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Hartogs-Bochner type 
theorem in projective space 

F%d~ric Sarkis(i) 

Abstract. We prove the following Hartogs-Bochner type theorem: Let M be a connected 
C 2 hypersurface of Pn(C) (n~2) which divides P,~(C) in two connected open sets f~l and f~2. 
Suppose that M has at most one open CR orbit. Then there exists iC{1,2} such that C 1 CR 
functions defined on M extends holornorphieally to f~i. 

1. I n t r o d u c t i o n  

The classical Hartogs-Bochner  theorem states that  if D N C '~ (n >_ 2) is a domain 

the boundary Oft of which is smooth and connected, then every continuous CR 
function defined on 0D extends holomorphically to ft. A natural  question is to 
ask if such an extension phenomenon is valid for domains included in a complex 
manifold X.  Of course, in the case when X is compact,  there is no hope to expect 
such a result. Indeed, if the Hartogs-Bochner  phenomenon is valid in X, then 
CR functions on Oft would extend to D but also to X \ f t  and thus are constant 
which is impossible in general. Nevertheless. the following Hartogs Bochner type 
phenomenon has been conjectured in P~(C): L e t  M be a c o n n e c t e d  C 2 h y p e r s u r f a c e  

o f  P 2 ( C )  w h i c h  d i v ides  P2(C) i n t o  two  con,nected open  se t s  f t l  a n d  f t2 .  T h e n  C R  

f u n c t i o n s  on  M e x t e n d  h o l o m o r p h i c a l l y  to one  o f  these  sets .  

This conjecture has interested many authors at least since 1996 when E. Porten 
communicated to me the question with reference to R. Dwilewicz. In [17], we proved 
that  holomorphic (resp. meromorphic) functions defined in a connected neighbor- 
hood of M extend holomorphically (resp. meromorphically) to one of the two sides 

of M and repeated the question about the extension of CR functions. Recently, 
Dwilewicz and Merker [4] gave a simplification of this proof in the holomorphic 
case and raised the question agmn. In [10], Henkin and Iordan gave a proof of the 
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conjecture for M of Lipschitz class but only under the hypothesis that one of the 
two sides of M contains a weakly concave domain with smooth boundary. 

In this paper, we prove the following Hartogs-Bochner type theorem. 

T h e o r e m  1. Let M be a connected C 2 hypersurface of Pr~(C) (n_>2) which 

divides P~(C) in two connected open sets -Q1 and ft.2. Suppose that M has at 

most one open CR orbit. Then there exists iE{1.2} such that for any C k (k_>l) 

CR function f:  M - + C ,  there exists a holomorphic function F EO(f~i )ACk (-~i) such 

that FIM = f . 

The above mentioned results of [17], [4] and of [10] in the smooth case can be 
obtained as a consequence of our theorem. 

Moreover, if M admits a nonconstant CR function f ,  then the hypothesis that  
M has only one open CR orbit is a necessary condition for the Hartogs Bochner 
phenomenon to be valid (see Corollary 1). 

As the Hartogs-Bochner theorem is already known for restrictions of holomor- 
phic functions defined in a neighborhood of M. one natural idea is to apply the 
analytic disc techniques in order to extend continuous CR functions on 3I to a 
one-sided neighborhood of M. Then by deforming 9.i (resp, M) in this one-sided 
neighborhood, we are reduced to the case of holomorphic functions in the neigh- 
borhood of ~i (resp. M). This idea has already been applied by J6ricke. Merker 
and Porten in order to obtain many results about extension and removability of 
singularities of CR functions. In the case of the study of the Hartogs Bochner 
phenomenon, JSricke [11] proved that compact hypersurfaces of C"  are globally 
minimal (i.e. consist of a single Ct /o rb i t ) .  Thus, using the propagation results of 
Tr@reau [21] of analytic extension along CR orbits, one obtains that  CR functions 
defined on M extend holomorphically to a one-sided neighborhood of M. Thus, 
in the case of C ~, the Hartogs-Bochner extension theorem can be reduced to the 
classical Hartogs extension theorem (this has been used for example in [161 and [17] 
in order to prove CR meromorphic extension results). In the case of a compact 
hypersurface of P~(C), it is conjectured in [17] and also in [4] that compact hy- 
persurfaces are also globally minimal, but unfortunately this is not known and is 
related to the following question of E. Ghys (see [71): Does there exist a nontrivial 

