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Representation of measures with simultaneous 
polynomial denseness in Lp(R, d#), 1 _<p< oc 

Andrew Bakan and  S tephan  Ruscheweyh 

Abstract .  We give characterisations of certain positive finite Borel measures with un- 
bounded support on the real axis so that the algebraic polynomials are dense in all spaces 
Lp(R,d#), p>_l. These conditions apply, in particular, to the measures satisfying the classical 
Carleman conditions. 

1. I n t r o d u c t i o n  

1.1.  B a c k g r o u n d  

Let M ( R )  denote  the space of finite Borel measures p on R,  Ad+(R)  the cone 

of positive measures  in 3 / I (R) ,  and M *  (R) the subset  of measures in M + (R)  with 

all moments  

.In xn dp(x), n > O, Pn : z  

finite. Denote  by P the set of all real algebraic polynomials ,  i.e. polynomials  with 

real coefficients, and  let ;~ be the set of topological l inear spaces of real funct ions 

on R which have P as a dense subset.  For pC2td*(R)  we look at the real spaces 

Lp(R,d#), l_<p<oc ,  and  L(R, dp):=Np> t Lp(R, dlt). The a im of this note  is to 

characterize the set(1) 

3 4 ~ ( R )  :=  N M p ( R ) ,  
p>l 

where 

M ; ( R )  := {p �9 A4* (R) I Lp(R, dp) �9 "fi}, 1 <_ p < ~c. 

This work was completed while A. Bakan was visiting Wiirzburg University, supported by 
the German Academic Exchange Service (DAAD). S. Ruscheweyh received partial support from 
the German-Israeli Foundation (grant G-643-117.6/1999) and from INTAS (Project 99-00089). 

(1) This problem is due to Prof. Ajit Iqbal Singh who raised it during a discussion with A. 
Bakan in May 1999. 
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The background of this question are properties of measures from .A4* (R) sat- 
isfying the so-called Carleman conditions. The definition of these conditions given 
below is slightly more general than the one in T. Carleman's original paper [14] (see 
also [15] and [16]). The following notation will be useful: let m E N  and nEZ\{0} :  
a sequence of real numbers a:={ak}k>o will be called (m, n)-divergent if 

l a~ ,k l  - x / n k  = . .  

k>l  

For p E M * ( R )  we shall write S,:={p,~},>o, and set b (p) := l  if s u p p p : = { x E R  I 
p ( ( x - r  x + c ) ) > 0  for all c>0} is unbounded in both directions and b(p):=2 other- 
wise. 

Definition 1. A measure pEJ~4* (R) is said to sat is[y Carleman's condition (or 
is called a Carleman measure) if S~ is (2.2b(p))-divergent. 

The set of Carleman measures will be denoted by M ~ ( R ) .  They have originally 
been introduced in the context of the so-called Hamburger and Stieltjes determinacy 
problem (see [1], [17 22], [25], [28] and [29]), and it has been known for some time 
(see [6] and [27]) that  the deternfinacy of measures in M * ( R )  is related to the 
polynomial density in certain L2 spaces. For us the following result by C. Berg and 
J. P. R. Christensen [6] (see also [5]) is the most relevant. 

T h e o r e m  A. Every Carleman measure belongs to 2~4"~ (R). 

In the sequel we shall study general characterizations and representations for 
measures in A/[~ (R). In the case of the Carleman measures these will be even more 
explicit and constructive. It should be observed that every measure p in A/[+(R) 
with bounded support is a Carleman measure and belongs to .~4~ (R) automatically. 
Similar observations are valid also for all further results in this paper. Therefore, 
from now on, we shall study only measures with unbounded support. 

1.2.  T h e  m a i n  resu l t s  

Let B(R) denote the family of Borel subsets of R and 14;*(R) the set of up- 
per semi-continuous functions w: R - + R  +. satisfying Ilx '* N., < ~ for all n >0, where 
IIfllw:=SUpx~RW(x)]f(x)]. For wEW*(R)  the space CIr. is defined as the set of all 
f :  R--+R, continuous on R and with limlxl~ ~ w(x ) f (x )=0 .  We endow C ~ with the 
semi-norm II" Ilw. In this context a function u'E1/V*(R) is also called a weight. For 
0<~-<~c denote by 14;*(R) the set of wEI4;*(R) with C~ Furthermore. set 
14;~(R) : = ~ > 0  142"(R). Observe. that the \Veierstrass polynomial approximation 
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theorem implies that XAGI/V~(R) for every compact set A c R .  Here XA denotes 
the characteristic function of the set A. 

Our main result is the following theorem. 

T h e o r e m  1. A measure pGAd*(R) with unbounded support belongs to the 
space A//~o(R) if and only if any one (and therefore all) of the following three 
properties hold: 

(a) There exists wel/Y~(R) such that 1/WCLl(R, dp). 
(b) There exists weW~'(R) such that 1 /weL(R ,  dp). 
(c) There exists wEIA]~(R) such that 1/wEL(R,  dp). 

Remark 1. Lebesgue integration theory implies that for p �9  and w � 9  
1/V*(R) there exists u�9 such that 

#(A) = fA w(x) du(x), A �9 B(R). 

(in other words dtt(x)=w(x) du(x)) if and only if 1~weLl (R. dp). Here we have set 
1/w:=limN-.+~(w+l/N)  -1. Note that. using this property, one can replace the 
integrability conditions on 1/w in Theorem 1 by the existence of representations for 
# in specific forms. We omit the details. 

The functions w found in Theorem 1(c) have particularly strong connections 
with the measure tt in question. 

C o r o l l a r y  1. Let # E M * ( R )  have unbounded support and satisfy Lp(R. dp)E 
79 for all l < p < o c .  Then any function w as in Theorem l(c) has the following 
additional properties: 

(a) Lp(R, w-q(x) dp(x) )e7 9 for all l <p. q<~)c: 
(b) if f is continuous on R with f(x)=O(Ixl m) for some m c N  as x--++oc 

then 

(1) IlfllL~(R,d.) ~ I[1/WlIL.(R.a.)IIflIw, 1 <_p< ~x~. 

Remark 2. If we approximate a function f as in Corollary l(b) by a polynomial 
sequence {P,,}~>_I in the space C ~ and replace f by f - P ,  in (1), then we see that 
the rate of simultaneous polynomial approximation to f in the spaces Lp(R, dp) 
(independently of p) is not slower than the one of f in the 11" ll~,-norm. 

