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Representation of measures with simultaneous
polynomial denseness in L,(R,dp), 1<p<oo

Andrew Bakan and Stephan Ruscheweyh

Abstract. We give characterisations of certain positive finite Borel measures with un-
bounded support on the real axis so that the algebraic polynomials are dense in all spaces
Ly(R,dy), p>1. These conditions apply. in particular, to the measures satisfying the classical
Carleman conditions.

1. Introduction
1.1. Background

Let M(R) denote the space of finite Borel measures yz on R, M*(R) the cone
of positive measures in M{R), and M*(R) the subset of measures in M*(R) with
all moments

un::/ " dul(z), n>0,
R

finite. Denote by P the set of all real algebraic polynomials, i.e. polynomials with
real coefficients, and let P be the set of topological linear spaces of real functions
on R which have P as a dense subset. For pe M*(R) we look at the real spaces
Ly(R,dp), 1<p<oo, and L(R,du):=(,, Lp(R.dp). The aim of this note is to
characterize the set()
M (R):= ] M;(R),
p21
where
Mi(R):={pe M*(R)| L,(R.dp) e P}. 1<p<cc.

This work was completed while A. Bakan was visiting Wiirzburg University, supported by
the German Academic Exchange Service (DAAD). S. Ruscheweyh received partial support from
the German-Israeli Foundation (grant G-643-117.6/1999) and from INTAS (Project 99-00089).

() This problem is due to Prof. Ajit Igbal Singh who raised it during a discussion with A.
Bakan in May 1999.
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The background of this question are properties of measures from M*(R) sat-
isfying the so-called Carleman conditions. The definition of these conditions given
below is slightly more general than the one in T. Carleman’s original paper [14] (see
also [15] and [16]). The following notation will be useful: let meN and neZ\ {0}:
a sequence of real numbers a:={ay }x>o will be called (m.n)-divergent if

> am| TV =,

k>1

For pe M*(R) we shall write S,:={u,}n>0. and set b(u):=1 if supp p:={r€R|
p((x—e,z+¢))>0 for all £>0} is unbounded in both directions and b(y):=2 other-
wise.

Definition 1. A measure p€ M*(R) is said to satisfy Carleman’s condition (or
is called a Carleman measure) if S, is (2.2b(u))-divergent.

The set of Carleman measures will be denoted by M7 (R). They have originally
been introduced in the context of the so-called Hamburger and Stieltjes determinacy
problem (see [1], [17-22], [25], [28] and [29]), and it has been known for some time
(see [6] and [27]) that the determinacy of measures in M*(R) is related to the
polynomial density in certain Lo spaces. For us the following result by C. Berg and
J. P. R. Christensen [6] (see also [5]) is the most relevant.

Theorem A. Every Carleman measure belongs to M’ (R).

In the sequel we shall study general characterizations and representations for
measures in M?*_(R). In the case of the Carleman measures these will be even more
explicit and constructive. It should be observed that every measure g in M*(R)
with bounded support is a Carleman measure and belongs to M%_(R) automatically.
Similar observations are valid also for all further results in this paper. Therefore,
from now on, we shall study only measures with unbounded support.

1.2. The main results

Let B(R) denote the family of Borel subsets of R and W*(R) the set of up-
per semi-continuous functions w: R—R". satisfving ||x"[}.- <oc for all n>0, where
| fllw:=sup,er w(z)|f(z)]. For we W*(R) the space CY is defined as the set of all
f:R—R, continuous on R and with lim ;| w(x)f(x)=0. We endow C? with the
semi-norm | - ||,,. In this context a function weW*(R) is also called a weight. For
0<7<oc denote by Wi (R) the set of we W*(R) with Co.- €P. Furthermore, set
WS (R):=[,50 Wi(R). Observe, that the Weierstrass polynomial approximation
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theorem implies that x 4€W;(R) for every compact set ACR. Here x4 denotes
the characteristic function of the set A.
Our main result is the following theorem.

Theorem 1. A measure pe M*(R) with unbounded support belongs to the
space M5 (R) if and only if any one (and therefore all) of the following three
properties hold:

(a) There exists we Wi (R) such that 1/we L, (R.dp).

(b) There exists we Wy (R) such that 1/weL(R.dy).

(¢) There exists we W} (R) such that 1/we L(R.dy).

Remark 1. Lebesgue integration theory implies that for pe M*(R) and we
W*(R) there exists v€ M*(R) such that

u(A):/Aw(z)du(I). AeB(R).

(in other words du(z)=w(z) dv(x)) if and only if 1/we L (R.du). Here we have set
1/w:=limy_ 1 (w+1/N)~1. Note that. using this property, one can replace the
integrability conditions on 1/w in Theorem 1 by the existence of representations for
4 in specific forms. We omit the details.

The functions w found in Theorem 1{c) have particularly strong connections
with the measure p in question.

Corollary 1. Let ue M*(R) have unbounded support and satisfy L,(R.du)€
P for all 1<p<oo. Then any function w as in Theorem 1(c) has the following
additional properties:

(a) Lp(R,w™9(z)du(z))€P for all 1<p.q<c:

(b) ¢ f is continuous on R with f(z)=0(|z|™) for some meN as r—Foc
then

(1) 1z, roap) </ wl, @®dwll fllw.  1<p<oo.