compact set laminated by Riemann surfaces in P2(C)? 
Indeed, in the case of a connected compact hypersurface M of P~ (C), CR orbits 

are either open subsets of M or injectively immersed complex hypersurfaces whose 
closure is a compact subset of M laminated by complex manifolds of dimension 
n - 1 .  Of course, if there exists no such laminated compact set in P~(C), then M 
has to be globally minimal (i.e. has only one CR orbit which is open). Let K be 
the union of all nonopen CR orbits of M. Then K is a laminated compact subset 
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of Pn(C). The hypothesis that M has only one CR orbit which is open is then 

equivalent to the fact that  M \ K  is connected. If K = 0 .  3 I  is globally minimal 

and we are reduced to the result of [17]. If K r  it is known that P~,(C)\K is 

Stein. Then, we apply the boundary problem result of Chirka [1] to the graph of 

CR functions over M \ K  in order to obtain the needed holomorphic extension. 

Acknowledgement. I would like to thank the referee and E. Chirka for their 

remarks on this paper. 

2. P r e l i m i n a r i e s  

2.1.  D e c o m p o s i t i o n  i n t o  C R  o r b i t s  

Let M be an oriented and compact real hypersurface of class C 2 of a complex 

manifold of dimension n. For any point pE3I. we call Hp(3I)=Tp(M)AiTp(M) 
the holomorphic tangent space to M at the point p (where Tp(M) is the tangent 

space to 5 I  at p and i is the imaginary unit). As 3 t  is of class C 2. the set of 

holomorphic tangent spaces to M is a vector bundle of complex rank n - 1 .  A C 1 

curve ?/: [0, 1]--+M is called a CR curve if for any" point tC[0.1], ~,,'(t)EH~,(t)(5I). 
Let xEM, the set of points y c M  which can be joined to x by, a piecewise CR curve 

is called the CR orbit OcR(x) of x in M. It is well known that CR orbits are CR 

submanifolds injectively immersed in M and of the same CR dimension. Thus. for 

any point xCM, Ocn(x) is either an open set (and we will say that 3 I  is globally 

minimal at the point x) or a complex manifold 7 h. of dimension n - 1  injectively 

immersed in M. In this last case. the CR orbits are tangent to the bundle H(M) 
of complex tangent vectors to M. As M is of class C 2. H ( M )  is of class C 1. thus 

any point pEM has a neighborhood Up such that rlx is a product of the unit ball 

of C n 1 by a topological set T C C .  More precisely, fix is a compact set laminated 

by complex manifolds of dimension n -  1 (see [7]). 

Definition 1. Let N he a compact topological space and {Ui}ieI be an open 

covering of N such that for any iEI, there exists a homeomorphism hi of Ui on 
B x T i ,  where B is the unit ball of C" and Ti is a topological space. We say that 

these open sets define an atlas of a structure of lamination by complex manifolds of 
dimension n if the change of charts hij=hj~h~ 1 on their domain of definition are 

of the form 

h~ (z, t) = (Lj  (-', t), =,~ (t)), 

where f.ij depends holomorphically on the variable z and continuously on the vari- 

able t. Two atlases on N are equivalent if there union is an atlas. A topological 

space is called laminated if an equivalence class of atlases is given. 
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Moreover, let 

K ----- {x r M : M is not globally minimal at the point x} 

then K is also a compact  set of M (as its complement is open by definition) and is 

laminated by complex manifolds of dimension n - 1  (see [19] and [121 for a precise 

s tudy of the structure of CR orbits). 
As remarked in [11], in order to prove the global minimality of compact  hyper- 

surfaces of C "~, one has to show tha t  there exists no such laminated compact  sets 

in Stein manifolds. 

Proposit ion 1. Let X be a Stein manifold. Then there is no laminated com- 
pact set Y C X.  

