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A separation theorem and Serre 
duality for the Dolbeault cohomology 

Chris t ine  Lau ren t -Th i6bau t  and  Jfirgen Leiterer 

Abstract .  Let X be a complex manifold with finitely many ends such that each end is either 
q-concave or (n-q)-convex. If q< �89 then we prove that HP'n-q(x) is Hausdorff for all p. This is 
not true in general if q_> �89 (Rossi's example with n=2 and q----l). If all ends are q-concave, then 
this is the classical Andreotti-Vesentini separation theorem (and holds also for q_> �89 Moreover 
the result was already known in the case when the q-concave ends can be 'filled in' (again also 
for q_> i n )  To prove the result we first have to study Serre duality for the case of more general 2 �9 
families of supports (instead of the family of all closed sets and the family of all compact sets) 
which is the main paxt of the paper. At the end we give an application to the extensibility of 
CR-forms of bidegree (p, q) from (n-q)-convex boundaries, q< �89 

1. I n t r o d u c t i o n  

Let X be an  n -d imens iona l  complex manifold,  E--+X a holomorphic  vector 

bundle  and  E* the dua l  of E.  

We use the following s t anda rd  nota t ion .  The  space CP'q(X, E) is the  Fr6chet 

space of E-va lued  C ~ - f o r m s  of bidegree (p, q) on X given the topology of uni form 

convergence of the forms and  all their  derivatives on compact  sets. For each closed 

CCX, I)~q(X,E) denotes the space of all fEcP'q(x, E) with suppfC_C,  consid- 

ered also as a Fr6chet space, with the topology induced from CP'q(X, E). Finally,  

T)P'q(X, E) is the space of forms with compact  suppor t  from EP'q(x, E), given the 

finest local convex topology such tha t ,  for each compact  K ~ X ,  the embedd ing  

~)~q(x, E)-+T)P'q(X, E) is cont inuous.  The  cohomology groups 

HP'q(X,E) = C'P'----=_ q(X'E)nKer~ and HP'q(X,E)- 7) P,q ( X, E)MKer O 
OEP,q-I(X, E) OI)p,q-l(X, E) 

will be considered as topological vector spaces with the corresponding factor topolo- 

gies. 
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If  X is q-concave in the sense of Andreot t i -Grauer t  and l_<q_<n-1, then 
Hp'n-q(x, E) is Hausdorff (for all p), by the Andreotti-Vesentini separation theo- 

rem [AV]. In the present paper  we consider the situation, first studied by Ramis IRa], 
when X is q-concave only at some of its ends, and q*-convex at the other ends- - for  
certain appropriate  q*. More precisely, we assume tha t  X is q-concave-q*-convex in 

the following sense. 

1.1. Definition. The manifold X is called q-concave-q*-convex, l<q, q* <_n, if it 
is connected and admits  a C a function t): X- -+R without (absolute) minimum and 
maximum such tha t  the sets {zls<_Q(z)<_t}, i n f~<s_<t<supQ,  are compact  and 

the following two conditions are fulfilled: 
(1) There exists s 0 > i n f 0  such that  the Levi form of ~) has at least n - q + 1  

positive eigenvalues on {~zlinf Q < Q(z) < So }. 
(2) There exists t0<supQ such that  the Levi form of Q has at least n - q * + 1  

positive eigenvalues on { z It0 < Q ( z ) < sup Q}. 

If  q* <n-q ,  then HP'n-q(x, E) is again Hausdorff. This was first obtained in a 

more general setting for sheaves on spaces with singularities by J.-P. Ramis IRa].(1) 

Another, direct proof can be found in ILL3]. 

For q* = n - q  the situation is more complicated. First of all there is the example 
of Rossi [Ro] of a 2-dimensional 1-concave-l-convex complex manifold such that  
the "hole" at the 1-concave ends cannot be "filled in". This implies (by similar 
arguments as in [HL, Section 23]) the existence of 2-dimensional 1-concave-l-convex 
manifolds X such tha t  H 0,1 (X, O) is not Hausdorff. For those examples the "hole" 
at the 1-concave ends cannot be "filled in"--otherwise  H ~ (X, (9) is Hausdorff. In 

fact, there is the following theorem (see [HL, Theorem 19.Y]). 

1.2. T h e o r e m .  Suppose X is q-concave-(n-q)-convex, l<_q~_n-1. Then 
HP'n-q ( x ,  E) is Hausdorff for all p, provided the following two additional conditions 
are fulfilled: 

ext(X):  X is an open subset of some larger complex manifold X such that 
(with the notation as in Definition 1.1) { z I Q(z) < So } = X N L) for a certain relatively 
compact domain D ~ X ;  

ext(E):  there is a holomorphic vector bundle E -+X with E=E, Ix. 

The original proof of Theorem 1.2 given in [HL] is not so easy. In [LL1, Theo- 
rem 4.1] the following simple proof is given. 

(1) There is a misprint in [Ra, Theorem 2]. In fact, by the formulation given there H~ O) 
should be Hausdorff if n=2 and X is 1-concave-l-convex, but this is not true, as it follows from 
the Rossi example which we shall discuss some lines below. 
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Proof. Set ~'=T)'~-P,q+I(X, E*)f3OI)~-v,q(.~, E*). Then, clearly, 

(1.1) J:~gVn-,,q(X,E *) 

and it is easy to see that  

(1.2) dim _ ~" < dim Hn-p'q(L), E*). 
O P n - p , q ( x ,  E*) - 

Since/9 is q-convex, the right-hand side of (1.2) is finite, by the Andreotti-Grauert  
theorem lAG]. Since .~ is (n-q)-convex, by the same Andreotti-Grauert  theo- 
rem, also Hp'n-q(X, E) is finite-dimensional and hence Hausdorff. By Serre du- 
ality it follows tha t  Hn-p'q+I(X.,E*) is Hausdorff, i.e. ~Dn-p'q(X,E *) is topo- 
logically closed in I)~-P,q+I(X,E*), which implies that  ~ is topologically closed 
in I)n-P,q+I(X,E*). Hence, by (1.1), the topological closure of ~D~-P'q(X,E *) 
is contained in ~'. Since the right-hand side of (1.2) is finite, this yields that  
OT)~-P'q(x, E*) is of finite codimension in its topological closure and hence equal 
to this closure, i.e. H~-P,q+I(X, E*) is Hausdorff. By Serre duality it follows that  
Hp'n-q(x, E) is Hausdorff. [] 

If q = l  and n > 3  then the additional condition e• is always satisfied, as 
was proved by Rossi [Ro]. On the other hand, this is not true for q = l  and n=2 ,  by 
the example of Rossi [Ro] mentioned above. In the present paper we prove that  if 
q< �89 then always both extension conditions ext(X) and ext(E) may be omitted, 
i.e. we prove the following theorem. 

