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1. Introduection

We shall work in real n-space E" with points x = (xy, ..., %n), § = (&, .. ., &),
etc., and shall consider a splitting of the coordinates in R", writing o = (2, 2"),
£ = (¢,8&), ete., with &’ = (2, ..., 2,) €R”, 2" = (Xpyy1 - - - » Ty ynr) € R”, Where

n' and n" are given positive integers such that »’ -+ n” = n. This splitting of
the coordinates in R* will be kept throughout the paper. Let

el

o Nl
D= (2ni) ™ s (aayn

where o = (%, ..., o) is a multiorder and |x] =0y + ... + &n.

Let us consider a differential operator P(D) on R* with constant coefficients,
and assume that P(D) is partially hypoelliptic with respect to &' in the sense of
Garding-Malgrange [2]. Using one of the conditions in [2], this means that we can
write

P = M) + 3 QENUE) (1)

where M is a hypoelliptic polynomial on R (i.e. we have D*M(&')/M(E") — 0
as |&'|— oo, & €R™, for any w'-order «’ # 0), and where the Qs and M;s
are polynomials such that each M; is strictly weaker than M (i.e., since M is
hypoelliptic, that M;(&)/M (') — 0 as |&'| — o0, & € R™). We shall also suppose
that P is real-valued (it is easily seen that then the polynomials M, @;, M; can
all be chosen real), and that M(¢') — 4+ « as [§'|— oo, & € RY (then M can
be chosen positive).

Now let Q be a non-empty open subset of R*. Then P,:C05(2)2 ¢ P(D)y
is a densely defined symmetric linear mapping in the Hilbert space L* Q) of all
square integrable functions on Q. (In L*£2) we use the scalar product (u,v) =

= f o, u@)v(@)de and the norm |ju]| = (u, w)"2) Clearly P, need not be bounded
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from below. Let A be a self-adjoint extension in I*2) of P, By well-known
theorems such extensions exist at least if P, is bounded from below, or if P(&)
is an even function of & (rendering the deficiency indices equal). Now A has a
spectral resolution

4= f AdE(2)

(see e.g. Sz-Nagy [10]), where the E(A) are orthogonal projections in L*(£), in-
creasing with 4 and such that E(1)-— I (the identity mapping) as A— + oo
and E(1) -0 as A—> — oo, both in the strong sense. The projections E(1) are
uniquely determined if we e.g. require the functions 2Ar> E(1) to be continuous
to the left. 5

Let ¢ € OF(R™) and consider the partial convolution E(A)u of E(A)u with ¢,
ie.

E(yu = EQyu +" ¢ = E(dyu + (8’ @ @),
where ¢’ is the Dirac §-distribution on R™. Then E~(l)u is defined as a distri-

bution in the set
Q, = C(CQ+S¢) (2)

where S, is the subset S, = {0}Xxsuppg¢ of R 2,
small enough. We are going to prove (theorem 1) that E(A)u is in C*(2,) for

is non-empty if supp ¢ is

any real 1, and that E(l)u tends, together with its derivatives, rapidly to 0 as
A— — oo. The proof will depend on estimates for a fundamental solution of the
operator P(D) 4 A, which are given in lemma 3 and lemma 4.

By the Schwartz kernel theorem the projections E(A) are given on Cp(£2) by
kernels e, which are distributions on 02X £2:

E(Dp(z) = f oo ey (p €CRQ)

Q

(that is, fg plx) (D) p(x)de = fgxg e,{x, Y)p(@)p(y)dedy if @, p € L*(£2)). From theo-
rem 1 will follow estimates for (the partial convolutions of) the kernels e,. These
estimates are given in theorem 2 and theorem 3.

Further we shall investigate the behaviour as 41— + oo of the partial con-
volution

[z, y) = f e, 2" — 2"y, Yy — w e ew")d2"dw"

where the integral is taken in the distributional sense. For f;, which is a function
in 0*(2,x82,) by one of the statements in theorem 3, we shall prove (theorem 4)
the following asymptotic relation:
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file, z) = (L + o))y, s (@, @) (A—+ ),

where x € 2, and f, , is the function which corresponds to the unique self-adjoint
realization of P in I2*R") in the same way as f, to 4. The proof of theorem 4
also uses the estimate for the fundamental solution of P(D) -+ 4 mentioned above,
and a result in Nilsson [8] about the asymptotic behaviour of the function
e(l) = f m<i @6, which will enable us to apply a Tauberian argument.

Since our results depend only on interior estimates, it is clear that they hold
as well e.g. for a self-adjoint realization in I2(Q"), where £’ is an arbitrary open
set containing £, of any differential operator in £’, coinciding in 2 with our P.
And since we only use estimates on R (and not complex integration) it is easy to
modify our proof so that they apply also to naturally corresponding classes of pseudo-
differential operators

We should also mention that results corresponding to ours were proved in Nilsson
[8] for hypoelliptic differential operators (then, of course, without partial con-
volution).

