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Hartogs—Bochner type
theorem in projective space

Frédéric Sarkis(!)

Abstract. We prove the following Hartogs-Bochner type theorem: Let M be a connected
C? hypersurface of P,(C) (n>2) which divides P,(C) in two connected open sets Q1 and .
Suppose that M has at most one open CR orbit. Then there exists ic{1.2} such that C' CR
functions defined on M extends holomorphically to ;.

1. Introduction

The classical Hartogs—Bochner theorem states that if Q€C™ (n>2) is a domain
the boundary 92 of which is smooth and connected. then every continuous CR
function defined on 0 extends holomorphically to €. A natural question is to
ask if such an extension phenomenon is valid for domains included in a complex
manifold X. Of course, in the case when X is compact, there is no hope to expect
such a result. Indeed, if the Hartogs—Bochner phenomenon is valid in X, then
CR functions on 9Q would extend to € but also to X\Q and thus are constant
which is impossible in general. Nevertheless. the following Hartogs-Bochner type
phenomenon has been conjectured in P»(C): Let M be a connected C? hypersurface
of P»(C) which divides Po(C) into two connected open sets €1 and Q2. Then CR
functions on M extend holomorphically to one of these sets.

This conjecture has interested many authors at least since 1996 when E. Porten
communicated to me the question with reference to R. Dwilewicz. In [17]. we proved
that holomorphic (resp. meromorphic) functions defined in a connected neighbor-
hood of M extend holomorphically (resp. meromorphically) to one of the two sides
of M and repeated the question about the extension of CR functions. Recently,
Dwilewicz and Merker {4] gave a simplification of this proof in the holomorphic
case and raised the question again. In [10], Henkin and Iordan gave a proof of the
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conjecture for M of Lipschitz class but only under the hypothesis that one of the
two sides of M contains a weakly concave domain with smooth boundary.
In this paper, we prove the following Hartogs—Bochner type theorem.

Theorem 1. Let M be a connected C? hypersurface of P,(C) (n>2) which
divides P,(C) in two connected open sets Q1 and Qs. Suppose that M has at
most one open CR orbit. Then there exists i€{1.2} such that for any C* (k>1)
CR function f: M—C, there ezists a holomorphic function F€O(Q;)NC*(Q;) such
that F‘Mf Zf

The above mentioned results of [17]. [4] and of [10} in the smooth case can be
obtained as a consequence of our theorem.

Moreover, if M admits a nonconstant CR function f, then the hypothesis that
M has only one open CR orbit is a necessary condition for the Hartogs-Bochner
phenomenon to be valid (see Corollary 1).

As the Hartogs—Bochner theorem is already known for restrictions of holomor-
phic functions defined in a neighborhood of A, one natural idea is to apply the
analytic disc techniques in order to extend continuous CR functions on A to a
one-sided neighborhood of M. Then by deforming ; (resp. Af) in this one-sided
neighborhood, we are reduced to the case of holomorphic functions in the neigh-
borhood of ©; (resp. M). This idea has already been applied by Joricke. Merker
and Porten in order to obtain many results about extension and removability of
singularities of CR functions. In the case of the study of the Hartogs-Bochner
phenomenon, Joricke [11] proved that compact hypersurfaces of C™ are globally
minimal (i.e. consist of a single CR orbit). Thus, using the propagation results of
Trépreau [21] of analytic extension along CR orbits, one obtains that CR functions
defined on M extend holomorphically to a one-sided neighborhood of Af. Thus,
in the case of C", the Hartogs-Bochner extension theorem can be reduced to the
classical Hartogs extension theorem (this has been used for example in [16] and [17]
in order to prove CR meromorphic extension results). In the case of a compact
hypersurface of P,{C), it is conjectured in [17] and also in [4] that compact hy-
persurfaces are also globally minimal, but unfortunately this is not known and is
related to the following question of E. Ghys (see [7]): Does there exist a nontrivial
compact set laminated by Riemann surfaces in P2(C)?

