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On M-structure, the 
asymptotic-norming property and 

locally uniformly rotund renormings 
E d u a r d o  N i e t o  a n d  M i g d a l i a  R ivas  

A b s t r a c t .  Let r, sE]0, 1], and let X be a Banach space satisfying the M(r, s)-inequality, 
that is, 

Itx***ll>_rll~rxm***ll+sllx***-~xx***ll for x*** eX***,  

where rcx is the canonical projection from X*** onto X*. We show some examples of Banach 
spaces not containing co, having the point of continuity property and satisfying the above inequality 
for r not necessarily equal to one. On the other hand, we prove that aBanach space X satisfying 
the above inequality for s =  1 admits an equivalent locally uniformly rotund norm whose dual norm 
is also locally uniformly rotund. If, in addition, X satisfies 

limsup Ilu* +sx~ll _ h m s u p  IIv +x~ll 

whenever u*,v*EX* with Ilu*ll~llv*ll and (x~) is a bounded weak* null net in X*, then X 
can be renormed to satisfy the M(r, 1) and the M(1,s)-inequality such that X* has the weak* 
asymptotic-norming property I with respect to BX. 

1. I n t r o d u c t i o n  

Fo l lowing  [4] a n d  [10], a s u b s p a c e  X of  a B a n a c h  space  Y is sa id  to  be  an  ideal 
in Y if t h e r e  ex i s t s  a n o r m - o n e  p r o j e c t i o n  P on  Y* w i t h  K e r  P = X  • If, m o r e o v e r ,  

IlY*II >-rlIPY*II+sllY*-PY*II for y* e Y *  

ho lds  for g i v e n  r,  sE]0 ,  1], t h e n  we say  t h a t  X is an  ideal satisfying the M(r, s)- 
inequality in Y.  W h e n  Y is t h e  b i d u a l  o f  a B a n a c h  space  X a n d  t h e  a s s o c i a t e d  
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projection is the canonical projection, we will say, for simplicity, that  X satisfies 
the M(r, s)-inequality (see [1]). For r = s = l ,  we obtain the classical notion of M- 
ideal (see [12]). 

A Banach space X has the point of continuity property if for every nonempty 
closed and bounded subset of X, the identity map has some point of weak-to- 
norm continuity. We prove that  if X is a nonreflexive Banach space satisfying 
the M(1, s)-inequality, then X fails to have the point of continuity property, but 
there are Banach spaces having the point of continuity property, and satisfying the 
M(r, s)-inequality for r not necessarily equal to one, as can be seen below. 

In a Banach space X, we denote the closed unit ball by Bx  and the unit 
sphere by Sx. The canonical projection is denoted by 7rx. The Banach space of 
all bounded linear operators on X and its subspace of compact operators will be 
denoted by s  and/C(X),  respectively. 

A Banach space X is a U*-space or has property U* if [I x . . . .  7rxx*** l[ < Ilx*** II 
whenever x***EX*** with lrxx***r (see [1] and [2]). Observe that  the M(r, 1)- 
inequality implies property U*. 

Following [12], given r, sE]0,1], we will say that  X has property M*(r,s) if 
whenever u*, v* EX* with ]]u* II <-!1 v* ][ and (x~) is a bounded weak* null net in X*, 
then 

lirn sup lieu* +sxXII ~ lim sup IIv* § 
Oc Ot 

It is clear that  property M*(1, 1) is equivalent to property (M*) (see [12]). 