Proof. Let us suppose that  there exists such a compact  set in X. By embedding 
X in C ~, we obtain a laminated compact set Y c C  ~'. Let r>O be the infimum of 
the real numbers s>O such that  YcB(O,  s), where B(O, s) is the ball of center 0 and 
radius s. Let zEYnOB(O,r),  let C~ be the complex line containing the segment 
[0, z] and let 7c: C~--+C. be the projection on C~. Let Dz be a complex manifold 

contained in Y and passing through the point z. Then the restriction of 7cz on D .  
is a nonconstant holomorphic function whose modulus has a maximum at the point 

z, which contradicts the maximum principle. [] 

2.2. Laminated compact sets of  Pn(C) 

Let Y be a compact  subset of P . ( C )  laminated by complex manifolds of dimen- 
sion n - 1 .  Then by the definition of Y, P , ( C ) \ Y  is pseudoconvex (as at any point 
of its boundary there is a piece of complex hypersurface included in the boundary).  
So, according to [20], [5], [6] and [13], P~,(C)\Y is Stein. As a direct consequence, 

we obtain the following result. 

P r o p o s i t i o n  2. Let Y be a compact set of P,(C)  ( n k 2 )  laminated by complex 
manifolds of dimension n - 1 .  and f: Y---~C be a continuous fnnction on Y whose 
restriction on any complex manifold contained in Y is holomorphic. Then f is 
constant on Y. 

Proof. In order to prove that  f ( Y )  contains only one point, it is sufficient to 
prove that  its topological boundary Of(Y) contains only one point. First. let us 

remark that  for any point xEOf(Y) ,  f - l ( x )  is a laminated compact  set of P~(C).  
Indeed, let y E Y  be a point such that  f (y )=x.  From the open mapping theorem, f 
is constant on the maximal complex manifold passing through the point y. Thus, 
it is constant on its closure and we obtain that  f - l ( x )  is a laminated compact  
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subset of Y that  we will denote by Yx- Now, let us suppose that  Of(Y)  contains 

two different points xl and x2. Then the sets Yxl and Y:r2 are two compact sets of 
P~(C) laminated by complex manifolds of dimension 1~-1 which do not intersect, 
as f takes a different value on each one. But, P,, (C)\Y~-, is a pseudoconvex open set 
of P~(C),  following [20], [5], [6] and [13], P , , (C)\Yrl  is Stein and Y-~ C P , ( C ) \ Y ~  
which contradicts Proposition 2. [] 

Let M be a real hypersurface of a complex manifold X. then for any point 

x c M ,  there exists an open connected neighborhood V~ of z such that  V x \ M  is a 
disjoint union of two connected open sets (which are called one-sided neighborhoods 
of M at the point x). We will say that  142 is a one-sided neighborhood of ,~I if for 
any point x c M ,  14~ contains a one-sided neighborhood of M at x (the side can 
change). Applying Proposition 2 and the results on propagation of CR extension 

of [21], [15] and [11], we obtain the following proposition. 

Proposit ion 3. Let M be a connected C 2 real hypersurface of P,~(C) which 
divides Pn(C)  into two connected open sets. Let K be the set of points x E M  such 
that M is not globally minimal at the point x. Then continuous CR functions on 
M are constant on K .  Moreover, any continuous CR function defined on 5 I \ K  
extends holomorphically to a one-sided neighborhood of any point of M \ K .  

C o r o l l a r y  1. Let M be a connected C 2 real hypersurface of P~(C) which di- 
vides P~(C) into two connected open sets f~l and f~2. Suppose that there exists a 
nonconstant continuous CR function f on M and that the Hartogs-Bochner phe- 
nomenon is valid for M.  Then M admits at most one open CR orbit. 

Pro@ Let us suppose the contrary. Let M1 and Me be two open CR orbits 
of M and let us suppose that  f ( K ) = 0  and that  f is not constant on 311. Indeed. 
according to Proposition 3, f is constant on K.  so it has to be nonconstant on one 

of the open CR orbits of 5I .  Let g be the function defined by 9 = f  on ilI1 and 
g = 0  on M \ M 1 .  Then, of course, g is a continuous CIt flmction defined on M. As 
we have supposed tha t  the Hartogs-Bochner  phenomenon is valid for M, let G be 
the holomorphic extension of g on the side f~i of 3I.  Then G = 0  on all of f~i as 
its boundary value vanishes on an open subset of M. So g = 0  on all of M which 

contradicts that  g[M~=f[M, is not constant. [] 

2.3. Holomorphic decomposit ion of  CR functions 

In this section, we give a proof (communicated to us by C. Laurent-Thi6baut)  
of the classical decomposition theorem for CR functions as differences of boundary 
values of holomorphic functions. 
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P r o p o s i t i o n  4. Let X be a complex manifold and M c X  be a C k compact real 
hypersurface which divides X in two open sets fh  and f~2. Let f: M - + C  be a CR 
function of class C l+a ( 0 < l < k ,  0<c~<1) on 3I. Let us suppose that H ~  

Then there exist two holomorphic functions f l  arid f., defined, respectively, on 121 
and ft2 such that 

(1) fiffCZ+a(~/), i : 1 . 2 :  

(2) f = f l l M- - f2 lM.  