Indeed, in the case of a connected compact hypersurface M of P,(C). CR orbits
are either open subsets of M or injectively immersed complex hypersurfaces whose
closure is a compact subset of M laminated by complex manifolds of dimension
n—1. Of course, if there exists no such laminated compact set in P,(C), then M
has to be globally minimal (i.e. has only one CR orbit which is open). Let K be
the union of all nonopen CR orbits of A/. Then K is a laminated compact subset
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of P,(C). The hypothesis that M has only one CR orbit which is open is then
equivalent to the fact that M\K is connected. If K={. Al is globally minimal
and we are reduced to the result of [17]. If K#0. it is known that P,(C)\K is
Stein. Then, we apply the boundary problem result of Chirka [1] to the graph of
CR functions over M\ K in order to obtain the needed holomorphic extension.

Acknowledgement. 1 would like to thank the referee and E. Chirka for their
remarks on this paper.

2. Preliminaries
2.1. Decomposition into CR orbits

Let M be an oriented and compact real hypersurface of class C? of a complex
manifold of dimension n. For any point pe M. we call H,(M)=T,(M)NiT,(A)
the holomorphic tangent space to M at the point p (where T,(M) is the tangent
space to M at p and i is the imaginary unit). As M is of class C?, the set of
holomorphic tangent spaces to M is a vector bundle of complex rank n—1. A C!
curve 7: [0,1] =M is called a CR curve if for any point t€[0.1]. ~'(t)€ H. ) (M).
Let x€ M, the set of points y€ M which can be joined to z by a piecewise CR curve
is called the CR orbit Ocg(z) of x in Af. It is well known that CR orbits are CR
submanifolds injectively immersed in A7 and of the same CR dimension. Thus. for
any point €M, Ocgr(x) is either an open set {(and we will say that M is globally
minimal at the point x) or a complex manifold 7, of dimension n—1 injectively
immersed in M. In this last case. the CR orbits are tangent to the bundle H (M)
of complex tangent vectors to M. As M is of class C2. H (M) is of class C'. thus
any point p€ M has a neighborhood U, such that 5, is a product of the unit ball
of C™1 by a topological set TCC. More precisely, 7, is a compact set laminated
by complex manifolds of dimension n~1 (see [7]).

Definition 1. Let N be a compact topological space and {U,};e; be an open
covering of N such that for any i€, there exists a homeomorphism h; of U; on
B xT;, where B is the unit ball of C™ and T; is a topological space. We say that
these open sets define an atlas of a structure of lamination by complex manifolds of
dimension n if the change of charts h;;=h; sh;! on their domain of definition are
of the form

hij(z.t) = (fij(z- ). 7i; (8))-

where f;; depends holomorphically on the variable z and continuously on the vari-
able t. Two atlases on N are equivalent if there union is an atlas. A topological
space is called laminated if an equivalence class of atlases is given.
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Moreover, let
K ={z € M ;M is not globally minimal at the point x}

then K is also a compact set of M (as its complement is open by definition) and is
laminated by complex manifolds of dimension n—1 (see [19] and [12] for a precise
study of the structure of CR orbits).

As remarked in [11], in order to prove the global minimality of compact hyper-
surfaces of C™, one has to show that there exists no such laminated compact sets
in Stein manifolds.

Proposition 1. Let X be a Stein manifold. Then there is no laminated com-
pact set Y CX.

