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1. Introduction 

We shall work in real n-space /~n wi th  points x = @1 . . . .  , x,), ~ = (~1 . . . . .  ~-), 
etc., and  shall consider a spl i t t isg of  the  coordinates in R' ,  wri t i~g x ~ (x', x"), 

= (~', ~"), etc., wi th  x . . . .  (x I . . . . .  x.,) C -R "', x" =- (x,,+l . . . . .  x,,+,~,) E R n', where 
n'  and  n" are given positive integers such t h a t  n '  -~ n" = n. This spli t t ing of 
the  coordinates in R" will be kept  t h roughou t  the  paper.  Le t  

D ~ = (2~i) I~l (~x~) ~' . . .  (0xoF ~ , 

where a = (al, �9 �9 �9 , a~) is a mul t iorder  and  [~I = 0 r  - ~  " " " ~- ~Xn. 
Le t  us consider a differential  opera tor  P(D) on R" wi th  constant  coefficients, 

and assume tha t  P(D) is par t ia l ly  hypoel l ipt ic  with respect  to ~' in the sense of 
Gs [2]. ~s i~g  one of the  conditions in [2], tiffs means t h a t  we can 
write 

2~(~) : M ( ~ ' )  + ~ Q~(~")~j (~ ' ) ,  (1) 
j ~ l  

where M is a hypoell ipt ic  polynomial  on R ~" (i.e. we have D~'M(~')/M(~ ') ---> 0 
as I~'l - ~  ~ ,  ~ ' E  R n', for any  n ' -order  o~'v6 0), and  where the  Qj:s and  Mj:s 
are polynomials  such t h a t  each Mj is s t r ic t ly  weaker  than  M (i.e., since M is 
hypoelhpt ic ,  t h a t  Mj(~')/M(~') --~ 0 as I~'[ --~ oo, ~' E R='). We shall also suppose 
t h a t  P is real-valued (it is easily seen t ha t  t hen  the polynomials  M ,  Qj, Mj  can 
all be chosen real), and  t h a t  M(~ ' ) - ->-~-co  as I~ ' I -~ o~, r E R ~' ( then M can 
be chosen positive). 

Now let ~2 be a n o n - e m p t y  open subset  of /~ .  Th en  Po : C0~ 9 ~0 ~-~ P(D)q~ 
is a densely def ined  symmetr ic  l inear mapping  in the  Hi lber t  space L2(~2) of all 
square integrable  funct ions on ~ .  (In L~(~2) we use the  sca la r  p roduc t  (u, v) = 

-=-f~ u(x)v(x)dx and  the  norm []u]l = (u, u)~/2.) Clearly Po need not  be bounded  
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from below. Let A be a seli:adjoint extension in L2(D) of P0- By well-known 
theorems such extensions exist at least if Po is bounded from below, or if P(~) 
is an even function of ~ (rendering the deficiency indices equal). Now A has a 
spectral resolution 

oo  

A = f 4dE(~) 
- -  o 0  

(see e.g. Sz-Nagy [10]), where the E(~) are orthogonal projections in L2(Y2), in- 
creasing with 4 and such tha t  E ( 4 ) - * I  (the identity mapping)as  ~--~-~ oo 
and E(4) --> 0 as 4 -+ -- 0% both in the strong sense. The projections E(4) are 
uniquely determined if we e.g. require the functions 2 ~-> E(4) to be continuous 
to the left. 

Let ~0 E C~(R n') and consider the partial convolution J~(4)u of E(A)u with ~, 
i.e. 

E(2)u = E(A)u ." ~ = E(4)u �9 (8' | q~), 

where 5' is the Dirac &distribution on /~n'. Then J~(2)u is defined as a distri- 
butiort in the set 

where Se is the subset S~ = {0} • supp ~0 of _R n. tg~ is non-empty if supp ~0 ia 

small enough. We are goi~g to prove (theorem 1) that  J~(4)u is in G~(tg~) for 

any real 4, and that  J~(4)u tends, together with its derivatives, rapidly to 0 as 
4 --~ -- oo. The proof will depend on estimates for a fundamental solution of the 
operator P(D) q- 2, which are given in lemma 3 and lemma 4. 

By the Schwartz kernel theorem the projections E(4) are given on C~(D) by 
kernels ex which are distributions on D • D: 

E(4)~v(x) = f e~.(x, y)qz(y)dy (~o e C~(f2)) 
s  

(that is, f a  V(x)E('~)V(x)dx = f ~  • e~.(x, y)v(x)v(y)dxdy if ~0, V C L2(f2)). From theo- 
rem 1 will follow estimates for (the partial convolutions of) the kernels e~. These 
estimates are gNen in theorem 2 and theorem 3. 

f u r t he r  we shall investigate the behaviour as 2--> ~- oo of the partial con- 
volution 

L(x, y) f e~(x', x" ' y" -- -- z", y ,  w")q)(z")~(w")dz"dw" , 

where the integral is taken in the distributional sense. For f~, which is a function 
in C~(~r by one of the statements in theorem 3, we shall prove (theorem 4) 
the following asymptotic relation: 
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L(x, x) = (1 -4- o(1))fo, z(x, x) (2 --> -4- o~), 

where x E Y2~ and f0. x is the function which corresponds to the unique self-adjoint 
realization of P in L2(R ") in the same way as f~ to A. The proof of theorem 4 
also uses the estimate for the fundamental solution of P(D) -4- ~ mentioned above, 
and a result in ~qilsson [8] about the asymptotic behaviour of the function 

e(X) ---- de,  which will enable us to apply a Tauberian argument. 
Since our results depend only on interior estimates, it is clear that  they hold 

as well e.g. for a self-adjoint realization in L2(~9'), where Q' is an arbitrary open 
set containing /2, of any differential operator in ~9', coinciding in /2 with our P.  
And since we only use estimates on R" (and not complex integration) it is easy to 
modify our proof so that  they apply also to naturally corresponding classes of pseudo- 
differential operators 

We should also mention that  results corresponding to ours were proved in Nilsson 
[8] for hypoelliptic differential operators (then, of course, without partial con- 
volution). 

