk in C centered at z and of radius r is denoted by U(z, ) while
its boundary is S(z, 7).

Lemma 6.1. Suppose that K CCV is an upper semicontinuous multifunction
over a domain VCC™. Let D=p~Y(V)\K. If D is strictly n-pseudoconvez at every
point weOD such that p(w)eV, then K is an analytic multifunction.

Proof. Let u be a plurisubharmonic function in a neighborhood of K, zp€0D,
p(z0)=2y and uk (z))=u(zp). We may assume that z)=2,=0. Let ¢ be a function
defined on a neighborhood W of zy such that DNW ={z:¢(2) <0}, Vo (z)#0 and
the Levy form H of ¢ is strictly positive on a complex n-space T in the tangent
space of 9D at zg.

It is well known (see [Sh, Section 13.37]) that there is a holomorphic mapping
F of the unit ball B of C" into CV with the following properties: F(0)=0, the
rank of F'(0) is n, F/{(0)(C")=T and F(B)CK.

Let G=poF and let A={zeB:G(2)=0}. If there is a component A" of A
passing through 0 and of positive dimension, then F'(A’) belongs to the fiber Ky=
K(0) and by the maximum principle v is constant on F(A’). But F(z) belongs to
the interior of K when z#£0 and, therefore, there is a point 2€ K that lies in the
interior of K and u(z)=ux (0). For any vector v€C™ take ¢(¢)=z+(v. Then

27 27
uK(O):u(z)<i/0 u(g(sew))degi/o ug (sev) df

27
for all sufficiently small s.

Let us fix a vector v&€C™ and let L be the complex line {{v:{€C}. If there
are no components A’ of A passing through 0 and of positive dimension, then the
analytic variety G~1(L) is one-dimensional near the origin. We take a complex
locally irreducible curve C CG (L) passing through the origin. Then G(z)=g(z)v
for every z€C, where g is a holomorphic function on C. Reasoning as in [Ch, 6.1]
we find a neighborhood W of 0 in C, where g is a k-sheeted covering mapping of
WA\{0} over U(0,7)\{0}, »>0. Then (see [Ch, 6.1]) there is a holomorphic mapping
f of the unit disk U onto W such that g(f(re®))=s(r)e*.
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The function 4(¢&)=u(F(f(£))) is subharmonic on U. If 0<s<r and s=s(t),
0<t<1, then ux(se**%v)>u(te’”). Therefore,

1 2m ) 1 2w )
u(0) =u(0) < — / a(te')dh < — / ug (se®v) de.
2 0 2 0

We have proved that for every point 2€V and every vector v€C™ the function
ug satisfies the subaveraging inequality (1). Thus ug is plurisubharmonic and K
is an analytic multifunction. [

Corollary 6.2. Suppose that K CC™! is an upper semicontinuous multifunc-
tion over an open set V.CC™ such that all connected components of D=p~ 1 (V)\ K
are pseudoconvex. Then K is an analytic multifunction.

Proof. Each connected component D; of D has a smooth strictly pseudoconvex
exhanusting functions ¢;. Let K,«:p‘l(V)\Uj{z:ng(z)j >r}. By Lemma 6.1, K. is

an analytic multifunction. Hence K=(, _ K is also an analytic multifunction. []

7. Stodkowski’s theorem

In this section we prove the part of the seminal Stodkowski’s theorem that is
most essential for pluripotential theory.

For an upper semicontinuous multifunction K over an open set VCC"™ let us
introduce the function

Sp(z)=— inf log|z—
k(%) wei ) og |z —w|

on D=p~H(V)\K.

Theorem 7.1. Let K be an upper semicontinuous multifunction in C*T* over
an open set VCC™. Then K is analytic if and only if the function 8 is plurisub-
harmonic.