Corollary l(a) will be instrumental in the proof of the following result. 
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Corol la ry  2. 

(2) M * ~ ( n ) = { p ] d p = w d u ,  w e W ~ ( R ) ,  u E M + ( R ) } .  

It is an open question which smaller set can replace W~ (R) on the right-hand 
side of (2) without violating the conclusion. The corresponding question arises also 
(and is open) for the representation 

(3) M ~ ( R ) = { p l d p = w d u .  wC~/V;/p(R), uCM+(R)} ,  l<_p<oc,  

(see [3, Theorem 2.1, p. 38]). However, in 

(4) A4*(R)={ t t ldp=wdu.  w e W * ( R ) ,  u < M + ( R ) } ,  

the set 142" (R) can be replaced by a much smaller one. namely the reciprocals of the 
even entire functions with all positive and decreasing Taylor coefficients, without 
affecting the validity (see Section 6). 

If one wants more and better information about M ~ ( R )  it is clear from The- 
orem 1 and Corollary 2 that more has to be known about the sets 142~(R) and 
142~ (R). This we shall discuss in the next section. 

1.3. The  sets • ; ( R )  and W ~ ( R )  

The following statement is a sort of converse to (3). 

T h e o r e m  2. Let w6W*(R) .  /f w~W~(R) then there exists uC~4+(R) such 
that for all l_<p<oc we have Lp(R. w P d v ) ~ .  On the other hand, if there exist 
uEM+(R)  and pG[1, oc) such tha t /p(R ,  w P d , ) ~  then w~t?Y;(R). 

Already in 1924 S. Bernstein [8] asked for conditions on u,E//V*(R) to be in 
l/Y~ (R). In 1959 L. de Branges [13] obtained a solution to this problem. A slightly 
improved version (see [11] and [31]) of his result is ms follows: let s be the family 
of entire fimctions B of minimal exponential type having real and simple zeros only 
and let AB denote the set of these zeros. 

T h e o r e m  B. (1959, [13]) For wE1/V*(R) assume that Sw:={xER]w(x)>O} 
is unbounded. Then wc1/Y{'(R) if and only if for every function BEs with ABCSw 
we have 

1 

AEAB 
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Using Theorem B we can translate the conditions on w in Theorem 1 as follows. 
As usual log+x equals log x if x >  1 and 0 otherwise. 

T h e o r e m  3. For w E l4Z* ( R ) assume that Sw := { x E R I w( x ) > O } is unbounded. 
Then wEI&(~(R) if  and only if for every function BEgo with ABC_Sw we have 

(5) lim log 1/w(A) 
I~1-~o~ log + IB'(,X)I = oc. 
AEAB 

We note that  Theorem B is also crucial for the proof of Theorem 1(c), see 
Lemmas 5 and 6 below. 

1.4. P r o p e r t i e s  a n d  r e p r e s e n t a t i o n s  o f  C a r l e m a n  m e a s u r e s  

We denote by �9 the set of functions 

1 
w(x) : -  E .>0  a~n x2n 

with ao>0,  a2n>0 for all n > l ,  a2n>0 for infinitely many n and l i m n - ~  2~ ax/-d~=0. 
Note that  tPCIA;*(R), and for w E ~  we set 

(sup I J~ 
~-xER 

S. Bernstein in [8] and [9] (see also [26]) solved his own problem mentioned 
above for functions wE ~. His result was as follows. 

T h e o r e m  C. (Bernstein's conditions) Let w E ~ .  Then the following condi- 
tions are equivalent(2): 

(a) w E W ; ( R ) ;  
(b) weW~(P~); 
(c) fR  (lOg w(x)  ) / ( l  + x 2) d x = - o c ;  
(d) aw is (1,1)-divergent. 

Bernstein's Theorem C has been generalized by many authors in various di- 
rections. In particular, several papers are devoted to the investigation of the cor- 
responding polynomial density on certain subsets of the real line, and analogues of 

(2) It  is known [26] t h a t  T h e o r e m  C is valid for a much  larger class of  funct ions,  bu t  th is  is 

of  no relevance in the  present  context .  For the  impl icat ion (a) =:~ (d) see the  proof  of  T h e o r e m  11 

in [26]. 
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the third condition in Theorem C were obtained for various cases (see, for example, 
[12], [23], [26] and [30]). A complete analogue of Theorem C for the positive half-line 
is 

T h e o r e m  C +. Let u,E~. Then the following conditions are equivalent: 
(a) ~xR+ EW;(R):  
(b) for each interval J = ( - ~ c , a ]  and J=[a. ~c). aER,  we have wXjE1A2~(R); 
(c) ~+~ log w(x) / O + .~/~) d.=- : , , : :  
(d) o~ i,  0,2)-divergent. 

Note that the sequence {~/supzcR Ixpw(a')/~'(0) }.>, is increasing. This im- 

plies that  the conditions (d) in Theorems C and C + are equivalent to 

(6) aw is (N, N)-divergent. and a~. is (N. 2N)-divergent, 

respectively, for each N E N. 
Consider an arbitrary u,E~. The inequality 

1 Y'~k>o a2k3['2k 
-- inf > a2n, (7) sup x2"w(x) xcU x 2" - 

xER 

together with (6), leads immediately to the following corollary of Theorems C 
and C +. 

C o r o l l a r y  3. Let 

1 

(8) ~'('~') - En_>0 b2,, x2" e 3 .  

Then we have 
(a) If  {b2n}n>l is (1,-2)-divergent then we~&~(R)," 
(b) / f  {b2n}n>_l is (1,-4)-divergent then u, xjel/Y~(R) holds for each interval 

of the form J = ( - a o ,  a] and J= [a .  vc). aCR.  

In the sequel we shall use the abbreviation 

{ R } ,  if  b(p) = 1, 

g(P)  := {[a,+=x=).(-~c.a]]aeR}. if b(p) = 2. 