1.3. T h e o r e m .  Suppose X is q-concave-(n-q)-convex where l < q < � 8 9  (and 
hence n>3) .  Then HP'n-q(x, E) is Hausdorff for all p. 

As an immediate consequence we obtain a result on the extension of CR-forms 
of bidegree (p, q) from strictly (n-q)-convex boundaries which we explain in Sec- 
tion 4 at the end of the paper. 

To prove Therorem 1.3 we follow the scheme of the proof of Theorem 1.2 given 
above, but there is a difference: Since we do not have the extended manifold .~, 
we also do not have the family of compact subsets of .~. We only have the trace of 
this family in X and we have to study directly the cohomology supported by this 
trace without using the compactly supported cohomology of X. This gives rise to 
certain functional analytic difficulties which we want to explain now. 

1.4. Definition. (i) A family �9 of closed subsets of X will be called an admissible 
family of supports in X in each of the following three cases: (1) (I) is the family of 
all closed subsets of X; (2) (I) is the family of all compact subsets of X; (3) there 



304 Christine Laurent-Thi~baut and Jiirgen Leiterer 

exists a C ~ function ~: X--~R without minimum and maximum such that  the sets 
{zls<_o(z)<_t}, info<s<t<supo, are compact and (I) consists of all closed sets 
CC_X such that,  for some tE] inf 0, sup 0[, 

c c_ {z I _< t}. 

Then we may always additionally assume that  all critical points of 0 are nonde- 
generate.(2) With this additional property (which is sometimes useful by technical 

reasons), 0 will be called a defining function for (I). 
(ii) If (I) is an admissible family of supports in X, then we denote by T)~'q(X, E) 

the space of forms fEEP,q(X, E) with supp f E ~ ,  given the finest local convex topol- 
ogy such that,  for each C E (I), the embedding 7P~q(X, E)-~7)~ 'q (X, E)  is continuous 
(here :D~ q (X, E)  carries the Fr~chet topology introduced above). Further, we then 
consider the factor space 

H~'q ( x ,  E) = l:~'q ( x '  E)MKer 6 
OT)~ 'q-1 (X, E) 

endowed with the factor topology. 

(iii) If (I) is an admissible family of supports in X then we denote by (I)* the 
family of all closed subsets C* of X such that  C*MC is compact for all CE(I). The 
family (I)* is called the dual family of (I). 

If (I) is an admissible family of supports defined by the function Q, then (I)* is 
an admissible family of supports defined by -Q and r If (I) is the family of 
all compact sets, then (I)* is the family of all closed sets and vice versa. 

It is clear that  admissible families of supports are families of supports in the 
sense of Serre [S]. Also it is clear that  such families (I) are cofinal in the sense of 
Chirka and Stout [CS], i.e. there exists a sequence C j E ~  such that  each CE(I) is 
contained in some C i. Hence the topology of I~r E) is the topology of an 
LF-space (cf., e.g., [T, Chapter 13]) for any admissible family of supports (I) in X. 

The problem now is the following. To prove Theorem 1.3 by the scheme of the 
proof of Theorem 1.2 given above, first we would have to prove that ,  for certain 
admissible families of supports (I) in X,  the following two conjectures are true. 

1.5. Conjecture. The space H~'q(x, E) is Hausdorff if and only if the space 
H ; ,  p'n-q+ l ( X, E* ) is Hausdorff. 

(2) This can always be achieved by small perturbations, as it follows, for example, from 
Proposition 0.5 in Appendix B of [HL]. 
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1.6. Conjecture. The space H~'q(X, E) is either Hausdorff or 

(1.3) dim 5 ~ , q - 1  (X, E)  = co, 
~'q-'(X,E) 

where (~/)~,q-1 (X, E)  is the topological closure of (~D~ 'q-1 (X, E)  in 7)~'q(X, E). 

Both conjectures are true if (I) is the family of all closed subsets or the family 
of all compact subsets. This seems to be well known (at least it is frequently used 
in the literature). But it is not so easy to find references for explicit proofs of this. 
Therefore let us say some words about the proofs. 

On the proofs of Conjecture 1.5 and Conjecture 1.6 for the families of all closed 
and compact sets, respectively. If (I) is the family of all compact sets, then the 'if'- 
part in Conjecture 1.5 was proved by Serre IS]. In his proof it is used that,  by the 
open mapping theorem in Fr~chet spaces, the operator 

(1.4) O: g p'q-1 (X, E) > gP'q(X, E) 

is relatively open, if its image is closed. It is not clear whether this is true also for 
the operator 

(1.5) O:~)P'q-I(X,E) > ~P'q(X,E). 

Therefore the proof of the 'only-if '-part is more difficult. This part was proved, 
as it seems, by different authors independently. A complete proof can be found in the 
work of Laufer [L]. Laufer observes that  for Serre's proof only the fact is important 
that  (1.4) sends weakly open sets to relatively open sets, and he proves that  also 
(1.5) has this property. (For another proof see [LL1, Section 3]). 

Now about Conjecture 1.6. If (I) is the family of all closed sets, then Conjec- 
ture 1.6 follows easily from the open mapping theorem in Fr~chet spaces. But this 
is not so easy when (I) is the family of all compact sets. Although I)P'q(x, E) is 
an LF-space and the open mapping theorem holds for continuous linear surjections 
between LF-spaces, it is not clear whether the open mapping theorem holds if only 
the source space is an LF-space and the target space is a closed subspace of an 
LF-space. 

Since we could not find an explicit reference for a proof of Conjecture 1.6, let 
us sketch a proof here (for another proof see ILL1, Theorem 2.7 and Lemma 2.8]): 

Denote by (~P)P'q(x, E) the dual of ~n-p'n-q(x, E*), i.e. the space of E-valued 
(p, q)-currents with compact support in X. Then it is well known (Dolbeault iso- 
morphism) that  the natural map 

(gt)P'q(X, E) NSer  cq 
(1.6) HPc 'q ( x ,  E) ---+ 

g(E')p,q -~(x, E) 
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is an algebraic isomorphism.(3) Moreover, by the Hahn-Banach theorem, 
(1.7) 

8I)P'q-I(X,E)= {(pE I)P'q(X,E) /x ~ir for r e E"-v"~-q(X,E*)nKer g}. 