Proof. By Corollary 5.5 it suffices to prove the theorem over a domain V CC.
Then DCC?. For a domain DCC? the following result is valid: if the function

§(z,w)=— inf loglw —w
(z,w) I og | |
is plurisubharmonic on D, then D is pseudoconvex (see [S1]).
So if dx(z,w) is plurisubharmonic, then every connected component of D is
pseudoconvex and K is analytic by Corollary 6.2.
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To prove that the function dx(z) is plurisubharmonic in D when K is analytic
we note that dx(z,w) is upper semicontinuous on D and subharmonic in w. So
we have to show that for every point (zg, wo)€ D, that we assume to be (0,0), and
every v C? such that p(v)#£0 we have

2
§x(0,0) < L S (rve'®) do
2 Jo
when r is sufficiently small. We may assume that v=(1, a). Let us take a point zp=
(0,b)e K such that 0 (0,0)=—log |b|. Let 1 >0 be so small that the line w—az=0
does not meet K when |z|<r;. If u=(27)~1d# is the measure on the circle (re®,0),
r<r1, then there is a Jensen measure v supported by K with barycenter at zy such
that p,v=p. The restriction K’ of K to U(0,r) is also an analytic multifunction.
The function u(z, w)=—log |w—az| is plurisubharmonic in a neighborhood of K’
and, therefore,

§K(O,O):u(0,b)§/udy§/(5K(z,az)d,u.

The theorem is proved. [

8. Plurisubharmonically convex analytic multifunctions

In general, an analytic multifunction K need not to be plurisubharmonically
convex even if p(K) and all fibers K(z) are plurisubharmonically convex. For ex-
ample, the multifunction K ={(z, w)€C?:|jw|2<1+|z|*} over U is analytic because
the domain (U x C)\ K is pseudoconvex. But it is not plurisubharmonically convex.

Also when n>2 the polynomial hull of a set F' over D need not to be an
analytic multifunction. As an example take the graph in C*={(z1, 22, 23)} of the
function zz=Rez; over the unit ball B in C2. This set is plurisubharmonically
convex in BxC because it is the set of zeros of the plurisubharmonic function
|z3—Re z1|%. Also note that it is the plurisubharmonic hull of the restriction of the
graph to 0B.

However, the following theorem holds. For points z and v in C” and r>0 let
U(z,v,r) be the disk {z+(v:|¢|<r} and let S(z,v,r) be the circle {z+{v:|¢|=r}.

Theorem 8.1. If an upper semicontinuous multifunction K over an open set
VCC™ is analytic, then for every open set W containing K, every z€V and every
veC™ the restriction of K to U(z,v,r) lies in the plurisubharmonic hull in W of
the restriction of K to S(z,v,r) when U(z,v,7)EV.

The converse theorem also holds when, additionally, the fibers K(z) are pluri-
subharmonically convex in CN-".
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Proof. It K is analytic, zp€V, veéC™ and U(zg,v,7)ED, then we consider
the Jensen measure y=(27)"'df supported by S(z,v,r)={z+re??v:0<§<2r}. By
Theorem 5.1, for every we K (z) there is a measure v€.J,(K) such that p.r=pu.
Hence v is supported by the restriction of K to S(zg,r,v). By Theorem 3.1, w
belongs to the plurisubharmonic hull in W of this restriction.

To prove the converse statement we consider a continuous plurisubharmonic
function v defined on a neighborhood W of K. Fix a point zo€V. To prove that
ug is plurisubharmonic we may assume that u>0 on K(zp). Since the fiber K(zp)
is plurisubharmonically convex in CY~", by Theorem 3.4 there is a continuous
plurisubharmonic function ¢ on CN~"=p~1(;) equal to 0 on K(zp) and positive
outside. The function ¢1(2)=¢(z—p(z)+zo) is plurisubharmonic and continuous
on CV. Let us take a neighborhood W’ of K(z;) in CY~" and a closed ball
B&V centered at zy and of radius r, such that Kg@W”"=BxW’'&@W and u>0
on Kp. The function u’ equal max{u,c¢;} on W” and to ¢; on p~*(B)\W" is
plurisubharmonic on p~!(B) for an appropriate constant ¢>0 and v} =ug on B.