The subject of this paper was suggested to me by  Nils Nilsson. I wish to thank 
him for valuable advice a~d great help during my work. 

2. Estimates for the fundamental solution 

We begin b y  proving two elementary lemmas. 

LE~MA 1. Let M and N be polynomials on R ~" such that M is hypoelliptic 
and N is strictly weaker than M.  Then there are positive constants C and k such 
that 

IN(e')[ < CT-~(1 + [e'[)-k([M(e')l -4- ~) 

for all }' E R n' and all real numbers ~ > 1. 

Proof. Since M is hypoelliptic and N strictly weaker than M we have the 
following estimate: there exist positive constants K and q, with q < 1, such 
that  

IN(e')l _< K(IM(e')I -4- 1)~ (e' r R~ (3) 

Also, there are positive constants K '  and b such that  

[M(e')[ § 1 > K'(1 § le'l) b (e' e Rn') .  (4) 

For these estimates, see e.g. t iSrmander [3] and [4]. By  (3) and (4) we now have, 
for all ~ ' E R  n' and all T > I ,  
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12v(~')l < 
IM(~")] + "~ --  

K(IM(~')[ + 1) (q+:)/? 
[M(~')I + (IM(~:')I +4- 1) (q-~)/2 _~ 

C~(~-~)/2(IM($') ] + 1) (q-l)/2 .~  cT(q-1)/2(]~' I -~ l)b(q-1)/2 " 

(I-Iere and in the sequel C denotes different positive constants.) Takivg k as the 
least of the numbers (1 --q) /2  and b(1 - -q) /2  the lemma is proved. 

LEM~A 2. Let ~ be an open set in R ~ and let T E ~ ' (0 ) ,  that is, T is a distri- 
bution on ~.  Suppose that for any q~ E C~~ ~') with supp ~ contained in a fixed 
compact set F the partial convolution T ," q~ is an essentially bounded function where 
it is naturally defined, i.e. on ~+ defined as in (2), and that for some p ~ 0 we have 

(ess) sup IT *" ~(x)l _< C(T) 7. sup ID~'~I (5) 

for all such functions q~. Let y~ be a given function in C~176 Then, for any relatively 
compact open subset gP' of g2, the restriction S of ~T to gP' is such that S *"q? 
is in L~176 and satisfies (5) for all q~ E C~(R ~") with support in F,  with C(S) : 

I 

AC(T) and, of course, with ~Q~ instead of gP~. Here the number A does not 
depend on T, as long as p remains unchanged. 

Proof. I f  T is a continuous function the partial convolution is given by an 
ordinary integral over /~", and the proof is quite straightforward. The  genera! 
case is proved by regularization. The details will be left for the reader. 

We now come to the main lemmas. 

LEM:v~ 3. Let P be a real partially hypoelliptic polynomial on R n, given by (1) 
with .3I positive. Let ~ be a non-real complex number and let gx denote the temperate 

Co (R ). Then fundamental solution of the operator P(D) + ~. Further, let ~ E co ,. 
the partial convolution gx ," q~ is infinitely differentiable in l~" outside the set S ,  = 
= {0}• ~, and for any multiorder ~, any positive numbers N and L and 
any compact subset K of R"~Sr  we have 

s::p IL)~g~ ."q~(x)I <_ c(l~I -N + lira ~l-~(N)l~l -L) (6) 
K 

for ]~[ ~ 1 ,  I~e ;~ > O, O <  ]Im ~[ < 1 .  Here C is a positive number and b(N) 
is a polynomial in N of degree one with positive coefficients. The constant C may 
depend on q~, N,  L, _K and ~, while b(N) depends only on ~. 

Proof. Let B be a positive definite, homogenous polynomial on R" of degree 
f. Since 
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(where 

( 1 
g~ ~ ~-~ i P(~ + 

~-~ denotes the inverse Fourier transform) we have 

(BD~g,) *"9 = ~-1 B( - -  D) p(~) + ~ ~o(~") , 

~ is the Fourier transform of ~p in where 
estimate the L~-norm of (S( - -  D)~/(P(~) + 2))~(~"). 

I t  suffices to prove that  

B(--  D) d~' < C(1 + I)~([~ + Jim ~[-~(N)I,t[-L) 

(7) 

n" variables only. We are going to 

(~- e R o') (8) 

for some u. For if E is a compact subset of /~n- that  contains supp 9 we have 
for all t > 0 the estimate 

I~"]'T~(~")I -< CF ~ sup ID~vI (~" e R ~) 
I~"l_<p 

with some p > 0 and some constant C~ that  depends on F. Thus by (7) and (8) 

sup ](BD~g~) ," ~(x)[ _< C(l~l - ~  + [ I m  ~l-b<N)I~l -L ~ sup ID~'~I), 

and using lemma 2 with y~(x) = 1/B(x) it follows that  g~ ," ~ is in C*(Rn~S+) 
and satisfies (6). 

We now proceed to prove (8). From the rules of differentiation it follows that  
B(--  D)~/(P(~) + ,~) is a linear combination of terms 

Dr~ �9 DT~(P(~) + ,~) " D~(P(~) § X) � 9  �9 Drf{P(~) § ;~) 
(p(~) + z)f+ , (9) 

where ~ f  I?~l = f. In  order to estimate these terms we first derive some estimates 
from lemma 1. 