Proof. Let us suppose that there exists such a compact set in X. By embedding
X in C™, we obtain a laminated compact set Y CC". Let r>0 be the infimum of
the real numbers s>0 such that Y C B(0. s), where B(0. s) is the ball of center 0 and
radius s. Let ze€YNAB(0,r), let C, be the complex line containing the segment
[0, z] and let w: C*—C. be the projection on C,. Let D, be a complex manifold
contained in Y and passing through the point z. Then the restriction of 7, on D,
is a nonconstant holomorphic function whose modulus has a maximum at the point

z, which contradicts the maximum principle. O

2.2, Laminated compact sets of P, (C)

Let Y be a compact subset of P,(C) laminated by complex manifolds of dimen-
sion n—1. Then by the definition of Y, P,(C)\Y is pseudoconvex (as at any point
of its boundary there is a piece of complex hypersurface included in the boundary).
So, according to [20], [5], [6] and [13]. P,(C)\Y is Stein. As a direct consequence,
we obtain the following result.

Proposition 2. Let Y be a compact set of P,{C) (n>2) laminated by complex
manifolds of dimension n—1, and f:Y —=C be a continuous function on'Y whose
restriction on any complex manifold contained in Y is holomorphic. Then f is
constant on Y.

Proof. In order to prove that f(Y) contains only one point, it is sufficient to
prove that its topological boundary df(Y) contains only one point. First, let us
remark that for any point 2€df(Y), f~!(x) is a laminated compact set of P,(C).
Indeed, let y€Y be a point such that f(y)=z. From the open mapping theorem, f
is constant on the maximal complex manifold passing through the point y. Thus,
it is constant on its closure and we obtain that f~!'(z) is a laminated compact
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subset of Y that we will denote by Y,. Now. let us suppose that df(Y) contains
two different points z; and z2. Then the sets Y,, and Y, are two compact sets of
P,(C) laminated by complex manifolds of dimension n—1 which do not intersect,
as f takes a different value on each one. But, P,(C)\Y., is a pseudoconvex open set
of P,(C), following [20], [5]. [6] and [13], P,(C)\Y5, is Stein and Y, CP,(C)\Yz,
which contradicts Proposition 2. [J

Let M be a real hypersurface of a complex manifold X. then for any point
z€M, there exists an open connected neighborhood V, of x such that V;\M is a
disjoint union of two connected open sets (which are called one-sided neighborhoods
of M at the point ). We will say that W is a one-sided neighborhood of M if for
any point z€M, W contains a one-sided neighborhood of M at z (the side can
change). Applying Proposition 2 and the results on propagation of CR extension
of [21], [15] and [11], we obtain the following proposition.

Proposition 3. Let M be a connected C? real hypersurface of P,(C) which
divides P,,(C) into two connected open sets. Let K be the set of points x€M such
that M is not globally minimal at the point x. Then continuous CR functions on
M are constant on K. Moreover, any continuous CR function defined on M\K
extends holomorphically to a one-sided neighborhood of any point of AI\NK.

Corollary 1. Let M be a connected C? real hypersurface of P,(C) which di-
vides P,(C) into two connected open sets 1y and Q2. Suppose that there exists a
nonconstant continuous CR function f on M and that the Hartogs-Bochner phe-
nomenon is valid for M. Then M admits at most one open CR orbit.

Proof. Let us suppose the contrary. Let Af; and 1/; be two open CR orbits
of M and let us suppose that f(K)=0 and that f is not constant on M. Indeed,
according to Proposition 3, f is constant on K. so it has to be nonconstant on one
of the open CR orbits of A{. Let g be the function defined by g=f on Af; and
g=0on M\M;. Then, of course, g is a continuous CR function defined on Af. As
we have supposed that the Hartogs-Bochner phenomenon is valid for Af, let G be
the holomorphic extension of g on the side €; of A/. Then G'=0 on all of ©; as
its boundary value vanishes on an open subset of M. So g=0 on all of M which
contradicts that g|as, = f|as, is not constant. O

2.3. Holomorphic decomposition of CR functions

In this section, we give a proof (communicated to us by C. Laurent-Thiébaut)
of the classical decomposition theorem for CR functions as differences of boundary
values of holomorphic functions.
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Proposition 4. Let X be a compler manifold and M C X be a C* compact real
hypersurface which divides X in two open sets 0y and €. Let f: Ml—-C be a CR
function of class C*+ (0<l<k, 0<a<1) on M. Let us suppose that H'(X)=0.
Then there exist two holomorphic functions fi and f» defined. respectively, on £
and Qg such that