Further, since En-P'n-q(x, E*) is reflexive, the Hahn-Banach theorem also gives 
(1.8) 

8(8')P'q-X(X, E) = {~ E (E')P'q(X, E)  ](~, ~) = 0 for ~ E En-P'n-q(x, E*) nKer  0}, 

where g(~l)P,q-l(x, E) is the closure of g(~')P'q-l(x, E) in (E')P'q(x, E) with re- 
spect to the strong topology. From (1.7) and (1.8) it follows that  the natural 
isomorphism (1.6) induces an isomorphism 

(1.9) ~)p,q-1 (X, E) > g(E') (X, E) 
~Dp,q-I(X,E) c3(~')p,q-I(X,E) " 

Now it remains to observe that  (E')P'q(X, E) with the strong topology is a DFS- 
space (the strong dual of a Fr6chet-Schwartz space) and therefore the Banach open 
mapping theorem can be applied to prove that  the dimension of the space on the 
right-hand side of (1.9) is always either 0 or oc. [] 

Finally we want to note two general functional analytic problems. 

1.7. Problem. Let E and F be LF-spaces and let A: E--+F be a continuous 
linear operator such that  Im A is topologically closed in F.  Is it true that  then, for 
each weakly open UC_E, A(U) is open in Im A with respect to the topology induced 
from F. 

1.8. Problem. Let F be an LF-space, (Fj)j~=I a defining sequence of Fr6chet 
spaces for F,  and H a linear subspace of F such that  HnFj is topologically closed 
for all j .  Is it true that  then H is topologically closed? 

An affirmative answer to Problem 1.7 would imply that  Serre's proof proves 
also Conjecture 1.5 for any admissible family of supports. An affirmative answer 
to Problem 1.8 would imply a simple proof of Conjecture 1.6 for all admissible 
families of supports. Note that  Problem 1.8 was stated already 50 years ago by 
Dieudonn6 and Schwartz [DS, p. 97], but it seems to be still open. For the special 
case F=:DP'q(x, E) a n d  H=~DP'q-I(x,  E) the answer is affirmative (see [LL1]). 

(3) Actua l ly  (1.6) is even a topological  i somorph i sm if t h e  r i gh t -hand  side is given t he  factor  

topology defined by the  s t rong  topology of (6')P'q(x, E), and  t he  s a m e  is t rue  if we use  on bo th  

sides t he  weak topologies [L]. Bu t  we do not  use  th is  here. 



A separat ion theorem and Serre duality for the Dolbeault  cohomology 307 

We are very grateful to F. Haslinger for the interesting and helpful discussions 
of these two problems. In particular, we learned from him that  Problem 1.8 was 
posed already in [DS]. Moreover, also for such useful discussions, we want to thank 
Se~n Dineen as well as the participants of the section lead by him during the two 
complex analysis conferences held in August 1999 in Fukuoka. 

2. Serre dual i ty  for admiss ible  families of  supports  

In this section, X is an n-dimensional complex manifold, E-+X a holomorphic 
vector bundle and ~ an admissible family of supports in X (see Definition 1.4) 
which is neither the family of all closed, nor the family of all compact sets.(4) Since 
we are unable to prove (or disprove) Conjectures 1.5 and 1.6, in the present section, 
we establish some other results (sufficient for the proof of Theorem 1.3) which we 
now describe. 

2.1. Definition. (i) We denote by (I) ~ the family of all open sets of the form 
U={zi~(z)<t} where ~ is a defining function for (I) and inf ~<t<supQ.  For U 6 ~  ~ 
we denote by (I)]u the family of all CE(I) with CC_U. 

Note that  then (I)lu is an admissible family of supports in U- - i f  Q is a defining 
function for (I) with U={ziQ(z)<t } for some t<sup~), then (I)]v is defined by Qiu- 
Observe also that,  for any U*6 ((I)*) ~ we then have the relation 

(2.1) {cnu* ICer 

(ii) Let O<p<n and l<q<n. We say that  H~'q(X,E) is ~-Hausdorff if, 
for each C E ~ ,  the space 7~dq(X,E)AOTP~'q-I(X,E) is topologically closed in 
I)~q(X, E) (with respect to the Fr4chet topology induced by sP'q(x, E)). We say 
that  H~'q(x,  E)  is ~-Hausdorff if it is a-Hausdorff and moreover, for each C* 6(I)*, 
there exists U*C(r ~ with U*DC* such that  f4p,q (fr* E)  is a-Hausdorff. 

_ ~*~nU* ~. v 

The result which we want to prove in this section, now can be stated as follows. 

2.2. T h e o r e m .  Let O<_p<n and l <q<n. If HP'q(X,E) is 13-Hausdorff then 
H~-~P'n-q+ I ( X, E* ) is Hausdorff. 

2.3. Remarks. (A) The special case when (P is the family of all compact sets 
fits into Theorem 2.2 as follows: Denote by (I)~ the family of all relatively compact 
open subsets of X, and set (~*)~  Then it is trivial that  a-Hausdorffness 

(4) For these two special cases, where the results are stronger, we refer to ILL1] (cf. also (A) 
in the Remarks 2.3 below). 
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and/3-Hausdorffness coincide. Moreover, in [LL1] it was proved that  then also a- 
Hausdorffness and Hausdorffness coincide. Hence, for this special case, Theorem 2.2 
follows from [LL1]. 

(B) Hausdorffness of HP'q(x, E) always yields a-Hausdorffness of H~'a(x, E) 
for any admissible family of supports (I). This is clear, because D~q(X, E) is topo- 
logically closed in D~'q(X,E) for all CE~). We do not know however whether, in 
general, a-Hausdorffness of H~'q(X, E) yields Hausdorffness of H~'q(x, E), i.e. we 
cannot solve Problem 1.8 for the special case F=I)~ 'q (X, E) and g-- /)D~'q-1 (X, E).  

(C) We do not know examples when H~'q(X, E) is a-Hausdorff but  not /3- 
Hausdorff, because in all our examples the reason for a-Hausdorffness is the fact 
that ,  at the ends of the manifold, certain convexity or concavity conditions are 
satisfied, and these conditions in all our examples immediately imply also/3-Haus- 
dorffness. 

For the proof of Theorem 2.2 we need some preparations. Let (73')~'q(x, E) 
denote the dual of D~.P'n-q(x, E*), i.e. the space of E-valued (p, q)-currents on X 
which extend continuously to 7?~:P'~-q(x, E*). The following lemma shows that  
(as indicated by the notation) (I)')P'q(x, E) is the space of E-valued (p, q)-currents 
on X with support in ~. 