The subject of this paper was suggested to me by Nils Nilsson. I wish to thank
him for valuable advice and great help during my work.

2. Estimates for the fundamental solution
We begin by proving two elementary lemmas.

Levma 1. Let M aend N be polynomials on R such that M is hypoelliptic
and N is sirictly weaker than M. Then there are positive constants C and k such
that

IV(&)] < Cv~* 1 + |E)H(ME)] + 7)

Jor all & € R” and oll real numbers 7 > 1.

Proof. Since M is hypoelliptic and N strictly weaker than M we have the
following estimate: there exist positive constants K and ¢, with ¢ < 1, such
that

INE)| < K(ME)+ 12 (FE€RT). (3)
Also, there are positive constants K’ and b such that
LE)+ 1= K14 &) (¢ €RY). (4)

For these estimates, see e.g. Hormander [3] and [4]. By (3) and (4) we now have,
for all & €R™ and all 7 >1,
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|V (Y] K(M(&)| + LyatDr
W@+~ ME)

< 01(q_1)/2(|M(£')| 4+ 1)eD2 < QD1 4 1)

(Mg + e D2 <

(Here and in the sequel C denotes different positive constants.) Taking k as the
least of the numbers (1 — ¢)/2 and b(1 — ¢)/2 the lemma is proved.

LEMMA 2. Let 2 be an open set in R* and let T € D'(Q), that is, T s a distri-
bution on £. Suppose that for any ¢ € CX(R™) with supp ¢ contained in @ fized
compact set F the partial convolution T " ¢ is an essentially bounded function where
it is naturally defined, i.e. on 2, defined as in (2), and that for some p > 0 we have

(ess) Sup 7+ @) < OT) 3 sup |D¥g| (3)

@ le"|<p

for all such functions @. Let y be a given function in C*(2). Then, for any relatively
compact open subset Q' of Q, the restriction S of T to ' is such that 8 +" ¢
is in L™(2) and satisfies (5) for all ¢ € CF(R™) with support in F, with C(S) =
= AC(T) and, of course, with .Q;, instead of £, Here the number A does not
depend on T, as long as p remains unchanged.

Proof. If T is a continuous function the partial convolution is given by an
ordinary integral over R*, and the proof is quite straightforward. The general
case is proved by regularization. The details will be left for the reader.

We now come to the main lemmas.

LemmA 3. Let P be a real partially hypoelliptic polynomial on R, given by (1}
with M positive. Let A be a non-real complex number and let g, denote the temperate
fundamental solution of the operator P(D) - A. Further, let ¢ € OF(B™). Then
the partial convolution g, " ¢ is infinitely differentiable in R" outside the set S, =
= {0} Xsupp @, and for any multiorder «, any positive numbers N and L and
any compact subset K of B*\S, we have

sup [D%; #" g(@)] < 047N + [Im 2]7"M|2]7%) (6)
K
for 1Al =1, ReA>0, 0<|[ImA| <1. Here C is a positive number and b(N)

is a polynomial tn N of degree one with positive coefficients. The constant C may
depend on @, N, L, K and &, while b(N) depends only on «.

Proof. Let B be a positive definite, homogenous polynomial on RB" of degree
Jf. Since
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()
P& + 4/

(where 71 denotes the inverse Fourier transform) we have
Ea
BD2g,) *" :?—1<<B—D-—)A"), 7
(BDg;) +" ( )P(£)+l P(&") (7)

where ¢ is the Fourier transform of ¢ in %" variables only. We are going to
estimate the Iinorm of (B(— D)&(P(&) + 1)) $(E").
It suffices to prove that

le( P(EH—)

for some u. For if F is a compact subset of R™ that contains supp ¢ we have
for all > 0 the estimate

EHPEN < Cr 3, sup DYl (& E€RT)

«|=p

d&" < O(L+ & )(1217Y + Im 2|7"Va[~h) (& € R™) (8)

with some p > 0 and some constant Cp that depends on F. Thus by (7) and (8)
sup |(BD,) " ()] < C(1A|7Y + [Im ll_b(N)Hl_L‘ % sup |D¥¢l),
x€R™ o"|=p
and using lemma 2 with y(x) = 1/B(x) it follows that g, " ¢ is in O®(R™\S,)
and satisfies (6).
We now proceed to prove (8). From the rules of differentiation it follows that
— D)&(P(§) + 1) is a linear combination of terms

Drg* - DHP(E) 4 4) » D'(P(&) + A) - ... - D'S(P(§) - 4) .
(P& + 1t ®)

where > [y;] = f. In order to estimate these terms we first derive some estimates
from lemma 1.

