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Decomposition theorems for Qp 
Zhijian Wu and Chunping Xie 

spaces 

A b s t r a c t .  We study the MSbius invariant spaces Qp and Qp,o of analytic functions. These 
scales of spaces include BMOA=Q1,  VMOA=QI ,o  and the Dirichlet space--Qo. Using the 
Bergman metric, we establish decomposition theorems for these spaces. We obtain also a fractional 
derivative characterization for both  Qp and Qp,o. 

1. I n t r o d u c t i o n  

Let D be the unit disc in the complex plane, dA(z) be the area measure and 
g(z, w)=log (ll-~zl/lz-wl) be the Green's function of D with pole at wED. For 
pE (-1 ,  oc), the spaces Qp and Qp,o are MSbius invariant function spaces consisting 
of all analytic functions f defined on D satisfying, 

and 

H:li., = sup ([):'(z):g(z,w: 
wED \ J  D 

f 
lim I ]f'(z)12g(z,w)PdA(z) =0,  

Iwr-*l- JD 
respectively 

The s p a c e s  Qp and Qp,o have been much studied in recent years. We refer the 
reader to [A], [AL], [AXZ], [El, [NX], [X] and the references therein. It is proved 
in [AL] that  Qp is the Bloch space and Qp,o is the little Bloch space if pE(1, c~). 
It is also proved in [NX] that  for -l<p<O, the Qp space contains only constant 
functions, Q0 is the Dirichlet space, QI=BMOA and Q1,0=VMOA. Therefore 
O<p< 1 is the interesting range of p for the scales of spaces Qp and Qp,o. 

Decompositions can be found in many sources in the literature. It is a useful 
tool in studying functions and function spaces. The related results for functions in 
holomorphic spaces are used in studying operators, such as Hankel and Toeplitz, and 
approximation by rational functions (see for example [P] and [Z]). Decomposition 
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theories for Bloch space, little Bloch space, Dirichlet space, BMOA and VMOA are 
established in [R] and [as]. We also refer the reader to IF], [Z], [RW] and the refer- 
ences therein. The main purpose of this paper is to establish similar decomposition 
theorems for Qp and Qp,o when 0 < p <  1. 

Let p be a nonnegative measure on D. For any arc I on OD, denote the Carleson 
square based on I by S ( I ) = { z E D : I - I I I < I z I < I  and z / N E I } .  Here and later III 
denotes the length-- the  normalized arc length--<)f I. We say that  # is a bounded 
p-Carleson measure if #(S(I))<CIIIP for any arc I on OD, and # is a compact p- 
Carleson measure if Iz(S(I))=o(llIP). The square root of the best constant C in the 
above inequality is denoted by II#llp. Clearly, 1-Carleson measures are the classical 
Carleson measures. 

Denote the unit point mass supported on z by 5~. Delaying the definition of 
the lattice to the next section, we state the main results of this paper. 

T h e o r e m  1. Suppose that 0<pG1.  There exists an 7/0>0, such that for any 
zl-lattice {zj}~= o in D with 0<71<~0, the following are true: 

(a) If  fEQp,  then 

o o  

I(zl=~-~Aj(1--1zjI~lb-P/2 l + p  
j=O ( l_h jz )b  , b > ---~--, 

(1) 

and 

(2) 
o o  

J , j ,zj p c,l, op 
(b) If  {)~J}~-0 is such that the measure ~j~=o I)~J 125zJ is a bounded p-Carleson 

measure, then f ,  defined by (1), is in Qp and 

p" 

T h e o r e m  2. Suppose that O<p<_l. There exists an 770>0, such that for any 
q-lattice {zj}~_ 0 in D with 0<r/<~/0, the following are true: 

(a) If  fEQp,o, then 

o o  

(3) f ( z l =  ~-~ )~j(1--1Zjl2lb-P/2 l+p  
j=O ( l_2jz)b , b>-  2 ' 

oo and the measure ~'~.j=o I'~Jt26zj is a compact p-Carleson measure. 
(b) I1 is such that the measure Zj%o I: Jl2 =J is a compact p-Carleson 

measure, then f ,  defined by (3), is in Qp,o. 
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We end this section with the following remarks. For p~-l, Theorems 1 and 2 
have been proved in [RS] and [RW]. For the real version of Qp space, a decomposition 
theorem with wavelet base has been established recently in [EJPX]. Similar results 
for generalized Qp and Qp,o spaces are gathered at the end of this paper. 