The following theorem provides a complete description of the weight functions 
in Theorem 1(a) if the measure in question is Carleman. 
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T h e o r e m  4. (a) If  p E A 4 b ( R  ) has unbounded support then there exists uE 
M + ( R )  such that 

(9) #(A) = fAw(X)  du(x)" AE/3(R) .  

where w(x):= 1 /En>o  x2n/2n#2,~" 
(b) Let ,EA/t+(R)  have unbounded support and for some w E ~  as in (8) as- 

sume that {b2,~},~_>1 is (1,-2b(u))-divergent. Then the measure p as in (9) belongs 
to ~ 4 5 ( R  ). 

In both cases we have wXjEVI;~(R) for each JETC(p) and b(l~)=b(u) since 
supp p = s u p p  u. 

To obtain a representation of Carleman measures in terms of the function w 
of Theorem l(c) (instead of (a)), we require a property of certain (m, n)-divergent 
sequences: 

L e m m a  1. Let a:= {ak }k>_l be a sequence with lakl 1/k increasing and m, hEN.  
ira is (m, n)-divergent then there exists a sequence {nk}~->l of natural numbers with 
k<<_nk <nk+l for k E N ,  and 

(10) lim nk 
k---~cr --k- --~ (:X~ 

such that {a~ k }k>_l is (m, n)-divergent as well. 

It will be shown that S~, for a Carleman measure with unbounded support 
satisfies (essentially) the conditions of Lemma 1 with (m. n)=(2,  2b(#)). Therefore 
we find a sequence nk as in Lemma 1 and using this sequence we define 

~ x2k 1-1 . 
(11) wu(x) :----- 1+ 2~. ' k/n~ 

_ /~'2nk 

T h e o r e m  5. For pE~/[~.(R) with unbounded support define wu as in (11). 
Then for every l <p<oc there exists a measure upE.AJ~(R) such that 

p(A) = / A  W•(x)P dup(x). A E B(R).  

In addition, 1/w~,EL(R, dp) and wu)~zEI/Y~(R ) for all JETC(g). 



228 Andrew Bakan and Stephan Ruscheweyh 

C o r o l l a r y  4. Le t /ZEh4~(R)  have unbounded support and w u be as in Theo- 
rem 5. Then the following hold: 

(a) For every l<_p,q<oo we have 

Lp(R, wu(x)-qd/z(x) ) E ~.  

(b) I f  f is continuous on R with f(x)=O(Ixl m) for some m E N  as x--+-t-oo 
then 

(12) IlfllLp(R,du) ~--lll/wulILp(R,dta)llfflu,., 1 <_p< oo. 

Note that 

M * c ( R ) =  { /z ld/z=wdu.  wE~b ( , ) ,  vC.M+(R)}  

is a direct consequence of Theorem 4, where kOb(, ) denotes the class of weights 
defined in Theorem 4(b), compare Corollary 2 and (3) and (4). 

Similarly to the observation made in Remark 2, we point out that  inequality 
(12) contains information about the rate of simultaneous polynomial approxima- 
tion in the spaces Lp(R,  d/z), l_<p< ~c. Under certain conditions even quantitative 
conclusions can be obtained (see, for example, the survey [24]). 

Corollary 4(1) gives a rather substantial improvement of Theorem A since the 
entire function wu(x) - I  = l + y ~ k >  1 x 2 k " 2  k k / ~  / (  /z2,k ) is of order not less than l /b(#) .  

To see this let first b(/z)=l.  From the definition of the order 0 of an entire 
function we have 

2k log 2k - -  2k log 2k 
O = lim - lim 

k~oo 1~,~, 9k,,k/nk k~oc k log2+(k /nk) log /z2nk '  
x ~ 6  ~ / - ~ 2 n k  

and the assumption p< 1 implies that  for sufficiently large k, (2nk tog 2k) / log  #2n~ < 
1/2nk 

0<1, i.e.,/Z2,~ >_(2k) 1/~ But then 

k_>l /z2nk k_~l 

- -  ~ CX;. 

a contradiction to the choice of the subsequence {nk}k>_l in Lemma 1. The proof 
for the case b(#)=2 is similar. 
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2. P r o o f  of  T h e o r e m  1 

2.1. P r o o f  of  t h e  suff ic iency p a r t  of  T h e o r e m  1 

It is enough to prove sufficiency of (a) and (b), since (c) obviously implies (b). 
The method of the proof of Theorem 2.3.2 in [1] can be extended from L2(R, d#) to 
Lp(R, d#) and provides us (see also [23] and [2, Proposition 2.2, p. 15]) with a suit- 
able criterion: Lp(R, d#)�9 pC [1, oc), if and only if two special functions (namely 
1 / ( l §  2) and x/(l+x2)) can be approximated in Lp(R, d#) by polynomials from P. 

According to Remark l(a) and (b) (for arbitrary p> 1) imply special representa- 
tions of the measure #, namely dp(x)=w(x) dr(x) for (a) and d#(x)=w(x) v dvp(X) 
for (b), along with 0 0 C~i/p �9 and C w � 9  respectively. Then the obvious inequalities 

P =./. II(x)w(x)I/PIP dr(x) < [lfl[Lp(R,~,d.) IIfIl~,~."(R), 

f' ----/R II IlLp(R,wpd..) If(x)lPw(x)Pdzzp(x) <-IlfllPwvp(R), 

allow us to approximate the two functions x~ (1 + x 2) and 1/(1 + x 2) by polynomials 
in Lp(N, d#), as requested. 

2.2. Neces s i t y  of  T h e o r e m  l ( a )  

For every p E N  the relation (3) shows that our assumption implies a represen- 
tation of the measure # as 

d#(x) =Wp(X) p dvp(X), Wp �9 VV~'(R), v v �9 A/[+(R). 

Hence, according to Remark 1, 1/Wp(X)PELl(R, d#), and 

.,(A) = fA 1 Wp(Z)P d#(x), A � 9  B(R). 

By the Beppo-Levi theorem we find 

up(A) JAW_ ~ v(A) := ~ 2P,p(R) - dp(x), m �9 B(R), 
p_>l 

where 
1 1 

:= ~ 2Pvp(R)wp(x)P �9 L1 (R, dp). w ( x )  

The function 1/w is lower semi-continuous and, furthermore, w(x)< 2Pvp (R)wp (x) p, 
0 p > l .  Therefore w�9 and Cwl/v�9 for any p > l .  So that w(x) is indeed a 

function whose existence was asserted in Theorem 1 (a). 
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2.3. N e c e s s i t y  o f  T h e o r e m  1(c) 

To finish the proof of Theorem 1. it suffices to prove the necessity of (c), since 
(c) implies (b). The crucial tool will be the following lemma which is of independent 
interest. 