Since P is partially hypoellii)tic with respect to ~' we write P on the form 
(1). With ? = (7', ?") and [y] # O we then have 

Dv(P(~) + ~t) = Dr'M(~')Dr"I + ~ D~'Qj(~")Dr'Mj(~ ') 
j = l  

Then  if [h I ~ 1, according to lemma 1, 

IDY(P(~) + ~)t <_ C(1 + l~"l)~ + [~'l)-k(IM(~')l + [X[) 

for some C > O  and a > O ,  
all strictly weaker than M. 

(~ e Rn). 

(~ e R-) ,  (10) 

since D/M(~ ') and D/Mi(~'), j = 1 , . . . ,  r, are 
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We also need to estimate the denominator in (9). We have 

p(~) + 2 = M(~') + 2 + ~ Qj(r (~ e n~) . 
1=1 

Now there exist constants a >  1 and K >  1 such that,  if [2] > 1 ,  

[~,Qjt~")Mj(~')[ < K ( 1  + [~"l)~[2[-k(1 + l~'[)-k([M(~')[ + [2[) (~ e R ' ) .  

This follows from lemma 1 just as above. Then, if l~e 2 > 0, 

IP(~) + 21 > [M(~') + 2] -- K(1 + ]~"])a]2i-k(1 - /  ]~'])-k(IM(~')[ + [~]) > 

>_ (IM(~')I + 121) K(1 + ]~"[)"121-k(1 + 1~'1) -~ . 

From (11) it follows that  if ]2 f > 1 ,  l ~ e 2 > 0 ,  and if we have 

[21( 1 + Ir > (2K(1 + ]~"1)) "/k (12) 

then for some positive constant C 

]P(}) + 2] > C(]M(~')[ + ]2]). (13) 

I f  (12) is not valid we are going to use that  

]P(~) + 21 >~ lira 2I (14) 

for all g and all ~. This is trivial since P(~) is real. 
In  the sequel we will consider ~" as fixed for a while. Let us first s tudy the 

case when (12) is valid. Then it follows from (10) and (13) that  

] D~'(P(~) + 2) I 
Y(~) -}- 2 < C(1 + l~"l)ol21-k(1 + I~']) -~,  i = 1 , . . .  , f ,  (15) 

if  ]7~1=~o and ]2] > 1 ,  1 ~ e 2 > 0 .  We further have 

P(~) + 2 -< c(1 + I~"t)~'l(1 + I~:'1) t~'~ (16) 

ff 1 2 ] > 1 ,  l ~ e 2 > O .  
Let  us now return to the term (9), which we rewrite in the following way: 

Dvo$ ~' Drl(P(~) + 2) D~f(P($) + 2) 
�9 . . . "  (17) 

P(~) + 2 P(~) + 2 P(~) + 2 

Since P is a polynomial this term is different from zero only if lY~] ~ d, 
i =  i . . . . .  f, and [Y0J--< levi, where d is the degree of P.  Let I denote the 
integer part  of ( f -  ]c~[)/d. Then it follows that  if the term (17) is non-zero at 
least l of the numbers 1711 . . . .  , lTj l  are different from zero. Consequently, (17) 
can be majorized by 
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C(1 + I~"[/[tl-k'(1 + I~'[)-k'+l ~'t 

if [ll > 1, l%e l > O. I-[ere a" is a positive constant depending on ~ and f. By  
choosing f large enough we can accomplish that  kl > N and kl - -  l~'l > n '  + 1. 
Then we have 

I B(-- D) p(~) + 

Integrating with respect to 

f B(-- D) 

s~ill supposing that 141 ~ 1, 
(2) is valid. 

0(1 + [~"l/[iI-N(1 + I~ ' i )  - - ' - x  . 

~' we obtain (with a new constant C) 

P(O + 1 d~' < c(1 + l~"l)~ - ~ ,  

I~e ;~ > 0. Here Ax denotes the set in R n' where 

(is) 

Let us now turn to the case when the opposite inequality to (12) is valid. Sinoe 
Ill > 1 we then have I~'I -< (2K(1 + I~"l)) a/k and Ill _< (2K(1 -l- I~"l)) a/u. We 
now use (14) when estimating the denominator. Instead of (15) we then have, 
for I)'il ~e 0 and if Im i # 0, 

§ 2) I c(1 § 
~ 7 - t 2 ~  -< l lml l  , i = l , . . . , f ,  

with some C > 0 and b > 0. Instead of (16) we get, if Im i # 0, 

I Dr~ "a 0(1 @ I~e"l) '" 
:P(~)+;: - <  l lml l  

with some b ' >  0, depending on c~. Hence we can majorize (17) by  C(1 + 
+ ]~"[)b"]ImXl-f-1 for some positive constants C and b", if ]21 > 1, R~X > 
> 0 ,  O <  I Im/ [  < 1. 

When choosing f above so that  kl > N ,  kl  - -  ]~'l ~> n' + 1, it is sufficient 
to let f be a polynomial in N of degree 1 with positive coefficients. Pu t  b(N)  = 

f + 1. Then 

B(--  D) p(~) + i <~ C(1 + l~"l)b"llm ~1 -b(N) 

for some 

Here r(L) 

C >  0. Hence, for some s > 0  and some (new) C > 0  

B(--  D) p(~) + 2 d$' < C(1 + I*"[)'llm 21 -~r _< 
Rtt~'~ A ~ 

< C(1 + [~"[)r(L)[Im 2J--b(N)]I[--L 

is a positive constant depending on L. 

(1:)) 
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Now, adding (18) and (19) we get (8), and the proof is complete. 