Remark 2. If we approximate a function f as in Corollary 1(b) by a polynomial
sequence {P,},>1 in the space C and replace f by f— P, in (1), then we see that
the rate of simultaneous polynomial approximation to f in the spaces L,(R.du)
(independently of p) is not slower than the one of f in the || - ||,,-norm.

Corollary 1(a) will be instrumental in the proof of the following result.
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Corollary 2.
(2) M (R)y={p|du=wdv. we W{(R). ve M"(R)}.

It is an open question which smaller set can replace W} (R) on the right-hand
side of (2) without violating the conclusion. The corresponding question arises also
(and is open) for the representation

(3) M(R) = {p|dp=wdv. we W;,,(R). ve M"(R)}, 1<p<oxc,
(see [3, Theorem 2.1, p. 38]). However, in
(4) M*(R)={p|dp=wdv. we W*(R). ve M"(R)},

the set W*(R) can be replaced by a much smaller one. namely the reciprocals of the
even entire functions with all positive and decreasing Taylor coefficients, without
affecting the validity (see Section 6).

If one wants more and better information about MX_(R) it is clear from The-
orem 1 and Corollary 2 that more has to be known about the sets Wi (R) and
W (R). This we shall discuss in the next section.

1.3. The sets W;(R) and W;(R)
The following statement is a sort of converse to (3).

Theorem 2. Let we W*(R). If w¢W;(R) then there exists ve M*(R) such
that for all 1<p<oo we have L,(R.wPdv)¢P. On the other hand, if there exist
ve M*(R) and pe|l,oc) such that L,(R.wPdv)¢P then wgWi(R).

Already in 1924 S. Bernstein [8] asked for conditions on w€W*(R) to be in
Wi (R). In 1959 L. de Branges [13] obtained a solution to this problem. A slightly
improved version (see [11] and [31]) of his result is as follows: let & be the family
of entire functions B of minimal exponential type having real and simple zeros only
and let Ag denote the set of these zeros.

Theorem B. (1959, [13]) For we W*(R) assume that S,,:={zeR|w(z)>0}
is unbounded. Then weW;s (R) if and only if for every function BEEy with ApC S,
we have

1
2 wyiEm =

A€EAB
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Using Theorem B we can translate the conditions on w in Theorem 1 as follows.
As usual log* z equals log z if z>1 and 0 otherwise.

Theorem 3. For we W*(R) assume that Sy, :={z€R|w(z)>0} is unbounded.
Then we W (R) if and only if for every function BEEy with AgC S, we have

5) G Joesl/w() _

Al—oo | + B/()\
Ao log |B'(A)]

We note that Theorem B is also crucial for the proof of Theorem 1(c), see
Lemmas 5 and 6 below.

1.4. Properties and representations of Carleman measures

We denote by ¥ the set of functions

1

w(x) =
(=) 2 n>0@2nT?"

with ag>0, ag, >0 for all n>1, as,, >0 for infinitely many n and lim,_, %/@2,=0.
Note that ¥CW*(R), and for we ¥ we set

Oy = {sup |ml"w(:1:)} .
z€R n>0

S. Bernstein in [8] and [9] (see also [26]) solved his own problem mentioned
above for functions weW. His result was as follows.

Theorem C. (Bernstein’s conditions) Let weW. Then the following condi-
tions are equivalent(?):

(a) weW;(R);

(b) weWs(R);

(©) g (logw(z))/(1+2?) dr=—o0;

(d) o is (1,1)-divergent.

Bernstein’s Theorem C has been generalized by many authors in various di-
rections. In particular, several papers are devoted to the investigation of the cor-
responding polynomial density on certain subsets of the real line, and analogues of

(?) It is known [26] that Theorem C is valid for a much larger class of functions, but this is
of no relevance in the present context. For the implication (a) => (d) see the proof of Theorem 11
in [26].
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the third condition in Theorem C were obtained for various cases (see, for example,
(12, [23], [26] and [30]). A complete analogue of Theorem C for the positive half-line
is

Theorem C*. Let weWV. Then the following conditions are equivalent:

(a) wxr+€Ws(R):

( ) for each interval J=(—oc.a] and J=[a.x). a€R, we have wx e W (R):

fo logw(z)/(1+2%?)dr=~>
(d) ow s (1,2)- dwergent.

Note that the sequence {{/sup,cg |z[*w(z)/w(0)} ., is increasing. This im-
plies that the conditions (d) in Theorems C and C* are equivalent to

(6) oy is (N, N)-divergent. and o, is {N.2N)-divergent,

respectively, for each N&N.
Consider an arbitrary we¥. The inequality

2%k
1 >0 A2k T
(7) . = inf z"2°2 > agn.
sup z*"w(z) z€R zn
zeR

together with (6), leads immediately to the following corollary of Theorems C
and C*.

Corollary 3. Let

1
8 w(r)= =——————5-€ V.
( ) ( ) ano 52,11'2"

Then we have

(a) If {ban}n>1 ts (1. —2)-divergent then we Wi (R);

(b) If {ban}n>1 is (1, —4)-divergent then wyx €W} (R) holds for each interval
of the form J=(—00,a] and J=[a. ). a€R.

In the sequel we shall use the abbreviation

_ {R}. if b(p) =
R(w) '_{ {la.+x).(—=x.a]|aeR}. if b(u)=

The following theorem provides a complete description of the weight functions
in Theorem 1(a) if the measure in question is Carleman.
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Theorem 4. (a) If pe M5 (R) has unbounded support then there exists v €
M*(R) such that

(9) u(A)= [4 w(z)dv(z). AeB(R).

where w(z):=1/3", 502" /2" oy .

