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1. Introduction 

We shall be concerned with the problem of estimating the number of primes 
in an interval of the form [x-y ,  x] with y = x  ~ ~ < 0 < 1 .  In 1930 Hoheisel [3] 
proved that 

(1) ~z(x)--Ir(x--y) ~ y/log x 

if 0>0o=  1 -- 1/33000, and Heilbronn [2] showed that one may take 0o = 1 - 1/250. 
A substantial improvement became possible owing to I. M. Vinogradov's work 
on Weyl sums, which led to the following result on the zero-free region for Rie- 
mann's zeta-function (see [1], or [11], p. 114): there exist two constants A > 0  and 
B < I  such that for all zeros O=fl+i~, of ~(s) 

(2) fl < 1 - A ( l o g  ([y] +2)) -B. 

Since then the problem has been essentially connected with the zero-density estimate 

(3) N(~, T) << T b(1-~) log c T, 

where T ~ 3  and N(~, T) denotes the number of zeros r of ((s) such that 
fl_->~ and 171=<T. Ingham [5] showed that if (3) holds uniformly for 1<0<=1, 
then one may take 0 o :  1-1/b ,  and he gave also the relation b<:2+4c, where c 
is any constant such that for t_->3 and some constant d 

+")1 << tOlogd, 

From c---1/6 Ingham obtained b : 8 / 3  and 00=5/8. The best known result 
c= 173/1067 due to Kolesnik [8] leads to a very small improvement. Recently Mont- 
gomery [9] found a new approach to density theorems (the Halfisz--Montgomery 
method) and without using any bound for [(~ +it) he proved (3) with b=5/2,  
thus getting 00=3/5. Later Huxley [4] refined the method and obtained b=12/5, 
0o=7/12. Any further improvement of the constant b seems to require essentially 
new ideas. 
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Our aim is to prove the following result. 

Theorem. For any 0_->13/23 and all sufficiently large x we have 

1 x ~ 
(4) ~z(x)--rc(x--x~ > 177 logx"  

By elaborating the method the constant 13/23 could be reduced. We return to 
this question in the end of the paper. 

The main novelty in our approach is a combination of a certain version of 
the linear sieve (see Lemma 1) with analytic methods. We lose the asymptotic for- 
mula (1) because we work with inequalities in the sieve part of the proof. Huxley's 
density theorem is used in proving a "weighted" density estimate (see Lemma 3) 
which plays the same role as (3) in the classical method. 

Acknowledgements. We are grateful to the Institute Mittag-Lettter, where the 
present work was done, for support and for excellent working conditions. Also we 
wish to thank Prof. Y. Motohashi for his comments, and the referee, Prof. 
H. L. Montgomery, for checking the paper and rewriting some parts in more detail. 

2. Sieve results 

Let ~-<0<1, y = x  ~ 2 < v < 3 ,  z = x  l/v, P(z):]-[p<z p and 

d = { a l x - y  < a <= x }  
We denote 

s ( d , z )  = 1}l 

with the aim of getting a lower bound by the sieve method. For this we shall require 
the following result (see [6]). 

Lemma 1. Let M>=2, N>=2 and z>=2. Then, for any e>0  we have 

S ( d ,  z) > V(z)y( f (s ) - -E)--2~-X~ M, N), 
where 

(11 V(z) =/-/P<Z l . p  ~ e-Cflogz 

by Mertens" prime number theorem (C is the Euler constant), s = l o g  MN/logz,  

f ( s )  = 2eCs - l l og ( s . 1 )  for 2 ~ s_<-- 4, 

E = E(e, s, M, N)  << es+8-8(log M N )  -l/a, 
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and the remainder term R(~r M, N) is of  the form 

R ( d ;  M, N) = . ~m<M~.<Na~.b . r (d ,  ran) 

with some coefficients a,., b. bounded by 1 in absolute value and depending at most on 
M, N, z and 5, and with 

ix] ["1 " r ( ~ ,  d) = ~ - ---2-- - 7 "  

The remainder term R ( d ;  M, N) is required to be o(y/log x). Its flexible form 
allows one to prove this with values of  M N  larger than those that would be possible 
if it had its traditional form. 