2. Pre l i mi n ar i e s  

The following characterizations of Qp and Qp,o in terms of bounded p-Carleson 
measures and compact p-Carleson measures can be found in [ASX]. For the case 
p = l ,  these results are well known (see, for example, [G, Chapter VI]). 

T h e o r e m  A. Suppose that 0 < p < l  and that f is analytic on D. 
(i) The function f is in Qp if and only if the measure If'(z)l~(1-1zl2)PdA(z) 

is a bounded p-Carleson measure. 
(ii) The function f is in Qp,o if and only if the measure ]f'(z)]2(1-Iz]2)PdA(z) 

is a compact p-Carleson measure. 

C o r o l l a r y  B. Suppose 0 < p l < P 2 < l .  Then 

Qpl c Qp2. 

In fact, Corollary B is a consequence of Theorem A and the inequality 

~s(I) [f'(z)12(1-1zl2)P~ dA(z) <_ (2 l I I )  p 2 - m  fS(l)If '(z)I2(1--N2)Pl dA(z) 

for IcOD,  which is obtained by using the estimate 1-]z12<21Ih if zES(I) .  
For z, wED, the Bergman distance between z and w is defined by 

I W--Z  

d(z, w) = log 1 + ~ 
1 w - z  " 

L 

For zoED, we call the disc B(zo, r)={z:d(z, z0)<r} an r-Bergman disc with cen- 
ter zo. It is known that  the Bergman disc B(zo, r) is a Euclidean disc with radius 

er--1 1-1zol  2 
er-|- I r 2 " 

z o  
\ e ' + l ] '  " 

Therefore the area of the disc B(zo, r) is comparable to r2(1-Izo12) 2 for small r. 
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An ~-lattice is a family of points (zj}~_ o in D such that d(zk, zj) 1 > g~, if kT~j, 
and the collection of discs Bj = {z:d(z, zj)<r I} covers D. 

Let {zj }~_0 be an r/-lattice, and Bj and Bj be the ~rl-Bergman disc and the 
r/-Bergman disc centered at zj, respectively. It is standard that (see, for exam- 
ple, [CR]) there is a partition {Dj}~_ 0 of D such that zjEDj and 

Bj C Dj c Bj. 

In this paper, we shall always denote the �89 disc centered at zj by Bj for 
any given ~-lattice {zj }~=0" 

For fixed b>0, let 

(1-1zl2) b-1 
k~(z)= (l_Sw)b+ 1 . 

The following lemmas can be found in [CR] or [R]. 

L e m m a  C. There exists C > 0  such that, if ~?=d(z, zo)<_l, then 

Ik~(z)-k~(zo)l <_Crllk~(zo)l, w E D .  

L e m m a  D. Let 0<rl<�88 and {zj}~= o be an y-lattice. There exists C >0  such 
that for any analytic f on D and for all j ,  

/Dr If(z)--f(zJ)l dA(z) < C~? 3 f If(z)t dA(z). 
J ~j 

L e m m a  E. Let 0<~<1 and {zj}~= o be an ~-lattice. There exists a positive 
integer r=O(r/-2) such that each point olD lies in at most r of the discs in {Bj}~= 0. 
Furthermore, if b>0 and f is analytic on D, then 

j=0 J 

Schur~s lemma.  Suppose that 1 < q < 2 ,  and that q~ =q/ ( q -  1) (the conjugate 
number of q). Suppose further that Q(z, w) is a positive function on D • D. If there 
is a positive function g on D, such that 

DQ(Z, w)g q'( iv) dA(w) < Cg q'(z) and /D Q(w, z)g q(w) dA(w) < Cgq(z) 
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hold for all zED, then the linear map given by 

f ~ / D  Q(z, w)f(w) dA(w) 

is a bounded map on Lq(D). 

Throughout  this paper I denotes an arc on OD. The letter C denotes a positive 
constant which may vary at each occurrence but  is independent of the essential 
variables and quantities. We also use the notation A ~ B  to mean that  A and B are 
comparable, i.e. 1/C<A/B<_C. 

3. P r o o f s  o f  t h e  m a i n  resu l t s  

For independent interests, we establish a key theorem first. 
define the linear operator To by 

f (1-Iz[2) b-1 
T , r  ] l - 2w[  b+~ r  dA(z), a > O. J. 