(b) Let vEM*(R) have unbounded support and for some we¥ as in (8) as-
sume that {bon}n>1 is (1, —2b(v))-divergent. Then the measure p as in (9) belongs
to ME(R).

In both cases we have wyx €W} (R) for each JER(u) and b(p)=b{v) since
supp pg=supp v.

To obtain a representation of Carleman measures in terms of the function w
of Theorem 1(c) (instead of (a)), we require a property of certain (m,n)-divergent
sequences:

Lemma 1. Leta:={ax}r>1 be a sequence with lax|*/* increasing and m,neN.
If a is (m, n)-divergent then there exists a sequence {ny}x>1 of natural numbers with
k<np<ngyi for keN, and

(10) lim — =ox,

such that {an, }x>1 is (m,n)-divergent as well.

It will be shown that S, for a Carleman measure with unbounded support
satisfies (essentially) the conditions of Lemma 1 with (m.n)=(2,2b(u)). Therefore
we find a sequence 7y as in Lemma 1 and using this sequence we define

(1) | wla)i= (14 % ﬁ%)

Theorem 5. For pe M%L(R) with unbounded support define w, as in (11).
Then for every 1<p<oc there exists o measure v,€ M&(R) such that

p(A) = /A w(z)P dvy(z). AEB(R).

In addition, 1/w,e L(R,du) and w,xs€W;(R) for all JER ().



228 Andrew Bakan and Stephan Ruscheweyh

Corollary 4. Let pe M (R) have unbounded support and w,, be as in Theo-
rem 5. Then the following hold:
(a) For every 1<p,q<oo we have

L,(R,w,(z) " %du(zx)) € P.

(b) If f is continuous on R with f(z)=0O(|x|™) for some meN as r—=xo0
then

(12) N, maw S WV welle, Ramllflle,. 1<p<oo.

Note that
MER) ={p|dp=wdv. we ¥y, ve M*(R)}

is a direct consequence of Theorem 4, where ¥, denotes the class of weights
defined in Theorem 4(b), compare Corollary 2 and (3) and (4).

Similarly to the observation made in Remark 2, we point out that inequality
(12) contains information about the rate of simultaneous polynomial approxima-
tion in the spaces L,(R,dp), 1<p<oc. Under certain conditions even quantitative
conclusions can be obtained (see, for example, the survey [24]).

Corollary 4(1) gives a rather substantial improvement of Theorem A since the
entire function w,(z) " =14+3,., 225/(2515/7*) is of order not less than 1/b(x).

To see this let first b(u)=1. From the definition of the order p of an entire
function we have

o 2k log 2k — 2k log 2k
im —————— = lim )
k=0 og Qk#’;/l’:k k—oc klog 2+ (k/ny) log pion,

and the assumption g< 1 implies that for sufficiently large k, (2nx log 2k)/ log pon, <

o<1, ie., uéﬁ"kz(%)l/@. But then

1 1
> e <D @K)7e ==

k>1 Mon, k>1

a contradiction to the choice of the subsequence {nj}i>1 in Lemma 1. The proof
for the case b(i)=2 is similar.
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2. Proof of Theorem 1
2.1. Proof of the sufficiency part of Theorem 1

It is enough to prove sufficiency of (a) and (b), since (c) obviously implies (b).
The method of the proof of Theorem 2.3.2 in {1} can be extended from L;(R, dy) to
Ly (R, dp) and provides us (see also [23] and [2, Proposition 2.2, p. 15]) with a suit-
able criterion: L,(R,du)eP, p€(l,00), if and only if two special functions (namely
1/(1+2?) and z/(1+2?)) can be approximated in L,(R. dy) by polynomials from P.

According to Remark 1(a) and (b) (for arbitrary p>1) imply special representa-
tions of the measure p, namely du(r)=w(z) dv(z) for (a) and dp(z)=w(x)? dv,(x)
for (b), along with C%,, €P and C € P, respectively. Then the obvious inequalities

M1 i = [ F2Dula) 1P (o) < 1 (),

L1 sy = [ 1F@ P00 doyf) < 4 (R),

allow us to approximate the two functions x/(1+z?) and 1/(1+z?) by polynomials
in Ly(R, du), as requested.

2.2. Necessity of Theorem 1(a)

For every peN the relation (3) shows that our assumption implies a represen-
tation of the measure u as

dp(z) =wp(z)? dvp(z), w,e Wi (R), v,€ M"(R).

Hence, according to Remark 1, 1/w,(z)? €L (R, du), and

1
Up(A) = /A ol ). A€BR),

By the Beppo-Levi theorem we find

— Vp(A) _ 1
v(A) ._gm_//a@du(x), A€B(R),

where

1 1
WI) = Z 2Py, (R)w, ()P € Ly(R. dp).

p21

The function 1/w is lower semi-continuous and, furthermore, w(z) <2Pv,(R)w,(x)?,
p>1. Therefore weW*(R) and C?,, €P for any p>1. So that w(z) is indeed a
function whose existence was asserted in Theorem 1(a).
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2.3. Necessity of Theorem 1(c)

To finish the proof of Theorem 1. it suffices to prove the necessity of (c), since
(¢) implies (b). The crucial tool will be the following lemma which is of independent
interest.

Lemma 2. For every weWj(R) there erist VEWG(R) and finite positive
constants C,, independent of x, such that

(13) w(z)<CV(z)". zeR. 0<r<x.