In [13], for the class of dual spaces, Zhibao Hu and Bor-Luh Lin introduced 
a property stronger than the asymptotic-norming property defined by James and 
Ho in [15], where it is proved that  the asymptotic-norming property implies the 
Radon-Nikod~m property. Let X be a Banach space and r  Bx* a one-norming 
set of X, that  is, 

[[x]] ----- sup x*x for x E X. 
x*E~ 

A sequence (Xn)n~176 in Sx is said to be asymptotically normed by �9 if for any e>0,  
there are x*EO and N E N  such that  x*xd>l -e  for all n>N. For x = I, II, III, a 
sequence (Xn)n~__l in X is said to have the property x if 

(I) (xn)n~__l is convergent; 
(II) (xn)n~=l has a convergent subsequence; 
(III) An~176 ~ (xk:k>n}#O. 
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Let ~ C B x  be a one-norming set of X*. Then X* is said to have the weak* 
asymptotic-norming property x,  ~ = I, II, III, with respect to ~ (in short, ~-ANP- 
x)  if every sequence in Sx .  that  is asymptotically normed by (I) has the property x. 
It is showed in [13] that  if (I) is a one-norming set in Bx,  then X* has the r  if 
and only if X* has the Bx-ANP-~ ,  x = I, II, III. The space X* is said to have the 
weak* asymptotic-norming property x (weak*-ANP-x) if X admits an equivalent 
norm for which X* has the Bx-ANP-~ .  

Given a Banach space X, its norm is called locally uniformly convex or locally 
uniformly rotund (LUR) if for any x C S x  and (x,~)n~__l in Sx  with l i m n - ~  IIx,~+xl] = 
2, then l imn--~ ]]xn-xl[ =0. The norm of X is said to be strictly convex or rotund 
if x=y  whenever x, y E S x  and ]]x+yl]=2. 

M. Raja has showed in [19] that  given a Banach space X,  its dual X* admits 
an equivalent dual LUR norm if and only if X can be renormed such that  the weak 
and the weak* topologies agree on Sx . .  So, the weak*-ANP-x, x = I, II, III, are 
equivalent (see I13]). 

Given a Banach space X,  its dual X* has the weak*-Kadec-Klee property if 
for any sequence (x*)n~176 in X* and x* cX*,  l i m n - ~  ]i x* - x *  I]--0 whenever weak*- 
l i m n - ~  x*=x*  and Hx~H=Hx*H for all n c N .  

It is clear that  if X is an M-ideal, then X is Hahn-Banach smooth, that  is, 
117cxx***lI<llx***II whenever x***eX*** with x***r It is known [12] that  
if a Banach space X has property (M*), then the weak* and the norm topologies 
agree on Sx*. Using a different argument, the same result is obtained when/C(X) is 
an M-ideal i n / : (X) .  We obtain the same results (see Theorem 3.2 below) supposing 
that  X satisfies tile M(r, s)-inequality for r and s with ( 1 - r ) / s  arbitrarily close to 
zero, ]C(X) is an ideal satisfying the M(1, s)-inequality and X has property M*(1, s) 
(s not necessarily equal to one). In particular, by the mentioned result of Raja, X* 
admits an equivalent dual LUR norm (see Corollary 4.2). 

In [12] it is proved that  every M-ideal admits an equivalent LUR norm whose 
dual norm is LUR. It is also proved that  if X is an M-ideal, then X admits an 
equivalent norm for which X is still an M-ideal and whose dual norm is strictly 
convex. In Theorem 4.5 below, we prove that  if X is a nonreflexive Asplund space 
having property U*, then there exists an equivalent LUR norm on X whose dual 
norm is LUR. On the other hand, it is proved in the same result that  X admits an 
equivalent norm for which X has still property U* and whose dual norm is strictly 
convex. If, moreover, X has property M*(1, s) (in particular, i f /C(X) is an ideal 
satisfying the M(1, s)-inequality i n / : ( X ) ) ,  then X can be renormed to satisfy the 
M(1, s)-inequality and such that  X* has the Bx-ANP-I  (see Theorem 4.7). As a 
consequence, we obtain that  a Banach space X having property (M*) admits an 
equivalent norm for which it is an M-ideal and X* has the Bx-ANP-I .  
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2. The M ( r ,  s ) - i nequa l i t y  a n d  t h e  point of continuity property 

First, we have the following result. 