For fixed b> 1, 

T h e o r e m  3. Suppose 0<p_<l,  a > l ( 1 - p )  and r is a measurable function 
on D. 

(a) I f  the measure [r dA(z) is a bounded p-Carleson measure, 
then [T~r dA(z) is also a bounded p-Carleson measure. 

(b) If  the measure [r dA(z) is a compact p-Carleson measure, 
then IT~r - ]z]2) 2~-2+p dA(z) is also a compact p-Carleson measure. 

Remark. For p=l ,  the result is proved in [RW]. For (r--l ,  the result is proved 
in [x]. 

Proof. For part  (a), it is sufficient to show that  the estimate 

A )<clxl (~) 

holds for any arc IcOD.  
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For any positive integer n<log2(1/lI[) , let 2hi be the arc on 0D with the same 
center as I and the length 2nlII. We have the following estimate 

~ ( i )  IT~r (1 -Iwl2) 2~-2+v dA(w) 

< ~S(1) (/D (l_[z12)b-1 2 - ]l-Sw] b+" [r (1-[w[2) 2~-2+p dA(w) 

= ~(i)((J/s(2z) + / n \ s ( u o )  (1-lzl2)b-'ll-2w[ s+" [r 2(1-[w[2)2~'-2+pdA(w) 

< 2 fs(1)(Js(m (l-lzl2)b-l(i-lwle)~-l+P/211_$wlb+. Ir dA(z))2dA(w) 
+ 2 fs(1) (/D\S(21) (i-[zl~)b-l (i-lwlZ)"-l+P/21r 2wlb+~ 

= El+E2. 

Consider the linear operator B: L2(D)~L2(D) defined by 

h(w): ;/D K(w,z)h(z) dA(z), 

where the kernel is given by 

K(w, z) = (1-Izl2)b-l-v/2(1-Iwl2) "-l+v/2 
II-~wlb+ ~ 

It is easy to verify that for "r=-�89 in fact "r can be any number in the interval 

( -  min(a+p, b) + ~p,1 min(a+p, b) -  �89 1), and g(z)=(1-Izl~) the estimates 

DK(W,z)g2(w)dA(w) <_Cg2(z) and /D K(z'w)g2(w)dA(w) <-Cg2(z) 

hold for all zED. By Schur's lemma, we know that B is a bounded operator. 
Letting 

h(z)=lO(z)l(1-lzl=)P/Zxs(21)(z), z~ n, 
we have clearly that hEL2(D) and 

Iih1122 = ds/(21) Ir - Izl2)p dA(z) < VIII p. 



Decomposition theorems for Qp spaces 389 

Therefore we can estimate E1 by 

f dA(z) 2 E, <_2 ,~, So K(,,,z)h(z) dA(w) = 2l IB@IlL -< CIIAII~, <_ CISI". 

To estimate E2, we note first that (see, for example, [G, p. 239]) for n>0  the 
inequality 

I I - : ~ l  > c2"1sl 

holds if wCS(I) and zES(2'~+II)\S(2nI). Direct computation yields also that for 
any fixed a>  1, we have 

is (1-iwl2)a-2dA(w)~C(2n[II) a, n>O. 
(2~s) 

Hence, rewriting the set D\S(2I) as the disjoint union U.~__ I S(2n+II)\S(2nI), we 
can estimate E2 by 

E2 = 2is(s) _ I 1 - ~ 1  b+~ Ir (n_~ Ss(2n+li)\s(2.i)(1-1zl2)b-1 dA(z)7(l_lwl2)2<,-2+P dA(w ) 

< c L  1 Ir b-1 dA(z (1-1~12) 2~-2+" dA(w) -- (I) _ (2n[I[) b+a (2~+11) 

< ci112:+. 1 Ir b-1 dA(z) . 

- _ ( 2 n l S l )  b + ~  ( 2 = + 1 ~ )  

By H61der inequality, we have 

js(2.<+ll) i%b(z)i(l-izl2)b-ldA(z)~-(L(2.+ll)'%b(z)'2(1-'zl2)PdA(z)) 1/2 

x (L(2.+ll) (I-iz[2)2b-p-2 dA(z)) 1/2 

(L I'I12 < Ir 12(1-Iz12)" dA(z)} (2"+11) 
• (2 n+l III)b-vl 2. 