L e m m a  2. For every wEW(~(R) there exist VEW~(R)  and finite positive 
constants CT, independent of x, such that 

(13) w(x)<CTV(x) T. x E R .  0 < T < c c .  

The proof of Lenmm 2 is rather lengthy and involved. We postpone it to 
Section 9. If # E M ~c (R) then by Theorem 1 (a) (which has been established already) 
there exists wE~4?~(R) such that  1/wEL~(R. dp). Lemma 2, applied to this w, 
asserts the existence of a function V EI4?~(R) satisfying (13). These inequalities 
imply lIVE L(R,  dp) and. hence, that V satisfies all the conditions of Theorem 1 (c). 

3. P r o o f  o f  Co ro l l a r i e s  1 a n d  2 

To prove Corollary 1 we need the representation of the measure in question, as 
described in Remark 1, namely dp(x)/w(x)q=w(x)P-qdup(x), q<p, upE~A+(R). 
Theorem 1 and the fact that u, EV~ (R) complete the proof of Corollary l(a). The 
integrability of 1/w p with respect to p for every 1 < p <  ~c together with the evident 
inequality 

R If(x)lP @(x) : /R ~ *L'(x)plf(x)Ip @(X) < IIflIP~II1/w(x)IIPL/R,d~), 

imply Corollary l(b).  

Corollary 2 follows easily from Theorem l(a) and Remark 1. 

4. P r o o f  o f  T h e o r e m  2 

Assume first that  w~VY~(R). Since P is not dense in C ~ there exists a non- 
trivial linear continuous functional L on C~ vanishing on all monomials. In [4] (see 
also [2, Theorem 1.3, p. 9]) a general form of the linear continuous functionals on 
C ~ was determined, and that result implies, for our case. the existence of p E M ( R )  
with 

L(xn)= /Rxnw(x)dco(x)=O. n>O. 
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Let R + , R o E B ( R ) ,  R o U R o = R  , R ~ N R ~ = 0 ,  be a Hahn decomposition of the 
space (R, B(R)) with respect to the measure ~), and let O=p+-0_ be its decom- 
position in the sense of Jordan: o+(A):=o(A~Rio), AE/~(R), and 101:=0++~)_. 
Then 

(14) 0 = s x~[xa+ ( x ) - x R ;  (x)lw(x) dlol(x), n _> 0. 

Since XR+(x)--XR;(x) is uniformly bounded on R we conclude from (14) that 

Ll(R, wdu)~7 ~, where ~:=IolEM+(R). For l < p < ~  the relation (14) reads 

f (x) (x) XR~ + ~ ~ R ~  
(15) 0 = JR xn W(x)p_ 1 /L' (X) p dlJ(x), 

The inequality 

implies 

n_>O. 

XR+~ 2 q ~ t  1 1 
W ' X ' ~ - ~  <- ~"X "---= -- + -  = 1. P q 

xR~ (x)--XR; (x) 
E L q ( R ,  wPd~), w(x)p-1 

and this together with (15) proves Lp(R, w p du)~fi. 
For the converse suppose that  u, EkY~'(R). Then, for pE [1, +vc), the relation 

(3) shows that  the measure p, defined as dp:=wPdu, belongs to M~(R)  for any 
uEAd+(R). The proof of Theorem 2 is complete. 

5. P r o o f  of  T h e o r e m  3 

Without loss of generality we can assume that ]]111~,,_<1. If wEW~(R) then 
Theorem B implies 

(16) Z (1/w()~))" _ 

for all v>0  and for all BEE0 with ABCS,~,. Assume there exists FEC0 and AFCSw 
with 

lira logl/w(&) < 3 < v c .  
I~1-~ log + IF'(~)I - 
XEAF 

Then, for some C>0,  

1 
C log w ~  _< log+ [F'(~)], )~ E A~-. 
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or 
1 

IF'(A)I ~ w(A) ~ ,  A ~ AF. 

Therefore, by the definition of W* (R), 
c n  <_ c n  < 

IF'(A)I )~EAF XCAF 

which contradicts (16). In the other direction, if there exists FE~o with AFCSw 
and t~>O such that 

C:-- Z (1/w(A))e 
IF'(A)I 

then 
1 

- -  _ CIF'(A)I, A c Av. 

By definition of W* (R) this implies 

lim log 1/w(A) < lim log 1/w(A) 
I~1-~ log + CIF'(A)I -lal-+~ log 1/C+olog 1/w(A) 
AEAF ~EAF 

contradicting (5) and completing the proof. 

= 1/Lo < cx~, 

6. P roofs  of  (4) and T h e o r e m  4 

The inclusion D in (4) is obvious. On the other hand, since for every #EA/[* (R) 
the entire function ~--~n>0 xJn/(JnP2 '~) belongs to LI(R,  dp), Remark 1 and the 
definition of W* (R) imply that 

1 
(17) dp(x)= x2 n du(x), u E M + ( R ) ,  

Z 2np jn  
n>0 

and (~--]~n>0 xJn/JnPJn) -1 e w * ( a ) ,  as asserted. Observe that (17) also justifies the 
remark following (4). 

We are now ready to prove Theorem 4. Indeed, Theorem 4(a) follows im- 
mediately from the representation (17). Using the assumption of Theorem 4(b), 
Definition 1, and the inequalities 

1 1 bj~ 
> - -  n > 0 ,  

m,~ = fR xJ'~w(x) du(x) - u(n ) '  

(which follow from (7)), we obtain p E M ~ ( R ) ,  as asserted. In both cases Corol- 
lary 3 yields C~ E~  for every JET~(u) and T>0 which completes the proof of 
Theorem 4. 
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7. P r o o f  o f  L e m m a  1 

Since  bk:=lamkl l i n k ,  k~_l,  is an increasing sequence the assumptions imply 
that  

1 
bN k = CX) 

holds for any NCN.  For N = I  this makes it possible to find kl >1 such that  

k l - 1  1 

k=~ b-kk ->1" 

Similarly, for N = 2  we find a positive integer k2>kl such that: 

k2-1 1 >1,  

b2k -  
k : k l  

and so on. Consequently, we obtain a strictly increasing sequence of positive integers 
{k~}~_>0 (setting ko:= 1), which satisfies 

(18) 
kr 1 

r > l k=kr_ l 

Rearranging the indices rk in (18) in increasing order we obtain a s e q u e n c e  { n k } k > l  

which satisfies 

1 
(19) k~>lb--~[=cr 

Since the s e q u e n c e  {nk}k>l is strictly increasing we conclude that  n k >k  for every 
k > l .  