2.4. L e m m a .  Let T be an E-valued (p,q)-current on X, O<p,q<n. Then 
Te(Dt)~'q(x, E) if and only if suppTe(I) .  

Proof. By definition, T is a continuous linear functional on Dn-P'n-q(x, E*). 
First assume that  supp T E (I). Take a real C~-funct ion X on X with supp X E 

and X -  1 in a neighborhood of supp T. Then 

(2.2) (T,~) = (T,x~) for all ~eD'~-P'n-q(X,E*). 

Moreover, for each ~vED~,:-P'n-q(x, E*), the form X~ has compact support.  There- 
fore the multiplication by X defines a continuous map 

Mx::D~,TP'n-q(X,E *) , D"-v'n-q(X,E * ) 

such that ,  by (2.2), T=TM x o n  7z)n-p'n-q(x, E*). Hence TM x extends T continu- 
ously to gcTP'n-q(x, E*). 

Now we assume that  s u p p T r  Then there is a set C*EtI)* such that  C*M 
s u p p T  is not compact and, therefore, we can find a s e q u e n c e  (~Oj)j~=l of forms 
in 7)~-P'n-q(x, E*) with supp~ojCC*MsuppT for all j, (T,~oj)=I for all j ,  and 

k cr supp~ojMsupp~k=O i f j#k .  Set Ck=~ol+...+~ok. Then the sequence ( r  con- 
verges in D~: p''~-q (X, E*) whereas limk_. ~ (T, Ck) = limk-+oo k = cr Hence T is not 
continuous with respect to the topology of D~:v'n-q(X, E*). [] 
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2.5. Lemma.  For cUp and q with O<_p<n and l <q<_n, we have 

OD~'q-I(X'E) = { ~~ f x  cpAr 

for ~2 E T)~-JP'"-q ( x ,  E*)MKer 6 [ ,  
) 

where OD p'q-1 (X, E) is the topological closure of ~)~,q--1 (X, E) in ~)~'q(x, E). 

Proof. The "C"-part follows from Stokes' formula. To prove the "_~"-part, we 
consider a form ~oET~X~'q(x, E)nKer  0 which does not belong to 0D~'q-I(X, E). We 
have to find n-p,n-q CEDe. (X, E*) MKer 0 with 

(2.3) I x  ~Ar  # O. 

By the Hahn-Banaeh theorem there is a current TE (7)')~TP"~-q(X, E*) with 

(2.4) (T, ~) r 0, 

but (T, 0 r  for all CEiDP'q-I(X, E), i.e./~T=0. If q=n, then, by the regularity 
of 0 the equation ~ / '=0  implies that T is defined by a smooth form r By (2.4) 
this r satisfies (2.3). 

Now let q<n-1 .  Since suppTEO*, we can then find a neighborhood U* of 
suppT with U*E((I)*) ~ and, by regularity of 0, there exist a smooth form ~ and 
a current S with support in U* such that T=~b+OS. Since 0~o=0 and therefore 
(OS, ~)=0, (2.3) again follows from (2.4). [] 

2.6. Lemma.  Let O<p<n, l <q<_n, CE~  and 

c := :D q (x, (X, E). 

Then the following are true: 
(i) If  G is topologically closed in 7)~q ( x ,  E), then there exists a set CoE(I ) with 

G=D~q(X, E)NO:D~qo-~(X, E). 
(ii) If there exists a finite dimensional subspace F of ~)~q(x, E) such that 

F + G  is topologically closed in T)~q(x, E), then G itself is topologically closed 
in 7P~ q (X, E). 

In particular, if G is of finite codimension in D~q(X,E)MKerc ~, then G is 
topologically closed in :D~q( x ,  E). 
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Proof. Take a sequence (Cj)?= 1 of sets in �9 such that  each set in 4) is con- 

tained in some Cj. Denote by Dj the subspace of all ~E/P~q-I(X,  E) with c5~--0 

T)P'q-ltX E) and hence a outside C. Note that  each Dj is topologically closed in cj ~ , 
Fr6chet space. Clearly 

O C  

(2.5) G = U 5Dj. 
j = l  

To prove (i), we now assume that  G is topologically closed in lP~q(x, E). Then 
it follows from (2.5) that,  for certain j0 EN, vqDjo is of second Baire category in G. 
Since ODjo is the image of a continuous linear operator between Fr6chet spaces, by 
the open mapping theorem, this means that  cqDjo =G.  It remains to set Co=Cjo. 

Now let F be as in (ii). Without loss of generality, we may assume that  
moreover 

(2.6) FnG = {0}. 

Using again the Baire category argument and the open mapping theorem, then it 
follows from (2.5) that,  for certain joEN,  F+G=F+ODjo. By (2.6) this means 
that  G=ODjo. Therefore G is the finite codimensional image of a continuous linear 
operator between Fr6chet spaces and hence itself a Fr6chet space. [] 

2.7. Definition. Let O<p<n and l<q<n. An ordered pair (U, U0) of open sets 
U, UoE4) ~ will be called an (~'q(x, E)-pair if there exist sets C, CoE4) such that  
is contained in the interior of C, CCCoC_Uo and 

~)~q ( X, E) NgID~'q- I ( X, E) = l)~ q ( X, E)A~D~q-I(X, E). 

From Lemma 2.6 we immediately obtain the following important corollary. 

2.8. Coro l l a ry .  Let O<_p<_n and l <_q<n be such that H~'q(x, E) is a-Haus- 
dorff. Then for each UE(I) ~ there exists UoE4) ~ such that (U, Uo) is an aP'q(X,E)- 
pair. 

2.9. L e m m a .  Let O<_p<n and l<_q<n be such that H~'q(X,E) is a-Haus- 
dorff. Then, for each pair U, Uo E 4) with 0 C_ Uo, we have the relation 

{ P'q E)NKer v6 /go C A ~ = 0  I)P'q(X,E)MOT)~'q-I(X,E) ~_ ~E~) 0 (X, 
(2.7) 

for ~b E l)~.-Pnb~o-q(Uo, E*)MKer ( ~ .  
) 
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Proof. Consider a form ~E:DP~q(X, E)MKer 0 such that 

(2.8)  ~ ~ ~)P 'q - - l  ( x ,  E). 

We have to find a form n-p,n-q . - r o (Uo, E )AKerO with 

(2.9) /Uo r  ~ 0. 

Since H~ 'q (X, E) is ~-nausdorff and U0 E (I), :D~o q (X, E) NvqT~ 'q-1 (X, E) is topolog- 
ically closed in :D~q(X, E). Therefore, by (2.8) and the Hahn-Banach theorem, we 
can find a continuous linear form T: :D~q(X, E)--+C such that 

(2.10) (T, ~> # 0 

and 

(2.11) (T, 0w) =0  for all wE:DP'q-I(X,E) with (~wE:D~oq(X,E). 