Thus, we can continue the estimate of E2 by 

(n~l '1/2'2 E2<_CIII" ~-~--~=( 1 ir ) .  
(2~+~lSl). L(~=+,I) 
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Since the measure 1r - H 2 )  p dA(z) is a bounded p-Carleson measure, we have 
therefore 

17,2 <_ CIII p ~-g <_ CIII p. 
Xn=l 

This proves part (a). 
For part (b) we note first that, by assumption, for any e > 0  there exists 5>0  

such that the estimate 

fS(I) [r dA(z) < eli[ p 

holds when 111<5. We have therefore 

EI <-C~ Ir <_CellI v, i f [ I [< �89 
(21) 

Assume that III< 1 ~(f. Let N be the largest integer satisfying N<logR(g/2[I[). 
We have 2n+lll t<(f if n<N. Hence we have 

fs  Ir <e(2n+lllI)P for all n<N. 
(2"+11) 

Since a compact p-Carleson measure is also a bounded p-Carleson measure, we have 

fs  Ir dA(z) < C(2n+IlII)P for all n. 
(2'~+11) 

Thus, we can refine the previous estimate for E2 by 

(n~_l 1 ( 1 f ir 2 E2 _< C]I[ p 
_ ~ (2'~+5-I/I)P Js(2-+,l) 

<- clIl  + Z 
-- n=N+l 

<c(el/2 + 4I  ~ 2 
- 1,'," 

The last inequality above is obtained by the fact that N+l>log2((f/2lII). 
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In summary, we have proved that  the estimate 

(1)[T~C(z)12(1-lzl2)u~-2+'dA(z)<-E~+E2<-CIIl'\ 5 ] 

holds for all arcs I with ill<�89 This is enough to conclude that  the measure 

IT~r 2~-2+p dA(z) 

is a compact p-Carleson measure. [] 

For fixed b> l ,  consider the t-derivative with t>0:  

r(b+t) ~ ~ )  ( 1 -  Iw12) b-1 dA(w). f(t)(z)= ~r(b) fD tl--WZ) 

Here F is the gamma function and It] denotes the smallest integer which is larger 
than or equal to t. 

Direct computation yields 

0, i f n < [ t - 1 ] + l ,  
(4) (zn)(~) = r(b+n+t-l-[t-1])r(n+l)zn-l-rt-ll if n> It-l]+1. 

r(b+n)r(n- I t - l ] )  ' - 

It is therefore easy to conclude that  the t-derivative is just the usual t th  order 
derivative if t is a positive integer. 

Remark. The quantity in the right-hand side of the above formula is depending 
on b if t is not an integer. 

C o r o l l a r y  4. Suppose that 0 < p < l ,  t> �8 9  and f is analytic on D. 
(a) The function f is in Qp if and only if If(t)(z)12(1-1zl2)2t-2+P dA(z) is a 

bounded p- Carleson measure. 
(b) The function f is in Qp,o if and only if If(t)(z)12(1-N2)2t-2+P dA(z) is 

a compact p-Carleson measure. 

Remark. For t=2,  3, ..., Corollary 4 is proved in [ANZ]. For p = l ,  the result is 
proved in [RW]. 

Proof. We show the "if" part of (a) first. Let 

h ( z ) -  F(b+l)z[t-1]  (1 -  
~r(b+t-1) /D M2)b+~-2 (1-~z)  b+l f(t)(~)dA(~). 
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By Theorem 3(a), we know that the measure Ih(z)12(1-N2) p dA(z) is a bounded 
p-Carleson measure. 

Let f(z)=~j~__o ajzJ, f(t)(z)=~-~_ o a~t)z j a n d  m =  I t - i ] .  By formula (4), we 
have 

r(j+b+t)F(j+m+2) j >_ O. a(t) 
J =aJ+m+lF(j+l)F(j+rn+l+b ) ' 

Direct computation yields 

oo r ( j + b + l )  a~,)zj+ m = ~ r(j+b+l)r(j+m+2) r 
h(z)= ~ r(j+b+t) ~ ~ ~ a j + m + l z  �9 

5=o j=o 

If m=0,  it is easy to conclude from the above formula that h(z) =f~(z). There- 
fore f is in Qp. 