Proposit ion 2.1. ([1, Corollary 3.4]) Let X be a nonreflexive Banach space 
satisfying the M(1, s)-inequality (in particular if X is an M-ideal). Then X con- 
tains an isomorphic copy of co, so X fails to have the point of continuity property. 

Now we present some Banach spaces which do not contain co, but satisfy the 
M(r,  s)-inequality. Let J denote the James space, J T  the James tree space (see, 
e.g., [7] and [8] for the definitions) and J T ~  the space constructed by Ghoussoub 
and Maurey in [9]. Note that  the space J has the Radon-Nikod~m property (and 
so has the point of continuity property), since J is isometric to a separable dual 
space. It is well known [9], [17] that  the predual B of the space J T  has the point of 
continuity property but fails to have the Radon-Nikod)}m property. On the other 
hand, it is proved in [9] that  the predual B ~  fails to have the point of continuity 
property. 

E x a m p l e s  2.2. (1) ([1, Example 3.5]). The space J can be renormed to satisfy 
the M (r, 1)-inequality. 

(2) The spaces B and Boo satisfy the M(1 /v /2 ,  1/vf2 )-inequality. 

Proof. Let (en,k)(n,k)ET be the usual basis in JT .  A careful reading of [8, 
Chapter VIII] allows us to assert that  there exists a sequence (Kn)~__l of finite rank 
operators on B with IIK~ I]-< 1 such that  l i m ~ - ~  K n x = x  and l im~-.~ K ' x * - - x *  for 

every x E B ,  x * E J T ,  and writing x * = ~  0 2"' = ~-~k'=l t,~,,k, en,,k, for x * C J T ,  we have, 
for all n, 

2 nl 

n ' = l  k ' = l  

It is easy to show that,  for all n and x * E J T ,  

IIK~x*lt2 +llx*- KXx*ll 2 ~ IIx*ll 2. 

Hence, for every n and x, y e B  with ]]xil , IlYi]<l, 

IIK~x+(y-Knu)tl _< v~.  

So, by [3, Propositions 3.1 and 4.1], the result follows. The proof for the space B ~  
is similar. [] 
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3. M - s t r u c t u r e  a n d  t h e  a s y m p t o t i c - n o r m i n g  p r o p e r t y  

First, we introduce the following notation: given a Banach space X, for all 
> 0, define 

{( 1 - r  ) { 
A~= r ,s) :  - <~ and A ~-- (r ,s):  

S 

and consider the sets 
B--- { (r, s ) :X  satisfies the M (r, s)-inequality}; 
C={(r,  s ) :X  has property M*(r, s)}; 

i-s } 
~ , 

r 

D={(r ,  s):/C(X) is an ideal satisfying the M(r, s)-inequality in s 
The next result is due to Zhibao Hu and BoroLuh Lin (see [13, Theorems 2.5, 

3.1 and 3.3] and [14, Theorem 1]). 

T h e o r e m  3.1. Let X be a Banach space. Then the following are true: 
(1) X* has the B x - A N P - I  if and only if X* has the B x - A N P - H  and the norm 

of X* is strictly convex; 
(2) X* has the B x - A N P - H  if and only if the weak* and the norm topologies 

agree on Sx* if and only if B x .  is weak* sequentially compact and X* has the 
weak*-Kadec-Klee property; 

(3) X* has the Bx-ANP-I I I  if and only if X is Hahn-Banach smooth. 

T h e o r e m  3.2. Let X be a Banach space. Then the following are true: 
(1) if BMA~ ~O for all ~>0 (in particular if X satisfies the M(1, s)-inequality), 

then X* has the Bx-ANP-III;  
(2) if X has property M*(1, s), then X* has the Bx-ANP-II ;  
(3) /fK~(X) is an ideal satisfying the M(1, s)-inequality in s  then X* has 

the Bx-ANP-II .  

Proof. (1) By [2, Lemma 4.2], X is Hahn-Banach smooth. So, by Theorem 3.1, 
X* has the Bx-ANP-III. 

