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Abstract. It is shown that the Bargmann--Fock spaces of entire functions, A~(C), p_~ 1 
have a bounded unconditional basis of Wilson type [DJJ] which is closely related to the reproducing 
kernel. From this is derived a new sampling and interpolation result for these spaces. 

O. Introduction 

The Bargman--Fock spaces were used in [B] as the representation space for 
the canonical commutation rules in quantum mechanics. Since then they have 
appeared in many different contexts, e.g. in signal analysis, representation theory 
of nilpotent Lie groups [Fo] and as a class of symbols in the theory of Hankel and 
Toeplitz operators [JPR]. Various types of atomic decompositions have been ob- 
tained in [DG], [JPR]. 

The objective of this paper is the construction of a simple Riesz basis for these 
spaces, which is related to the reproducing kernel of  these spaces. 

Definition 0.1. We define the Bargmann~Fock space of entire functions, AP(C), 
l ~ p < :  oo as follows. 

AP(C) = { f  entire: f f  I f(z)l  pe - 'plzl ' l '  dx  dy < ~o} 

where z = x + iy. 
A** (C) is defined by 

A-(C)  = { f  entire: sup If(z)l e-I~l'/' < ~}. 
z(c 

A~ is defined by 

A~ = { f  entire: lim If(z)l e-I,l'/Z ___ 0}. [z]~** 

* Partially supported by grant AFOSR 90-----O311. 
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A2(C) is a Hilbert space with respect to the obvious inner product and has the 
reproducing kernel ew(z)=e"~Z~A2(C), this means that f (w)=(f ,  ew) for all 
fCA~(C). 

The collection {zm(nm/m!)l/Z, m-->0} is an orthonormal basis for the Hilbert 
- -  ~ I'1 2 v o  space A2(C). Thus, if f ( z ) -~m=oa ,  Z then J[fJla,=Z~m=olaml2m!/n =. 

From the Taylor expansion of entire functions it is clear that the monomials 
z m, m~O form a Schauder basis for AP(C), p~2.  However, no characterization 
of A p in terms of Taylor coefficients seems to be known, and it is unlikely that a 
function fCAP(C) can be characterized by the magnitude of its Taylor coeffi- 
cients alone. 

The existence of an unconditional basis for Av(C), which provides an iso- 
morphism AP(C),-.I p has recently been observed in [FGW]. It is based on (1) an 
ingenious construction of an orthonormal basis for L2(R) [DJJ] where all basis 
functions are derived from a single function by the action of the Heisenberg group 
- -  a so-called Wilson basis, and (2) on the identification of the Bargmann--Fock 
spaces with certain spaces of distributions on R, the so-called modulation s p a c e s .  

Despite the marvelous properties of the Wilson type bases, the underlying basic 
function appears to be quite complicated. It bears little connection with the re- 
producing kernel of the Bargmann--Fock spaces. It would be desirable to have an 
unconditional basis for the Bargmann--Fock spaces which has the same structure 
as the Wilson-type bases and is closely connected to the reproducing kernel. 

The main result of this paper provides a surprisingly simple and explicit un- 
conditional basis for the Av(C) which satisfies all these requirements. In what fol- 
lows, let qb(x)=21/% - ~ .  

T h e o r e m  1. For : = 0 ,  1, ...; n~Z, let we,=n/2+iE. The collection of  vectors 

defined by 

(i) 

{~e.,: d = 0, 1 . . . .  ; nEZ} 

V 1 1 o ,  n = e - n n 2 1 2  e nzn  

t/t<,, = 21/2e -~ >,t,,I'/2 (x .... e,, + (_ l)e+,,+ene'=We,,), 

d>0, is a bounded unconditional basis for the Bargmann--Fock spaces Av(C) for 
l=<p< ~. 