Since P is partially hypoelliptic with respect to & we write P on the form
(1). With » = (3",9") and [y]| % 0 we then have

DY(P(&) + A) = D" M(&)D"1 +- Z D7Q&\D" Mi(¢)  (E€RM.

Then if [A] > 1, according to lemma 1,
\DY(P(E) + A < O + [ED*ATHL + [E)HMEY] + 1) (E€RY, (10)

for some C >0 and @ >0, since D"M(&) and D"Mi&), j=1,...,r, are
all strictly weaker than M.
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We also need to estimate the denominator in (9). We have
PE) + 2= ME) + 21+ 3 GENME) (EER).
j=

Now there exist constants @ > 1 and K > 1 such that, if || >1,
(2 QuUENME) < KA A+ [E 1127+ EDTHME) + 12)  (EER).
This follows from lemma 1 just as above. Then, if Re 1 > 0,
|P(&) + 4] > | M(£) + A] — K1+ [&7)"27H + 1) (1ME)] + 12) >

= (IM(ED] + 14]) (;/% — K@+ [&)"217H +- IE'I)"'“) : )
From (11) it follows that if |4} > 1, Re 41 > 0, and if we have
AL+ &) > (2K + &) (12)
then for some positive constant C
|P(&) + Al = C(IM(E)] + [4]) . (13)
If (12) is not valid we are going to use that
[1P(&) + 4] = [Im 2] (14)

for all A and all & 'This is trivial since P(£) is real.
In the sequel we will consider &” as fixed for a while. Let us first study the
case when (12) is valid. Then it follows from (10) and (13) that

Dr(P(&) + 4)
PE) + 2
if |} 40 and |A] =1, Re 2> 0. We further have

l Drog>
P + 2

if {A]>1, Rel>0.

Let us now return to the term (9), which we rewrite in the following way:
Drgx D™P§) 4 4) DI(P(E) + 2)

P+ 2 PE+2 T PE+A
Since P is a polynomial this term is different from zero only if |y <d,
t1=1,...,f, and [y < |x|, where d is the degree of P. Let [ denote the
integer part of (f — |x|)/d. Then it follows that if the term (17) is non-zero at

least I of the numbers |p],..., lys] are different from zero. Consequently, (17)
can be majorized by

SOA+ @A A+ 1ED™, i=1,....f, (15)

<O 4 &yl + gk (16)

(17)



EIGENFUNCTION EXPANSIONS FOR PARTIATLLY HYPOELLIPTIC OPERATORS 85

O+ &) (2741 + (g7

if [ >1, Rel> 0. Here a" is a positive constant depending on « and f. By
choosing f large enough we can accomplish that kI > N and kI — || >n' -+ 1.
Then we have

& . .
B(— D) P—(mf < O A [EDTIAITNE 4+ gt

Integrating with respect to & we obtain (with a new constant C)

50‘ 4 VARG ~N
Jhlbmﬂwgmwww, as)
still supposing that |A] > 1, Re 1> 0. Here A, denotes the set in R* where
(2) is wvalid.

Let us now turn to the case when the opposite inequality to (12) is valid. Sinee
Al > 1 we then have [&']| < (2K(1 -+ |&[)¥* and 2] < 2K(1 + [&")¥*. We
now use (14) when estimating the denominator. Instead of (15) we then have,
for |y} 20 and if Im A # 0,

DHP(E) + 2| O+ |
lm+zgtmu’““”ﬁ
with some ¢ >0 and b > 0. Instead of (16) we get, if Im 4 # 0,
‘W?<WHW'
PE) + A~ [Im i

with some & > 0, depending on «. Hence we can majorize (17) by C(1 +
+ 1&)Y|Im )7~ for some positive constants C and 3", if |A]>1, Rei>
>0, 0<|Imi| <1

When choosing f above so that kI > N, kl — |»'| >n' L 1, it is sufficient
to let f be a polynomial in N of degree 1 with positive coefficients. Put b(N) =
J+ 1. Then

& .
B(— D) W\ < O+ &) [Im 2|~

P

for some C > 0. Hence, for some s> 0 and some (new) C >0

&
f B(— D) IGEW dg’ < O(1 + [¢])|Im )7 <

KN, (19)
< C(L+ &)y B Im 2)7"V)a ="

Here r(L) is a positive constant depending on L.
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Now, adding (18) and (19) we get (8), and the proof is complete.

LevmmA 4. Let the polynomial P be as in lemma 3 and in addition assume that
for some m >0 (14 |&)"THM@E)L is bounded outside some compact set in
R™. Then, for Im A+ 0, the partial convolution g, " ¢ is in C™(R"), and for
lx] < m and an arbitrary number L > 0 we have, for some constant C > 0

sup |D%, +" p(e)] < C(1 + [Im 42|77 (20)

R®

if 12)=>1, Rei>0, Im2 0.