P'q E), it follows (in the same way as in the proof of Since T is continuous on :DOo (X, 
- P'q E ) .  Lemma 2.4) that there is a compact set KC_Uo such that T:-0 on :DOo\K(X, 

Denote by T the E*-valued (n-p ,  n-q)-current on U0 defined by T. Then 

(2.12) supp :F C_ KMUo 

and, by (2.11), 

(2.1.3) ~ = 0 .  

If q=n, then, by the regularity of 0, the current :F is defined by a smooth form 
eCKnu o [ o, j which satisfies (2.9), by (2.10). 

Now let q<_n-1. Then we take a set C*E~* which contains K in its interior. 
Then, by (2.12), (2.13) and the regularity of vq, we can find a smooth form r 
:) n-p'n-q~'~ E*)MKer0 and an E*-valued (n-p ,n-q-1) -curren t  S on Uo with C*nUo [uO, 

supp SCC* MU0 such that 

(2.14) (T, , )  = (OS, V) +/go CAr 

for all ~E:DP,q(U0, E). Since UMsupp SC_UMC* is compact, S extends continuously 
~ , q - t -  1 [ to e (U0, E). Hence cqS extends continuously to T~q(Uo, E). Since the same 

is true for T and the current defined by r (2.14) holds for all yE:D~q(Uo, E)= 
P,q :D e (X, E) and hence, in particular, for ~=~. Since 0~---0 now (2.9) again follows 

from (2.10). [] 

2.10. Remark. It is easy to see that we even have equality in (2.7) if Uo is so 
large that (U, Uo) is an (~'q(X, E)-pair (but we do not need this). 
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2.11. L e m m a .  Let O<p<_n and l<q<_n be such that H~'q(X,E) is a-Haus- 
dorff and let (U, U0) be an a~'q ( x ,  E )-pair. Then, for any Uoo E(I )~ with Uoo D_ Uo, the 
space n - - p . n - - q  . - n - - p  n - - q  . - D~.nuoo (Uoo, E )MKer0 is dense in Do.n~)o (Uo,E )MKer0 with respect 
to the topology n-p,n-q . of Dr (U,E ). 

Proof. Let T- ~ - P , n -  q r T r E*) ~ C be a continuous linear functional such that  

(2.15) T( r  = 0 for all ~ E I)~.~'Uoq(Uoo, E*)MKer 0. 

By the Hahn-Banach theorem, then we have to prove that 

(2.16) T(~blu ) = 0  for all r E l)~.~b~o-q(Uo, E*)AKer0.  

By Lemma 2.4, T is an E-valued (p, q)-current on U with suppTEOlu=(O*MU)*. 
Take a set C E r  such that suppT  is contained in the interior of C. Since (2.15) 
in particular means that tY/'=0, then we can find a smooth form ~vED~q(u, E)M 
Ker 6 =  :D~ q (X, E) M Ker v6 and an E-valued (p, q -  1)-current S on X with supp S C_ C 
such that 

(2.17) 

for all ~ED~-P,n-q(U, E*). 

(T, n) = (S, 6n> 

By Lemma 2.4, the current S extends continuously to 
Dn-p'n-q+I(U,E*). Since, moreover, 6, T and the current defined by ~o are con- (I)* AU 

~n-P'n-qr ~*), it follows that (2.17) holds for all T/EDr (U,E*). t i n u o u s  o n  ~(P*nU I,v, 

Together with (2.15) this implies that  

(2.18) [ C A ~ =  [ C A ~ = 0  for all n-p,n-q . - r (Uoo, E )MKer0. 
JUo o J U  

Since U00 E(I), it follows from Lemma 2.9 that ~E:D~q(x,  E)N6T~'q-I (x ,  E). Since 
(U, U0) is an a~,'q(x, E)-pair, this implies that ~ is o f  the form ~v=6w with wE 
D p'q-lr v E). n-v n-q ~lvo v~'  Now let r  ~ (Uo, E*)MKer 6. Then (2.17) holds in particular 

also for ~/=r and hence 

T(r f cA = /Uo  /'A6w= + fuo 6r176 

i.e. (2.16) holds. [] 
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2.12. L e m m a .  Let O<p<_n and l<_q<n be such that H~'q(X,E) is j3-Haus- 
dorff. Then, for each ~bE79~.P'n-q+l(X,E*)NKerO satisfying the orthogonality 
condition 

(2.19) / x  ~bA~=0 for all qaEI)~'q-l(X,E)DKerO, 

there exists U*Eq?* such that, for any UE~ ~ there exists wuE790.nUn-P'n-q(U,E*) 
with ~btu=O~ U. 

Proof. Let ~b be as in the lemma. Take W*E((I)*) ~ with supp~bCW*. Then 
W::X \W*ECb  and, by Corollary 2.8, we can find V E ~  such that  (W,V) is an 
o~P~'q(x, E)-pair.  Denote by D V the space of all qoEI)~q-l(X, E) with supp 0q0C_W. 

Then (9: P'q - v q-1 DV-+I)  w (X, E)N0737~' (X, E)  is a continuous linear surjection between 
Fr6chet spaces and therefore open. Set(5) 

(~V:={~pEDv max [[cp(z)[[ < 1}. 
z~VnW* 

P,q E)NgT~,q-I ( X,  E). Then E)?cD V is open and, hence, (90 V is open in / ) ~  (X, 
Therefore we can find a compact set K_C W with 

(2.20) T ~ (  X, E ) N OD~;q- I ( x ,  E) C_ gO V . 

Since H~'q(x, E) is 3-Hansdorff, we now can find U* E ((I)*) ~ such that  W*UKC_U* 
and t4p,q (rr* E) is a-Hansdorff. To prove that  U* has the desired property, we ::(I)NU* ~,tJ , 

consider UE(I) ~ Since both H~'q(X,E) and t4v,q /rr* E)  are a-Hausdorff, then, ** q)qU* t. V , 

by Corollary 2.8, we can find UoE(I) ~ so large that  both (U, Uo) is an a~'q(x, E)- 
*-~P'q /'/T* E)-pair.  Moreover we may assume that  pair and (UNU*, UoNU*) is an ~ n u *  t v , 

VC_Uo. 
Denote by DOonU. the space of all t / . )~/JOoOU . - r * ' r ~ p ' q - 1  ( U * ,  E) with s u p p c q ~ c U n u * .  