Every FEAr(C) has a unique expansion 

(2) F = 27_-o 2".~z (F, %,.) ~,,. 
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where the biorthogonal basis {~t,.}, 

go, .  = 2 e - " " ' / S e " Z " ~ ( z - n )  
(3) 

~r = 23/s e - "  Iwe"t'/2 (e ~, wen ~ (z - Wi~e.) + ( -  1 )t +. + t.  e "  we" �9 (z - we.)) 

hag the same structure. The function ~EAP(C) for  each p and depends only on q~. 

In other words, the basis consists of simple linear combinations of the re- 
producing kernel ew. Therefore, Theorem 1 implies immediately the following 
sampling and interpolation theorem. 

Corollary 2. (a) Sampling: Le t  FEAP(C) for  some l~=p< oo. Le t  

ao,, = F(n), nEZ,  
(4) 

at." = F(we , , )+( -1 )e+"+e"F w(-W~-,,), f = 1, 2, . . .;  nEZ.  
Then 

(5) F(z)  = ~-~e=0 • . c z  at,. e ~e,.(z) 

where the series converges in AP(C). 
(b) Interpolation:Let {ae,.: g=0,  1, ...; nEZ} and l<_-p< oo be given such that 

~ = 0  Z . ~ z  lat,.I " e-p~l'~'e"l'/s < oo. 

Then there exists FEA'(C) such that 

F(n) = ao,., nEZ, 

F(we, n)+(-1) t+n+t"F(~e,n)  = at,. g : 1, 2, .., ; nEZ. 

Specifically, F is given by (5). 

By duality, the collection {7~,.} is a weak basis for A**(C) and by a standard 
argument also an unconditional basis for A~ 

This is a new type of sampling and uniqueness theorem. It is well-known that 
FE As(C) is uniquely determined by its values at n + il, n, IE Z.  On the other hand, the 
interpolation problem for this lattice is ill-posed: If z~T=0 z~.~z lae,.1%-"Jwt"l'< ~o, 
the interpolating entire function F which satisfies F(n+i l )=a~ .  is not necessarily 
in As(C) and the reconstruction of F from its sampled values is extremely unstable 
(see, e.g., [D], [DG]). 

On the set Z u { n / 2 + i l ,  n, IEZ}, however, F is overdetermined and the inter- 
polation problem is unsolvable in general (cf. [DG]). 

Corollary 2 shows that in order to achieve uniqueness and stable interpolation 
appropriate sums and differences of the samples have to be taken. We are not aware 
of any results of this type in the literature. 
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Recently, Seip and Wallst6n [SW] have shown that whenever ab< 1, the set 
2,,n=brn+ian is a set of sampling for the Bargmann--Fock spaces with p>0.  
That is, a function can be reconstructed from its sampled values in a stable way. 
The interpolation problem on such a set is not solvable in general. In this context, 
they ask whether there exists a set in C of both sampling and interpolation, or 
equivalently a Riesz basis consisting of reproducing kernel functions. Theorem I 
and Corollary 2 can be regarded as a possible solution to this problem. 

The idea behind the proof of Theorem 1 comes from signal analysis and the 
theory of the Gabor transform [D], [HW]. The central fact is that the Bargmann-- 
Fock spaces AP(C) are isometrically isomorphic to spaces of functions on R called 
coorbit spaces [FG 1], [FG 2]. The coorbit space Co(L p) is defined to be those 

functions on R whose Gabor transform lies in LP(R• (see Section 1.4). 
The technical part of the proof consists in showing that a certain operator 

- -  the Gabor frame operator (see Section 1.2) - -  is invertible on these coorbit 
spaces. Theorem I then follows by taking the Bargmann transform. A similar proof 
shows that Theorem 1 also holds true for even more general spaces of entire func- 
tions related to coorbits of spaces other than L p. 

The technical result about the invertibility of the frame operator on other 
spaces is of interest in its own right since it provides estimates for the lattice density 
for Gabor frames for spaces other than the Hilbert space L2(R). The Seip--Wallst6n 
result provides the best possible such estimate when the analyzing function is a 
Gaussian. It says that for any ab< 1, {EmbTna~} is a Gabor frame for Co(LV), 
p_->l (see [Gr]). 