Proof. The proof is done in much the same way as the proof of lemma 3. How-
ever, we do not use the polynomial B. Thus, since

£9(8") )
P(&) + 4

we start by estimating &%/(P(&) + 4). For the denominator we use the inequalities
(13) and (14) respectively. When (12) is valid we then have,if |1] > 1 and Re 4 > 0,

Dg, «" ¢ = F- (

|P(&) + 21 = CLM(E)] = O(1 + &)+,

where the last inequality depends on the assumptions about M. Then, if |x| < m,

&
- ’ 21 1le’]
Alflp(g)H}ds <ol

if 1A>1, Red>0. 4, still denotes the subset of R” where (12) holds.
If (12) is not valid we estimate the denominator by |Im A]. Then for some
c>0

f ‘ l dg < Of& %4 Im 217 < C(1L 4 [£")® @ Tm A4|2] 7%
RN\ 4,

Here ¢(L) is a positive constant depending on L.
Adding, multiplying by |p(&”)] and integrating with respect to & we obtain
the estimate

§¢x E”)
1 —-L 1
S pa o] & < oa+ mmamia (21)
for some (new) constant C >0, if |A|>1, Re i >0, Im A # 0. This proves
that #(D%, " ¢) is in IA{R"), thus that D%, " ¢ is continuous. We also get
the estimate (20) from (21).
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Remark 1. Assume that the polynomial P is bounded from below. Then we have
IP(&) + A] =1 if A is real and large enough. Using this estimate instead of (14)
in the proof of lemma 3 we get the following estimate: for any multiorder «, any
positive number N and any compact subset K of R™\S8,

sup |D%g, «" p(x)] < C|A|™Y

for 4 real and large enough. In the same way we can modify the proof of lemma 4,
and instead of the estimate (20) get

sup |D%, +" p(a)] < C
R?

if A is real and large enough.

Remark 2. Probably it is possible to prove the estimates of lemma 3 and 4 with
the last term on the right hand side omitted, though the proof is more complicated.
Our method also admits of immediate generalization to pseudo-differential operators.

3. Estimates for the speectral resolution and the speetral kernel

Let 2 be a non-empty open subset of R". If ¢ € OP(R™), let as before the
set 2, be defined by (2).

Let P be a real-valued polynomial on R" which is partially hypoelliptic with
respect to &'. Suppose that M(&')— + o as || — oo, where M is the hypo-
elliptic polynomial in (1).

Let A be a self-adjoint realization in L?(2) of the operator P(D). Let

A= fmsz(A)

be the spectral resolution of A, where we suppose that A+> E(4) is continuous
to the left. We then have the following theorem.

THEOREM 1. For every real 1 and every wu € L*(Q) the function
E(Ayu = E(A)u +" ¢

ts in C*(R,). To any number N > 0, any multi-order « and any compact subset
K of , there are positive numbers C and a,a independent of N, such thot

~ OUA 4+ 1Ml  for 2 <0
sup |D*E(Au(x)] < { (22)
K C(A + 1) for 1>0.
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Proof. We shall follow the method of Nilsson ([7], theorem 3). Put B = 4",
where r € Z;. Then B is a self-adjoint realization of the operator P(D). Let

B=— f wsz,(z)

be the spectral resolution of B. Then E(1) = E (A" if r is odd, which we assume
from now on in this proof.

It is easily shown by means of (1) that if P(£) is partially hypoelliptic with
respect to &', then sois P(&) when r € Z,. Moreover, the hypoelliptic polynomial
corresponding to P(&) is M(&')y, where M(&') is the hypoelliptic polynomial
corresponding to P(§). Thus the conditions of lemma 4 are fulfilled for P(&)
if we only take r large enough. In the sequel we keep r fixed, and apply lemma 3
and lemma 4 to P(£) instead of P(£).

Now let @ be a point in the open set £2,. Denote, when wu is non-real, by g, ,
the temperate fundamental solution of P(D)" + u. We have the following identity:
if % is in the domain Dy of B then

u " ) = f B, (. yyuly)dy + f b, @ yw@)(B + pu@dy  (23)

for all z in a neighbourhood O. of a. Here v € C¥(2) and u(y) =1 for all
y in Q with the property that « —y € §, for all x € O, (such a function exists
if O, is small enough). Further

kr M(x’ y) = *” (P(x - y) (24)
and B, [z, y) = (py)P(— ) — P(= Dy)yp@)h,, (@, y) - (25)
This identity may be proved by a simple transcription of the identity

(yu) #" @ = (B + wyw) * (g, ., " ¢)  (u €'(Q)).