(1) fieC*(Q,), i=1.2:

(2) f=filar—folar-

Proof. Let T=f[M]%! where [M]°? is the part of bidegree (0.1) of the inte-
gration current over M. As f is a CR function. the current T is J-closed. The
hypothesis H%!(X)=0 implies that there exists a distribution S such that

95=T in X.

The support of the current T" being included in Af. 3S=0 on X\A. Thus S defines
two holomorphic functions f; and f» defined. respectively. in €; and Q. If zg€ A/,
let us consider a neighborhood V of zg biholomorphic to a ball in C". One can then
solve the 0 problem on V and obtain a distribution Sp on V such that

0So=T inV.

Thus, on V' we have that
5(5— SQ) =0

which implies that S— S5 is a holomorphic function on V' and so is C>. Thus, the
regularity of S in a neighborhood of zy is the same as the regularity of Sy itself
whose jump is C'™* as can be checked using the kernels of Henkin in the ball. [J

2.4. Complex boundary problem

Let X be a complex Riemannian manifold of dimension n and M be a closed
and oriented C' submanifold of X of dimension 2p—1 with p>1 (we let [M] be
the integration current associated to /). We will call any locally finite linear
combination of analytic subsets of X\ with integer coefficients a holomorphic p-
chain. Of course, holomorphic p-chains define closed currents of bidimension (p. p)
of X\ M. The volume of a holomorphic p-chain [T]=5_, n;{T;]. is the expression

Vol[T] =Y~ |nj| Vol V;.
J

where Vol V; (or Hap(V;)) is the 2p-dimensional Hausdorff measure of the analytic
set V;. The volume Vol[T] is also equal to the mass of the associated current [T]. If
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a holomorphic p-chain is of locally finite mass in X, the associated current in X\ A
will have an extension to a current of X which is not closed in general in X. The
question of finding necessary and sufficient conditions for [M] to be the boundary
(in the current sense) of a holomorphic p-chain of X\ A of locally finite volume in
X is called the complex boundary problem.

Two necessary conditions for [M] to have a solution to the boundary problem
are that [M] can be decomposed into the sum of two currents of bidimension (p, p—1)
and (p—1,p) (such a current will be said mazimally complez) and that [A] is a
closed current. Indeed, suppose that there exists a holomorphic p-chain [T] of
X\M such that [T] is of locally finite volume in X and satisfy [Af]=d[T]. Then
necessarily we have

d[M]=d(d[T])=0
and as [T is a current of bidimension (p. p).
[M]=d[T]=(8+0)[T] =[T]|+0|T)

is maximally complex. Of course, the property for the current [M] to be maximally
complex is equivalent to the fact that for any point peM. dime Hp(M)=p—1,
where H,(M) is the holomorphic tangent bundle to Al at the point p.

In the case of X=C", p>2 and M is compact. Harvey and Lawson [9] proved
that these two conditions are in fact sufficient for the boundary problem for A
to have a solution. Then, many authors studied the boundary problem for more
general manifolds (see for example [1]. [3]. [2]. [18] and [14]). In this section we
would like to mention the following result that will be used in the present article.

Proposition 5. (Chirka [1]) Let Y be a polynomially convex compact set of
C"™ and I a closed, oriented and mazimally complez C' submanifold of C™\Y of
dimension 2p—1 (p>2) such that TUY is a compact set of C™. Then there ezists a
unique holomorphic p-chain [T] of C*"\(YUM), of locally finite volume in C™\Y,
which is the solution to the boundary problem for [[} in C™"\Y (i.e. d[T]=[I]).

3. Proof of the main theorem

Let
K ={z €M ;Ocg(z) is not an open subset of A}.