It is very likely that a direct proof of Theorem 1 within the theory of entire 
functions will be found. The possibility of such a result, however, emerged from 
ideas in signal analysis and the theory of Wilson bases for distribution spaces on R. 

The paper is organized as follows: 
Section 1 contains basic results on frames in Hilbert spaces and in particular 

Gabor frames on the Hilbert space L~(R). Some elementary properties of the Barg- 
mann---Fock spaces and coorbit spaces are also included. Section 2 contains the 
statement of the main lemma mentioned above, namely that the Gabor frame oper- 
ator is an isomorphism on the coorbit spaces in question. The proofs of Theo- 
rem 1 and Corollary 2 are presented in this section. Section 3 contains the proof 
of the main lemma, which relies on a characterization of the coorbit spaces Co(L v) 
by means of the Zak transform [AT], [Z]. Some basic properties of the Zak trans- 
form are presented. 
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1. An unconditional basis for Bargmann--Fock space 

In this section we collect the necessary concepts and results on frames, Gabor 
frames and the Bargmann transform. For motivation and detailed proofs, we refer 
to the quoted references, in particular [DS], [D], [HW]. 

1.1 Frames. 

A frame in a separable Hilbert space H is a collection of  vectors {x.} with the 
property that for some constants Cl and c2>0 

(6) ca Ilxll Z .  I<x, x.>l c= Ilxll' 

for every xEH. If  cx=c~ then the frame is said to be tight. 
In general frames are not bases and are overcomplete in the sense that any 

finite subset of the elements lies in the closed linear span of the other. However, 
like for an orthonormal basis, any vector can be recovered from its frame coefficients 
in a simple way. 

Associated to each frame {x.} is an operator called the frame operator, de- 
noted here by S and defined by Sx=~,, (x, Xn)X,,. The sum defining Sx converges 
unconditionally in H for each x. S is a bounded, linear, positive operator (hence 
self-adjoint), and (6) implies that S is invertible on H. The dual frame associated 
to a frame {xn} is the collection {S-ax.}, denoted {~7.}. The dual frame is a frame 
in its own right with bounds c~ -1 and c~ -1, and we have the following identity. 

(7) x = Z .  (x.  = Z .  (x. x .  

where the sums converge in H for each x. If  {x.} were a tight frame (Cl = c~), then 
(7) becomes x=c~ x z~. (x, x.)Xn. 

If  {x.} is a frame in a Hilbert space H with frame operator S, then a simple com- 
putation shows that z~ (x, S-1/~x~)S-X/2x.=x. Thus, {S-alex.} is a tight frame 
with bound 1. 

1.2 Gabor frames. 

For fixed a, b>0 ,  and g6L~(R), a Gabor system is the collection of functions 
{g.,m}={eZ~'~Xg(x-na)}. We will also use the notation {gn, M}={E~T,~g} where 
Exg(t)=ee~'Xg(t) and T~g(t)=g(t--x). If  {g.,=} is a frame for LS(R), then 
it is called a Gabor frame. To emphasize dependence on parameters, we say that 
(g, a, b) generates a frame if {E,.bT~ag } is a frame for LS(R). It is easy to construct 
Gabor frames for L ~ (R). 
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Since the frame operator S associated to the Gabor frame {ErabTnag} (the 
Gabor frame operator) commutes with the operators E,.b and T,a, the dual frame 
is also a Gabor frame, namely {E,,bT.aS-lg}. This commutativity also implies that 
if {EmbT, og} is a frame then {EmbT.,S-~/2g} is a tight frame with frame bound 1. 
If for a, b>0, abe_ 1, the Gabor system (g, a, b) generates a tight frame, then 
cx=c2=llgll~/ab (see [D]). This implies that for any Gabor frame, IlS-a/Zgll2=ab. 

1.3 Wilson bases. 

The following remarkable result has been proved in [D J J]. 

Theorem 1.1. Suppose that ff~St'(R) is such that 11~&[12:l, ~ is real-valued, 
and (~k, 1/2, I) generates a tight frame for L2(R). Then the following collection is an 
orthonormal basis for L 2 (R). 