Proof. Let T=f[M]  ~ where [M] ~ is the part  of bidegree (0, 1) of the inte- 
gration current over M. As f is a CR function, the current T is 0-closed. The 
hypothesis H ~ =0  implies that  there exists a distribution S such that  

c9S = T in X. 

The support  of the current T being included in M. c9S=0 on X \ M .  Thus S defines 

two holomorphic functions fl and f2 defined, respectively, in 91 and f~2. If zoCM, 
let us consider a neighborhood V of z0 biholomorphic to a ball in C ~'. One can then 

solve the O problem on V and obtain a distribution So on V such that  

OSo = T in V. 

Thus, on V we have that  

o(S-So) = 0  

which implies that  S - S o  is a holomorphic function on V and so is C ~ .  Thus, the 
regularity of S in a neighborhood of z0 is the same as the regularity of So itself 
whose jump is C l+a as can be checked using the kernels of Henkin in the ball. [] 

2.4. Complex boundary problem 

Let X be a complex Riemannian manifold of dimension n and ill  be a closed 
and oriented C t submanifold of X of dimension 2 p - 1  with p_>l (we let [M] be 

the integration current associated to M).  We wilt call any locally finite linear 
combination of analytic subsets of X \ M  with integer coefficients a holomoTThic p- 
chain. Of course, holomorphic p-chains define closed currents of bidimension (p,p) 
of X\2~I. The volume of a holomorphic p-chain IT] = ~  n~[Ti], is the expression 

Vol[r] = Z InJl Vol ~ .  
J 

where Vol Vj (or ~2p(Vj)) is the 2p-dimensional Hausdorff measure of the analytic 
set Vj. The volume Vol[T] is also equal to the mass of the associated current IT]. If 
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a holomorphic p-chain is of locally finite mass in X. the associated current in X \ 3 I  
will have an extension to a current of X which is not closed in general in X. The 

question of finding necessary and sufficient conditions for [hI] to be the boundary 
(in the current sense) of a holomorphic p-chain of X \ M  of locally finite volume in 
X is called the complex boundary problem. 

Two necessary conditions for [;~I] to have a solution to the boundary problem 
are that  [M] can be decomposed into the sum of two currents of bidimension (p, p -  1) 

and ( p - l , p )  (such a current will be said maximally complex) and that  [M] is a 
closed current. Indeed, suppose that  there exists a holomorphic p-chain [T] of 

X \ M  such that  IT] is of locally finite vohnne in X and satisS" [M]=d[T]. Then 
necessarily we have 

d[hl] = d(d[T]) = 0 

and as IT] is a current of bidimension (p, p), 

[M] = d[T] = ( 0 +  c~)[T] = O[T] +c~[T] 

is maximally complex. Of course, the property for the current [M] to be maximally 

complex is equivalent to the fact that  for any point pEhI, dimc H p ( M ) = p - 1 ,  
where Hp(M) is the holomorphic tangent bundle to h i  at the point p. 

In the case of X = C  ~*, p_>2 and M is compact,  Harvey and Lawson [9] proved 
that  these two conditions are in fact sufficient for the boundary problem for M 
to have a solution. Then, many authors studied the boundary problem for more 
general manifolds (see for example [1], [31, [2], [lS] and [14]). In this section we 
would like to mention the following result that  will be used in the present article. 

P r o p o s i t i o n  5. (Chirka [1]) Let Y be a polynomially convex compact set of 
C ~ and r a closed, oriented and maximally complex C 1 submanifold of C ~ \ Y  of 
dimension 2 p - 1  (p22)  such that FUY is a compact set of C n. Then there exists a 
unique holomorphic p-chain IT] of C'~\(YUzU), of locally finite volume in C~\Y ,  
which is the solution to the boundary problem for [El in C " \ Y  (i.e. d[T]=[F]). 