Assume that m>0  and denote the beta function by fL Recall that 3 (x ,y )=  
r ( x ) r ( y ) / r ( x + y ) .  We can rewrite h(z) as 

h(z) = ~ " / ~ ( j + b + l ,  m) ( j+m+ l)aj+m+lzj+m. 
= ~(j + 1, m) 

Let Pm(z)=~j~=o jajz  j-1 and 

_ _ _  / a . +  z'W'm+l 

j = 0 -  ; 3 ( j + l , m )  ] a m+l - 

We have therefore 
f (z) = h(z)+ Pm(z)+e' (z). 

Since Pm is bounded on D, it is clear that the measure IPm(z)12(1-lzl2) p dA(z) 
is a compact p-Carleson measure. To show that f is in Qp, by Corollary B, it is 
sufficient to verify that e is in Q0 (the Dirichlet space). 

A standard estimate on beta functions yields 

O<l_~(j+b+l,m ) < (b+l)m 
~ ( j + l , m ) - j + m + l '  j_>0. 

Therefore 

( x )  

L le'(z)t dA(z) = r E(j+m+l)[aj+m+l 12 l -  
j=O 

;3(j+b+l,m) 2 ~ ,  laj+m+ll2 

~ ( j + l , m )  ~ _  j + m + l  
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On the other hand, since the measure [f(t)(z)[2(1-]z[2) 2t-2+p dA(z) is a bounded 
p-Carleson measure, we have 

E (j_bl)2t-l+p ~ If(t)(z)12(1-lzl2) 2t-2+p dA(z) < c~. 
j=o 

This is equivalent to (since [a~t)[~ (j + 1) -tlaj+m+l I) 

E ( j + m +  1)l-Plaj+m+l 12 < co. 
j=o 

Hence 

le'(z)12dA(z)~ laJ +m+112 < (j+m+l)l-plaj+m+ll2<(x). 
j=o j + m + l  - =  

This proves that e E Q0. 
To show the "only if" part of (a), we note that 

r(b+t) [f(t)(z)[ <- rF(b) /D (1--[W[2)b-1 [1-@z[ b+t [f ' (w)[dA(w). 

Therefore the desired result follows from Theorem 3(a). 
Part  (b) of the Corollary can be proved similarly. [] 

Z oo Proof of Theorem 1. For the 7/-lattice { J}j=0, without loss of generality, we 
assume that y < l  and [zj[>0 for all j .  

Assume that fEQp. We have f 'EL2((1-[z[2)PdA). By the reproducing for- 
mula, we have 

f ' (z)  (1-[zl2) b - 1  dA(z), b > O. f(w)=b fD (l_~w)b+l 
Recall that  for the y-lattice {zj }~~ there is a partition {Dj }~~ 0 of D which satisfies 
the condition described in Section 2. Hence f ' (w) can be represented as 

co  oo :,(w)=: :,(z) ( 1 - 2 w )  b+l (1 -[z[2) b-1 dA(z) ~ b E f'(zj)lDj](1 -]zj  [2)b-1 
7r j=O ~ r j=o ( 1 - z j w )  bd-1 ' 

where ]Dj[=fD j dA is the area of Dj.  Therefore f (w) can be approximated by 

1~ -~  (1-1z312) b-I 
A(f)(w) = f'(zj)]Djl 2~( l_s  

j=o 
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The approximation operator A, defined as above, is clearly a linear operator. 
We now consider the Qp norm of the error f -A(f) .  Using the expression 

b~o f  D f'(z) f'(w)-A(f)'(w) = ~ (l_2w)b+ 1 (1--1Zl2) b-1 dA(z) 

oo _ b y~ f,(zj)lDj](1-Izj 12) 5-1 
71" j=0 (1-- 7"jw)b+l ' 

we have (recall that  k~o(z)=(1-Izl2)b-1/(1 --if.W) b-I-l) 

If,(w)_A(f),(w) I < b_Tr ~.= /D~ If'(z)l Ik~(z)-k,,,(zj) t da(z) 

+ -  If ' (z)- . f ' (zj) l  Ikw(z~)l dA(z) 

=ZI+E2- 

By Lemma C, we have for every zj, 

Ik~(z)-kw(zj) I <_ Crllk,o(z)l, 

This implies that  

z ~  Dj. 

~1 <~ C~/D Ik~(z)l If'(z)l dA(z). 