Lemma 2. Let 5 / 9 < 0 < 1  and 0 < ~ < m i n  (1/2, (50-1)/4) .  Then there exists a 
number r/=r/(0, c0>0 such that 

R ( d ;  x ~, x ~) << yx-~, 

the implied constant depending at most on 0 and ~. 

Proof. We shall use the classical mean value theorem for Dirichlet polynomials 
(see [10], Theorem 6.1), which asserts that 

f ~o+ r IZ .~I  a.n-"l~ dt = (T+O(N))  Zs. 1 la.t z, 
TO = 

and the Hal~isz--Montgomery inequality (ibid., Theorem 8.2) which asserts that 

R N N 
Z;=x 1Y.=l a .n '" t2  << ( N +  R T  ~/~ log T) Z .=~  la.12, 

where the points s. = a. + it. have the properties that tr. => 0, 0 <- t. <= T, and I t . -  t., I => 1 
for rCr ' .  

We shall also use various estimates for ~(s) in the critical strip, mainly due to 
Hardy and Littlewood. Let a(~r) and b(~r) be functions, defined in the interval [~, 1], 
such that for any given e > 0  

I~(~+ it)l << t"<')+', 

f_ Ir + it)j x/'2b''' +~) dt << Z I+L 

uniformly for t~2 ,  resp. T~2 .  By Theorems 5.8 and 7.10 of  [11] we have 

a(1/2) _<- 1/6, a(3/4) <_- i/16, a(a) = o ( l - a )  as a ~ 1 - ,  

b(1/2) <= 1/8, b(5/8) <= 1/12, b(3/4) ~ 1/20, b(1) = 0. 

Further, we may suppose that a(o-) and b(a) are convex functions; the convexity 
of a(a) is a standard result, and for: b(a) the assertion follows from a two-variable 
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convexity theorem (see [11], p. 203), Now it is easy to verify that in the whole interval 
[-~, I] 

(5) ( o r - l )  a (c r )+(1-g)  b(cr) <-- + (1 -or). 

To prove the lemma it is sufficient to estimate the sums 

R(~r M, N) = 2M~_m<2MZN~_,,<2Namb.r(~, ran) 

with 2<=M, N ~ x  ~. Let A(s) and B(s) denote the Dirichlet generating functions 
of the sequences {am}M~_m<2 M and {b.}N~_.<2 N, respectively. By Perron's integral 
formula we obtain 

R(off; M, N) = 1 f.+,T ~--(x--Y)S ds+O(yx-") 2~---( ~-ir  ( (s)A (s)B(s) s 

<< yx~-I f -rr f ( a +  it)A(a+it)B(a+it)l d t+yx -~, 

with some TE[~xt+~"/y, xt+2"/y] and arbitrary crE[{, 1). In the first line w e  

used the fact that in any interval [T~, 22"1] with T ~ 2  there is a number Tsuch that 

ir)l  << log 

To estimate the integral of [(AB I it is useful to consider the ranges of small and large 
values of ((s) separately. Put a=a(~z), b=b(o-). In the range 

C 1 = { - T  <= t ~ T[l~(g+it)l <- T b+"} 

we use the mean value theorem for Dirichlet polynomials, getting 

<< T b +" (M + T) 1/2 (N+ T) x12 (MN) a/2- ~. 

To treat the complementary set C= we choose points s,=a+it,, t,~C=, [ t , - t , , ]> l  
in such a way that 

fc. ICABI << 2rL11~AO(sr)[ �9 

We know (see [10], Theorem 10.3 for the case ~ =  1/2) that 

For  V>=T b+", consider those points s, for which V~ {~(s,)[<2V. From the above 
we see that there are <<T TM V -~/(2b+*) such points, so that by the Hal~.sz--Mont- 
gomery inequality 

2,, , .~_~r 1~.4~1 << v(2 IA 12)1/2(2 IB[2) a/2 

<< V(M+T3/2V-a/(2b+~))I/S(N+Ta/2v-1/(2b+O)a/~(MN)t/2-~ 
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We sum this over those V of the form 

Hence 

(6) 

If  

V = 2  k, T b+"'~- V<=T "+~, and deduce that 

=~f- l CA B I << T ~ +" ( M N )  i - " + T b +" ( M  + T )  '/2 (U + T)  i/2 ( M N )  x/2 - 0. 