Let 

3. P r o o f  o f  t h e  m a i n  t h e o r e m  

K = {x E hJ ; OcR(x) is not an open subset of 31}. 

3.1.  T h e  case  w h e n  i is g loba l l y  m i n i m a l  (i .e.  K----0) 

According to Proposition 3, if the compact set K is empty, continuous CR 
maps on M extend holomorphically to a one-sided neighborhood of M. Thus, by 
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deforming _M into this one-sided neighborhood and by remarking that,  if xEAI  
is such that  CR maps on M extend to its two sides then they are restrictions of 
holomorphic map  in the neighborhood of x. we are reduced to the following result. 

P r o p o s i t i o n  6. ([17]) Let AI be a connected C 1 hypersurface ofP,~(C) (~_>2) 
which divides PT,(C) in two connected open sets fll and f~2. Suppose that there ex- 
ists a nonconstant hoIomorphic function defined in a connected neighborhood of M.  
Then holomorphic functions defined in a connected open neighborhood of M extend 
holomorphically to ftl or to fi2. 

We will give a proof of the proposition which is slightly different from the one 
in [17]. Let V be the connected open neighborhood of M on which there exists a 
nonconstant holomorphic function g: V--~C. 

L e m m a  1. There exists a connected neighborhood P" of M,  which is relatively 
compact in V and two holomorphic functions f l  EO(f~l UV) and f2EO(ft2UlT) such 

that g l f / = f l l f i -  f21f/. 

Pro@ Let V be a connected open neighborhood of 3 I  which is relatively com- 
pact in V. Let q5 be a smooth function defined on P,,(C) such that  s u p p 0 C V  and 
~ l ~ - l .  For any iE{1, 2}, let us consider the smooth forms a~'i defined by 

f c)(go) on f~i, 
r i / 0 on P,~(C)\fi~. 

Then, for each iE{1, 2}, c~i is a 0-closed (0.1) smooth form whose support  is included 

in f~i\V. As H ~  there exists a smooth function u/ defined on P,,(C) 
such that  co~ =cqui. Of course, we have 

o(go)  = ~a +~'2 = 0u~ +~a2  = ~ ( ~  +u~).  

So the smooth function u l + u 2 - g o  is holomorphic on P,~(C) and thus is constant. 
Let us denote by c the constant that  satis~- 

c =  u l + u 2 - g o .  

1 and f2 defined on ~2UV Then the functions f t  defined on f~l U ~7- by f l  = g o -  u ~ + 7 c 

by f ~ = u ~ - 9 r 1 8 9  are holomorphic on there respective domains of definition and 

satisfy that  on V (as 01~=1) we have f l - f 2 = g  . [] 

Proof of Proposition 6. As g is supposed nonconstant, one of the two holomor- 
phic functions f l  and f2 has also to be nonconstant. Let us suppose, for example, 
that  f l  is nonconstant. Then, according to [20], [5], [6] and [13], the envelope of 

holomorphy W of ftl  U#K is Stein. So the domain f~l t21 "? embeds in its envelope and 
in particular ftl can be seen as a bounded domain of a Stein space W and we are 
reduced to the classical Hartogs extension theorem. [] 
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3.2. The case when  M is not globally minimal (i.e. KT~0) 

First, let us remark that  Theorem 1 is trivial in the case when there are no 
nonconstant C 1 CR functions on 21I. So in all the following we will always assume 
that  g: M--~C is a nonconstant C 1 CR function. 

L e m m a  2. The compact set K must verify the following properties: 
(1) K is a compact set laminated by complex manifolds of dimension n - l :  
(2) the CR function g is constant on K (we can suppose that g ( K ) = 0 ) ;  
(3) K is of null (2n-1) -d imens iona l  Hausdo~ff measure: 
(4) the open set U=P,~(C)\K is Stein. 

Pro@ The two first points are a consequence of Proposition 3. According to 
Proposition 4, g = f ~ - f 2  where f~E(9(f~)nC~ As g is nonconstant, one of the 
two functions f~ has also to be nonconstant. But, as they are constant on K.  the 
set K has to be of null measure in AI (which proves the third point). Finally, as 
the compact  set K is supposed nonempty. 

is a pseudoconvex open subset of P . ( C ) .  According to [20]. [5]. [6] and [13], U is 
Stein. [] 

3.2.1. Semi-local solution to the boundary problem. According to Proposition 4. 

g=fllM--f2[As, where f iEO(f~i)nC~ As g is nonconstant,  one of these two 
functions is also nonconstant (let suppose for example that  f l  is nonconstant, that  
f~ (K)={0}  and that  the orientation of 21I has been chosen such that  211 is the 
oriented boundary of f~l). Let us prove the following proposition which implies 
Theorem 1. 