Now we shall prove (10). Fix an arbitrary integer q > l  and find m2q>l such 
that  nm2q=2qk2q_l. Then for every m~_m2q and r > l  we have nm+r-nm~2qr, 
and, hence, 

nm2q+r > 2qk2q-l+2rq = q(2k2q-1 +2r) > q(m2q+r) for r > m2q. 

Therefore nk>qk for all k_>2m2q. These inequalities and (19) complete the proof 
of Lemma 1. 
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8. P r o o f s  o f  T h e o r e m  5 a n d  C o r o l l a r y  4 

For Carleman measures we may assume that  P0 = 1 Then H&lder's inequality 
yields 

1/s  ~ 1 / t  (20) m s *. m t , 0 < s < t < ac, 

where 

m s : = / R t x l S d ~ ( x ) ,  s>O. 

This shows that Su satisfies the assumption of Lemma 1 with (m, n)=(2 ,  2b(p)) as 
has been remarked just before Theorem 5. 

Using (20) and (10) we conclude that  the series on the right of 

l i p  _ l l 2 k p  \ 2  
1 ) \ 1/2nk 9 k , , k / n k  

W - - ~  Lp(R,dl~)  k > l  ~ ~2nk  k > l  _ -- x ' l l l , 2n  k 

is convergent and, hence, 1/w u belongs to Lp(R ,d# )  for every l ~ p < o c .  As in 
Section 6 we find the representation dp=wP~ dpp, with 0 p ~ / I + ( R )  for p_>l. Hence 
d l+p p~=w u dpl+p--w p dup, where dup=wu dQp. By Theorem 4(b), Lemma 1 and 

Corollary 3 the measure Up is Carleman for every p_>l and wu)/jE)/V(~(R) for all 
J ET~(#). Furthermore, Theorem A implies that  upE~/l~c (R), and from Remark 1 
we have 1 / w u E L ( R ,  d#). Theorem 5 is proved. 

Finally, Corollary 4 follows immediately from Corollary 1, since w,  satisfies all 
conditions of Theorem l(c). 

9. P r o o f  o f  L e m m a  2 

9.1. S o m e  a u x i l i a r y  l e m m a s  

Let �9 be the following collection of functions 

(21) r  _ x ~ ]  , x > 0 ,  

0, x = 0 ,  

where a~_>an+l>0, nEN,  and limn-~oo ~/5~=0. Observe that  r and its inverse 
r -1 are both strictly increasing and continuous on R +, r  (0)=0 and 

(22) r r  i/n 1/n _ a  n x , n > l ,  x > 0 .  
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L e m m a  3. For every &C(~ there exists a ~bEep such that 

(23) r162  > r x_>0. 

Proof. We have r where cp(x)=y~'~n_>l a,~x ~ is an entire function 
with positive and non-increasing coefficients a,~, n_>l. Let b,~:=a~/max{1,al}, 
n > l ,  and 

bn2 ~~ z~x~, Z~:=2-rz' n_>l. 
n > l  

To prove the first inequality in 

~(~) 
(24) w(w(x)) <_ E bnxn =~ max{l,  al } -< ~(x), x > 0, 

n>_l 

we write for nEN, 

where 

(25) 

~o(~) n = ~ m ~  m = ~ ~ ( , ~ ) x  ~, 

-- k > n  

m l p , . ~ m n ~ _ l  
r n l + . . . + m n  =k  

Note that  the number of terms in (25) is k-1 

Let k>n ~. Then each term in (25) contains at least one factor with index rnj 
not less than k/n, so that m]>_k2/n2>k and 

bm~ bk bk 

~m, - 22,n ~ _< ~ --< 22--~- 

Since alt other factors of this same term are not greater than 1 we find 

~k(n) < ( k -  l "~ bk bk n2 
n--1 2-~ <- 2-g 1< < k. k /  

(26) 

On the other hand, 

(27) /3k(n)<(k--1)  ~ n--1 

since/~,~<1/2'* for all n > l .  

l < n < k ,  
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We have 

k 

C0(CO(X)): E f l n C O ( x ) n :  E f in  E flk(n)xk= E xk ( E  f l n f l k ( n )  ~ ,  
n~_l n~_l k>_n k_>l \ n = l  ] 

and from (26) and (27) we get for fixed k 

E flnflk(n)= E fl,~flk(n)+ E flnflk(n)<_ E ilk(n)+ E fin 
n=l  l ~ n  2 ~ k  k<=n 2 <_ k 2 1 ~ n  2 ~ k k<=n 2 ~ k  2 

bk + b,~ bkV~ . l < b k (  ~ )  <bk, 
l ( n 2 < k  k<~n2~k 2 n ~ 8  

so tha t  (24) follows. Setting r we obtain (23). [] 

From now on, for a function F: R--+R +, we shall write SF:---{xERIF(x)>O }. 

L e m m a  4. Let w, v E W * ( R )  and assume that 

(28) w(x)<C~v(x) n, xER, n>l,  

with positive finite constants Ca, n> 1. Then there exists a function 0EW*(R)  with 
Sv C S~ and 

(29) w(x) <_Dn(v(x)O(x)) ~, xER, n> 1, 

with positive finite constants Dn, n>_ 1. 

Proof. If S~ is bounded then one can find a > 0  such tha t  S~c[-a,a] and set 

0(x) := X[-a,a] (X) + e-(a-1~1)2 XR\[-~,~] (x) E 142" (R) with So = R D Sv. 
~ l / r t  

Let now Sw be unbounded. From (28) it is obvious tha t  lim _ ~  (;;~ = + c o ,  
and 

w(x) _< ~(v(x)),  x e R,  

,. . I l k  
where r  1 2-kd~lx-k) -1, dk:=maxl<~<k Ci, k_>l, and nmk_~o o a k = 
+c~. Since CEO Lemma 3 gives the existence of 

~(x)= _ x n /  ~ 

such tha t  

r < r162 x ~ n +, 
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and therefore 

(30) w(x) < r162 ~ �9 4 .  