The proof of Lemma 2 is rather lengthy and involved. We postpone it to
Section 9. If pe M?_(R) then by Theorem 1(a) (which has been established already)
there exists we W} (R) such that 1/weL;(R.dr). Lemma 2, applied to this w,
asserts the existence of a function VeWj(R) satisfying (13). These inequalities
imply 1/V e L(R,dp) and, hence. that V satisfies all the conditions of Theorem 1(c).

3. Proof of Corollaries 1 and 2

To prove Corollary 1 we need the representation of the measure in question, as
described in Remark 1, namely du(z)/w(z)?=w(z)?~9dv,(x). ¢<p, v,e M*(R).
Theorem 1 and the fact that w€ W} (R) complete the proof of Corollary 1(a). The
integrability of 1/wP with respect to p for every 1<p< x together with the evident
inequality

1
J 1 @P duto)= [ PP du(e) <IN, 5
imply Corollary 1(b).

Corollary 2 follows easily from Theorem 1(a) and Remark 1.

4. Proof of Theorem 2

Assume first that w¢ W;(R). Since P is not dense in C2. there exists a non-
trivial linear continuous functional L on CY. vanishing on all monomials. In [4] (see
also [2, Theorem 1.3, p. 9]) a general form of the linear continuous functionals on
CY was determined, and that result implies. for our case. the existence of p€ M(R)
with

L{z™)= /R 2"w(z)do(x)=0. n=0.
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Let R;, R, €B(R), R;UR,=R, R;NR;=0. be a Hahn decomposition of the
space (R, B(R)) with respect to the measure g, and let p=gp, —po. be its decom-
position in the sense of Jordan: Qi(A)::g(Aﬂsz), AeB(R), and |g|:=p0:+0_.
Then

(14) 0= | @ fxns (@) ~xig (Dt dlelz). n>0.

Since Xg3+ (:c)—ng (x) is uniformly bounded on R we conclude from (14) that
Li(R,wdv)¢P, where v:=|p|€ M*(R). For 1<p<oc the relation (14) reads

- anj(I)—XR; (1') P n
(15) 0—/Ra: W@ w(x)? dv(zx). >0.

The inequality
¢ 1

\XR; (#)~Xg, (@)
w(zx)P~?

implies
Xrg () —Xr; (%)
w(x)p—1
and this together with (15) proves L,(R.wP dv)¢P.
For the converse suppose that weWj(R). Then, for p€[l, +2c), the relation
(3) shows that the measure u. defined as du:=wPdy, belongs to M;(R) for any
veM*(R). The proof of Theorem 2 is complete.

€ Ly(R.wPdv),

5. Proof of Theorem 3

Without loss of generality we can assume that |1, <1. If weW;(R) then
Theorem B implies

(1fu)
1o 2 Eo)

for all 7>0 and for all Be&, with AgCS,.. Assume there exists F€& and ArCS,,
with | \
m 28 1/w(A)

<3< .
Ao log" [0 =7 =
ANEAF

Then, for some C >0,

1
—<log* |F'(\)]. AeAfp.
CMMM_%I(H €Ar
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or
|F' (M)} =

1
. AEAR.
we EOF

Therefore, by the definition of W*(R),
C/2

sere  FO T

which contradicts (16). In the other direction, if there exists F'€& with ApCS,
and ¢>0 such that

Cm 3 Wl

2 TP
then )
<C|F'(N)]. A€AFr.
7 SOF L Aehr
By definition of W*(R) this implies

m log 1/w(\) I log 1/w(A)
1A =0 log® C|F"(A)| ~ jAi—ce log 1/C+plog 1/w(A)
AEAFR AEAF

=1/p < 0,

contradicting (5) and completing the proof.

6. Proofs of (4) and Theorem 4

The inclusion D in (4) is obvious. On the other hand, since for every pe M*(R)
the entire function 37, 2" /(2" ug,) belongs to L;(R,du), Remark 1 and the
definition of W*(R) imply that

(17) du(z) = —Ix%— dv(z), veM*(R),

n
n>0 2 Han

and (3,50 x2"/2"u2n)_1 eW*(R), as asserted. Observe that (17) also justifies the
remark following (4).

We are now ready to prove Theorem 4. Indeed, Theorem 4(a) follows im-
mediately from the representation (17). Using the assumption of Theorem 4(b),
Definition 1, and the inequalities

1 1 ban
b JnePw@)dv@) - vR) "2
(which follow from (7)), we obtain pe MZ(R), as asserted. In both cases Corol-
lary 3 yields C3., €P for every JER(v) and 7>0 which completes the proof of
Theorem 4.
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7. Proof of Lemma 1

Since by:=|amk|/™, k>1, is an increasing sequence the assumptions imply

that
Z ka

holds for any N€N. For N=1 this makes it possible to find k;>1 such that

k1—1

> o

k=1

Similarly, for N=2 we find a positive integer ky >k; such that:

k2—1

1
2 g2t

and so on. Consequently, we obtain a strictly increasing sequence of positive integers
{kr}r>0 (setting ko:=1), which satisfies

kr
(18) S bi: :

r>1 k=k,_1

Rearranging the indices 7k in (18) in increasing order we obtain a sequence {ng }x>1
which satisfies

(19) YL

Since the sequence {ny }>1 is strictly increasing we conclude that ng>k for every
k>1.