Propos i t ion  7. Under the previous hypothesis, any continuous CR func- 
tion f : M \ K - + C  extends holomorphically to Qi\{z;fl(z)-=O}. Moreover, ff f is 
bounded, then its extension is also bounded and according to the Riemann extension 
theorem, it extends holomorphically to all of ~1. 

According to Proposition 3, up to deforming 51. we can always assmne that  
f l  and f are smooth on 54\K. We will prove that  the graph of the restrictions of 
f over the level sets { z ; f l ( z ) = c }  admits  solutions to the boundary problem. More 

precisely, let us consider the graph of the map (f l ,  f )  over the set M\{Z; f l ( z )=0}  C 
M \ K :  

F f l , f = { ( w , y , z )  E ( C \ { O } ) x C x P n ( C ) ; z E 2 1 I ,  f l ( z ) • 0 ,  w = f l ( z ) ,  y = f ( z ) } .  
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L e m m a  3. There exists a holomorphic r~-chain [:F] of ((C\{0}) x C •  

Ffl,f, of locally finite mass in ( C \ { 0 } ) •  which is a solution to the 
boundary problem for [FA.f]. (Moreover, for a~y compact R c C \ { 0 } ,  the set 
TA(R x C • P~(C)) is compact in (C\{0}) • C • U.) 

Pro@ We recall that U=P, , (C) \K is Stein. Let D(0. e) be the closed disc 
of center 0 and radius e, C(0, e) its boundary and ; r : C x C x U - - + C  be the pro- 

jection on the first member. For any z>0.  FS1./N(C(0. e ) x C x U )  is bounded. 
Thus, there exists a holomorphically convex compact set B~ in C • U such that  
[]~f14n((C\D( 0, ~:)) x C • U)]U(D(0, s) x B+) is a compact subset of C x C x g.  Ac- 

cording to Proposition 5 with Y=D(0 ,  z) • B~, the boundary problem for [Fs~,f] ad- 

mits a unique solution in (C x C • U)\(YUFf).  By uniqueness of the solution and by 

letting c tend to zero, we obtain that  the boundary problem for [FS~.I] has a unique 

solution IT] to the boundary problem in (C\{0}) • C • U . .k s  [F/~.S] has a sohttion to 
the boundary problem in (C\{0}) • C • U and as U C P,-, (C) we obtained in fact that 

IT] is a solution to the boundary problem for [FA..f] in ( C \ { 0 } ) •  [] 

For any cEC\{0},  let 2,,c=({c} • C x P,,(C))nYf, j be the graph of f over the 
level set {z;fl(z)=c}. According to Sard's theorem, for ahnost all cEC\{0}.  ";,~ 
is a smooth real submanifold of dimension 2 n - 3  and the intersection currem [')'c] 
obtained by intersecting [Ff~.f] with the fiber {e} •  •  is well defined and 
corresponds to the integration current over ";,c. Moreover. for almost all cEC\{0},  
the boundary in the current sense of the intersection current (denoted [S~]) obtained 
by slicing the current [:F] by the fiber {c} • C x P ,  (C) is equal to the intersection 

current of [Ff~,f] by this same fiber. So we obtain: 

L e m m a  4. For almost all ccC\{O},  there exists a holomoT~phic (n-1)-chain 
[S~] of ({c} • C • U)\~/~, of finite mass in {c} • C x U. which 'is a solution to the 
boundary problem for [/r (i.e. d[S'~.]=[';,r 