3.1. The case when M is globally minimal (i.e. K=0)

According to Proposition 3, if the compact set K is empty, continuous CR
maps on M extend holomorphically to a one-sided neighborhood of M. Thus, by
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deforming M into this one-sided neighborhood and by remarking that, if x€Af
is such that CR maps on M extend to its two sides then they are restrictions of
holomorphic map in the neighborhood of z. we are reduced to the following result.

Proposition 6. ([17]) Let M be a connected C* hypersurface of P,(C) (n>2)
which divides P, (C) in two connected open sets 1 and Q2. Suppose that there ex-
ists a nonconstant holomorphic function defined in a connected neighborhood of M.
Then holomorphic functions defined in a connected open neighborhood of M extend
holomorphically to Q1 or to .

We will give a proof of the proposition which is slightly different from the one
in [17]. Let V be the connected open neighborhood of A/ on which there exists a
nonconstant holomorphic function g: V—C.

Lemma 1. There exists a connected neighborhood 1% of M, which is reiatively
compact in V and two holomorphic functions fi€O(Q,UV) and f2€O(QUV) such
that gl = fily — folg-

Proof. Let V be a connected open neighborhood of A which is relatively com-
pact in V. Let ¢ be a smooth function defined on P,(C} such that supp¢CV and
¢l =1. For any i€{1.2}, let us consider the smooth forms w; defined by

{ d(go) on Q;.

Wi =

0 on P,(C)\Q,.

Then, f~or eachie€{1,2}, w, is a O-closed (0. 1) smooth form whose support is included
in Q\V. As HY1(P,(C))=0, there exists a smooth function u; defined on P,(C)
such that w;=du;. Of course, we have

é(g@) =wi+ws :(9111-4"5112 :5(U1+U2).

So the smooth function u; +ua—ge is holomorphic on P,(C) and thus is constant.
Let us denote by ¢ the constant that satisfy

c=u;+tuy—go.

Then the functions f, defined on Q;UV by f, =go—u; + $cand f; defined on QUV
by f2=u2~g¢——%c are holomorphic on there respective domains of definition and
satisfy that on V' (as ¢|;=1) we have f1—fo=g. O

Proof of Proposition 6. As g is supposed nonconstant, one of the two holomor-
phic functions fi and f> has also to be nonconstant. Let us suppose, for example,
that f is nonconstant. Then, according to [20]. (5], [6] and [13]. the envelope of
holomorphy W of 2, UV is Stein. So the domain Q; UV embeds in its envelope and

in particular £; can be seen as a bounded domain of a Stein space W and we are
reduced to the classical Hartogs extension theorem. U
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3.2. The case when M is not globally minimal (i.e. K#0)

First, let us remark that Theorem 1 is trivial in the case when there are no
nonconstant C* CR functions on M. So in all the following we will always assume
that g: M —C is a nonconstant C' CR function.

Lemma 2. The compact set K must verify the following properties:

(1) K is a compact set laminated by complez manifolds of dimension n—1:
(2) the CR function g is constant on K (we can suppose that g(K)=0);
(3) K is of null (2n—1)-dimensional Hausdorff measure;

(4) the open set U=P,(C)\K is Stein.

Proof. The two first points are a consequence of Proposition 3. According to
Proposition 4, g=f; — f» where f,€O(,)NC%(€);). As g is nonconstant, one of the
two functions f; has also to be nonconstant. But, as they are constant on K, the
set K has to be of null measure in M (which proves the third point). Finally, as
the compact set K is supposed nonempty,

is a pseudoconvex open subset of P,(C). According to [20]. [5]. [6] and [13]. U is
Stein. [J

3.2.1. Semi-local solution to the boundary problem. According to Proposition 4,
g=filam — falar, where f;€O(Q;,)NC%(Q;). As g is nonconstant, one of these two
functions is also nonconstant (let suppose for example that f; is nonconstant, that
fi(K)={0} and that the orientation of A/ has been chosen such that A{ is the
oriented boundary of ;). Let us prove the following proposition which implies
Theorem 1.