Then (9: D0onU. --}~.P-Jq_ ( U * ,  - p,q--1 . u n u *  E)NOT)r (U , E) is a continuous linear surjection 
between Fr~chet spaces and therefore open. Set 

T h e n -  * ,q , -- q--1 . Oe U is open in 7~AU. (U , E ) n 0 / ) ~ u .  (Y , E)  and, therefore, we can find a 
79 p'q (lf* E) such that  continuous seminorm A on --~nu* , v  , 

(2.21) 7)~ v-'q * - 'q - '  * 1} C_gOOonU.. {~E  Vnu*(U ,E)noqT~nu . (U ,E)  IA(~ ) < 

(5) Here  II " II deno t e s  an  a r b i t r a r y  n o r m  on  t h e  f ibers  of  t h e  b u n d l e  of  E -va lued  fo rms  which  

d e p e n d s  con t inuous ly  of  t h e  base  point .  
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Now we consider the set 

and prove that then 

m a x  II~(z)ll <2} 
z E O o n W *  

(2.22) {~EV~q(X,E)nhv~,q-l(X,E)i~lv. ehOOonv.}C_5~. 

In fact, let (pED~'q(X,E)AOD~,'q-I(X,E) and ~lv.=CqT* for some "~*EOO0nu.. 
Take a C~176 x:X--+[0, 1] such that X-=0 in a neighborhood of X\U* and 
X-~I in a neighborhood of W*UK. Then, after extension by zero, X~/* is defined 
on X and 

~--5( X~* ) E T)P~---~( X, E)NO~r 'q-1 (X, E). 

Hence, by (2.20), ~o-(3(X~/*) =0~/V for some "/VEOV. Set "/=X"/* +'TV. Then ~--0"), 
and 7E~. 

Since cq is surjective as an operator between DP~:-I(X,E) and D~jq(X,E)M 
Ol)~,'q-l(X, E), then there exists a uniquely defined linear map 

with 

P,q T:D v (X,E)NOD~,'q-I(X,E) ~C 

(2.23) (T, v6"),) = f x  CA'~ for al l  "~E"I')P-'q-I(~'--Uo , - - ,  E). 

Since the embedding "'q , O n u *  ~ ' D O (X, E~-+D p'q tH* E) is continuous, A defines a contin- 
P,q uous seminorm Ax on 7) 0 (X, E). By (2.21) and (2.22), 

(2.24) {(pET~o'q(X,E)N~D~,'q-I(X,E)[Ax(~o) < 1} _C0~. 

Since, for all "yE~, supp(r and UoNW* is compact, we have the 
estimate 

A : = s u p / x  ~bAV < co. 

By (2.24) and (2.23), this implies that 

P,q IT(~)I <AAx(~) for all ~EZ) e (X,E)NgD~'q-I(X,E). 
Therefore, by the Hahn-Banach theorem, T admits a continuous linear extension 
T' to D~'q(x, E) with 

(2.25) IT'(~)I < AAx(~) for all ~ E l~q(z ,  E). 
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Denote  by T "  the current  on U defined by T ' .  As A is continuous on/)~]'qu* (U*, E) ,  
there is a compact  set K*�9 such tha t  A x ( ~ ) = 0  for all ~EI~P~q(x, E) with K * n  

s u p p ~ = 0 .  Therefore it follows from (2.25) tha t  suppT"C_K*AU. Since U*MU 
is a ne ighborhood of K*MU, therefore, by the regulari ty of  cq, we can find wvC 
:D~--P'n-q(ff P,*i such tha t  T"-wu=OS for some current  S on U with s u p p S C  u*Au ~v,_ / 
U*NU. Since, by (2.23), r then r . [] 

Proof of Theorem 2.2. Consider CElP~:P'n-q+l (X, E* )nKer O satisfying the 

or thogonal i ty  condit ion 

x ~ A ~ = O  for all (pE:D~,'q-I(X,E)NKerO. 

By L e m m a  2.,5 we have to prove tha t  then there exists wE:D~,:P'n-q(x, E*) with 

r 
By L e m m a  2.12, we can find U*EO* with supp~_CU* as well as sequences 
oo ' ~ q r ) n - - p ' n - - q { [ T  E *~ such tha t  (Uj)j= 1 and (wj)~= 1 of sets Uje~, ~ and of forms ~J~-~5*nvj  ~ J '  J 

OjCUy+l, Uj~=I u j = x  and ~[v~=Owj. Moreover we can find U**E((I)*) ~ with 

U*CU** such tha t  ~tp,q ~H** E)  is a-Hausdorff .  We may  assume that ,  for each 
- -  ~ ~ C 1 U * *  ~ , ~  

P'q (ff** E)-pair .  In view of the approxima-  j c N ,  (UjNU**,Uj+IMU**) is an C%nv**~- , 
t ion L e m m a  2.11 (applied to the manifold U** and the family of suppor ts  q)MU**), 

now we can modify the sequence (wy)j~__l in such a way tha t  (after the modifica- 
CO oc q. .~n--p,n--q ( [ T * * N U "  tion), for each j E N ,  the sequence ( k ) k =  j converges in " 5 - n u * * n u j  t "  ~, E * ) =  

-- , -- ~ n - - p , n - - q . - .  Z)u. Pn~ j q(Uj,E*) to  some ~jEl)Cr.nu~ (uj,E*). Then  wj--wj+l on Uj and the 

required form co can be defined by set t ing a~lu ~ :=~j. This completes  the proof  of 
Theorem 2.2. 

3. P r o o f  o f  T h e o r e m  1.3 

In this section, X is an n-dimensional  complex manifold which is q-concave- 

q*-convex in the sense of  Definition 1.1, where l_<q, q* <n. (6)  Moreover we assume 

tha t  ~, So and to have the same meaning  as in Definition 1.1, where we addit ionally 

assume tha t  all critical points  of  0 are nondegenerate.(7) Fur thermore  we assume 
tha t  (I) is the admissible family of suppor ts  defined by Q (cf. Definition 1.4), (I)* is 

the dual family of  (I), E is a holomorphic  vector bundle  over X,  and p is an integer 
with l <p<n. 

(6) For the proof of Theorem 1.3 one always may assume that q*----n-q and q< �89 
(7) This can always be achieved by small perturbations, as it follows, for example, from 

Proposition 0.5 in Appendix B of [HL]. 
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3.1. L e m m a .  If max(q+l,q*)<_r<_n, then dim H~'T(X,E)<oo. In particu- 
lar 

1 dimHP2-q(X,E) < oo if q* = n - q  and q< ~n. 