L w ~ A  4. Let the ~olynomial P be as in lemma 3 and in addition assume that 
for some m >> 0 (1 § ]~'])~+='+1M($')-1 is bounded outside some compact set in 
R ~'. Then, for Im h # 0, the partial convolution g~ ," qD is in C~(R~), and for 
[o~[ < m and an arbitrary number )L > 0 we have, for some constant C > 0 

sup ID~gx ," q~(x)I <_ C(1 § ]Im hl-xIl[ -z) 
Rrt 

(20) 

if Ih l>~l ,  l ~ e h > o ,  I m h r  

Proof. The proof is done in much the same way as the proof of lemma 3. I-Iow- 
ever, we do not use the polynomial B. Thus, since 

~^ ~,, 
J~ g)~*"q) c-T 1 / ~ ~0( ) 

we start by estimating ~/(P(~) § 2). For the denominator we use the inequalities 
(13) and (14) respectively. When (12) is valid we then have, if [X] > 1 and Re 2 > 0, 

IP(D § Xl ~> CIM(~')i ~> r § I~'[F +'+~ , 

where the last inequality depends on the assumptions about M. Then, if I ~] < m, 

f[ t .,4s 

if th['>__ 1, Re 1 > 0. A~ still denotes the subset of R ~" where (12) holds. 
I f  (12) is not  valid we estimate the denominator by IIm II. Then for some 

c > 0  

Rn~A~ 
_< Cl~"ll~l+*llm hi -1 < C(1 § I~"[)"(L)ilm Al-llhI -L . 

Here q(L) is a positive constant depending on L. 
Adding, multiplying by  [~(~")] and integrating with respect to 

the estimate 
~" we obtain 

P(~) § h d~ _ C(1 § lira hi-lib[ -L) (21) 

ibr some (new) constant C > 0 ,  if 11] > 1, t ~ e h > 0 ,  I m l r  This proves 
that  ~(Dag~ ," 9) is in /fl(R"), thus that  Dag~ *"9 is continuous. We also get 
the estimate (20) from (21). 
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Remark 1. Assume that  the polynomial P is bounded from below. Then we have 
IP(~) -t- Z[ >__ I if ~ is real and large enough. Using this estimate instead of (14) 
in the proof of lemma 3 we get the following estimate: for any multiorder ~, any 
positive number N and any compact subset K of -R"~S~ 

sup ]D~'gx ," ~(x)l < Cl~l -N 
K 

for Z real and large enough. In  the same way we can modify the proof of lemma 4, 
and instead of the estimate (20) get 

sup lD~ga *" ~(x)] < C 
R n  

if 2 is real and large enough. 

_Remark 2. Probably it is possible to prove the estimates of lemma 3 and 4 with 
the last term on the right hand side omitted, though the proof is more complicated. 
Our method also admits of immediate generalization to pseudo-differential operators. 

3. Estimates for the spectral resolution and the spectral kernel 

Let D be a non-empty open subset of /t". I f  ~0 C C| ~ /, let as before the 
set D~ be defined by  (2). 

Let  P be a real-valued polynomial on -R" which is partially hypoelliptic with 
respect to 2'. Suppose that  M ( ~ ' ) - ~ - k  oo as [~'I-~ 0% where M is the hypo- 
elliptic polynomial in (1). 

Let  A be a self-adjoint realization in L2(f2) of the operator P(D). Let 

oo 

A ~- f ~dE(2) 
--00 

be the spectral resolution of A, where we suppose that  ~ ~-> E(~) is continuous 
to the left. We then have the following theorem. 

T~EOgEM 1. For every real 2 and every u E L~(X2) the function 

= E( )u ," 

is in C+([2~). To any number N ~ O, any multi-order o~ and any compact subset 
K of D+ there are positive numbers C and a, a independent of N, such that 

/c(l l + a)-Nl[ull for 2 < 0 
sup ID@(X)u(x)I < -- (22) 
K -- [ C(2 -t- 1)allu[] for 2 > 0 .  
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Proof. We shall follow the method of  Nilsson ([7], theorem 3). Pu t  B----A r, 
where r E Z+. Then B is a self-adjoint realization of the operator P(D) ~. Let 

o0 

B = f  dEr(a) 
- - o o  

be the spectral resolution of B. Then E(2) ~ E,(2") if  r is odd, which we assume 
from now on in this proof. 

I t  is easily shown by  means of (1) that  if P(~) is partially hypoclliptic with 
respect to ~', then so is P(~)" when r C Z+. 1Vforeover, the hypoelliptic polynomial 
corresponding to p(~)r is M(~') ~, where M(~') is the hypoelliptie polynomial 
corresponding to P(~). Thus the conditions of lemma 4 are fulfilled for P(~)" 
if we only take r large enough. In  the sequel we keep r fixed, and apply lemma 3 
and lemma 4 to P(~)" instead of P(~). 

1Now let a be a point in the open set D~. Denote, when # is non-real, by  gr, +~ 
the temperate fundamental solution of P(D)" + #. We have the following identity: 
if u is in the domain DB of B then 

for all x in a neighbourhood 0 .  of a. Here ~p C C~(~9) and ~ ( y ) =  1 for all 
y in t9 with the property that  x --  y E S~ for all x C 0a (such a function exists 
if 0a is small enough). Further  

h,, ,(x, y) ---- Yr., *" ~(x --  y) (24) 

and Br, ~(x, y) -~ (~p(y)P(-- D~)" -- P(- -  D~)'W(y))h,. ~(x, y) .  (25) 

This identi ty may  be proved b y  a simple transcription of the identity 

(yu) ." ~ = ((B ~- #)yu) * (gr,. *" ~) (u e %'(~9)). 

The details will be omitted. A corresponding identity without the partial convolution 
can be found e.g. in l~ilsson [6]. 

Let  F :  and F~ be open relatively compact subsets of D such that  

F:  D supp ~ .  