Writing 
u(x) := r 

we get from (22) and (30) that  

x � 9  

(31) w(x) < ~p(u(x) ) < u(x)n 
_ , x E R ,  n > l .  

Cn 

Using formula (21) it is easy to verify that  the function ~(x ) / x  is non-negative and 
strictly increasing on R +, equals zero at x = 0  and is bounded from above by 1/Cl 
uniformly on R +. Furthermore, by (22), ~p(X)/X<_Xn/Cn+I, x E R  +, nEN.  Thus, 
the function 

0 ( ~ ) -  r  x �9 R, 
v(z) ' 

belongs to )4;* (R) and 
u(x)=0(x)v(x) ,  x e R .  

Substitution of the last expression for u(x) in (31) proves (29) and completes the 
proof of Lemma 4. [] 

The following Lemma 5 is instrumental for the proof of Lemma 6, which sup- 
plies a suitable application of Theorem B. Lemma 5 is a special case of Lemma 4.1 
in [3], but to make the paper more self-contained a proof of Lemma 5 is given in 
the appendix below. 

L e m m a  5. For any entire function BECo with zeros AB={bn}n>_l there exists 
a constant C>O and a sequence of real positive numbers {Sn}n_>l, such that for any 
sequence of real numbers {d~},~>_l satisfying 

(32) Ib,~-dnl _< 5n, n > 1, 

it is possible to find an entire function DEC0 such that A D={ dn}n>_l and 

(33) [B'(bn)l _ ClD'(dn)], n > 1. 

We recall the definition of the so-called upper Baire function MR of F: R--+R 
as MF(x):=lim~$oSUpyE(z_~,~+~)F(y). If F is locally bounded from above then 
M F is an upper semi-continuous function. 
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L e m m a  6. For wCW*(R)  with unbounded Sw let S c S ~  be such that w(x)=  
Mwxs(X), x c R .  If for any countable set A c S  without finite accumulation point 
we have C~ EP then also C~ CP. 

Proof. The assumptions of Lemma 6, together with Theorem B, show that  

1 
(34) E w(A)IF,(A)I - cc 

AEAF 

holds for every FEgo with AFcS .  
Assume that  ;o is not dense in C ~ Then by Theorem B one can find an entire 

function B E go such that  A c Sw and 

1 
(35) E w(bn)lB'(bn) I < oc, AB = {bnIn_>l. 

n>_l 

For this function B Lemma 5 gives the existence of a sequence of positive numbers 
{Sn}n>l valid for the conclusions of that  lemma. We now choose a sequence of real 
numbers {dn}n>l satisfying (32): if bncS then let dn=bn. If bnEAB\S(cSw\  S), 
then the definition of S in Lemma 6 assures the existence of a sequence sk E S, k_> 1, 
such that  l i m k - ~  sk=b,~ and l imk_~  w(sk)=w(b~). Thus, it is possible to find an 

index k > l  for which Isk-bnl<e~n and w(sk)>lw(bn). In this case we set d~=sk. 
With this choice we have {dn}n_>l c S  and a combination of Lemma 5 and (35) gives 

1 

w(dn)]D'(dn)I 
n>l  

<cxD, 

for a suitable D~g0.  This contradicts (34) with F=D and finishes the proof. [] 

9.2.  T h e  p r o o f  o f  L e m m a  2 

Below we shall work with the complex space CC~176 ~ and the set ;~ 
of polynomials with complex coefficients. Reasoning similarly to that  at the be- 
ginning of Subsection 2.1 shows that the denseness of T' in the real space C ~ is 
equivalent to the denseness of P[C] in the complex space CC ~ and this, in turn, to 
the possibility of approximating the single function 1/(x+i) in CC ~ by polynomials 
from T~[C]. 

If Sw is bounded, i.e. if there exists a > 0  such that  Sw C I -a ,  a], then one can 
set V=)q-a,a]- Assume that S~ is unbounded. Then the proof of Lemma 2 consists 

of four steps. 
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9.2.1. Without  loss of generality we assume that  w is bounded by 1 from above 
on R. According to Theorem l(a), we find a measure uEJt4+(R) and a function 
w G I/V~ (R) such that  

dp(x) = w(x) &'(x). 

For every k > l  one can approximate 1/(x+i) by polynomials from T~[C] in the 
space C~ Consequently we find a sequence of polynomials PkEP[C],  kEN,  
such that  

X~z--Pk(x) w:/k < ~---~, k>_e, 

or, which is the same, 

X_~z _ pk(x) k 1 
(36) < 2k2W(x)l/k , 

Next we look at 

and set 

k_>l, xESw. 

(37) IIO~N-,Ilwl/N <DN, N>_I. 

I 1 k 
7k(x) :=  --~--Pk(x)  for k > l ,  

and a0 (x):='70 (x) = i. 
For every N > I  the function aN is continuous, non-negative on the real axis 

and majorized at infinity by some power function (and the same holds for "Yk for 
every k_>l). Therefore there exist positive finite constants DN, N >  1, such that  

Since aN increases with N the limit (finite or infinite) 

a(x):= lim a N ( x ) = l + ~  -'~ 1 . _ p k ( x )  k 
N--~oo ~>llx+~ 

is lower semi-continuous on R. Moreover, from (36) and w(x) G [0, 1] it follows that  

a(x)  < 1+~--~ I I 
_ 2k2w(z):/k <_ 1H w(x)' 

k>l  

xE S~. 

N k 

C~N(X):=I+~--~ 1 . - p k ( x )  , N > I ,  
k=l  X-~-~ 
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Therefore, 

~(x) < ~ ,  x c S ~ .  