The details will be omitted. A corresponding identity Wlthout the partial convolution
can be found e.g. in Nilsson [6].
Let F, and F, be open relatively compact subsets of 2 such that

Fyc{z:y) =1}
F, D suppy.

Let Fy be an open relatively compact subset of £, such that Fy ¢ O, Then the
identity (23) is valid for x € F3. Now B, ,(x,y) =0 when y is outside some
compact subset of F,\F,. Furthermore, if z € F; and y belongs to this compact
subset of F}\JF, then x —y belongs to a compact subset of R*\ S, if only F,
is chosen large enough. Thus, using lernma 3 and the notations there, we have for
arbitrary N >0 and L >0



EIGENFUNCTION EXPANSIONS FOR PARTIALLY HYPOELLIPTIC OPERATORS 89

sup |B, (@, y)| < O(lp™N 4+ [Tm p| 7" |u] ™) (26)

x€Fy
yEF;

if |u)>1, Rep>0, 0< [Imu| <1.
In the same way it follows from lemma 4 that for arbitrary L > 0

sup |h, (@, y)| < C(1 -+ |Im p|=|u| ™) (27)
for |u| >1, Reu >0, Impyu +# 0. Further, B, , and &k, , are continuous.

Using the Cauchy-Schwarz’ inequality and the estimates (26) and (27) in the
identity (23) we obtain that u %" ¢ is continuous and

lu " @) <IB,, (e, M - llull 5 [y, (2, Yl - (B + phull < (28)
< O(pl™ + 1Im | P H)ul + O + [Im 2 u DB 4 pull (€ Fy),

where the constant € does not depend on .
We now introduce the spaces H,(4,, 4,) defined for 4; << 4, by

Hi(hy, 7)) = (Be(2g) — B () IXLQ) . (29)

Let 4 be a real number less than — 1, and suppose that f€ H,(4 — ¢, A), where
& is a number between 0 and 1 to be chosen later. We then have f € Dy. Further-
more

(B + w)f = f (v + wdE W

A—e<r<a

so that

(B + wfF = f v 4 plPAE@IP < (12 + ul + 2RISR -

A—g<y<i

Hence by (28)

sup |f +” p(x)| <

x€Fy

< O™ + Im p7Dlpl™ + 4+ pl + &+ (14 + pl + o) Tm g Zul ™))
if |ul=>1, Rep>0, 0<|[Impy| <1l Taking g= — A+ ic we have

sup If " p(@)] < AN + & ™27 + 26 4 202 ")If) (30)
*€ F;
if A< —1.

Now let f€H(A— ke d), k€Zy Then f=fi+...+fi, where
fi€H(A —je, A—(j— 1)e) for j=1,...,k These spaces are all orthogonal
to each other. Thus we get by (30) and the Cauchy-Schwarz’ inequality
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k
sup |f+” (@) < C(IAI7 4 &7 @27 + 26 + 2]ll“L)_lelfjll <

x€F,

< (AN + ™2~ 4 26 + 241" ]

if A< —1
We now choose & = |A|™" and k equal to the integral part of 2]A|Y. If we
choose the number L large enough we then have for some positive C
sup |f +" p(z)| < CIAI~"f| (31)
x€F,
if A is large and negative.
Since ke > 1 for large |A] it follows that (31) is valid for all f€ H, (A — 1, 2),
if A is large and negative.
Now let « € L*(Q). Then (B(A —v) — E (A —v» —1)u€H, (A —v—1,1—79)
for all natural numbers ». We have

[vo]

E.(W)u Z (B2 — v) — By(h — v — 1))u

the series converging strongly. Hence

E(Au+" ¢ = f: (BAA—2) — Bl —v— Dyux"g.

r=0

By (81) we thus have that K. (A)u " ¢ is continuous and

sup |E (2w +" p(x)] < C E 12— v |7 < 127,

xEF,

if 2 is large and negative.
Since E(1) = E(¥) we finally have

sup |E(Ayu(z)] < C|2| =2}

x€EF,

If K is a compact subset of £, we use the Borel-Lebesgue covering theorem

to obtain the same estimate for supg [E(A)u(x)]|. Since r(IN — 4)/2 can be made
arbitrarily large by choosing N large enough, we have then proved the estimate
(22) for 2 large and negative in the case |x] = 0. However we can differentiate
(in the distribution sense) in the identity (23), thus obtaining an analogous identity

for D*u " ¢. Reasoning as above we can then prove that D"‘E’(l)u is continuous
in £, and satisfies an inequality

sup IDB(yu(z)] < CJA Nl (u € L2(Q) (32)

for all 2 < some 2, (depending on « and N).
To estimate D*E(A)u also when 1 is not large and negative we use lemma 4
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and the (differentiated) identity (23) with a fixed fundamental solution g, , to
derive the following a priori estimate: for every multi-order « and every compact
subset K of £ there exists a number C such that, if > ryx)

sup [D% " ()] = CPrl] + Iiell) (33)

for all » € L*(2) such that Prv € L*(2). We also get that then DY " ¢ is con-
tinuous in Q. If v € Hy(4, 1) = H,(4, ') with 42> 1, and 1, defined as in
(32) we have Pv = Bv € L*(Q2). Thus D% %" ¢ is continuous in £, for any o
and satisfies

sup 1D " (@) < C(IBell + [ol) < CUXT + 1%4] + Diell < C(IAF 4 Dkl . (34)