Let  _F 8 be an open relatively compact subset of D+ such that  P3 C 0,. Then the 
identi ty (23) is "r for x C/~.  l~ow Br, ,(x, y)--~ 0 when y is outside some 
compact subset of F:~_F~. Furthermore, if x E -~'3 and y belongs to this compact 
subset of F:~F~. then x --  y belongs to a compact subset of R ~ S +  if only F~ 
is chosen large enough. Thus, using lemma 3 and the notations there, we have for 
arbitrary N ~ 0  and L ~ 0  
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sup [Br. , (x ,  y)[ _< C(I#[ -N -[- IIm ~l-b(~'l~l -~) (26) 
xE Fa 
yEF~ 

if l/~l_>X, t ~ e ~ > o ,  0 < [ I m # [ _ _ < l .  
In the same way  it follows from lemma 4 that  for arbitrary L > 0 

sup lhr,,,(x, Y)I ~< C(1 -}- ilm ~I-11~1 -L) (27)  
xE~9 
yE~fi ~ 

for I#l ~ 1 ,  R e # > 0 ,  I m # ~ = 0 .  Further,  B~,~ and h~.~ are continuous. 
Using the Cauchy-Schwarz' inequality and the estimates (26) and (27) in the 

identity (23) we obtain that  u , " q  is continuous and 

[u ." ~(x)[ _< ilBr ")H" [lull § Ilh~,.(x, ")~l[" ll(B § <_ (28) 

_< c(l~l -~  + lira ~l-~(~)l~i-L)liuii + C(1 + lira ~I-~I~i-L)II(B + ~)ull (x C F~), 

where the constant C does not depend on x. 
We now introduce the spaces H,(~t~, 2~) defined for 21 < ~z by  

H~(Zl, 22) = (E,(~u) - -  E,(al))L~(T2). (29} 

Let 2 be a real number less than -- 1, and suppose tha~ f E H~(~ - -  s, 2), where 
s is a number between 0 and 1 to be chosen later. We then have f E D, .  l~'urther- 
m o r e  

( .  + .)z = f (v -[- # )dE~(v ) f  

so that  
/ ,  

ll(B +/x)f[[ 2 = ] I~ -4- ~12d[IE,(v)fli 2 <_ (lSt + /x l  -A- s)2iif[I ~- 

Hence by (28) 

sup If*" ~o(x) l < 
xEF~ 

< ~(1~,1 -~  + jim ~l-b<~)l~,l -L + IZ + ~'l + s + (Ix + ~'1 + e)llm ~l-l[/~l-L)l[fll 

if I~I > 1, Re ~ > o, o < [ I m  #I ~< 1. Taking # = -- ~ -4- is we have 

sup if*" w(x)t < ~(lal-~" + Cb(N)lal -L + 28 + 2la[-L)l[f]l (30} 
xe  F, 

if 1 < - - 1 .  
Now let f E H r ( ~ - -  ks,~), k EZ+.  Then f ~ f l  + - - -  ~-fk, where 

f j  E Hr(,~ - - j s ,  ). - -  ( j  - -  1)e) for j ~ 1 . . . . .  k. These spaces are all  orthogonal 
to each other. Thus we get by  (30) and the Cauchy-Schwarz' inequality 



~0 L)~I~S - CI-II~ISTEI~ BOIERS 

k 

sup I f , "  ~(x)l < C(]A[ -N  § s-b(N)[t[ -L § 2e + 211[ -L) ~ II~l[ -< 
xeF~ j= l  

< C([AI-N + ~-~(N)IA]-~ § 2c § 21A]-L)kx/2llfi] 

if 2 < - 1 .  
We  now choose e = 12[ - ~  and k equal to the  integral pa r t  of  2IX[ N. I f  we 

choose the number  L large enough we then have for some posit ive C 

sup I f , "  q(x)[ < C[21-Jvz21ffll (31) 
xeF, 

i f  2 is large and negative.  
Since ke > 1 for large ]21 it follows tha t  (31) is valid for all f 6 H.(2 - -  1, 2), 

if  2 is large and negat ive.  
Now let u 6 L2(~9). Then (Er(2 - -  ~) --  Er(2 --  v --  1))u 6 H~(2 --  v --  1, 2 --  v) 

for all natural numbers  v. We have 

E, (2)u  = ~ (E~(2 - -  v) - -  E,(2 - -  ~ - -  1))u,  
v = 0  

the series converging strongly. Hence  

Er()Ou *" cf = ~ (Er( t  - -  ~,) - -  Er( i  ~ - -  1))u *" ~v. 

~By (31) we thus have  tha t  E~(2)u ,"~0 is continuous and 

sup ]E,(A)u ," ~(x)[ _< C ~ 1i -- ~I-N/2l[ull _< Cl~[-(~'-+/~llull, 
xqF8 v = 0  

if  2 is large and negative. 
Since E( t )  = E~(,Y) we f inal ly have 

sup < CtXl-'<N=+/Zllulf. 
xeF, 

I f  K is a compact  subset  of  zQ we use the  Borel-Lebesgue covering theorem 

to  obta in  the  same est imate  for supx [E(l)u(x)I. Since r ( N  - -  4)/2 can be made  
arbi t rar i ly  large b y  choosing N large enough, we have  then proved  the est imate  
(22) for  t large and  negat ive  in the  case [c~ l = 0. Howeve r  we can differentiate 
(in the  distr ibution sense) in the  iden t i ty  (23), thus  obtaining an analogous iden t i ty  

for D~u ,"  % I~easoning as above  we can then  prove tha t  D~/~(2)u is continuous 
in f2~ and satisfies an inequal i ty  

sup __< cImI- iI ll e (32) 
K 

for  all 2 _< some 10 (depending on ~ and  N). 