(2) Let (x*) in Sx* be weak* converging to x*ESx . ,  and pick a weak* strongly 
exposed point x~ of Bx* (its existence is guaranteed by [4, Proposition 2.1]). So, 
by property M*(1, s), we have that 

lim sup I ix~ + s (x~  - x*)[[ _~ lim sup [Ix* q- (x~ - x*)[[ ---- 1. 

Then, it follows that (x~) converges to x* in the norm topology. Hence, applying 
Theorem 3.1, X* has the Bx-ANP-II. 

(3) The proof of this part is similar to the one given in [12, Proposition VI.4.6]. 
We state it here for completeness. 



328 Eduardo Nieto and Migdalia Rivas 

Let (x*) in  Sx.  be weak* converging to x*ESx..  By [4, Theorem 2.5] and [1, 
Proposition 2.5], X* has the Radon-Nikod3~m property. So, for fixed r  by [18, 
Lemma 2.18], there are xoESx and t > 0  such that  the slice S(xo, Bx*,t) has di- 
ameter less than r Let xESx  with x*(x)>l-�88 We can suppose, without loss 
of generality, that  x*(x)>l- �88  for all a. Pick y*ESx* such that y*(xo)=l, so 
y* ES(x0, Bx*, t). By [4, Lemma 2.2], there exists UEIC(X) such that 

l ty*|  < l+�88 

where I is the identity operator of X.  Then, as in [12, Proposition VI.4.6], for every 
a,  we have that 

x~(x)y* :t:s(x~-U* x*) E S(xo, Bx .  , t). 
1 l + ~ t  

Finally, since diam S(x0, Bx*, t )< r  and U* is weak*-to-norm continuous on Bx*, 
it follows that, for every a, sl[x~-x*ti<_3E. So, Iix~-x*]l-+0, and we apply Theo- 
rem 3.1. [] 

The next result shows that  condition r--1 cannot be dropped to obtain Hahn-  
Banach smoothness. 

P r o p o s i t i o n  3.3. The space J admits an equivalent norm for which it still 
satisfies the M(r, 1)-inequality, but fails to be Hahn-Banach smooth. 

Proof. Let rE]0, 1[ be such that J satisfies the M(r, 1)-inequality, and let J - -  
R x J be the equivalent renorming of J with the norm 

]] (a ,x) i i - -max{ial+(1-r) i ix i I  , [IxiI}, a E R ,  xE  J, 

where ]] �9 ]] denotes the norm on J for which J satisfies the M(r, 1)-inequality. We 
prove that J satisfies the M(r, 1)-inequality and fails to be Hahn-Banach smooth. 
In fact, it is easy to show that J * * * = R x  J*** with the norm 

l[(~,v)JJ--max{rJ~l+llvthl~l}, ~ E R ,  qoEJ***. 

Then, for every (a, qa)E J***, we have 

r II (~, ~J  (~))II + tl (0, ~ - . j  (~))II -- r max{r ]c~ I + II 7rj (~)II, II~J (~)]1 } § ]] ~ -  7rj ((~)II 

__< max{ri l l+ I1~11, I1~11} ----I1(~, ~)ll- 

Finally, it is straightforward to show that, for every (~, ~)E J***, 

P j•  (~, ~) = {0) • [Bj• (~, max{dist(~, J •  ( 1 -  r)l~l))]- 

So, it follows that J fails to be Hahn-Banach smooth. [] 

Remark 3.4. Observe that,  since the space J does not contain a copy of Co, J 
cannot be renormed to satisfy the M(1, s)-inequality for any sE]0, 1]. 
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4. M-s tructure  and L U R  renormings 

It is well known [12, Theorem III.4.6] that  every M-ideal admits an equivalent 
LUR norm whose dual norm is also LUR. In the mentioned result, it is proved 
that  there exists an equivalent norm on every M-ideal for which its dual norm 
is strictly convex and it is still an M-ideal. The next result is essentially proved 
in [12, Theorem VI.4.17]. 