Now we shall prove (10). Fix an arbitrary integer ¢>1 and find moq>1 such
that nm, =2qks, 1. Then for every m>mgq and r>1 we have N,y r —nm >2gr,
and, hence,

Ninggtr > 2qkeq—1+2rq=q(2kaq—1+2r) > q(mag+r) for r>maq.

Therefore ny >qgk for all k>2m;,. These inequalities and (19) complete the proof
of Lemma 1.
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8. Proofs of Theorem 5 and Corollary 4

For Carleman measures we may assume that po=1. Then Holder’s inequality
yields

(20) mi/sgmtl/t, 0<s<t<x,

where

ms::/Rlzlsdu(x), s2>0.

This shows that S, satisfies the assumption of Lemma 1 with (m,n)=(2,2b(u)) as
has been remarked just before Theorem 5.
Using (20) and (10) we conclude that the series on the right of

1 l/p 1]/c2kp 2k
2kp
RS T u(R)+ Y g (T
k 9k 1/2
‘wu(a:) Lp(R,du) k>1 2k zf/:k k>12 2nknk

is convergent and, hence, 1/w, belongs to L,(R,du) for every 1<p<oo. As in
Section 6 we find the representation dp=w? dg,, with g, M*(R) for p>1. Hence
du=w.*? dg11p=wh dv,, where dv,=w, dg,. By Theorem 4(b), Lemma 1 and
Corollary 3 the measure v, is Carleman for every p>1 and w,x;€W;(R) for all
JeR(p). Furthermore, Theorem A implies that v,€ M% (R), and from Remark 1
we have 1/w,€L(R,du). Theorem 5 is proved.

Finally, Corollary 4 follows immediately from Corollary 1, since w,, satisfies all
conditions of Theorem 1(c).

9. Proof of Lemma 2
9.1. Some auxiliary lemmas
Let @ be the following collection of functions

(21) o(z) = <Zg—’;)_l z>0,

n>1

0, z=0,

where a,>a,.1>0, n€N, and lim,_, {/a@,=0. Observe that ¢ and its inverse
¢! are both strictly increasing and continuous on R*, ¢~(0)=0 and

(22) o(x)<z"/an,, ¢_1(x)2a}1/"$1/", n>1, >0.
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Lemma 3. For every ¢c® there exists a Y€ P such that

(23) Y((z)) > ¢(z), z>0.

Proof. We have ¢(z)=1/¢(1/z), where p(z)=}_,, @.2" is an entire function
with positive and non-increasing coefficients a,, n>1. Let b,:=a,/max{1,a;1},
n>1, and

w(z):= Z Bnx”, fBni= Jon? M >1.
n>1
To prove the first inequality in
x
(24) w(w(@) <Y by = Rxﬁ{(ﬁ <eplz), =0,

n>1

we write for n€N,

ota) = (X | = 3 utmiat

m2>1 k>n

where

(25) Brm)= > BmiBmyBm. kZn2L

my,e..,mn 21
my+...+mnp=k

Note that the number of terms in (25) is (£7}) <2*.
Let k>n?. Then each term in (25) contains at least one factor with index m;

not less than k/n, so that m2>k*/n*>k and

. bm? < br bk
’ij - 22m? = 22m? - ﬁ

Since all other factors of this same term are not greater than 1 we find

k—1\ bx _ b .
< ok < 2k <n?<k.
(26) pim<(B71) g e 15
On the other hand,
k—1\ 1
(27) s () gesr 1n<k

since (3, <1/2™ for all n>1.
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We have

k
w@) =) Buw(@)" =) Bn Y fe(n)zF =)o (Z ﬁnﬂk(n)),
n=1

n>1 n>1  k>n k>1

and from (26) and (27) we get for fixed k

k
D BaBem)= > BuBiln)+ Y. BaBi()< Y. Be(m)+ D Ba

1<n2<k k<n?2<k? 1<n2<k k<n?<k?

bk bur _ bivk 1 1
S D ot 2 paSoar +bk22n<bk g ta7 ) <o
1<n2<k k<n?<k?

so that (24) follows. Setting v(z):=1/w(1/z) we obtain (23). O
From now on, for a function F: R—R*, we shall write Sp:={z€R|F(z)>0}.

Lemma 4. Let w,veW*(R) and assume that
(28) w(z) < Cpu(z)", z€R, n21,

with positive finite constants C,,, n>1. Then there exists a function 0e W*(R) with
Sy CSg and

(29) w(z) < D,(v(2)8(z))*, z€R, n>1,

with positive finite constants D,,, n>1.

Proof. 1f S, is bounded then one can find a>0 such that S, C[—a, e] and set
9($)Z=X[~a,a] (:L')-i-e_(a_'zl)zXR\[_aya](:IZ)EW* (R) with Sg=RDS,.

Let now S,, be unbounded. From (28) it is obvious that lim /m

n—00 =+00,

and

w(z) < p(v(z)), zeR,

where ¢(z):=(3 5, 27%d; ' z7%)7!, dp:=maxi<i<k Ci, k21, and lim, | dllc/k:
+00. Since $€P Lemma 3 gives the existence of

P(z) = (; ;_Z)_l cd

such that
o(z) <y(¥(z)), zeR',
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and therefore

(30) w(z) <yp(¥(v(z))), ze€R.
Writing

u(z):=v(v(z)), z€R,
we get from (22) and (30) that

(31) w(e) sw(u) < U ceR, n21

n

Using formula (21) it is easy to verify that the function ¥(z)/z is non-negative and
strictly increasing on R*, equals zero at =0 and is bounded from above by 1/¢;
uniformly on R*. Furthermore, by (22), ¥(z)/z<z"/cpy1, €R*, n€N. Thus,
the function

P(v(z))

v(z)

#(z):= rz€R,

belongs to W*(R) and
u(z) =0(z)o(z), zER.