Wiiting B(i)u = E(2)u + (B(A) — BE(%))u and applying (32) to the first term

and (34) to the last we get that D*E(A)u is continuous for any real A and

satisfies (22). Of course, it now also follows that E’(l)u is in 0*(2,). The
theorem is proved.

It follows from the Schwaxrtz kernel theorem that for any real A the projection
E(2) is given on OF(Q) by a kernel e;,, being a distribution on QX 0:

Be) = [ efo vty (wecs@),
0Q
where this formula, of course, is taken in the distributional sense. Since E(A) is
selfadjoint e; is Hermitian. We now give two results on the (partial) regularity
of e, and on the behaviour of ¢, as 1 — — o and as A— 4+ .

TaroREM 2. Let ¢ € C¥(RY) and put
Fi@,y) = e,(, y) %" plz) = f e, (%', a" — 2", y")dz" ;

F, is thus a distribution on Q,X Q2. Then, for any multiorder & and any real 2,
DZF, can be chosen as a measurable function F, , on Q,XQ such that for any
x € 2, the function F, (x,-) is in LX2) and depends continuously on x in the
L2-norm, and such that

D E(ayufz) = f F, o, yuiy)dy - (35)

Further, to any compact subset K of Q,, any multi-order « and any number N > 0
there are numbers C and a, ¢ not depending on N, such that

o(a +1™"  (2<0)

f;g) ”FA, a(x: ')” S. {C(;L + 1)a (}. _>_ 0) ) (36)
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Proof. Consider for fixed 4, x and 2 the mapping
IX(02) 3 u > D*E(Au(z) € C .

By the representation theorem for Hilbert spaces and the estimates of theorem 1
it follows immediately that to any 1, « and z thereis a kernel F,  (x,*) satisfying
(35) and (36). Estimating D"‘E7(Z)u(w) — D"‘IZ’(Z)u(z) with the mean value theo-
rem and the estimates of theorem 1, and then again using the representation
theorem for Hilbert spaces, it follows that F, ,(«,-) is a continuous function of
2 in the I*(2)norm. E.g. by making a sub-division of £, into suitable small
sets and approximating the function x> F, ,(z,-) with a function constant on
these sets, it follows that F, , can be taken as a measurable function on £2,x 2
in such a way that (35) and (36) still hold for every x € Q. Since clearly D{F,
gives the same mapping as F, ,, though in the distributional sense, it also follows
that F, , is a representative of the distribution D}F,.

TurorEM 3. Let ¢ € CP(RY) and put

f}-(x, y) — ‘/‘e&(x/’ xll . Z’/’ y/’ yll o w,’)(p(zﬂ)qj(w”)dz”dw" ,

defining f, as a distribution on Q,X Q,, which is clearly Hermitian since e, 1s.
Then, for any real 2, f, isin C®(2,XR2,), and to any compact subset K of 2,x 2,
any multi-orders « and B, and any number N > 0 there are numbers C and a, &
not depending on N, such that

i+ a=0)
i
up [DIDLf, )] < { e oo (37)

Proof. Let Hy(— oo, 1) and H,(4, + o) be defined by (29). If F, , is defined

as in theorem 2 we have that F, ,(«,°) € H(— o, 1) for every x € £, since
[ o pyuts)iy = 0Byt = o
Q

for every u € Hy(A, + o). Hence by theorem 1 we have F, ,(z,*)*" ¢ €C®(2,).
It also follows from theorem 1 and theorem 2 that for any multi-order § the
function DP(F, (x,*) " ¢) depends continuously on z € £ in the uniform norm.