Proposition 7. Under the previous hypothesis, any continuous CR func-
tion f: M\K—C extends holomorphically to Q1\{z:f1(2)=0}. Moreover. if f is
bounded, then its extension is also bounded and according to the Riemann extension
theorem, it extends holomorphically to all of Q.

According to Proposition 3, up to deforming M, we can always assume that
f1 and f are smooth on M\K. We will prove that the graph of the restrictions of
f over the level sets {z; f1(2)=c} admits solutions to the boundary problem. More
precisely, let us consider the graph of the map (/f,, f) over the set M\{z:f1(2)=0}C
M\K:

Frp={(w.y,2) € (C{0}) xCx Po(C) iz € M. fi(2)#0, w=fi(2). y=F(2)}.
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Lemma 3. There ezists a holomorphic n-chain [f] of ((C\{0})xCxP,(C)H\
ffl_f, of locally finite mass in (C\{0})xCx P,(C). which is a solution to the
boundary problem for [fflAf]. (Moreover, for any compact RCC\{0}, the set
Tvﬂ(RxCxPn(C)) is compact in (C\{0})xCxU.)

Proof. We recall that U=P,(C)\K is Stein. Let D(0.z) be the closed disc
of center 0 and radius ¢, C(0,<) its boundary and m:CxCxU—C be the pro-
jection on the first member. For any z>0. I'j, ;N(C(0.2)xCxU) is bounded.
Thus, there exists a holomorphically convex compact set B, in CxU such that
[ffltfm((C\D(O, £))x CxU)]U(D(0.2)x B.) is a compact subset of CxCxU. Ac-
cording to Proposition 5 with ¥ =D(0. ) x B.. the boundary problem for [I~“ f.7] ad-
mits a unique solution in (Cx Cx U)\(Y UT 7). By uniqueness of the solution and by
letting e tend to zero, we obtain that the boundary problem for [f #,.f) has a unique
solution [T] to the boundary problem in (C\{0}) x CxU. As [['f, ;] has a solution to
the boundary problem in (C\{0})x CxU and as U C P,,(C) we obtained in fact that
[T} is a solution to the boundary problem for [T f.f1in (C\{0})xCx P, (C). O

For any c€ C\{0}, let v.=({c} xCx P,(C))NL;, s be the graph of f over the
level set {z;fi(2)=c}. According to Sard’s theorem. for almost all c€ C\{0}. 7.
is a smooth real submanifold of dimension 2n—3 and the intersection current [y
obtained by intersecting [I's, ¢] with the fiber {¢} xCx P,(C) is well defined and
corresponds to the integration current over ~.. Moreover, for almost all c€ C\{0},
the boundary in the current sense of the intersection current (denoted [S]) obtained
by slicing the current [f] by the fiber {¢} xCx P,(C) is equal to the intersection
current of [f #..f] by this same fiber. So we obtain:

Lemma 4. For almost all ccC\{0}. there exists a holomorphic (n—1)-chain
[Sc] of ({c}xCxU)\ve, of finite mass in {c} xCxU. which is a solution to the
boundary problem for [v.] (i.e. d[S.]=[c])-

Proof of Proposition 7. By hypothesis. AM\K is connected (and not empty
because f; is supposed nonconstant on ). So fflA s is also connected. Thus,
the holomorphic n-chain [T] is irreducible and with multiplicity +1. For almost
all ceC\{0}, the intersection current [~.] of [ffl.f] by the fiber {c} xCx P,(C)
is well defined. According to Lemma 4, for almost all c€C\{0}, we have that
[v]=d[S.], where [S,] is the intersection current of [T] by the fiber {¢} x C x P,(C).
Let II3: Cx Cx P,(C)— P,(C) be the projection on the last member. For almost
all c€ C\{0} the integration currents [v!] and [S}]. respectively. over the level sets
{zeM;fi1(z)=c} and {z;f1(2)=c} are well defined and satisfy [7}]=d[S}]. Then,
we have for almost all ce C\{0},

ds, ([Se]) =3, (d[Se]) = M. ([v]) = 2] = d[S{].
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By the uniqueness of the solution to the boundary problem in the Stein manifold

{e} xCxU we have that
. ([Sc]) = [Sel.