Substitution of the last expression for u(z) in (31) proves (29) and completes the
proof of Lemma 4. O

The following Lemma 5 is instrumental for the proof of Lemma 6, which sup-
plies a suitable application of Theorem B. Lemma 5 is a special case of Lemma 4.1
in 3], but to make the paper more self-contained a proof of Lemma 5 is given in
the appendix below.

Lemma 5. For any entire function BEEy with zeros Ap={b, }n>1 there ezists
a constant C>0 and a sequence of real positive numbers {6, }n>1, such that for any
sequence of real numbers {dn}n>1 satisfying

(32) br—dn| <8, n21,
it 1is possible to find an entire function D€E&y such that Ap={dn},>1 and
(33) |B'(b2)| <C|D'(dn)l, n>1.
We recall the definition of the so-called upper Baire function Mg of F:R—R

as Mp(x):=lims 0 SUPye(;—s,2+6) F(y). If F is locally bounded from above then
My is an upper semi-continuous function.
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Lemma 6. For weW*(R) with unbounded S,, let SCS,, be such that w(z)=
Myys(z), z€R. If for any countable set ACS without finite accumulation point
we have C3, , €P then also CIeP.

Proof. The assumptions of Lemma, 6, together with Theorem B, show that

1
34) 2 wOE =

AEAF

holds for every F €& with ApCS.
Assume that P is not dense in C2. Then by Theorem B one can find an entire
function Be€ &, such that ACS,, and

1
(35) ;m<w, AB:{bn}nZI-

For this function B Lemma 5 gives the existence of a sequence of positive numbers
{6n}n>1 valid for the conclusions of that lemma. We now choose a sequence of real
numbers {d,},>1 satisfying (32): if b, €S then let d,=b,. If b,€AB\S(CSu\ S),
then the definition of S in Lemma 6 assures the existence of a sequence s €S, k>1,
such that limy_,c0 Sk =b, and limy_,o w(sg)=w(b,). Thus, it is possible to find an
index k>1 for which |sx—b,|<6, and w(sk)>3w(by). In this case we set dy=sk.
With this choice we have {d,},>; CS and a combination of Lemma 5 and (35) gives

1
2 @D <>

n>1

for a suitable De&,. This contradicts (34) with F=D and finishes the proof. [

9.2. The proof of Lemma 2

Below we shall work with the complex space CC? =C9 +iC?, and the set P[C]
of polynomials with complex coefficients. Reasoning similarly to that at the be-
ginning of Subsection 2.1 shows that the denseness of P in the real space CY is
equivalent to the denseness of P[C] in the complex space CCY, and this, in turn, to
the possibility of approximating the single function 1/(z+1) in CC? by polynomials
from P[C].

If S, is bounded, i.e. if there exists a>0 such that S, C[—a,a], then one can
set V' =X|_q,o- Assume that S,, is unbounded. Then the proof of Lemma 2 consists
of four steps.
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9.2.1. Without loss of generality we assume that w is bounded by 1 from above
on R. According to Theorem 1(a), we find a measure v€ M*(R) and a function
weWS(R) such that

du(z) =w(z) dv(z).

For every k>1 one can approximate 1/(z+i) by polynomials from P|[C] in the
space CS)I w2+ Consequently we find a sequence of polynomials Pr€P|[C], k€N,
such that

cr )| g k21
or, which is the same,
k 1
(36) - h@) < Tk k2l zes.
Next we look at
an () ::1+ZN: ;—Pk(x) k, N>1,
pad T+
and set
1 k
T(z) = m—_l_i—Pk(ar) for k>1,

and ag(z):=7o(z)=1.

For every N>1 the function ay is continuous, non-negative on the real axis
and majorized at infinity by some power function (and the same holds for 7 for
every k>1). Therefore there exist positive finite constants Dy, N >1, such that

(37) lan-1llpr/v <Dn, N2>1.

Since an increases with N the limit (finite or infinite)

k
a(z):= lim ay(z)= 1+Z

1
N—ooo E—Pk(x)
k>1

is lower semi-continuous on R. Moreover, from (36) and w(z)€(0,1] it follows that

1 1
a(r) <1+ <1+ )
gl 2K (x)1/* w(z)
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Therefore,
a(r)<oo, T€S,.

The right-hand side of (36) tends to zero for every €S, as k—o00. Hence, the
polynomials Py converge to 1/(xz+i) at every point of S,,. Therefore

(38) lim deg P, =00
k—o0

Since
k

alz) > .ziﬁ-z — Py (x)

the relation (38) implies that a(z) grows faster than any power function as - %o00.
Setting 1/00:=0, we define

and note that in view of the above we W*(R) and w(z)<1, z€R.
Fix an integer p>1. Then Hoélder’s inequality yields for 1/p+1/g=1,

1 \M¢ 1/p . 1/p
S () (T2mmer) <(X2 Pua))
k>p k>p k>p k>p
Hence, using (36),
4 x 1
<Z Wk(m)) <PV <Y g €S
k>p k>p k>p
and finally
u)(J:)1 ”/k
(39) w(ﬂ?)(Z% > > i R <2 TE€Su.
k>p k>p
Since a(z)=ap-1(2)+3 45, Vk(2), (37) and (39) give
w(z)a(z)? < 2Pw(x)ap—_1(z)P +2Pw(x (Z Ye(z ) <2°DP+2P*1, z€S,.
k>p

Renaming 2°D5+2P*) by D, we get w(z)<Dpw(z)? for all €S, and since this
inequality is also valid for z€R\S,, it follows that

(40) w(z) < Dpw(x)?, p>1, z€R.