(8) 
~,o. . (x)  = q , ( x - n )  

~,t..(x) = 2 -~/~ (e-2"'ex~k(x- n/2) + ( -  l)e+"e~"~e~r ( x -  n/2)) 

for ~ = 1, 2 . . . .  and nE Z. 

Corollary 1.2. Let gs be such that (g, 1/2, I) generates a frame for L~(R) 
and ~ is real-valued. Then the following collection is a bounded, unconditional basis 
for  L~(R). 

(9) 
go..(x) = g ( x - , O  

gt . .  (x) = 2 -1/3 (e-2~it~,g(x - n/2) + ( -  1 )e+n e2,ie,, g (x  -- n/2)).  

The dual basis is given by 

( lo)  
go,.(x) = S - ' g ( x -  n) 

ge,.(x) = 2 -'/2 (e-2*itxS-Xg(x - n/2) + ( -  1)e+"e2"iexS-lg(x- n/2)). 

Proof. Given such a g, we know that (S-1/2g, 1/2, 1) generates a tight frame 
for L~(R). Moreover, S-1/2g~SP(R) and (S-I/2g) ~ is real-valued (see Lemma 2.1b 
or [DJJ]). So by Theorem 1. I, the collection {~ke,.} corresponding to this tight frame 
is an (unnormalized) orthogonal basis for L2(R). Applying the isomorphism S 1/" 
to this collection gives the collection (9). Moreover, it is clear that the dual basis 
corresponding to {SXl~kt..} is {S-1/2~:,.}={~e,.} which is (10). 1 
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1.4. The Bargmann transform. 

The Bargmann transform B is a unitary map from L2(R) onto A~(C) given 
by [Fo] 

(11) Bf(z) = 21/4e - " ' ' / 2 f e  ' " x z  e-""' f (x)  dx. 

If q~ (x) = 21/4e -~'~', the L z normalized Gaussian, then B~b (z) = 1. 
The following formulas establish a fundamental relation between the theory 

of the Bargmann--Fock spaces and Gabor theory. Putting w=p+iq, we obtain 

(12) B (Eq Tp q~) (z) = e "ipq e-'~ M '/~ e ~zw. 

Thus, given fCL2(R), 

(13) (f,E~Tpq~) = (Bf, B(EqTpdp)) = e~'P'~e-~lwl'/2F(iv) where F =  Bf. 

It follows immediately that (f, EqTp~b)~LP(R 2) for some function f on R if 
and only if F(AP(C) for l<-p<o ~. 

The images of AP(C) under the inverse Bargmann transform are spaces of 
teml;ered distributions, which are interesting in their own right, the so called modula- 
tion spaces [F] or coorbit spaces, denoted Co(LP), of the Heisenberg group under 
the Schr6dinger representation [FG 1], [FG 2]. 

Given gC6e(R) fixed and the Schr6dinger representation r~(q,p, z)f=zTqEpf 
for f6L2(R) of the Heisen~erg group H = R 2 •  they are defined by 

Co(L p) = { f ~ ' :  (f ,  rc(q,p, z)g)ELP(H)} 

with norm [IfllcoLp=ll(f, r~(q,p, r)g)IILp(H). The definition of Co(L p) is indepen- 
dent of the analyzing function g. The choice g=q5 reveals that Co(L p) and Av(C) 
are (isometrically) isomorphic Banach spaces under the Bargmann transform. See 
[FG 1], [FG 2] for more details on coorbit spaces. 

Our interest in the spaces Co(L p) is that the Gabor frame operator is easier 
to handle than the corresponding operator on AP(C). 

2. Construction of the unconditional basis 

The images of the bases (8) (resp. (9)) under the Bargmann transform are 
orthogonal (resp. unconditional) bases for A2(C). For the orthogonal Wilson 
bases, it has been shown that they are also unconditional bases for the spaces Co (L p) 
and by the Bargmann transform one obtains unconditional bases for the AP(C) 
[FGW]. We will use this fact in the proof of Theorem 1. 
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The proof of an analogous statement for the bases of Corollary 1.2 poses addi- 
tional difficulties because one has to deal with the systems of functions derived from 
g and (for the dual basis) from g=S-lg.  The arguments of [FGW] carry over 
provided that S is also invertible on other coorbit spaces. For g=  ~, this is guar- 
anteed by the following lemma. 