By Lemma D, we have for every zj, 

Dj If'(z)-f'(zJ)ldA(z)<Crla f If'(z)ldA(z)" JBj 

Applying Lemma C again, we get 

fD lf'(z)- f'(zj)[ Ik~(zj)l dA(z) < C~7 3 fB If '(z)l Ik~o(zj)l dA(z) 
J j 

< CTi 3/Bj If'(z)l(Ik,o(z)-k~o(zj)l+lk~(z)l) dA(z) 

< C~l 3/~j If'(z)l(CTllk~,(z)l+lk~,(z)l) dA(z) 

C1]3/B Ikw(Z)l If '(z)l  dA(z) .  
J 
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Therefore, by Lemma E, we obtain that  

oo 

E2 <- C~ 3 ~ f_ Ik,,(z)llf'(z)ldA(z) < 67 fD Ik,o(z)ll.f'(z)ldA(z). 
j = 0  J B j  

In summary,  we have 

I f ' ( w ) - A ( f ) ' ( w ) l  <_ Crl/D Ikw(z)l If ' (z) l  dA(z), w e n.  

Applying Theorem 3(a) to the above estimate,  we get 

llf -A(f)llQ,, < CrlllfllQ,,, f e Qp. 

I t  is clear tha t  we can choose a smaller ~7 (say r / = I / 3 C )  so tha t  the operator  A 
is invertible and tha t  A - l = ~ - ~ = 0 ( I d - A )  n is bounded. Here Id is the identity 
operator  on Qp. 

We have constructed an approximation operator  A with bounded inverse. For 
any f(z)EQp, we can write 

1 ZA_~( f ) , ( z j ) ID~ I 5~z) b . f (z)  = a a - l ( f ) ( z )  = ~ j=0 J '  

Picking 

Aj = A-l(f)'(z3)lO3l(1-lz312)P/2-1 

we have the desired decomposition 

oo 

f(z) = y~ ),j (1-1zjl2)b-P/2 
~=o (a-e~z? 

I t  remains to show tha t  the measure ~ j = 0  I)~J125zj is a bounded p-Carleson 

measure. In fact for an analytic function g on Bj,  by the mean value theorem, we 
have 

Ig(zj)12(1-1zJl2)P< i/~j i j Ig(z)lU(1-1z{2)PdA(z)" 
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Therefore, we obtain that  

E IAJI2<C E IA-'(f)'(zJ)12(1-1zJl2)p-21Djl2 
z~ 6S(1) zj 6S(1) 

IDj]2 /~ IA-l(f)'(z)12(1-]z]2)P dA(z) 
zj  6S(I)  J 

_ C __J~(:1) ]A-1 (f)'(z)12 (1 - H2)p dA(z) 

<<_ Cl lA-  l ( f  ) llq. III" 
<cIIflIQpllI  p 

This completes the proof of (a). 
For part (b), it suffices to show that the measure If'(z)]2(1-H2)PdA(z) is a 

bounded p-Carleson measure. By the given formula we have 
oo 

f'(w) =b E Aj2 j (1-lzJJ2lb-P/2 
5=0 (1 - z ,  j w )  b+l 

Applying the substitution z =  (zj-  ~) / (1 -2 j~)  in the following integration, we know 
that there is a positive constant 

(eV--l ~ 2 
Cj = 7r\e'7+l ] 2b 

(1 e'7-1 2 4e'7 '~ b 

such that  
/[~ (1-M2)b-1 dA(z)= (1-]zj[2) b-1 

j (1-2w) b+l Cj (1-zjw) b+l" 
Therefore we have that  

(1 -Izj f~ (1- Izl~) b-1 f'(w) = b E Aj2sCj ]:)1-p/2 X~j (z) dd(z) 
j=o IBJl (1--zw)b+l 

/D(i--lz,~)b-l~176 ( ( 1 -  z. 2) 1-p/2 \ 
=b (l_2w)b+ 1 ~-~Aj2jCj ]BJl Xhj(z))dA(z). 

j=o 
By Theorem 3(a), we only need to show that  the measure 

12  A(z, 

is a bounded p-Carleson measure. 
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In fact, it is clear that  {Cj}j~__0 is bounded. Since {Bj}~~ 0 is a set of disjoint 
Bergman discs, we have 

L(z) ~~ A)jCy (1-lz312)~-P/2x~(z) 2(1-lzl~)PdA(z ) 
'j--o }B~I 

oo 2 2--p 

<C f S ' )  "-'2(1-~]~-) - js<,)~=o.A~l I~jl 2 X~j (z)(1-lzl2)pdA(z) 

I:~ 12 (1 - :c~f~ }zJ12)2-" j=o (x)n6j I~l  2 (1-1zl2)P dA(z) 

<C ~ I,~jl 2 
j:S(z)n~ #0 

<C E I'~Jl 2 
z~ eS(2I) 

< ClZl p. 