To est imate  D a E ( i ) u  also when 2 is not  large and negat ive we use lemma 4 
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and the (differentiated) identity (23) with a fixed fundamental  solution g~,~ to 
derive the following a priori estimate: for every multi-order ~ and every compact 
subset K of Dv there exists a number C such that ,  if r > ro(~ ) 

sup ID"v *" ~v(x) l < C(IIP~vtl + IIvII) (33) 
K 

for all v E L2(g2) such that  P v  e L2(O). We also get that  then D% *" 9 is con- 
tinuous in t9~. I f  v E//1(20, 2) = H~(2~o, 2~) with 2 > 20 and 2o defined as in 
(32) we have P v  = Bv ~ L2(g2). Thus D% *" q~ is continuous in Y2, for any 
and satisfies 

sup ID% ," ~(x)[ < C([[BvIi + t[v[I) ~< C(12"1 + 12~1 + ~)ilvll < C(l~[" + 1)[[vl] �9 (34) 
K 

Writing /~(Z)u ~ ~](20)u + (E(X) -- E(20))u and applying (32) to the first term 

and (34) to the last we get that  D~J~(2)u is continuous for any real 2 and 

satisfies (22). Of course, it now also follows that  E(~)u is in C~(D~). The 
theorem is proved. 

I t  follows from the Schwartz kernel theorem t h a t  for any real 2 the projection 
E(2) is given on C~(~9) by  a kernel % being a distribution on t9• 

E(2)u(x) = f q(x, y)u(y)dy (u e C~(~9)), 
t~ 

where this formnla, of course, is taken in the distributional sense. Since E(~) is 
selfadjoint ex is Hermitian. We now give two results on the (partial) regularity 
of q and on the behaviour of q as ~ - + - - m  and as ~ - + +  m. 

T I ~ , O l ~  2. Let ~ E C~(R ~') and put 

_F~,(x, y) = q(., y) ," ~v(x) = f e~.(x', x" " -- z , y)9(z")dz" , 

~z is thus a distribution on g2+ • ~.  Then, for any multiorder ~ and any real 2, 
D~F~ can be chosen as a measurable function _F~. a on Dr X g2 such that for any 
x e ~ the fu~wtion tz~., o~(x, .) is in L2(~) and depends continuously on x in the 
if-norm, and such that 

D~E(~)u(x) f ~'~, ~(x, y)u(y)dy. (35) 

Further, to any compact subset K of f2v, any multi-order ~ and any number N > 0 
there are numbers C and a, a not depending on N, such that 

[ C(]),] + 1) -N (;t < O) 
sup ]lFa, a(x, ")]1 < { -- (36) 
~eK - t C ( z  + 1) ~ (z > o ) .  
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Proof. Consider for f ixed 4, ~ and  x the  mapping 

L2(zg) ~ u ~ D~E(4)u(x) E C . 

B y  the  representat ion theorem for Hi lber t  spaces and the  est imates of  theorem 1 
it follows immedia te ly  tha t  to any  4, c~ and x there  is a kernel /~x, ~(x, .) satisfying 

(35) and  (36). Es t imat ing  DaE(4 )u (x ) -  DaE(4)u(z) with the  mean  value theo- 
rem and the est imates of  theorem 1, and then again using the representa t ion 
theorem for Hi lber t  spaces, it follows tha t  Fx, a(x, .) is a continuous funct ion of  
x in the  L~(~Q)-norm. E.g. b y  making  a sub-division of  /2~ into suitable small 
sets and  approximat ing the funct ion x ~-> Fx, ~(x, .) wi th  a funct ion constant  on 
these sets, it follows tha t  Fx, a can be t aken  as a measurable  funct ion on $2v X ~9 
in such a w a y  tha t  (35) and (36) still hold for every  x E Y2r Since clearly /)~Fx 
gives the  same mapping  as F~, a, though in the  dis t r ibut ional  sense, it also follows 
tha t  /~, ~ is a representa t ive  of  the  dis t r ibut ion D~F~. 

THv, O~]~  3. Let cf E C~(R ~') and put  

f , 
f~(x, y) -~ e~.(x', x" -- z", y', y" -- w")q~(z")qD(w")dz"dw" , 

defining f~ as a distribution on [2~ X ~ ,  which is clearly Hermitian since ex is. 
Then, for any real 4, f~ is in C~(z9~ X [2q J, and to any compact subset K of Y2~ x t9v, 
any multi-orders ~ and fi, and any number 2( > 0 there are numbers C and a, a 
not depending on IV, such that 

{ C(l~t I -~- 1) -N (it ~ 0) 
supK ID~nZxf~(x' y)[ ~- C(~ -~ 1)" (4 ~ O). (37) 

Proof. Let  H~(--  oo, 2) and H1(4, ~u oo) be defined b y  (29). I f  F~. ~ is defined 

as in theorem 2 we have tha t  F~,~(x, -) E / /1 ( - -  oo, 4) for every  x E Y2~, since 

f F~, ~(x, y)u(y)dy = D~F.(2)u(x) -~ 0 

for every  u E//1(4,  ~- oo). Hence  b y  theorem 1 we have ~'x, ~(x, ") ."  ~ E C~(t9r . 
I t  also follows from theorem 1 and theorem 2 tha t  for a ny  mult i -order  ~ the  
function D~(F~. a(x, .) ." ~) depends cont inuously on x E ~9 in the  uniform norm. 
Hence  the function f;. ,a.~(x,y)~D~(Fx,~(x, .)*"~)(y) is continuous on ~9~Xzg~. 
F rom its definit ion it is easily seen to be a representa t ive  of  D~D~fx, and from 

Y 

the  theorems 1 and 2 we get, since Fx, a(x, . )E  HI ( - -  oo, 4), the  est imate (37). 
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4. An asymptotic result for the spectral kernel 

L ~ M ~  5. Let the polynomial P be as in lemma 4, and assume in addition that 
it is bounded from below. Let q~ E C~(R ~') and put  

f f 1 I~(~")1= d~ and g(2)= r(~) = Pg:) + 2% .M(~') + 2% d~:' 

for 2% sufficiently large. Then we have 

r (2)  = (1 + o(1))g(2%) f I~(x")l~dx " 
J 

(2% ~ + o~) . 