Main 1.emma 2.1. Let dp(x)=21/4e -~x', and let S be the Gabor frame operator 
defined by 

Sf  = Z ,  Z , ( f ,  emT,/=dp) E,,T~l, dp. 
Then 

(a) S and S 1/3 are isomorphisms of the spaces Co(L p) for 1 <=p< co. 
(b) S-I/=dpES~(R) and (S-lrack)" is real-valued. 

Theorem 1 and Corollary 2 now follow. 

Proof of Theorem 1. As in Corollary 1.2, the collection 

~'o,. = T .S- I /2~  
(14) 

~c,. = 21/2 (E-e T./~ S-1/3 ~b + ( -  1)t +. Et T./~ S-  1/3 r 

is an orthonormal basis for L3(R) and by [FGW], Theorem 1, an unconditional 
basis for Co(Lr), l~p<~o.  By Lemma2.1 S 1/~ is an isomorphism of Co(L p) 
for l~p<oo .  Therefore {$1/2~/t,.} is also an unconditional basis for Co(LP). 
By the commutativity properties of the frame operator, this is given by 

S ~/2 ~'o.. = T .  
(15) 

S 1/' r = 2 "  ( e _ ,  r .~  ~ + ( -  l y  +" ee T.~. ~). 

The dual basis corresponding to this system is {2S-1/~r which is given by 

2S-I/:~ko,. = 2T.S-xq~ 
(16) 

28 -11= $, , .  = 2813 ( E - t  T.n S - I  d? + ( -  l y+"Et  1".1= S -1 $). 

Since the Bargmann transform is an isomorphism of Co(L v) onto AP(C), the 
collection 

{e-t"t/=BSllZS,,,,} = {~',..} 

is an unconditional basis for AP(C) with dual basis 

{ 2 ~ - . , . , , , e s - l ~ , , . }  = {%..}. 

The formulas (1)and (3) can be verified directly from (12) where ~=BS-ldp. II 

Corollary 2 now follows directly from Theorem 1, (12), and (13). 
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3. Proof of the Main Lemma 

For the proof we make use of  the Zak transform, a useful tool for studying 
properties of Gabor expansions which has been used in this and other contexts. 
For more details on the Zak transform, see e.g., [AT], [Fo], [J 1], [J 2] etc. Since 
the following properties are of  independent interest for Gabor expansions, we state 
them in a slightly more general form than is required for Lemma 2.1. 

Definition 4.1. Given a > 0 ,  the Zak transform, or Weil--Brezin map denoted 
Zo is a unitary mapping from L2(R) onto L2[0, 1] z given by 

Zof( t ,  co) = al/2 Z k  e2"i~'f(a( t - k)). 

Z a f  satisfies the following quasi-periodielty relations 

Z a f ( t  + 1, to) = e~"i~ co), Zaf( t ,  co + 1) = Z~f( t ,  o9). 

Note that Zof(t ,  og)=Zx(Dof)(t, 09) where Do is the dilation operator Dof(X)= 
al/2f(at). From now on, Z1 will be denoted simply by Z. 

Also note that f i s  even if and only if Zof(t ,  og)=Zof ( - t , -09 ) .  
If  ab = 1IN for some integer N =  > 1 a simple calculation yields 

(17) Zo (Emb T.a g) (t, co) = e~"im"/N e2"imt/N e-  2.1.o, Zo g (t, co - m/N). 

Then next well-known lemma shows that the frame operator is equivalent to a 
multiplication operator by means of  the Zak transform. 