L e m m a  4.1. Let X be a Banach space and r, sE]0, 1] with r + � 8 9  /fK:(X) 
is an ideal satisfying the U(r,  s)-inequality in s  then X has property U*(r, s). 

Proof. By [4, Theorem 3.1], there is a net (Ka) in Stc(x) with lima [[Kax-xi[ = 
0 for all x C X  and lima HK~,x*-x*[[=O for all x*EX*, such that  

limsup []rSK~+sT(I-K~)  H <_ 1 for S, TE Bs 
a 

So, 

limsup [[rS+s(I-  K~)[[ <_ 1 
a 

for S E Btc(x). 

Now the proof follows as the one given in [3, Proposition 4.1]. [] 

Since a Banach space X is Hahn-Banach smooth if and only if the weak and the 
weak* topologies agree on Sx* (see [12, Lemma III.2.14], by Theorems 3.1 and 3.2, 
the above lemma, [3, Proposition 3.1] and [19, Proposition 2] we have the following 
result. 

C o r o l l a r y  4.2. Let X be a Banach space, and consider the following state- 
ments: 

(a) B M A ~ O  for all ~>0 (in particular, X satisfies the M(1, s)-inequality); 
(b) C M A ~ O  for all e>0  (in particular, X has property M*(1, s)); 
(c) D M A ~ O  for all e>0  (in particular, tg(X) is an ideal satisfying the 

M(1, s)-inequality in s  

If  X satisfies one of the above statements, then X* admits an equivalent dual 
locally uniformly rotund norm. 

In what follows, we will suppose that  X is a nonreflexive Banach space. We will 
use a different technique to obtain that  if X is an Asplund space having property 
U*, then X admits an equivalent LUR norm whose dual norm is also LUR. We begin 
with the next result, which is proved in [12, Proposition III.2.11] for M-ideals. 
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P r o p o s i t i o n  4.3. Let X be a Banach space satisfying the M(r,  s)-inequality 
(respectively having property U*), Y be a Banach space and T:Y--~ X be a weakly 
compact operator. Then 

Ix*l*=Hx*ll+llT*x*]l forx*  e X *  

defines an equivalent dual norm on X* for which (X, ] �9 ]) satisfies the M(r,  s)- 
inequality (respectively has property U* ). 

Proof. Following [12, Proposition III.2.11], we obtain that, for every x***E 
X$:~*, 

Ix***l***=llx***ll+llT***x***ll and T***x***=T*(~xX***). 

So, if X satisfies the M(r, s)-inequality, then 

Ix***l*** = IIx***ll+llT*(~xx***)ll 

> rlt~xx*** II + sllx*** - ~ x x * * *  II + r  lIT* (~xx***) II 

= r I~x x*** I'** +six*** - ~  x**" I***- 

Now suppose that X has property U*, and let x***EX*** with r Then, 
we have 

Ix*** I*** = IIx*** II + liT* (-xz***)ll  

> IIx***-~xx***ll+llT*(~xx***)ll >_ Ix***-~xx***l***. [] 

L e m m a  4.4. Let X be an Asplund space having property U*. Then X admits 
a shrinking Markushevich basis. 

Proof. By [1, Theorem 4.4], X is weakly compactly generated, so [5, p. 237] 
X is weakly countably determined. Then, by [5, Proposition II.1.5 and Corol- 
lary VII.I.13[ and [16, Lemma 4], X admits a shrinking Markushevich basis. [] 

T h e o r e m  4.5. If  X is an Asplund space having property U*, then 
(1) X admits an equivalent LUR norm whose dual norm is also LUR; 
(2) there exists an equivalent norm on X for which X still has property U* 

and whose dual norm is strictly convex. 