Proof. Using the representation (1) we have 

r(~) @ 2 = M(~') -}- 2% -J- ~ Qj(~")Mj(~e'). 
j = l  

By lemma 1 there exist positive numbers a, /c and C such tha t  

r 
Q ,, , f~,, ]~ j(~)Mj(~)[ ~ C ( l +  I)a2%ik(]-] - I~ ' l ) -k ( / ($ ' )+  2%) (~:~R")  

j= l  

if 2% > 1. Hence, for any s > 0, the inequality 

(1 -- s)(M(8') -[- 2) < P(6:) + 2% < (1 -1- e)(M(8') -I- 2%) (38) 

is valid if C(1 + I~"l) ~ < 2%~ or if C(1 + I~"l)" < (1 + I~'1)~. 
Let us first consider the case when C(1 + [~"l)" < 2%ke. Then we have by (38) 

that 

f 1 1 f i 1 ( 
p(~) + 2% d~' < 1 - ~ M(~') + 2% d~' - -  1 ~  g(2) = 1 + g(2%) 

and analogously 

Thus 

( P ( ~ ) + 2 d ~ : ' >  1 - -  l + e  g(2%)" 

1 - -  1 + e g(2%) I~(~") 12d~ " ~ p ~  ~ 2% d~ < 
B~, e /V d x B~, e 

< 1 + ~ g(2%) I~(~")Pd~", 
B]~, e 

(39) 

where Bz, ~ denotes the subset of /~" where C(1 + [~"[)" < 2%~e. 
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We now let C(1 + I~"I) ~ > 2%. Since P is bounded from below we have 

P ( ~ ) +  2 > 1 ($C_R =) (40) 

if ~ is large enough. Splitting the integral in two and using (38) and (40) respectively 
we get for some C' and s > O  

o < p(~) + ;~ d~' __< 

1 f / --< l~- -e  M(~') - /  2. d~:' + 1 d~ e' < 
c(1 + i,~-i),, < (1 + l,'l)k, r (i+Wl)t% 

1 
<-- 1 - -  e C' + C'e- ' (1  @ I~"l)" <~ 3C'e-'(1 + I~:"])" 

if e < �89 and if 2 is large enough. Multiplying by [~(~")12 and integrating we get 

0 -~< ~f  P(~)I~(~")Ie@ 2 _< 3c,e  _f (1-~-]~"])asl~(~")]2d~"< 

Trivially, g ( 2 ) >  K2 -I for some positive K. Thus, if we choose 
we get, adding (39) and (41), 

f d~ = (t + o(a)) g(~) ] f~(~")I~dr ' (~ -~ + ~ ) .  
i~(~") Y F 

P(~) + , 2  

We now use Planeherel's theorem on the integral to the right, and the proof is 
complete. 

Let us further prove the following lemma about the functions fx and Fx from 
theorems 2 and 3, both defined using the same function 9 C Cg(Rn"). 

Lv~MMA 6. For any x E t2r and any real 2 the number f~(x, x) is non-negative 
and increases with .,%. We also have 

fax, x) = ilrAx, ")li ~ (42) 

(where Fx denotes the representative Fx. o of F~ mentioned in theorem 2). Further, 
for any point (x, y) in t2~xY2~ the function 2~-->fx(x, y) is locally of bounded 
variation and for any real interval I we have 

var fz(x, Y) ~< (var A(x, x))l/2( vat  fz(Y, y))1/2 . (43) 
I I I 
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Proof. (Cf. Bergendal [1], lemma 1.2.2. and 1.2.1.) Let 2 and # be real 
numbers with 2 < # and put  E~,, = E(#) -- E(A) and correspondingly for F~, 

and f~. Since F~,,(x, -) e H{A, #) we have E~, ,Fz,,(x, .) ~- 2'~, ,(x, ") . Taking 
the partial convolution with ~ in the y"-variables we get by  (35), since 
A(x, y) -- r (x, .) ," "4(y), 

f F~.,,(y, z)dz = y) (44) &Ax,  @ 

Taking y ~ x we get (42) and see immediately that  fx(x, x) is non-negative and 
increases with 2. 

We now consider an arbitrary subdivision of the interval I ,  and apply (44) 
to every subinterval. ~sing Cauchy's and Schwarz' inequalities we then get (43). 
The lemma is proved. 

Now let B ~ A', where r is an even integer ~ 0. Thus B is a positive self- 
adjoint operator in L2(Y2). Let  E,(~), e,,~(x, y ) , . . ,  correspond to B as E(2), 
ez(x, y) . . . .  to A. I t  follows from theorem 3, since f,,z~ ~--f~ - - f - z ,  that  if r is 
sufficiently large then to any compact subset K of Y2r • f2~ there is a number C 
such that 

sup If.. z(x, y)[ < C(2 § 1)v2 (Z > o) . (45} 
K 

When # ~ 0 ,  put  

f df.. ~(x, y) 
7r..(x, y) = A + # (46) 

From (45) and theorem 3 it follows b y  an integration b y  parts that  y..,, is a con- 
tinuous function on tP~• . Further  y. , .  has the property that  

((B + #)-l(u ," ~)) ," q~(x) z f y,,,(x, y)u(y)dy (u e C~(Y2~)) , (47) 

where ~(x")= q~(--x"). To see this we only have to approximate the Stieltjes 
integral in (46) with convenient l~iemann sums, and use the a priori estimate (33) 
to estimate the error of the left hand side in the approximation. 