Proof of Proposition 7. By hypothesis. 3 I \ K  is connected (and not empty 
because f l  is supposed nonconstant on 3I). So Ff~j is also connected. Thus, 

the holomorphic n-chain IT] is irreducible and with multiplicity +1. For ahnost 
all cEC\{0},  the intersection current [';.r of [FA.f] by the fiber {c} x C x P ~ ( C )  
is well defined. According to Lemma 4. for almost all cEC\{0},  we have that  
[7~] =diSC], where [Sr is the intersection current of [:F] by the fiber {c} x C • P,,(C). 
Let II3: C •  C xP, (C)- -+P, , (C)  be the projection on the last member. For ahnost 
all c~C\{0}  the integration currents [2"~] and [S~]. respectively, over the level sets 
{zEM;f l ( z )=c}  and {z;f l(z)=c} are well defined and satisfy [';,~]=d[S~]. Then, 
we have for almost all cEC\{0},  

dFta, ([Sr = Ha, (d[Sr = II:3, ([';.c]) = [';.~] = d[S~]. 
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By the uniqueness of the solution to the boundary problem in the Stein manifold 
{c} • C x U we have that  

n~ ,  ([S~]) = [S~]. 

As the current [SV] is of multiplicity +1. the currents [Sc] have also to be of nmlti- 
plicity =t=1. But, as by construction, the current [S~] is of multiplicity +1 and satisfy 

II3.([Sc])=[S~], the current [S~] has also to be of multiplicity +1. This proves that  
f extends holomorphically on almost all the level lines S< ~. of f l  (i.e. the Riemann 
surface S~ is the graph of a holomorphic function defined on S~). Thus, II3 defines 

a proper and one-to-one projection of T on ~l\{z;fl(Z)=O}. Let II~ 1 be the in- 
verse map of II3 and 7r2: C •  x U--+C the projection defined by ~r2(zl, z2, za)=z2. 
Then the holomorphic function F=Tr2-~II~ 1 is defined on f~l\{z;fl(z)=O} and is a 

holomorphie extension of f on f~l \{Z;f l  (z)=0}.  

In the case when f is bounded, by construction of the solution to the boundary 
problem the extension has also to be bounded. [] 

The only remaining point in the proof of Theorem 1 is the regularity of the 
extension. According to [9], Theorem 5,2, p. 249, the regularity up to the boundary 

of the holomorphic extension is the same as the one of the considered CR function 
on M. 

4. Related problems 

In the case when M admits a nonconstant C I CR function, the hypothesis that  

M has at most one open CR orbit is necessary. In order to give a complete answer 
to the conjecture one have to answer the following question. 

Problem 1. Let M be a connected C 2 hypersurface of P,,(C) which divides 
P,~(C) in two connected open sets ~1 and ~t2. Suppose that M admits a nonconstant 
C 1 CR function. Can M have two distinct open CR orbits:  

We do not know if Theorem 1 is still valid if" we assume less regularity for 5 I  
or for the CR functions. For example, in the case when ~[  is Lipschitz and f is 
in the Sobolev space W-1/2(5I), a counterexample is given by Henkin and Iordan 
in [10]. Nevertheless, by analogy with the extension result they obtain, one might 
expect the following problem to have a positive answer. 

Problem 2. (Henkin) Let QC P ~ (C )  (n>_2) be a domain with Lipschitz bound- 
ary 0f~ which admits  a nonconstant holomorphic function. Let f be a CR function 
which is in the Sobolev space W1/2(0~).  Does f admit a holomorphic extension in 
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As we have seen, in the case when 31 is of class C 2, the main difficulty is 

the possible existence of laminated compact subset K of M. Thus the following 

problems become natural. 

Problem 3. Let M be a connected C 2 hypersurface of P,~(C) (n>_2) which 

divides P~(C) in two connected open sets ftx and ft2. Then 

(1) does there exist iE{1, 2} such that smooth CR maps f :  M ~ P I ( C )  extend 

meromorphically to f~i? 

(2) is M globally minimal? 

(3) does there always exist a nonconstant C 1 CR function on M? 

Let U c P ~ ( C )  be an open set. If U contains a laminated compact set K then 

holomorphic fimctions on U have to be constant and meromorphic functions have 

to be rational. As we have proved, continuous CR fimctions on K are also constant. 

Thus one could expect the following problem to have a positive answer. 

Problem 4. Let K c P : ( C )  be a compact set C ') laminated by Riemann surfaces. 

Let f be a C 2 CR map from K to PI (C)  (i.e. for an)" analytic disc A c K ,  f[A is 
a holomorphic map). Does there exist a rational map Q: P 2 ( C ) ~ P I ( C )  such that 

Ql~=f.* 
Of course, in the case when it is known that there exist no non-trivial laminated 

compact subset of P2(C), Problems 1.3 and 4 are obvious. 
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