As the current [T} is of multiplicity 1. the currents [S,.] have also to be of multi-
plicity £1. But, as by construction, the current [S}] is of multiplicity +1 and satisfy
5. ([Sc])=[S}]. the current [S.] has also to be of multiplicity +1. This proves that
f extends holomorphically on almost all the level lines S! of f; (i.e. the Riemann
surface S is the graph of a holomorphic function defined on S!). Thus, II; defines
a proper and one-to-one projection of T on Q,\{z:f1(z)=0}. Let TI;! be the in-
verse map of I3 and m2: Cx Cx U —C the projection defined by m2(z1, 22, 23) =25.
Then the holomorphic function F=m-TI; ! is defined on Q1\{z:f1(2)=0} and is a
holomorphic extension of f on 2\ {z:f1(2)=0}.

In the case when [ is bounded, by construction of the solution to the boundary
problem the extension has also to be bounded. O

The only remaining point in the proof of Theorem 1 is the regularity of the
extension. According to [9], Theorem 5.2, p. 249, the regularity up to the boundary
of the holomorphic extension is the same as the one of the considered CR function
on M.

4. Related problems

In the case when M admits a nonconstant C' CR function, the hypothesis that
M has at most one open CR orbit is necessary. In order to give a complete answer
to the conjecture one have to answer the following question.

Problem 1. Let M be a connected C? hypersurface of P,(C) which divides
P,(C) in two connected open sets Q; and ;. Suppose that A/ admits a nonconstant
C! CR function. Can M have two distinct open CR orbits?

We do not know if Theorem 1 is still valid if we assume less regularity for A
or for the CR functions. For example, in the case when A[ is Lipschitz and f is
in the Sobolev space W~1/2(M ), a counterexample is given by Henkin and Iordan
in [10]. Nevertheless, by analogy with the extension result they obtain, one might
expect the following problem to have a positive answer.

Problem 2. (Henkin) Let QC P,(C) (n>2) be a domain with Lipschitz bound-
ary 00 which admits a nonconstant holomorphic function. Let f be a CR function

which is in the Sobolev space W'/2(9Q). Does f admit a holomorphic extension in
O)NW()?
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As we have seen, in the case when A/ is of class C2. the main difficulty is
the possible existence of laminated compact subset K of Af. Thus the following
problems become natural.

Problem 3. Let M be a connected C? hypersurface of P,(C) (n>2) which
divides P,(C) in two connected open sets Q1 and Q. Then

(1) does there exist 1€ {1.2} such that smooth CR maps f: M — P, (C) extend
meromorphically to Q;7

(2) is M globally minimal?

(3) does there always exist a nonconstant C' CR function on M?

Let UCP,(C) be an open set. If U contains a laminated compact set K then
holomorphic functions on U have to be constant and meromorphic functions have
to be rational. As we have proved. continuous CR functions on K are also constant.
Thus one could expect the following problem to have a positive answer.

Problem 4. Let K C P»(C) be a compact set C? laminated by Riemann surfaces.
Let f be a C? CR map from K to P;(C) (i.e. for any analytic disc ACK, f|a is
a holomorphic map). Does there exist a rational map Q: P»(C)— P,(C) such that

Qlx=f7

Of course, in the case when it is known that there exist no non-trivial laminated
compact subset of P>(C). Problems 1. 3 and 4 are obvious.
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