Hence the function f; . s, y) = D(F, (=, )" @)(y) is continuous on 2,X .
From its definition it is easily seen to be a representative of Di‘Dyﬁ /., and from

the theorems 1 and 2 we get, since F, ,(x,:) € Hy(— o0, 1), the estimate (37).
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4. An asymptotic result for the spectral kernel

LEMMA 5. Let the polynomial P be as in lemma 4, and assume in addition that
it is bounded from below. Let ¢ € CP(R™) and put

(") > 1
y(&) = m dé  and g(A) = f m d&

for A sufficiently large. Then we have
y(3) = 0) [ P (o).
Proof. Using the representation (1) we have
PE) + 2= ME) + i+ 3 QEVE)
By lemma 1 there exist positive numbers @, & and C such that

IZ QiENM;E) <O + &A™ A + [ENHMUE)+ 1) (E€ERY

j=1

if 4> 1. Hence, for any &> 0, the inequality
(L —e)(ME) +2) < PE)+ A< (I + ) ME)+ 2) (38)

is valid if C(1 4 |&"]))* < A%¢ or if C(1 + |&])* << (1 + |&'])e.
Let us first consider the case when C(1 -+ |&"]) < A*e. Then we have by (38)
that

f 1 , 1 f 1 , 1 ( 8)
P(£)+ld§S1-—s M(g)JrAdf:l_gg(i): L4 77— 9(d)

and analogously

1
fP(£)+zd5 2<1_ 1+£)g(z).

Thus

‘ o GG
(1= 5o [ e < J rera®s

Bl,s RW™ xB; .

<l 7)o [ e,
B/I,s

where B, , denotes the subset of R” where C(1 + |£&"])® < M.

(39)
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We now let C(1 + [&"])® > A*¢. Since P is bounded from below we have

PE+i1=1 (€R (40)

if 2 islarge enough. Splitting the integral in two and using (38) and (40) respectively
we get for some C' and s> 0

1
OSfP@+1“5
1

1
=1, f i f L' =

A+ D < +1EYes CEHE N> (L8N

1
< 0( + 0/6—8(1 + {5”,)08 S 30,8_s<1 _{_ ,EI/’)C’S

—1—e¢
if e <3 and if A is large enough. Multiplying by |p(£")[? and integrating we get
‘ (&) P f «
0 << f o 48 < 30 1 "N (8N FdE” <
< Bl 7 % <30 (1 1 D"I5(E") Pdg” <

RV % (BB, ) c+|eme = ke (41)
S 30’02/k8_(8k+2)/’c}.—2 f (1 + |§II l)as+2a/k i(’i(Eﬂ) lzdéll .

Trivially, g(4) > KAt for some positive K. Thus, if we choose &= A7**+%

we get, adding (39) and (41),

PE) P .
F%Ti dé = (1 + o(1))g(4) f pEPdE (A ).

We now use Plancherel’s theorem on the integral to the right, and the proof is

complete.

Let us further prove the following lemma about the functions f, and F, from
theorems 2 and 3, both defined using the same function ¢ € C@(R™).

LemMA 6. For any x € 2, and any real A the number f,(x,x) is non-negative
and increases with 1. We also have
filw, x) = |[F(, )P (42)

(where F, denoles the representative F, , of F, mentioned in theorem 2). Further,
for any point (x,y) in 2,x8Q, the function A>fi(x,y) is locally of bounded
variation and for any real interval I we have

var fi(, y) < (var filz, 96))1"2(V§»r Ly, y)"* . (43)
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Proof. (Cf. Bergendal [1], lemma 1.2.2. and 1.2.1.) Let 1 and u be real
numbers with A < p and put X, , = E(u) — E(1) and correspondingly for F,

and f,. Since F, [(x,°) € Hy(1, u) we have El,ﬂFl’M(x, )= F, (x,°). Taking
the partial convolution with ¢ in the y"-variables we get by (35), since

filz, y) = Fi(z, *) «" @),

f Fo O 0 )l = £, (@, ) - (44)

Taking y = x we get (42) and see immediately that f,(x, ) is non-negative and
increases with A.

We now consider an arbitrary subdivision of the interval I, and apply (44)
to every subinterval. Using Cauchy’s and Schwarz’ inequalities we then get (43).
The lemma is proved.

Now let B = A", where r is an even integer > 0. Thus B is a positive self-
adjoint operator in L* Q). Let E.(2), ¢ ,(»,y),... correspond to B as E(4),
e, y), ... to A. It follows from theorem 3, sinee f, r =f, — f_;, that if r is
sufficiently large then to any compact subset K of 0 xQ_ there is a number C
such that

sup If, i@ )| < O+ 1) (A=0). (45)
When p >0, put
dr A& )
o) = [ LD (46)

From (45) and theorem 3 it follows by an integration by parts that y, , is a con-
tinuous function on £, X2, . Further y, , has the property that

(B + mHu +" ¢)) ¥ ¢la) = f Ve ul@ yyulydy (€ 0P(L,)),  (47)

where @(2") = p(— 2"). To see this we only have to approximate the Stieltjes
integral in (46) with convenient Riemann sums, and use the a priori estimate (33)
to estimate the error of the left hand side in the approximation.