Proof. (1) This follows from [1, Theorem 4.4] and [5, Theorem VII.I.14]. 
(2) Let (xi, f i ) icr  be a shrinking Markushevich basis obtained in the above 

lemma and let us consider the operator S:X*--~co(F) defined by 

Sx* =(x*(x i ) ) i zr  for x* ~X*.  
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It is clear that  S is injective and weak*-to-weak continuous. Let the norm ]-[ be 
defined on X* by 

Ix*I = I]x*il+iiSx*II for x* EX*.  

If we consider Day's norm on c0(F), which is LUR and thus strictly convex (see [6, 
pp. 95ff.]), then the norm ]. ]is a dual strictly convex norm on X* (see [6, Theorem 1, 
p. 100] and [5, Theorem II.2.4]). On the other hand, the operator S is weakly 
compact and, if it is considered as an operator into I~(F),  it is weak*-to-weak* 
continuous. Hence, S is the adjoint of a weakly compact operator from 11 (F) into X. 
So, by the above proposition, (X, ] �9 [) has property U*. [] 

C o r o l l a r y  4.6. Let X be a Banach space, and consider the following state- 
ments: 

(a) B N A E ~  for  all e > 0  (in particular, X satisfies the M(r,  1)-inequality); 
(b) CNAE#O for all e > 0  (in particular, X has property M*(r, 1)); 
(c) r> �89  and IC(X) is an ideal satisfying the M(r ,  1)-inequality in s  
I f  X satisfies one of the above statements, then the following are true: 
(1) X admits an equivalent LUR norm whose dual norm is also LUR; 
(2) there exists an equivalent norm on X whose dual norm is strictly convex, 

and for which X satisfies the M(r,  s)-inequality for all (r, s ) E B .  

Proof. By [3, Proposition 3.1], (b) =~ (a), and, by Lemma 4.1, (c) =~ (b). So, 
we suppose only the statement (a). By [2, Lemma 4.2], X has property U*. On the 
other hand, there exists (r, s ) E B  such that r + s > l .  So, by [1, Proposition 2.4], X 
is an Asplund space. Hence, applying Theorem 4.5 and Proposition 4.3, the proof 
is concluded. [] 

T h e o r e m  4.7. Let X be a Banach space having property U*. I f  X has property 
M*(1, s) (in particular, tC ( X ) is an ideal satisfying the M(1, s)-inequality in s ( X ) ), 
then X admits an equivalent norm [. I for which X has property U* and X* has 
the B x - A N P - L  Moreover, (X, I" I) satisfies the M(r,s)-inequality for all ( r , s )EB .  

Proof. First, observe that X is an Asplund space (see Lemma 4.1, [3, Propo- 
sition 3.1] and [1, Proposition 2.5]). Consider the dual norm I" ] defined in The- 
orem 4.5(2), which is strictly convex. So, by [11, Theorem 1], B(x*,l-I) is weak* 
sequentially compact. Now we prove that (X*, I" I) has the weak*-Kadec-Klee 
property. In fact, let (x*)nCr be a sequence in S(x-,I-[) and x*ES(x*,l .I)  with 
weak*-l imn_~ * * x n = x  . By passing to a subsequence, we can suppose that  IISx*[[ < 
limn-~oo ]ISxn] ]. Since Ix*i=[x*]=l  for all n, we have that 

lim [[x~[[---- 1 -  lim IISx~ll ~ 1-[[Sx*[[-~ [Ix*i[. 
n---~ O0  ~---~ ~ 
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Therefore, lim~-~o~ IIx*ll=llx*ll. By Theorem 3.2, X* has the Bx-ANP- I I .  

Hence, by Theorem 3.1, we have tha t  limn-~oo I Ix*-x*  II =-0, so l i m n - ~  I x * - x *  I=0. 
Finally, again by Theorem 3.1, (X*, I " I) has the B x - A N P - I .  

C o r o l l a r y  4.8. I f  X has property ( M*) (in particular, if  ]C( X )  is an M-ideal 
in f~(X)), then X admits an equivalent norm for which X is an M-ideal and X* 
has the B x - A N P - L  
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