Let L be the intersection of a complex line {zg+(v:(€C}, with V, and let
F' be the restriction of K to S(zg,v,r), r<ry. We take a point we K (zp), where
ug{z0)=21'(w). Since the restriction of K to U{zg, v,7) lies in the plurisubharmonic
hull of # in W, by Theorem 3.1 there is a Jensen measure ve&.J,{F,W). The
measure p=p.v is also Jensen and supported by S{zs,v,7). Hence u=(2r) 'd4.
Now

ug (z0) =y (20) = /u dy</uK dys.
Thus ug is plurisubharmonic. [

The following result belongs to T. Ransford [R1]. If V is a domain in CV
and F'is a compact set in 9V, then the plurisubharmonic hull of F' is the set K
of all points z€V such that u(z)<0 whenever a plurisubharmonic function v on a
neighborhood of V is less or equal to 0 on F. We will need the following well-known
fact: if KCV is a compact set, K is the plurisubharmonic hull of K in V|, zeK
and W&V is a neighborhood of z such that K CV \ W, then the intersection of the
plurisubharmonic hull of KNOW with W coincides with KNW.

Corollary 8.2. Let V be a smooth domain in C and let FCp™(dV) be a
compact set. Then the plurisubharmonic hull F of F in D=p~*(V) is an analytic
multifunction over V.

Proof. Clearly, F is an upper semicontinuous multifunction. If w Eﬁ(z) belongs
to the plurisubharmonic hull of F(z ) in C¥~1 then there is a Jensen measure in
Juw(F(z),CN=1) with barycenter at w. Hence weF(z) and the fibers of F are
plurisubharmonically convex.



350 Evgeny A. Poletsky

IfU=U(z,r)€V and G is the restriction of F to S=5(z,r), by Theorem 8.1 we
have to show that F(z) CG. But this follows immediately from the fact mentioned
above. [

9. Minimal analytic multifunctions

An analytic multifunction over a set F' is minimal if it does not contain any
analytic multifunction over F except itself. For example, graphs of holomorphic
functions are minimal. Since the intersection of a decreasing sequence of analytic
multifunctions over the same set is an analytic multifunction, every analytic multi-
function contains a minimal analytic multifunction.

If K is a relatively closed set in an open set VCC™, z is a point in K and
W is a relatively open set in K, then the harmonic measure w(z, W, K) of W with
respect to K is the supremum of u(W), where p runs over all measures in J,(K).
We define I,(K) as the set of all points we K such that w(z, W, K)>0 for every
relatively open neighborhood W of w in K. It follows that I,(K) is closed in K.

We say that a multifunction K over a domain D satisfies the mazimum principle
if any plurisubharmonic function which is defined on a neighborhood of K and
attains its maximum on K at some point we K is constant on K.

Theorem 9.1. Let K be an analytic multifunction over a domain V and let
u be a plurisubharmonic function defined on a neighborhood of K. If u attains its
mazimum A on K at some point wo€ K, then the set L={weK u{w)=A} is an
analytic multifunction over V.

Proof. First, we note that I,(K)CL for every point we L. Indeed, if a point
zo€ 1, (K)\ L, then u(z)<A—c for some ¢>0 and z in some neighborhood W of z.
There is a measure p€J,(K) such that u(W)>0. Hence

u(w) S/udu< A—cp(W).

This contradiction proves the statement.

Secondly, p(L)=V. Indeed, for z€V let us take a measure ueJ,,(V), where
zo=p(wp), such that pu(WW)>0, where W is some neighborhood of z in V. By The-
orem 5.1 there is a measure v € J,,, (K) such that p,v=p. Let F=suppv. Clearly,
Fcl,,(K) and we see that z€p(I,,(K)). By the statement above, z€p(L).

And, finally, if peJ,(V) and we L with p(w)=2z, then by Theorem 5.1 there is a
measure v € J,, (K) such that p,v=p. We want to show that ve€J,,(L). It was proved
in [P1, Theorem 2.1] that for a measure v€J,,(K) there is a compact set X CK
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such that veJ,(X) and w(w, W, X)>0 for every relative open set W CX. By the
two constants theoremn X C L. Thus v€.J,,(L). By Theorem 5.1, L is analytic. [

Corollary 9.2. If an analytic multifunction is minimal, then it satisfies the
mazimum principle.

Corollary 9.3. Let K be an analytic multifunction over a domain D and let
u be a plurisubharmonic function defined on a neighborhood of K. If u attains its
mazimum on K exactly at one point of each fiber, then K contains a holomorphic
selection.

Proof. The set L where u attains its maximum is an analytic multifunction by
Theorem 9.1. By Theorem 5.6 this set is the graph of a holomorphic function. [J
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