Lernma 4.2. Let gELS(R), andsuppose that a b = l / N  for some a, b>0,  NEZ, 
N>0 .  Let G(t, N-1 O9)=~j=0 [Zog(t, Og--j/N)[ 2. The Gabor frame operator S is given 
by S f = Z ~ I G Z o f  for fC6a(R) where the operator G stands for multiplication by 
G(t, 09). Consequently, (g, a, b) generates a frame i f  and only i f  there exist con- 
stants A, B>O such that 

08) A ~ Z "-xj=0 IZog(t, co-j lN)I  2 <= B 

for almost all (t, o9)~[0, 1] 3. 

Proof. Denote by ( - ,  �9 ) the usual inner product on Lz[0, 1] 2, and let Gj(t, 09)= 
Zog(t, o - j / N ) ,  for j = 0 ,  1, ..., N -  1. Assume fESe(R). Applying (17), the unit- 
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arity of  

Z o S f =  

(19) 
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Z, and Fourier series on Lz[0, 1] 2, 

Z . , . ,  (Za f ,  Z .  (E,.b T.o g)) Zo (E=b T.~ g) 

~ . ,  ,. ( Z a f  Z .  g (t', o9' - m/N),  e 2~i(m''/N -"~')) e z"itm'/N- ~)  Z~ g (t, 09 - re~N) 

~ N - t  e2nijt/N G.rt 09) S" /7" r ,,-2~ijt'/N ~_ e2xi(kt'-no'))e2=i(kt-no) 
j=0  J~. ) d.,Jn, k \ L ~ a J  w ~ j )  

= ~ j ~ o  1 e 2"'j'/N Gy (t, 09) Zo f ( t ,  09) e -  2.i.~,/N Gj (t, 09) 

= Zo f ( t ,  09) ~ j - ~  IZog(t, co- j /N)IZ  II 

Lemma 4.3. Let g, fESe(R).  Then 

IIflI~:o<L.) = 

2.,.f,0,,~= ftom, e-=='~' Zg(  t - x, 09 -y )  Z f ( t, 09)e ̀ ' i("'--~ dt d09" dx dy. 

Proof  First observe that Z(EyTxg)(t ,  o)=e2"~Y'Zg(t--x, 09--y). 
unitary, we obtain 

Ilfl[~oL. 

Since Z is 

= f . ,  I<:,E, Txg>:dxdy = f . ,  I<Zf, Z(E. xg)>:dxdy 

= f.,lf o,,,zf(,,09)Zg(t-x,09-y>e--,.,ata09 l, a x +  

= Z...f,o,,l, lf, o,,,,Zf(t, 09)e-'"'"Zg(t-x,o~-Y)e'"""'-'~ I 

Lemma 4.4. Let M(t ,  09) be an absolutely convergent Fourier series on [0, 1] 2, 
that is, M(t ,  09)=Z.,m ]~n,m e2xi(nt+m'') with ] [ml[a=~, ,= [y.,,,[< ~. 

Then for any a>O, the operator SM=Z~XMZa is continuous on Co(LP), 
l ~ p <  ~o and 

(20) [t&~t f llCo L " <= I[M]la I[ f [lco L " . 

Proof Note first that since Co(L p) is invariant under dilation, it suffices to 
consider only the case a = l .  Next observe that for each fixed (x,y)~[0, 1] 2, the 
function 

e-2~ir' Z g ( t -  X, tO - y) Z f  (t, 09) 

is periodic in (t, 09) with period 1. Thus for each (x ,y )  the inner integral in (19) 
is just the Fourier transform of this function at ( - n ,  m). 
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We first show (20) for fESa(R).  We show that for each (x,y)E[0, 1] 2 

(21) ~, ,m ftOill~e-2~tr'Zg(t - x ,  o3-y)M(t ,  o~)Zf(t, a~)e2~i("'-m~)dtdo3 p 

~- IIMI[% ,~,n,m fto, ,, e-Z"tYtZg(t-x' o3-y )Z f ( t ,  o3)eZ"i('-m~ do P. 