The last inequality holds because the measure ~-'~'~~ I~Jl2~z~ is a bounded p-Carle- 
son measure. [] 

Proof of Theorem 2. It is proved implicitly in the proof of Theorem 1 that the 
approximation operator A satisfies 

IA(f)'(w)l <_ C/D [k,o(z)l [f'(z)[ dA(z), w 6 19. 

Hence by Theorem 3(b), we have that  A maps Qp,o to Qp,o. Following the proof of 
Theorem 1, we only need to show that  A -1 maps Qp,0 to Qp,0 as well. 

In fact, for any ~>0, we can find a positive integer N > 0  such that  

o o  

that  is, for any fGQp and any arc IcOD, 
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On the other hand, the operators Id and A map Qp,o to Qp,0 and so does the 

operator ~ N 0 ( I d  - A )  ~. Therefore there exists a 5>0,  such that  for any arc I with 
II] <5, we have the following estimate 

N t 2  

~S(I) (~__o ( Id -A)n( f ) ( z ) )  (l-[z[2)P dA(z) <-~[l[P" 

Since A -1 =EN_o( Id  --A)n+E~=N+I (Id - A )  ~, we have 

~s [A-l(f)l(z)[2(1-[z[2)PdA(z) for I with [I[ <5.  (llfll~,~2 +e)lII p < 
(i) 

This is enough. [] 

4. R e m a r k s  

For q>0  and p > - 1 ,  let C~,q be the space of analytic functions f in D satisfying 

f s  ]f'(z)lq(1-1zl2)P dA(z) <-ClI[~ 
(I) 

for any arc IcOD.  The norm of f ,  denoted by [Ifllc$.q, is the qth root of the best 
constant in the above inequality. Moreover we say that  fGVCp, q if 

~s(,) If '(z)lq(1- Izl2)p dA(z) = o([I1'~). 

Clearly the spaces Qv and Qp,o are special cases of C;q and VC~,q, respectively. A 
systematical study of these scales of spaces can be found in [Zh] and [Pal4]. 

It is easy to check that  for fixed q and a, 

C;I ,q C 6;2,q, Pl < P2. 
The following results can be proved in a way similar to the proofs in Section 3. 

T h e o r e m  3 I. Suppose that p > - l , (7> ( q - p -  1) / q and r is a measurable func- 
tion on D. 

(a) If fS(I) Ir z ) l q ( 1 -  IZ12) p dA(z)<ClII ~ for any IcOD,  then 

~S ]Tar dA(z) < C]I]~ 
(I) 

for any I c cOD. 
(b) If fs(r) I~)(Z)lq(1--tZl2) p dA(z)=~ then 

~S [Tar dA(z)=~ 
(i) 
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T h e o r e m  1'. Suppose that p > - I  and q > l .  There exists an r/o>0, such that 
for any y-lattice {zj}~= o in D with 0<r/<r/o, the following are true: 

(a) g f then 

(5) 
, j ( 1 -  f (z)  = ~ Ir [2) b+l-(2+p)/q l+p 

j=o ( l_Sjz)b , b> q , 

and 

(6) 
1 ~l/q 

sup - -  arc/ I/'1 a Z ]'~J[q) ~__C[[f[[C~.q. 
zjeS(1) 

(b) / f  {Aj}~= o satisfies f~'~,,es(,)[AJ[q<-CtII ~ for any arc I, then f ,  defined 
by (5), is in C;~,q and 

II'fllc~', -< C sup ( '1-  Z [AJlq) l/q" 
arc I \ Ill ~ z~CS(l) 

T h e o r e m  2'. Suppose that p>_ -1  and q > l .  There exists an 7/o>0, such that 
for any ~?-lattice {zj}j~ in D wzth 0<r/<r/0, the following are true: 

(a) l f  feVC~.q, then 

(r)  
O 0  

f (z)  = Z Aj (1--1zjlu)b+l-(2+p)/q l +p 
j=0 (l_2jz)b , b> q , 

and 

=o(111"1 . 
zjES(1) 

(b) If  {Aj}j~ o satisfies ~ z ,  Es(1) IAJIq=~ then f ,  defined by (7), is in 
vc;% 
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