Let us now investigate the asymptotic behaviour of  ~,.,(x, x) as # - >  + oo. 
We shall then compare i t  with y0,r..(x, x), where ~0,~,. is the function 

f dfo,~.~(x, Y) 
Yo,., ~(x, y) = A -~ /~ 

/-Iere f0,~.~ . . . . .  correspond to the unique realization in L2(R ~) of P(D) ~ as 
f,. ~ . . . .  correspond to B, B y  a Fourier transformation we find that  
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and  

/ -  
fo,,, x(x, y) : ] I~(~")12 exp (2~ri<x -- y, ~>)d~ 

P(O ~ _< i 

f I~(~")1 ~ exp (2~i<x - y ,  ~>) 
Yo,.,~,( x, Y) d~ 

J 
o 

Thus  Y0,...(x, y) = g . , .  *" g(x --  y), where g~, ~ is the temperate  fundamenta l  
solur of  the  operator  P(D) ~ § #, which we have es t imated in lemma 3 and  
4 (ef. remark  1), and where g = ~ *" ~ E C~(R'). 

Let  aE~2v and  let %0EC~~ be real and such tha t  %0(y)= 1 for y in a 
neighbourhood of the set a ~ S~, where S+ = { 0 } •  Define /'~,s b y  

r.. .(~, .) = (B + ~)-~B~,,.(~, .) + ~h~,,,(z, .),  (ds) 

where h~,. and  B . . .  are defined by  (24) and (25). Then 

((B § #)-lu) ." q~(x) = f F~, ~.(x, y)u(y)dy (u E C~(/2)) (49) 

We also have 

r . . . (x ,  ") = r: , . (z ,  ") = r . , . ( z ,  .) ." ~ .  

r0,., . (x,  .) - -  h, . . (x ,  .) , "  ~ .  (51) 

We are now going to est imate the te rm (B § ~u)-lB,,.(x, .) in (48). Because 
o f l e m m a  3 B . . .  is in C~@•  where w is some neighbourhood of a. Furgher,  
for any  number  N > 0, 

lIB,.,.(x, ")l[ = 0(1)#  -N (/~--+ § ~ )  (52) 

uniformly  in some neighbourhood of a. Since, when # > 0, (B + g)-I  is a bounded 
operator  on L2(~2) wi th  norm < #-~, we get wi th  arb i t ra ry  N > 0 

(50) 

Comparing this wi th  (47) we f ind  t h a t  

when x is close to a. This is a simple consequence of the  iden t i ty  (23). (Cf. Nilsson 

Is] . )  
Since g . , . . "  ~ is in C~~ by  lemma 3, i t  follows tha t  B . , .  is in C~(co • 

where co is some neighbourhood of a. I t  easily follows t h a t  /~,,.(x, ") is a con- 
t inuous  funct ion of  x E ~o in the L2(f2)-norm, and  further ,  t h a t  F . , .  can be chosen 
as a measurable function on ~o •  such tha t  (49) still holds for every x close to 
a. We shall assume t h a t  F . , .  is chosen in this way. 

Now pu t  y~,.(x, y) --~ /~,, .(x, .) ."  ~(y). F rom (49) it  follows t h a t  

((B § ." ~)) ." q~(x) = f y:, .(x, y)u(y)dy (u E C~(D+)). 
d 
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I[(B + #)-iBm, ~(x, ")11 = 0(1)# -N (#--> -4- co) (53) 

uni formly in some neighbourhood of a. lJsing the a priori es t imate  (33) we get 
from (52) and (53) tha t  (B § #)-IB., ~(x, ") ."  ~(y) is continuous in the  pair  (x, y) 
on ooXO~ and for any  N > 0 satisfies 

I(B § .) *"~(Y)I = 0(1)/* - ~  (/~--> § co) 

uniformly on compact  subsets  of ~o • zq~. I t  now follows from (48), (50) and (51) 
tha t  for any  N > 0 

tYr,.(x, x) - -  70,., .(x, x) I = 0(1)/, - x  (tt --> § 0o) 

when x is close to a. Since clearly 70,.,.(a, a) >_ C# -~ for some positive constant  
C, it follows tha t  

r.,.(a, a) = (1 + o(U)~0.~, Aa, a) (~ -+ + ca). (54) 

Consider the functions 

f f e,(a) f e,(2) = d~' and g~(#) = ~ § # -- M(~ 'y  q-/x 
M(gK <- ~. 

From lemma 5 we know tha t  

d ~ '  �9 

f 
7o, r, .(  a, a) = (1 + o(U)g,(~) J I~(x")l~dx " (~---> + ~)  . (55) 

We now ttse a Tauber ian  theorem for the  Stieltjes t ransform of Keldy~ [5] (for 
the  formulat ion see e.g. Salander [9]). I t  follows from theorem 1 in Nilsson [8] that ,  
if r is large enough, the  funct ion e, satisfies the  Tauber ian  condit ion of Keldy~'s 
theorem, e.g. tha t  

d 

0 <  

c < l ,  

er(~) 

with a constant  when 
(46) of 7r.., we conclude from (54) and (55) tha t  

f~, z(a, a) ~ (1 § o(1))f0, r,x(a , a) = (1 § o(1))e~(A)f  [cf(x")lUdx " 

We now want  to re turn  to A from B = A  r. B u t  when 

A is sufficiently large. Thus, using the definit ion 

( 4 - + §  ~ ) .  (56) 

> 0 we have 

L,  z (  x, x) = ,fx(x, x) - - f_~.(x ,  x) , (57) 

and analogously for f0, r, z and er(A) (if we modify  our d~finition of the spectral  
resolutions {E(A)} and {E0(A)}, now requiring them to be cont inuous to the  r ight  
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when ~ ~ 0, which obviously  does not  affect our previous results). F rom (56) and 
(57) and theorem 3 we get  the  following result.  

THEOREM 4. We have for x E ~ 

f~(x, x) = (1 q- o(1))f0 ' ~.(x, x) -= (1 -t- o(1))e(~) f ]~(x")]~dx" (~ --> § ~) J 

d 
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