This estimate holds because the left hand side is just the p-th power of  the ~,v norm 
of  the Fourier coefficients of  the function 

M(t, o3)e-"-"~Y' Z g ( t -  x, o3-y )Z f ( t ,  o3) 

which is nothing more than the convolution of  ?,,,. with the Fourier coefficients of 

e-2"~y' Zg(t - x, o3 - y ) Z f  (t, co). 

By standard properties of  convolutions, inequality (21) holds for each fixed 
(x, y)C [0, 1]"-. 

Integrating both sides of  (21) over (x, y)E[0, 1]"- gives (20) for f~Sg(R).  By 
the density of  5"(R) in Co(L p) [F], (20) follows. | 

Proof of Lemma 2.1. The function Za/"-(a is smooth and in fact [DG] 

za/2 co)  = 3 

where 0s is the Jacobi theta function defined by 

0s(zlr = 1§ 2 -~"~=a cos (2~kz)e i~'k:. 

1 1 I t  is known that 0s(zlz) has only one zero at z=-~-t-~ ~. Thus, Za/2dp vanishes 
at (1/2, 1/2) and nowhere else in [0, 1] 2 ([R], p. 314ff.). Thus, it is clear that the 
function 

G(t, 09) = IZa/2q~(t, o3)12+ IZa,zq~(t, o3-  l/2)l"- 

is bounded above and away from zero. Thus, by Lemma 4.2, (~b, 1/2, 1) generates 
a frame for L"-(R) and the frame operator is given by Sf=Z~IGZa/2f  

Since S is equivalent to multiplication by G, S~/2f=Z~]Ga/"-Zvj. The 
boundedness of  S and S ~/2 on Co(L p) will follow from Lemma 4.4 and the fact 
that G and G a/2 are absolutely convergent Fourier series. This is true since tk~ 5"(R) 
implies that GCC~*[O, 1] 2. Since G is bounded below, Ga/Z~C**[O, 1] 2. The in- 
vertibility of  S and S aj"- amounts to the assertion that both G -a and G -a/"- are ab- 
solutely convergent Fourier series. This follows from the smoothness of G and 
classical results of  Wiener and Levy ([Zy], Sec. VI.5) on absolutely convergent 
Fourier series. This completes the proof  of  part (a) of  Lemma 2.1. 
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Since f ~  Se if and only if ZfE C ~ [0, 1]~, it is clear f rom the above that S-1/~ ~b = 
Z~]G-I/~Z~/~dpESe(R). To see that  (S-X/2~b) ^ is real-valued, we prove that S-~/~?p 
is even. Now, Z~12S-1/2qb=G-~/2Z1/~dp. Since ~b is even, Zi/~dp(- t , -og)= 
Zv2~b(t, ~o). Also, G ( - t , - ~ o ) = G ( t ,  09) since ~b is even and since the Zak  trans- 
form of  any function is 1-periodic in co. This completes the p roof  of  Lemma 2.1. l 

I t  is clear that  we can extend Theorem 1 and Corollary 2 to a more general 
class of  entire functions on C, e.g., to the spaces 

Ag'~(C) = {F entiere: ( f ( f  IF(x + iy)l'w"(x, y)e-" ' tx '+'"/ '  dx )~/P dy) '/q <~o} 

where w is for example a weight o f  polynomial growth. These spaces are isomorphic 
to coorbit  spaces of  weighted mixed norm spaces. To prove the corresponding version 
of  Theorem 1, it has to be shown that powers of  the frame operator are bounded 
on appropriate coorbit  spaces. The only change occurs in Lemma 4.4 where the multi- 
plier must now satisfy M(t ,~ )=~ , .mY , ,m  e~"'+m~ with ~, .m Ir.,.Ico(n,m)<oo 
and weighted convolution inequalities must now be used. 

As long as the weight co is a Beur l ing- -Domar  weight, e.g., any weight o f  poly- 
nomial growth, the theorem of  Wiener- -Lexv is still applicable and a version of  
Lemma 2.1 holds. The exact details are left to the reader. For  completeness, we 
state the result: The collection {~t.,} o f ( l )  is an unconditional basis for the weighted 
spaces Ag" q (C), 
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