R ( d ;  M, N) << y x  ~- i  + 3. { (x /y )" (MN)  1- ~ + (x/y)  b + 1/2 x~/2 (MN)I /~-  

.3 V (X/y)b +1 (MN)! /2 - , } .  

(8) 
with 

(x/y)  a(1/2) ~ ( x / M N ) l / 2 x  -~", 

we take a =  1/2 and use the inequalities b(1/2)<= 1/8, 0>5/9,  ~ < ( 5 0 - 1 ) / 4 ,  getting 

(7) R ( d ;  M, N) << yx - " .  

Otherwise let a be a root  of the equation 

(x/y)  a(a) = ( x / M N ) l - a  x -4.. 

Since a ( a ) - - - o ( 1 - a )  as a ~ l - - ,  the above equation has a solution a for which 
1 / 2 < a <  1--5 with some 5=5(0, ~)>0,  provided that t/is sufficiently small. Hence 
by (6) and (5) we obtain again (7). This completes the proof  of the lemma. 

From Lemmas 1 and 2 we get 

Y {4(0, > 

4 ,og( v 1/ 2 (0, v) = 5 0 - 1  

4 8 
provided that 5 /9<0<3/5 ,  5--0--~_1<v<5--0-~_1 and X>Xo(5,0).  

Denote by d d the set of the elements of  d which are divisible by d, a n d  for 
2 < u < ( 1 - 0 )  -1 let 

T ( ~ ;  xx/v,'x l/u) = Zxl/U~p<xl/2 S ( ~ p ,  x1/V), 

with the aim of estimating this from above by the sieve method as well. Take any 
P form the interval [x l/u, x 1/2] and let ~ be the sequence of elements a of ~ ,  each 
repeated once for each pla with P<=p<2P. By Theorem 1 of [6] when applied to 
we obtain 

ZP~_ p < 21, S (,.r x I/v) < V (z) y (,~p~_ p < 21, P - ' ) ( F ( l o g  B/log z) + �9 (5, B)) 

(9) +2'-'~ P, B 2IS, B1/3), 

where B=>2, F(s )=2eC/s  for 0<s<=3, q~(5, B)<<5+5-S( logB)  -1/3 and 

R ( ~ ;  P, M, N) = ~eap<2V ~am<M Zn<NO~mflnl'( d~, prnn) 
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with the coefficients % ,  ft. bounded by 1 in absolute value and depending at most 
on B, P, v and e. 

Letting P(s), G(s) and H(s) be the generating functions for the sequence of  
primes p from the interval P ~ p < 2 P  and for the sequences {C%}m<82/8 and 
{fln}.<8~/3, respectively, we obtain by Perron's integral formula 

P, B2/3, B 1/3) < <  yx-1/  f Ir (s)e(O C( )H(OI Idsl + yx- ' l  

with some TE[-~xl+2'S[y, xl+2'7/y] and any t />0  if we suppose that BP<=x. 
By the fourth moment estimate for ~(s) we see that the set 

L 1 = { s  = 1/2+it[ It[ -< T, f (s ) t  --< T l/s} 

has measure <<T 1/2 log 4 T; by the mean value theorem for Dirichlet polynomials 
we see that 

[r << (fL1 1r t a :F ' ( f  1/418)1/  
<< T1/8 + 1/16 (p + T)I/~ (B4/a + T)1/4 (B4/a + T)1/8 log4 x 

<< (T 3/1r (PB) 1/2 + T~ 1/~) log 4 x. 

To treat the remaining range L2 we choose well-spaced points s .=  1/2+it ,~L2 
so that 

f Ir << Z ,  [PGH(s,)[. 

We consider those s, for which V<=I~(s~)[<2V. There are <<TV -4 log 4 T such s,; 
by H61der's inequality the sum over these s, is 

<< (VaT log' r ) * / s ( Z  [PI2)1/2(Z 1014)1/4(2 {Hi8) 1/8. 