The right-hand side of (36) tends to zero for every xESw as k-+oo. Hence, the 
polynomials Pk converge to 1 / (x+i )  at every point of S~. Therefore 

lim deg Pk = oc. 
k-+c~  

(38) 

Since 
k 1 

.(X) > ~+ i - -Pk(x )  

the relation (38) implies that  a(x) grows faster than any power function as x--+=Lcc. 
Setting 1/oc:=0,  we define 

1 
~(z)  : :  ~(x)'  x c  n ,  

and note that  in view of the above wEI, V*(R) and w(x)_<l, xCR.  
Fix an integer p>  1. Then H51der's inequality yields for l / p +  l /q= 1, 

k > p  _ "k>>p - -  " k > p  - -  

Hence, using (36), 

~k(x) < Z 2k~(/) p-< ~ :~-~pw(x) , /~ '  x e s~, 
" k ~ p  - -  k>_p k>_p 

and finally 

(39) ~(~/  ~k(x/ ~- ~ 2~(k-~) -< 2, ~ e s~.  
k_>p / k_>p 

Since a(x) =ap-1 (x) + ~~k>_p 7k(x), (37) and (39) give 

(z y w(x)a(x)P~2Pw(x)ap-I(x)P+2Pw(x) "7k(x) <_2 pDp+2p+I , xESw.  
~ k ~ p  

Renaming 2PDP§ p+I by Dp, we get w(x)<Dpw(X) p for all xESw and since this 
inequality is also valid for xER\S~ ,  it follows that  

(40) w(x) <_ Dpw(X) p, p >_ 1, x E R. 
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9.2.2. Lemma 4 and (40) imply the existence of 0EW*(R) such that  S~cSo 
and after a suitable renaming of the constants we find that 

Define(3) 

(41) 

x E R ,  p_> 1. 

V(x) := M~oxs~ ix), x E R, 

and observe that  because every function in W* (R) is uniformly bounded on R, the 
inequalities (13) are non-trivial only for TE [1, +oc) or, rather, only for TEN. Since 
the function wO is upper semi-continuous, taking limits 5-40 in 

w(x)O(x) ~_ sup w(y)O(y) ~_ sup w(y)O(y), xE Sw, 
yE(z--5,x+5)nSw yE(x-5,x+6) 

gives VXs~o--wOXs~ and that, together with (41), implies (13) and 

(42) V(x) = Myxs~ (x), z E R. 

That  VEW*(R)  follows easily from (41) and from w, 0EW*(R).  

9.2.3. The next step is to prove that  C~ EP, mEN.  To establish this prop- 
erty, we use Lemma 6 and (42): it is enough to show that C o E P  for arbitrary yl/mXA 
countable sets ACSw without finite accumulation points, where, obviously, 

v1/m(x))(.A(X ) ~.)(x)l/rnO(x)l/mxA(X), XE A. 

This will follow from 

(43) 
1 ~ l im Pk(x)---~z =0.  

(3) T h e  set  S~ is no t  smal le r  t h a n  Sw and  so it is general ly  imposs ib le  to draw conclus ions  

abou t  the  dens i ty  of  79 in C ~  To avoid th is  we rest r ic t  wO to S~ and  ad jus t  the  res t r ic t ion to 

become an  uppe r  semi -con t inuous  func t ion  V. T h e n  Sv CSw. 
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9.2.4. We now prove (43). For arbitrary T>0,  xEA, Ixl>T and k>m we have 

OJ(x)l/mo(x)l/m x-~'~--Pk(x) =O(x) 1/rn 
~+i-Pk(x)[ 

1 I n'Q/m (l Z ) 

<O(xy/m x-~ -Pk(x) 

(l + x--~z --Pk(x)]k) Wm 

< O(x)l/m 
< sup O(x) 1/m, 

Ixi>T 

i . e .  

(44) sup w(x)l/mO(x)Wm x-~z--Pk(x) <_ sup O(x) 1/m, k>_m. 
xeA ]x[~T Ixl>T 

Fix an arbitrary ~>0. Since 0E~4;*(R) one can find TE >0 such that 

(45) sup O(x) Wm< �89 
IxJ_>T~ 

On the other hand, the interval (-T~, T~) contains only finitely many points from 
AcSw and according to (36), 

lim Pk(X)--x~ =0' xESw. 
k---+ oc 

Thus there exists a positive integer k~ >m such that 

(46) c 
pk(x)_  1 ~ 2SUPxERO(x)l/m , x cAa( -T~ ,T~) .  

The relation (44) (with T=T~), (45) and (46) imply that 

Pk(X)-x-~l ~'/'O'/'~XA <r k>_k~. 

This proves (43) and thereby VCld;~(R). The proof of Lemma 2 is complete. 
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10. An example 

In  this section we cons t ruc t  a discrete measure  # and a non-discrete  measure  p 
in A 4 ~  (R)  which do not  sat isfy C a r l � 9  condit ion.  T h e  idea of the  cons t ruc t ion  

is similar to the one used in the  proof  of T h e o r e m  17 in [26]. 
Let  ,~k::e k, k>_l, and 

A : = { A k } k ~ l ,  Q ~ ( x ) : = f i ( 1 - ~ ) ,  n>_l, xER. 
k = l  

Define a discrete measure  v � 9  and a discrete funct ion v by 

1 I+A  k>l 

where 5(x) is the  Dirac measure  a t  zero, 

(47) vl = 1 and  vk ~ - "  l<n<k--lmin {1, 
e-n2 I 

iQn( k)l n , k _ > 2 .  

For any integer m>N>_l and xEA\{Ak}~_I we obtain 

v(x)l/NIQm(x)l=min~lQm(x)[, [Qm(x)l e-n2/N } 
~>, ( IQn(x)p/N 

{ e-  lN } 
~ m i n  ]Qm(x)l , IQm(X)I(m_N)/N <e -rn. 

Here we used the  inequal i ty  

min{y,  a/y )'} 4_ a 1/(1+A) , y > 0, a, A > 0, 

and the  convent ion 1 / 0 : - - + e c .  Hence 

(48) ItQn[tvl/N<_e -n, n > N > l ,  

and, in par t icular ,  v E VV* (R) .  
According to a known cri terion (see [26, T h e o r e m  1]), the  denseness of P in 

C ~  w �9 W* (R) ,  is equivalent  to M (w/(1 + Ix I), i) = +oc ,  where  

M(w,z):=sup{[P(z)[ [ [[P[[w <_l and P E P } ,  z e C ,  
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is the so-called Holl-Mergelyan majorant. Since w�9 yields ( l+ lx l )~w�9  
~V~(R) for arbitrary r>0 ,  we observe that  w�9 if and only if (I+]xI)wUN�9 
]4;~' (R) for every N > 1. Therefore this criterion for the membership in )~V~ (R) can 
be reformulated as 

(49) w E W ; ( R )  -', '- inf{llPIt~,/N I I P ( i ) I = I  and P E P } = 0  for all N>_I.  