Representation of measures with simultaneous polynomial denseness in Lp(R, dp) 241

9.2.2. Lemma 4 and (40) imply the existence of 0 W*(R) such that S,CSp
and after a suitable renaming of the constants we find that

w{z) < Dp(w(z)b(x))?, z€R, p>1.
Define(3)
(41) V(z):=Muoxs, (2), TER,

and observe that because every function in W*(R) is uniformly bounded on R, the
inequalities (13) are non-trivial only for T€[1, +00) or, rather, only for 7€N. Since
the function w@ is upper semi-continuous, taking limits § —0 in

w@b@) < sp W@ < sup  wb@), TS,
yE(z—38,24+8)NSy ye€(z—6,x+9)

gives Vxg, =wbfxs, and that, together with (41), implies (13) and
(42) V(z)=Myy,, (z), z€R.

That VeW*(R) follows easily from (41) and from w,0e W*(R).

9.2.3. The next step is to prove that C9,,,,€P, meN. To establish this prop-

erty, we use Lemma 6 and (42): it is enough to show that C?,l Jmya €P for arbitrary
countable sets ACS,, without finite accumulation points, where, obviously,

VY™ @) xale) =w(@)/™0(x) " xalz), zEA

This will follow from

Pk(ﬂﬂ)*L

(43) z+1

=0.

wl/mol/""XA

lim
k—oo

(3) The set S., is not smaller than S,, and so it is generally impossible to draw conclusions
about the density of P in Cg To avoid this we restrict w8 to S, and adjust the restriction to
become an upper semi-continuous function V. Then Sy CS,,.
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9.2.4. We now prove (43). For arbitrary T>0, z€ A, |z|>T and k>m we have

1
1 m—Pk(x)
(@ 0() | Pl 0t : 7
1
1 ——
( +y — (@ )
n>1
1
—— —Fi(z)
m T+
So(z)l/ 1 k\1/m
1+|—-F
( + T+1 () >
< sup O(z)/™,
|z|>T
ie.,
(44) sup w(a:)l/mG(x)l/mi——l——:-Pk(x) < sup 8(z)V™, k>m.
lilgAT r+1 |z|>T

Fix an arbitrary £>0. Since §W*(R) one can find T, >0 such that

(45) sup O(z)"/™ < Le.
|z|2Te

On the other hand, the interval (—7T.,T.) contains only finitely many points from
ACS, and according to (36),

1
lim |P(z)———| =0, z€8,.
k—o0 k( ) T+1 ‘ bt
Thus there exists a positive integer k. >m such that

< £ ,
~ 2sup,cg O(z)V/™

(46) Pi(z)- re An(-T.,T.).

T+1

The relation (44) (with T=T,), (45) and (46) imply that

Pk(m)———l—

- <e, k>k..
T+1

wl/mgl/mXA

This proves (43) and thereby VeW((R). The proof of Lemma 2 is complete.
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10. An example

In this section we construct a discrete measure p and a non-discrete measure o
in M} (R) which do not satisfy Carleman’s condition. The idea of the construction
is similar to the one used in the proof of Theorem 17 in [26].

Let A\;:=e*, k>1, and

= z
A={Adiz, Qu@):=]] (1-5), n21 2eR

k=1 k

Define a discrete measure v€ M™*(R) and a discrete function v by

dv(x):zzé(—x_)\—k), v(x)::kax{Ak}(x), z€R,

2
k>1 1+ k>1
where 6(z) is the Dirac measure at zero,
_n2
€
47 =1 = min {1, ——— % k>2.
47 n=t and 1;,322_1{ ’|Qn(Ak)|"} =

For any integer m>N2>1 and z€ A\{A;}}., we obtain

(@) — mind |0 (o), | Q@)™ "
(#)¥1Qm ()] gZI{IQm( i N EI }

e-m2/N
< min{ } <e ™.

1Qm (D) 557w

Here we used the inequality
min{y, a/y)‘} U ACREOR y>0, a,A>0,
and the convention 1/0:=+00. Hence
(48) IQnilim <€, n>N2>1,
and, in particular, ve W*(R).
According to a known criterion (see [26, Theorem 1]), the denseness of P in

CY, weW*(R), is equivalent to M(w/(1+|z|),i)=+00, where

M(w, z) :=sup{|P(2)|| | Pllw <1 and PeP}, z€C,
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is the so-called Holl-Mergelyan majorant. Since weW;(R) yields (1+|z|)"we
W (R) for arbitrary >0, we observe that weW;(R) if and only if (14 |z|)w!/N e
Wi (R) for every N >1. Therefore this criterion for the membership in Wj(R) can
be reformulated as

(49) weWs(R) <= inf{||P|, i~ ||P@)|=1and PeP}=0 forall N>1.