We apply the mean value theorem for Dirichlet polynomials to P, and the Hal~isz-- 
Montgomery inequality to G 2 and to Hal to see that the above is 

<< V 1/2 T 1/s ( T + p)x/2 (B4/3 + Ta/z V -  4)114 (94/3 .qt- T3/2 V-4)I/8 log4 x. 

Summing over V=2  k, T 1Is <= V<= T 1In we see that 

fL ,  ICPGHI << (TS/2"(PB)l/2+TS/16P 1/2) log 4 x. 

Hence we obtain for P B ~ x  p and f l<(50+7)/12 

(10) R(~; P, B 2/3, B 1/3) << yx -'1 

with t/=t/(0, f l)>0. Combining (9) and (10) and summing over P, we get by partial 
summation 

(11) T(ag; x 1:', x 1/') -< , Y-~.. (A(O, u)+~) 
iug.~ 
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with 

A(O, u) -- 7+5024 log(  (7 + 50) u --122_(1+__5~ ) 

provided (50 + 7)/12 < l/u + 3/v and X > Xo(e, O). 
The integers aE~r having a prime factor in the interval [x ~/~, x 1/~] will be 

treated by function-theoretic methods. Using the arguments familiar from Hoheisel 
type theorems, we arrive at the problem of estimating the number of  zeros of the 
zeta-function in the rectangle c~-<_a<l, lt l<=T, weighted by the generating func- 
tion of  the primes p E [x ~/~, xl/U]. 

3. The weighted density estimate 

It turns out that if some Dirichlet polynomial weights are attached to the zeros 
o~--fl+i~ o f  the zeta-function, the resulting "weighted" density estimate is better 
than the usual one, sometimes as good as the density conjecture (see [7]). 

Lemma 3. Let aq be a sequence o f  complex numbers bounded by 1 in absolute 
value, and put 

K(s) = ~,Q<=q<2Q a~ q-S. 
Then 
(12) ZIrI~-r,p-~ IK(~)[ << (TI"/SQ-I+T6/SQ)a-~I~ a T 

for  0<=u<=l, Q>= T 4/5. 

Proof  The above formulation of the lemma and'its proof are due to H. L. Mont- 
gomery. By Cauchy's inequality we see that 

(13) ZI~,I~T ' p~ ,  ]K(Q)[ ~ N(~, T)l/2(~l~,l~r, fl~a IK(q)]2) 1/2. 

For N(a, T) we have the bounds of Ingham [5] and Huxley [4], namely 

,[ T (3-3~)/(2-~) log A T 0 <-- ~ ~_ 3/4, 

(14) N(~, T) << [ T(n_z,)/t3~_I) log a T 3/4 ~ ~ -< 1. 

We can now estimate the second factor in (13) by appealing to the mean value 
theorem for Dirichlet series, which gives 

(15) Z IK(Q)l 2 << ( T + Q ) Q  ~-2" log a T, 

since the number of  ~, with t<=~<=t+l is <<log T. From (14) we see that 

(16) N(~, T) << T 12~1-~)/5 log a T 
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for 0~:cr this with (13) and (15) gives 

z~ IK(p) ] << (T (17- a2,)/10 Q1/2- ~ + Tn(I-,)/5 QI- , )  loga T. 

Hence we have (12) when either Q=> T or e<=3/4. It  remains to treat the case when 
T4/5~Q<=T, 3/4<=e--<_1. I f  in this case we use the full strength of  (14) in place of  
the weaker estimate (16) we obtain the sharper bound 

Ig(~)l << T1/(z~-I)Q x/2-~ log a T. 

In comparison with the desired bound T(le-xe~)/SQ ~-1 we see that the worst case 
is when Q=T 4/5. It is then easy to check that the above bound gives (12) when 
3/4<=~<=5/6. Now supp0se that 5/6<=c~<=1, T4/5<=Q<=T. Instead of using (15)we 
apply the Halfisz--Montgomery inequality, which gives 

(17) ~ I/(e)l  ~ << (Q+T~/2N(cq T))Q 1-2" log a T. 

Combining this with (13), (16), we see that 

2~ IK(Q)I << ( T(~-6")/5 QI-'+ T(53-aa')/2~ 1/2-~t) 1ogA T. 