Let us now investigate the asymptotic behaviour of y, A2, x) as p—> - oo.
We shall then compare it with y,, (v, %), where vy, , is the function

dfo, r A% y)
yO,r, y(x’ y) = —7——‘“—;&_ '

Here f,, ;... correspond to the unique realization in L*R") of P(Dy as
fi 2 -+ . correspond to B. By a Fourier transformation we find that
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Fo i) = f PE) P exp (2nis — 9, E0)dE

PEF <A

and

Vor(r ) f lp(£")[2 eXp 2n@<w —y,8) i .

Y+

Thus y,,, % ¥) =g, ,*" x@ —y), where g, , is the temperate fundamental
solution of the operator P(D) -+ u, which we have estimated in lemma 3 and
4 (cf. remark 1), and where y = @ *" ¢ € CT(R").

Let o €2, and let p € CP(2) be real and such that y(y) =1 for y in a
neighbourhood of the set a — S, where S, = {0}Xsupp ¢. Define I’ , by

ru

I, @) = (B + @B, (@) + vh, (), (48)
where h, , and B, , are defined by (24) and (25). Then

(B + p)7u) +" p(2) = f L yuly)dy  (w €C2(2)) (49)

when 2 is close to a. This is a simple consequence of the identity (23). (Cf. Nilsson
81,

Since g, , «" @ isin C*(R*\8,) by lemma 3, it follows that B, ,isin C*(w X 2),
where o is some neighbourhood of a. It easily follows that I, ,(z,+) is a con-
tinuous function of z € w in the L2(Q)-norm, and further, that I, , can be chosen
as a measurable function on X 2 such that (49) still holds for every 2 close to
a. We shall assume that I', , is chosen in this way.

Now put 7y, ,(,y) = (x ) %" @(y). From (49) it follows that

(B + ) " §)) " pla) = f VLo udy  (w € CR(Q,)) -
Comparing this with (47) we find that

yr, ,u(x’ .) = yr’, ,u(xﬂ .) = Fr, ,u(x’ .) *” (p * (50)
We also have

yO,r, ,u,(x’ .) = h’r, M(x’ .) *” (P“ (51)

We are now going to estimate the term (B + u)™B, ,(z,) in (48). Because
of lemma 8 B, , isin C®(wx ), where o is some neighbourhood of a. Further,
for any number N > 0,

IB,, .z, )l = O™ (g~ + o) (52)

uniformly in some neighbourhood of . Since, when u > 0, (B + )7 is a bounded
operator on IL*Q) with norm < !, we get with arbitrary N >0
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(B + w)™B,, .z, ) = 0™  (u—+ o) (53)
uniformly in some neighbourhood of a. Using the a priori estimate (33) we get
from (52) and (53) that (B + u)™B, ,(x,-) *" ¢(y) is continuous in the pair (x, y)
on wx£, and for any N > 0 satisfies

(B + w8, (@)« 9y)| = 0™  (p— + )
uniformly on compact subsets of wx Q. . It now follows from (48), (50) and (51)
that for any N >0
b‘}r, u(x’ x) - yl),r, u(x> x)‘ = 0(1)M_IV (I’L - + (X))

when z is close to a. Since clearly y, , ,(a,a) > Cu' for some positive constant
C, it follows that
Vo ul® 6) = (L + oWy, @, a) (= + ). (54)

Congsider the functions

, de,(2) ! ,
1) = f d¢’ and gr(“)zf Pte f MEY +u ®

ME) =

From lemma 5 we know that

Yo ul@ @) = (1 + o(1))gr(u) f \pla") Pl (> + ) . (55)

We now use a Tauberian theorem for the Stieltjes transform of Keldyg [5] (for
the formulation see e.g. Szlander [9]). It follows from theorem 1 in Nilsson [8] that,
if 7 is large enough, the function e, satisfies the Tauberian condition of Keldy®'s

theorem, e.g. that
d
A 7 er(A)
0 < we, ) <c¢
with a constant ¢ << 1, when 1 is sufficiently large. Thus, using the definition
(46) of v, ,, we conclude from (54) and (55) that

[ e, a) = (1 4 o(1))fy . i@, @) = (1 + 0(1))er(l)f lp(x”)Pda” (A — + ). (56)
We now want to return to A from B = A’. But when 1> 0 we have

fr, /‘.'(x, m) = f}.(x: LI)) - f—).(x: .’E) 3 (57)

and analogously for f, ., and e() (if we modify our d>finition of the spectral
resolutions {H(4)} and {E,(1)}, now requiring them to be continuous to the right
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when A < 0, which obviously does not affect our previous results). From (56) and
(67) and theorem 3 we get the following result.

Taeorem 4. We have for x € 2,

Filees €)= (1 o(L))fy, (@, 2) = (1 + o(1))e(2) / g pda’ (A + ).
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