From |Qn(¢)|>1+e2 combined with (48) we obtain

e—n

V1+e2

where P,(z)=Qn(x)/|Qx(i)|. From (49) we deduce that the weight v as well as
(14+z?)v(z) belong to Wi (R). This fact and Theorem 1 allow us to claim that the
measure y defined as

1P =1, [Pallyiw~ < , n>N2>1,

(50) dp(z) = (1+2%)v(x) dv(z) =D wd(z—Ak), z€ER,

k>1

belongs to M (R).
Next we show that u¢ M&(R), ie.

(51) > g <oo,
p21
where
(52) u2p=/ zP dp(:c):ka/\Zp, p>1.
R k>1

To this end we need to derive some estimates. For the integers 1<n<k we have

A nk=(nt1)/2).

< ___ Tk
|Qn(Ak)| — A1A2 . An

It is easy to verify that n(k—3(n+1))<3k(k—1) holds for all 1<n<k-1, k>2.
Therefore
1Qn(e)] < eFED/20 1 <n<k-1,

(53) Qu(Me)[* <eEDY/2 1 <n<k-1.
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Substituting (53) into (47) we get

2 2 3
vk > _min {1 e~ e~ k(k=1) 12y >e K2 k>2
1<n<k

and then, by (52),
(54) pop > Y PETR2E2 g
k>1

To further estimate the expression on the right of (54) observe that the function

W(x): me— 23 attains its unique maximum over [0, +00) at ,=4/4p/3 and that

W(xp)= (8/\/_) 3/2, The interval [zp, zp+1) contains the unique integer k,>2.
Since 1(z) decreases on [z,,+o0c) we find that

() —1(kp) <P(xp) ~P(zp+1) = —2p+ 1 (322 +3z,+1) = /3p +3 < Ip,
and thus

K3 8 7 7
55 ok, — 2> _° 32 Lo 32 1

Combining (55) with the estimate

4p 4 4 4 14
k2 < (zp+1)? . N P (1+ +—> < —p

373 373 )P 3
we get
2pkp—%kg—k12,2p3/2—7p,
so that
(56) fiop > €XPRP KL /27K] > PP -TP s

These inequalities prove (51) and establish that pe M% (R)\ME(R) which was
our aim here.
Theorem 1 in [30, p. 294] along with the evident inequalities

(1+2?)v(@) +e= )N < (1+22)o()) /N +e~= /N, N>1,

imply that (1+z2)v(z)+e~=" €W (R) and therefore, using Theorem 1, we can con-
clude that pe M7 (R), where
dz

do(z) := ((1+z2)+e_12) ( T2 +dv(z ))

The definition of g implies that supp p)=R and the obvious inequalities

/ 2P do(z) > pap, P21,
R

establish that pe M} (R)\ Mg (R).
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Appendix: Proof of Lemma §

Since the statement of Lemma 5 is invariant under the translation z—x+a,
a€R, we may assume that 0¢ Ag , and also that 0<|bk|<|bgt+1]| for k>1.
Let
(57) or :=min{1, bel, min “bk|—u|[}, k>1.
| A[#|bg |

It is easy to verify that for any real constants «a, 3, g, A and z, satisfying

(58) 0<2A<p<]|al, |a=B|<A and [|z-B|>0,
we have
T AN 4A
59 2V (1-E) <142
(%) ‘(1 a)<1 ﬁ) = +9

For every k>1 the function Bi(z):=(1—z/by) " B(z) is continuously extendable to
R with By (br)=—bxB’(bx). Thus, there exists a; >0 such that

(60) |Bi(2)] > 31bk| [B'(bk)],  |z—bkl <.
Let
. 43
1 = >
(61) bk mln{ak, 0452 )} k>1,

and consider an arbitrary sequence {di}r>1 satisfying (32). Since B€&, its zeros
satisfy one of the two possible conditions for entire functions of minimal exponential
type in Lindel6f’s theorem (see [10]). By (57) and (61) we find |1/bx —1/di|<2/bZ
for £>1, so that the same Lindeldf condition is true for the numbers dg, £>1. In
both cases the function

D(z): —Rl_l)moo H (I—E;)

E>1

ldk|<R
is an entire function of minimal exponential type. Moreover, due to our choice of
numbers g and 6 it is possible to find a sequence of positive numbers R,,, n>1,
tending to infinity, such that for every n the interval (—R,,, R, ) contains the same

number N, of zeros of the functions D(z) and B(z). Then, obviously,
Bi(dk) o d di

62 Sl .7 B 1- 5 (1- k> 1.

(62) (—de) D' (dy) Jm "IJI( bm) ( dm) roh=

m#k
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Using (59) with =dy, a=b.,, 8=d,,, A=d, and p=pn,, which satisfy (58), we get

(=5)(-2)

which by (60), (61) and (62) imply (note that |di|<|bk|+ 8k <|bk|+ 0k <3|bk])

45 1
<1+ <14+——, km>1, m#k,
S om S 1R - *

1B'®ox)l 2 |Bi(de)l _ 20| IB'(d)] 5 . ﬁ(1+ : )

|D"(die)l = [bi] 1D"(di)]  [bk| (—dic)|D'(di)] ~ 2 noo L2 1+62,
m#k
N.
5 " 1 5 1
<2 S <2 E =
=3 JL“&eXp(mzllog(H 1+b$n)) =7 exP<m>1 1+b$,,>

for all k>1. This estimate implies (33) and hence completes the proof of Lemma 5.
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