Proof. Let some integer r with max(q+l,q*)<r<n he given. Let C~'I.(X,E), 
l = r -  1, r, denote the space of E-valued continuous (p, /)-forms f on X with supp f E  
�9 * and set 

p r  
p,r _ Co'. (X, E )NKer  c9 

H~, o. (X, E)  - p," 
C o. (X, E)N(~CP'. r -1 (X, E)" 

Since the natural  map  HP'r(X, ~'~ E)-+H~,o. (X, E) is an isomorphism (cf. e.g. Corol- 

lary 2.15 in [HL]), we have to prove that  

(3.1) " P ~ d,m H~',o. (X, E)  < c~. 

p, l  For s and t with i n f Q < s < s 0  and t 0 < t < s u p &  we denote by Bs, t, l = r - l , r ,  
the space of all E-valued continuous (p, /)-forms on {zlinf Q< Q(z) _<t} vanishing on 
{z l inf Q< ~(z)<s} .  The spaces Bff:[ will be considered as Banach spaces endowed 
with the topology of uniform convergence on {zls<_ p(z) <_t}. Define the (algebraic) 
factor spaces 

and 

p T  
H pf = B~ ;  t nKerv6 

I~P,r t~ ~ P ,  r -  1 
for inf Q < s < So and to < t < sup O 

p~r 

(Uinf ~<s<so B s , t  ) NKer 0 for to < t < sup 0. p~r 

Hinf ~'t---- (Uinf ~)<s<so p , r  - p , r - 1  B~,t ) n 0 ( U i , f  Q<,<so B,,, ) 

To complete the proof of the lemma, it now is sufficient to prove the following three 

inequalities (which then yield (3.1)): 

(3.2) dim HPnf~,t << dim HP'[, if inf ~ < s < So and to < t < sup p; 

(3.3) �9 v r dim Hs~ t (X, E)  < oo, if inf p < s < So and to < t < sup p; 

(3.4) " P'" d,m H~,o. (X, E)  < dim H~f~,t, if to < t < sup p. 

Proof of (3.2). Since r>_q+l and the Levi form of Q has at least n - q + l  
positive eigenvalues on {zIinf O<~(z)<so}, it follows from Lemma 1.2(i) in ILL3] 
that ,  for all s and t with i n f Q < s < s 0  and to<t<supo, the natural  map 

H P f  - - 4  HiPnfe# 

is surjective. 
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Proof of (3.3). For this we prove the s t ronger  s ta tement ,  

(3.5) 
?~p,r c~/~p,r-- 1 for all s and t with inf p < s < so and to < t < sup ~, the space ~s,t fq-~s,t  

p r  is topologically closed and of  finite codimension in Bs: t n K e r  0. 

p,l 
Let s and t with inf Q < s < s 0  and t 0 < t < s u p  Q be given, and let 7is,t, l = r - 1 ,  r, be 

the subspace of  all forms in B~P,'~ which are Hblder continuous with exponent  1. We 

consider 7-/~i ~ as Banach spaces endowed with the Hblder norm with exponent  �89 

To prove (3.5), by Ascoli 's  theorem and Fredholm theory, it now is sufficient to 

construct continuous linear operators  

A: BP:/NKer 8 - - -~  ~p , r -1  I I.S~ t 

K:  BP;t n K e r  v6 ~ 7-/sP:t 

such tha t  

=y+Kf for all yCB :tnKerb. 

To do this, we take ~ > 0  so small tha t  s + c < s 0  and  s - -E> in fQ .  Since r>q+l  and 

the Levi form of Q has at  least n - q + l  positive eigenva|ues on {z[inf  Q<g(z)_<s0}, 

then we obtain  from L e m m a  1.2(i) in [LL3] a continuous linear opera tor  

p r - -  q . i p , r - - 1  A0: B~:t NKer (9 >, ~s-~,t 

] o r  such tha t  OAof=f  on {zlp(z)_<s+c } for all fEl3s: t n K e r 0 .  Moreover, since r>q* 
and the Levi form of  p has at least n - q * +  1 positive eigenvalues on {z It0 < •(z)< 

sup p}, we can apply the local integral operators  of Fischer and Lieb to the bounda ry  
{zIQ(z)=t } (see [EL], see also Sections 7 and 9 in [HL](S)). In this way we obtain  

open sets U1, ..., UN ~ X  with 

{z I s+r < Q(z) _< t} C U1U...UUN C {z Is < Q(z) < sup Q} 

as well as cont inuous linear opera tors  

q.jp,r--1 Aj:B~[nKerO ~ '~-~,t 

(8) To apply the formulas from [FL] we should assume that the surface (zle(z)=t } is smooth, 
which, of course, we could do for the purpose of this proof. On the other hand, the formulas 
from [HL] work also in the case when the surface {zle(z)=t } is not smooth, but all critical points 
of co are nondegenerate, which we may a s s u m ~ f ,  the beginning of the present section. 
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such that  OAjf=f on {zEUjlo(z)<_t } for all fEB~:[nKerO, j=I,. . . ,N. Take 
real C~-funct ions ;g0,---,XN on X with suppXo~{z[o(z)<s+e}, s u p p x j ~ U j  if 
I<j<N, and X0+.. .+XN-~I on {zls-e<_O(z)<t}. Then the operators 

N N 

A::  ~_,xjA j and K: :~- -~ogxjAAj  
j=0 j=0 

have the required property. 

Proof of (3.4). Let t with t 0 < t < s u p  0 be given. It is sufficient to prove that  
the restriction map 

p~r p,r 
H~,,I,. (X, E) ) Hinf o,t 

is injective. To do this, we consider fECg'~.(X,E)NKerO which defines the zero 
, ~ r l  ! ]3P, r - 1  class in HPnfo,t, i.e. fl{zlinfo<o(z)<_t}=Ou for some u=Uinfo<s<so s,t . Take SuE 

]info, so[ such that  - p,2p,r-1 Since r>q* and the Levi form of 0 has at least 
n-q*+ 1 positive eigenvalues on {z [to <_ O(z)<sup 0} and since, by (3.5), the spaces 
Bp,r n~r~p,r-1 t_<T<SUp 0, are topologically closed in BP:~, we can use Grauert 's  8u~T I I ~ s ~ t  
bumping method, in the same way as in the proof of Theorem 12.13(ii) in [HL],(9) 
to obtain an E-valued continuous (p, r -  1) form v on all of X solving the equation 
f=Ov on X, which, moreover, vanishes on {zlinfo<o(z)<_su} and hence belongs 

p,r c 'P '~-I(X,E),  i.e. f defines the zero class in H~,,.(X,E). [] to ~,I,* 

3.2. L e m m a .  If l <r<min(n-q, n-q* +1),  then H~-P'r (x, E*) is HausdorJ]. 
In particular, if q*=n-q and q<ln, then H~-P'q+I(X,E*) is Hausdorff. 