From ]Qn(i)12>l+e -2 combined with (48) we obtain 

e--rt  
IPn(i)l = 1, IIP,~lh,-~ -< ~ ,  n > N_> 1, 

where Pn(x)=Q~(x)/IQ,~(i)]. From (49) we deduce that  the weight v as well as 
(l+x2)v(x) belong to W~(R). This fact and Theorem 1 allow us to claim that  the 
measure/z defined as 

(50) d#(x) := (l+x2)v(x)du(x) =~vkS(x--Ak), x �9 R, 
k > l  

belongs to ]vl~(R) .  
Next we show that  p ~ M ~ ( R ) ,  i.e. 

-4p (51) Z ' ~ ,  < o~, 
p>l 

where 

(52) ,2p = / .  x 2p ~,(x)-- Z v~p ,  ~ > 1. 

To this end we need to derive some estimates. For the integers l _~n<k  we have 

~ = e~(k-(n+l)/2). IQn(~k)l-< ~,~2 ...~n 

It is easy to verify that  n(k-�89189 holds for all l<n<k-1,  k>_2. 
Therefore 

IQ,~(Ak)l<e k(k-1)/2, l < n < k - 1 ,  

and 

(53) IQ,~(~Xk)ln<e k(k-1)2/2, l < n < k - 1 .  
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Substituting (53) into (47) we get 

vk _> min (1, e-n2e -k(k-1)2/2} > e -k2-ka/2, k > 2, 
l < n < k -  1- - - -  - -  

and then, by (52), 

(54) #2p 2 Ee2Pk -k2 /2 - ka /2 '  P >- 1. 
k_>l 

To further estimate the expression on the right of (54) observe that the function 
r : = 2 p x - l x 3  attains its unique maximum over [0, +oc) at Xp= v / ~ / 3  and that 
r = (8/v/~)p3/2. The interval [Xp, xp + 1) contains the unique integer kp 2 2. 
Since r decreases on [Xp, +ec) we find that 

r 1 6 2  < g,(Xp) - r  + l ) = -2p+  l (3x2p + 3Xv + l ) = v / ~  +�89 < 7 - - b P ,  

and thus 

2 - 3v~ ~ 

Combining (55) with the estimate 

kp2<(xp+l) 2 4p ~ /'1 4 4 / 14 _ = T +  +1~ ~ + ~ + ~  p<--~-p, 

we get 
1 3 2 >  3 / 2  2pkp - ~ kp - kp _ p - 7~,, 

so that 

(56) P2p >_ e2pkp-k~/2-k~ >_ e p3/2-7p, p > 1. 

These inequalities prove (51) and establish that #EAJ;c(R)\3/ /~(R)  which was 
our aim here. 

Theorem 1 in [30, p. 294] along with the evident inequalities 

((1-I-x2)v(x)+e-Z2) 1/g < ((1-}-x2)v(x))l /N +e -x2 /g ,  g>_ 1, 

imply that (1 +x2)v (x )  + e -x2 E Fd 0 (R) and therefore, using Theorem 1, we can con- 
clude that OEjt4~(R), where 

2 x 2 dx 

The definition of P implies that supp o = R  and the obvious inequalities 

R x  p do(x) > >_ 1, #2p, P 

establish that OEJt4~ (R) \3d b (R). 
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Appendix:  Proof  of  Lemma 5 

Since the statement of Lemma 5 is invariant under the translation x~-+x+a, 
a c R ,  we may assume that  0~AB , and also that  O<lbkl<lbk+ll for k_>l. 

Let 

(57) 0k:=min{1,[bk[, man [[bk[--tA[[}, k >  1. 
AEA8 

I>,]r 

It is easy to verify that  for any real constants a, /3,  0, A and x, satisfying 

0<2A_<0<lal, I~-~I_<A and Ix-~l>_o, (58) 

we have 

(59) 1 -  1 -  _< 1 + - - .  
0 

For every k_> 1 the function Bk (x) := (1 -- x/bk)- 1B(x) is continuously extendable to 
R with Bk(bk)=-bkB'(bk). Thus, there exists ak >0 such that  

(60) 

Let 

(61) 

[Bk(x)l >_ ~llbkl [B'(bk)l, x--bkt _< ak. 

6k := min{ak ' Qk }, k > l ,  
4(l+b~) - 

and consider an arbitrary sequence {dk}k>l satisfying (32). Since BCC0 its zeros 
satisfy one of the two possible conditions for entire functions of minimal exponential 
type in Lindel6f's theorem (see [10]). By (57) and (61) we find I1/bk-1/dk[<_2/b~ 
for k_>l, so that  the same Lindel6f condition is true for the numbers dk, k>_l. In 
both cases the function 

D(z):= lim H ( 1 - z )  
R--++oc dk k>l 

[dk-[< R 

is an entire function of minimal exponential type. Moreover, due to our choice of 
numbers Ok and 5k it is possible to find a sequence of positive n u m b e r s / ~ ,  n_>l, 
tending to infinity, such that  for every n the interval ( - P ~ ,  Rn) contains the same 
number Nn of zeros of the functions D(z) and B(z). Then, obviously, 

(62) Bk(d~) Nn ( ) (  -1, 
(-dk)D'(dk) - ,~lim m=lH 1 -  ~dk 1 -  ~]dk ~ k _> 1. 

m ~ k  
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Using (59) with X=dk ,  a = b m ,  fl=dm, A=Sm and P=Pm, which satisfy (58), we get 

1 (1- ?'1 1 ~ 1 +  4 5 m ~ 1 - t - -  k , m > l ,  r e # k ,  
pm 1 + b2m ' 

which by (60), (61) and (62) imply (note that  Idkl~ Ibkl+~k ~ Ibkl+ �88 Pk _< 5 ib k I) 

ID'(dk)] 
2 IBk(dk)l  2fdkl IB'(dk)l  < 5  lim H 1+ 

[B'(bk)~ <_ Ibk] ]D'(dk)l - Ibkl ( - d k ) l D ' ( d k ) ]  - 2 n--,oo m=l 
rn~k 

_< 25 n-~o~lim exp = log 1+ <_ ~ex p ,m >l  l+b2 ~ = : C  

for all k>  1. This estimate implies (33) and hence completes the proof of Lemma 5. 
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