To compare the second term with (12) we again note that the worst case is when 
Q:T4/~; we then find that the above gives (12) when 13/16~<_-1. This includes 
the desired range. On comparing (15), (17) we see that we should use (17) when 
N(c~, T)<:T 1/2. Thus on the basis of the available knowledge provided by (14), 
we see that it is optimal to use (17) for ~<7/9,  and (15) for ct~7/9. 

4. The interval [x 1/~, x 1/~] 

Letting 

we obtain 

(18) 

V (,gff ; X 1]v, X l[u) = ~xllv~p<xllu S(d~lp, x1/V), 

,~txl/v~p<xl/u Y 
p log (x/p) 

y v-- I  

say, the penultimate line being formed heuristically. In order to justify this we con- 
sider sums of the type 
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with xl/v<=P<xl/". Let 7=  1 +( log X) -1, 2<=T<=x and K(s) the generating func- 
tion for the primes p form the interval [P, 2P). By Perron's integral formula we 
obtain 

~P(x, y; P) = 1 f ~ + , r  ~" x ~ - ( x - y )  s ds+O(xl+~/T) 
2re---{ ~-ir ---((s)K(s) s 

= yK(1)--ZIImQI=<T K(Q) Xe-(X-y)Q [-O(xl+a/T) 
Q 

by moving the integration to the line a = -  1/2. We assumed that 

~---~ (a + iT) << log 2 T 

uniformly for all -1/2<=a<=?; it is well known that this is true at least for one T 
from each interval of length 1. Choosing T=xl+~/y, we see by Lemma 3 and (2) 
that the sum over the zeros is <<y(log x) -4 provided 

16 
(19) -~- ( 1 - 0 )  < 1 + 1/v, 

(20) 6 (1 --0) < 1 -- 1/u. 
5 

Therefore, by partial summation, we have proved the asymptotic formula (18) if u, 
v and 0 satisfy the conditions (19), (20). Obviously the optimal values of  u, v are 
those which make the interval [x l/v, x TM] as long as possible. Gathering together (8), 
(11) and (18), we conclude that if 5/9<0<=7/12 and there are parameters u and v 
satisfying (19), (20) and 

( 2 1 )  

then 
2(0, v)--A(O, v)--O(u, v) > 1/177, 

1 x ~ 
~ ( x ) - ~ ( x - x  ~ > _ _  _ _  

177 logx  

for all sufficiently large x. To verify (21) it is sufficient to take u and v which equalize 
(19) and (20). A computation then shows that for all 0C[13/23, 7/12] the inequality 
(21) holds. 

5. Remarks 

There are several ways in which the constant 13/23 can be reduced. First of  
all, Lemma 1 can be sharpened as follows. The method of [6] actually gives a lower 
bound for 

S ( d ,  z ) -  Z(MN/~>~_~<~<~ s ( d ~  ~ ,  p~) - . . .  
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In  L e m m a  1 only the  first t e rm was t a k e n  into  account .  However ,  by  the  same argu-  

men t s  as in (18) one can  get a sympto t i c  fo rmulae  for  the  par ts  o f  the  o ther  te rms 

co r respond ing  to Px . . . .  ,P~r with xl/"<=plpz...p~,<xa/U. This ex t ra  con t r ibu t ion  

weakens  the  condi t ion  (21) so tha t  a smal ler  n u m b e r  0 satisfies it. 

A n o t h e r  poss ibi l i ty  is offered by  a recent  e legant  ident i ty  due to R. C. V a ugha n  

[12] for  sums involving von M a n g o l d t ' s  funct ion.  I t  can  be ut i l ized bo th  in the  

weighted densi ty  es t imate  and  in the sieve. By Vaughan ' s  ident i ty  our  K ( s )  can be 

t r ans fo rmed  into double  sums o f  a m o r e  sui table  fo rm;  in tha t  way  one m a y  m a k e  

use o f  the  fact  t ha t  the  sum K ( s )  is over  primes.  As  a resul t  the  fo rmula  (18) can be 

p roved  for  a wider  interval  [x :Iv, x:/U]. In  the  sieve the same ident i ty  leads  to a be t te r  

es t imate  for  T(~r x v~, x v") since B=xVX~yS/X2/P can be rep laced  by  B=x-V2ys/2/P.  
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