Proof. If l <r<min(n-q, n-q* + t ), then max(q+ l, q* ) <n-r  + l <_n. Hence, 
by Lemma 3.1, dimH~'~-~+l(X,E)<c~. By Lemma 2.6(ii) this implies that  
HP:n-r+I(X,E) is a-Hausdorff. Moreover it is clear that  the same is true if, for 
sufficiently small e > 0, we replace X by Xe : = { z I inf 0 < 0(z) < sup 0 -  e } and {I}* by 
~*NX~, i.e. H~'~-~+I(X,E) is even r Therefore, it now follows from 
Theorem 2.2 that  H~-P'~(X,E*) is Hausdorff. [-1 

Proof of Theorem 1.3. Since the space HP'~-q(x, E) is Hausdorff if and only 
if H~-P,q+I(X, E*) is Hausdorff (see e.g. ILl or ILL1]), it is sufficient to prove that  
H2-P'q+I(X,E*) is Hausdorff. Moreover, since, by Theorem 2.7 in ILL1], for the 
family of compact sets, Hausdorffness and a-Hausdorffness is the same, we only 
have to prove that,  for each compact set K~X,  the space T~c:=Z}nK-P'q+I(X, E*)N 
O ~ n - P ' q  ( x ,  E*  ) is topologically closed in  I )  K-P'q-k l ( X ,  E *  ). 

(9) The domain D in Theorem 12.13 of [HL] is assumed to be relatively compact, but  
in the proof only the  consequence is used tha t  then (with the notat ion of [HL]) Z ~  
0C0~ E) is topologically closed in Z~ E). 



A separation theorem and Serre duality for the Dolbeault cohomology 319 

Let a compact set K ~ X  be given. By Lemma 3.2, H~-P'q+I(X, E*) is Haus- 
dorff. In particular, the space T~:=D~-P'q+I(x, E*)N~D~-~'q(x, E*) is topolog- 
ically closed in D~-P'q+I(X,E*). Therefore, by Lemma 2.6(ii), it is sufficient to 
prove that  

dim ~ < oo. 

Take sl and s2 with inf ~< sl < s2 < So so small that  K C_ (z Is2 < ~(z) < sup Q} and set 
D={zlsl_<O(z)_<s2}. Then it is clear that  

dim ~ < dim Hn-P'q(D, E*). 

Now we look at the boundary of D, which consists of the two parts 01D={z I 
~)(z)=sl} and 02D={zlQ(z)=s2}. Since the Levi form of Q has at least n - q + l  
positive eigenvalues on/~ ,  01D is q-concave and 02D is q-convex. Since q< �89 and 
hence q<n-q ,  by Andreotti-Grauert  theory IAG] (see also Section 22 in [HL]) this 
implies that  dim Hn-P'q(D, E*)<oc,  which completes the proof of Theorem 1.3. 

4. E x t e n s i o n  o f  C / l - f o r m s  

Let X be an n-dimensional complex manifold, E a holomorphic vector bundle 
over X, and let p and q be integers with O<_p<_n and l<_q<n-1. Yhrthermore let 
D ~ X  be a domain whose boundary OD is C ~176 and compact, and let f be an E- 
valued C ~ smooth CR-form of bidegree (p, q) on aD. Consider the two conditions 

(i) there exists a O-closed C~,q-form F o n / 9  with FIo D--f; 
(ii) rOD f a t = 0  for any E*-valued o6-closed C~_p,n_q_vform r in a neighbor- 

hood o f / ~  such that  supp r  is compact. 
Then the following theorem is known. 

4.1. T h e o r e m .  I f  D is relatively compact and (n-q)-convex in the sense of 
Andreotti-Grauert, then the conditions (i) and (ii) are equivalent. 

Why this theorem is known (although nowhere explicitly stated), we explain in 
Remark 4.3 below. Under the stronger hypothesis that  D is even strictly ( n - q - 1 ) -  
convex (and hence q<n-2) ,  it was proved in 1965 by Kohn and Rossi [KR]. 

If 1 < q <  �89 from Theorem 1.3 one obtains the following generalization to the 
case when D has some "q-convex holes". 

4.2. T h e o r e m .  Suppose X is q-concave-(n-q)-convex in the sense of Def- 
inition 1.1. Let ~ and to have the same meaning as in Definition 1.1, and let 
D= { z l inf Q( z ) < Q < t } , where t is some number with t 0< t<supQ and dQ( z ) ~ O if 
~(z)=t. If  now l < q <  1 

_ ~n, then the conditions (i) and (ii) are equivalent. 
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Proof. That  (i) implies (ii) follows from Stokes' formula. Assume that  (ii) is 
satisfied. Since f is CR, there is a C~,q form ] on X such that  ][OD----f and cO-] 
vanishes to infinite order on cOD. Since cOD is compact, we may moreover assume 
that  ] has compact support. Setting ~__-v6] in D and ~- -0  on X \ D  we obtain a 
form ~EI)P'q+I(x, E)MKer ~. Moreover, by Stokes' formula and condition (ii), 

/X~Ar /Dh]AC=+ fODf ̂r for all CE:D~.P'n-q-lNKerg. 

By Lemma 2.5 this means that  r E). Moreover, Hn-P'n-q(X,E *) is 
Hausdorff by Theorem 1.3. By Serre's theorem [S], this implies that  HP'q+I(X, E) 
is Hausdorff, i.e. $DP,q(X, E)=ODP,q(X, E). Hence ~ = 0 w  for some wEDP'q(X, E). 

Since WlZ\D is (~-closed and has compact support and q > l ,  it follows from 

Theorem 3.1 in ILL2] that  wixk~=O~?lx\ ~ for some T]e~)P'q-I(X, E). Set ~ = w -  

6~. Then ~ - 0  outside D and vq]=r on D. Hence F : = ] - ~  is the required 
extension of f .  [] 

4.3. Remark. The proof of Theorem 4.2 becomes a proof of Theorem 4.1 if we 
replace X by an (n-q) -convex neighborhood o f / 9  and if we use, instead of Theo- 
rem 1.3, the fact from classical Andreot t i -Grauer t  theory that  Hn-P'n-q(X, E*) is 
then finite-dimensional and hence Hausdorff. 

Note also that  if we already know that  f extends as a t~-closed form to some 
neighborhood of cOD, Theorem 4.1 can be proved without Theorem 3.1 of ILL2], 
using only the other arguments of the proof given above (see Theorem 20.13 in [HL]). 
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