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A separation theorem and Serre
duality for the Dolbeault cohomology

Christine Laurent-Thiébaut and Jiirgen Leiterer

Abstract. Let X be a complex manifold with finitely many ends such that each end is either
g-concave or (n—gq)-convex. If g< %n, then we prove that HP"~9(X) is Hausdorff for all p. This is
not true in general if g> %n (Rossi’s example with n=2 and g=1). If all ends are g-concave, then
this is the classical Andreotti—Vesentini separation theorem (and holds also for ¢> %n) Moreover
the result was already known in the case when the g-concave ends can be ‘filled in’ (again also
for ¢> %n) To prove the result we first have to study Serre duality for the case of more general
families of supports (instead of the family of all closed sets and the family of all compact sets)
which is the main part of the paper. At the end we give an application to the extensibility of
CR-forms of bidegree (p, g) from (n—g)-convex boundaries, g< %n.

1. Introduction

Let X be an n-dimensional complex manifold, £— X a holomorphic vector
bundle and E* the dual of E.

We use the following standard notation. The space £79(X, E) is the Fréchet
space of E-valued C®-forms of bidegree (p,q) on X given the topology of uniform
convergence of the forms and all their derivatives on compact sets. For each closed
CCX, DEY(X, E) denotes the space of all feEP4(X, E) with supp fCC, consid-
ered also as a Fréchet space, with the topology induced from £7%(X, E). Finally,
DP4(X, E) is the space of forms with compact support from £79(X, E), given the
finest local convex topology such that, for each compact K€X, the embedding
DYY(X, E)—DP4(X, E) is continuous. The cohomology groups

EP9(X, E)nKer § DPI(X, E)NKer 3
dEP9-1(X  E) opra-1(X,E)

will be considered as topological vector spaces with the corresponding factor topolo-
gies.

HP(X,E) = and HPI(X,E)=
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If X is g-concave in the sense of Andreotti-Grauert and 1<g<n-—1, then
HP" (X, E) is Hausdorff (for all p), by the Andreotti-Vesentini separation theo-
rem [AV]. In the present paper we consider the situation, first studied by Ramis [Ral,
when X is g-concave only at some of its ends, and g*-convex at the other ends—for
certain appropriate ¢*. More precisely, we assume that X is g-concave-¢*-convex in
the following sense.

1.1. Definition. The manifold X is called g-concave-g*-convez, 1<q,¢* <n, if it
is connected and admits a C™ function g: X —+R without (absolute) minimum and
maximum such that the sets {z]|s<g(z)<t}, inf p<s<t<supp, are compact and
the following two conditions are fulfilled:

(1) There exists sg>inf p such that the Levi form of ¢ has at least n—q+1
positive eigenvalues on {z|inf o< o(z) <sp}.

(2) There exists tg<sup g such that the Levi form of ¢ has at least n—g¢*+1
positive eigenvalues on {z|tg< o(z) <sup g}.

If g* <n—gq, then HP"~9(X, F) is again Hausdorff. This was first obtained in a
more general setting for sheaves on spaces with singularities by J.-P. Ramis [Ra].(*)
Another, direct proof can be found in [LL3].

For ¢* =n—q the situation is more complicated. First of all there is the example
of Rossi [Ro] of a 2-dimensional 1-concave-1-convex complex manifold such that
the “hole” at the 1-concave ends cannot be “filled in”. This implies (by similar
arguments as in [HL, Section 23]) the existence of 2-dimensional 1-concave-1-convex
manifolds X such that H%!(X, O) is not Hausdorff. For those examples the “hole”
at the 1-concave ends cannot be “filled in”—otherwise H%!(X, ©) is Hausdorff. In
fact, there is the following theorem (see [HL, Theorem 19.1']).

1.2. Theorem. Suppose X is g-concave-(n—q)-convez, 1<qg<n-—1. Then
H?" (X, E) is Hausdor{f for all p, provided the following two additional conditions
are fulfilled: _

ext(X): X is an open subset of some larger complex manifold X such that
(with the notation as in Definition 1.1) {z]o(z)<so}=XND for a certain relatively
compact domain DeX ; _

ext(E): there is a holomorphic vector bundle E—X with E =FE|x.

The original proof of Theorem 1.2 given in [HL] is not so easy. In [LL1, Theo-
rem 4.1] the following simple proof is given.

(1) There is a misprint in [Ra, Theorem 2|. In fact, by the formulation given there H 0.1(x, 0)
should be Hausdorff if n=2 and X is 1-concave-1-convex, but this is not true, as it follows from
the Rossi example which we shall discuss some lines below.
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Proof. Set F=D" Pa+l(X, E*)ﬂg’Dn_P’q()?,E*). Then, clearly,
(1.1) F20D"PI(X,E*)

and it is easy to see that

. F . -
(1.2) dlmdelmH" P(D E*).
Since D is g-convex, the right-hand side of (1.2) is finite, by the Andreotti-Grauert
theorem [AG]. Since X is (n—g)-convex, by the same Andreotti-Grauert theo-
rem, also HP"—4 ()~( ,E) is finite-dimensional and hence Hausdorff. By Serre du-
ality it follows that H?~P9+1(X E*) is Hausdorff, i.e. D" P4(X, E*) is topo-
logically closed in D"~Pa+ 1()? ,E*), which implies that F is topologically closed
in D"~P9+1(X E*). Hence, by (1.1), the topological closure of D" P9(X, E*)
is contained in F. Since the right-hand side of (1.2) is finite, this yields that
dD"—P4(X, E*) is of finite codimension in its topological closure and hence equal
to this closure, i.e. H}~P9+1(X, E*) is Hausdorff. By Serre duality it follows that
HP™ (X, F) is Hausdorff. O

If g=1 and n>3 then the additional condition ext(X) is always satisfied, as
was proved by Rossi [Ro]. On the other hand, this is not true for g=1 and n=2, by
the example of Rossi [Ro] mentioned above. In the present paper we prove that if
q< %n, then always both extension conditions ext(X) and ext(E) may be omitted,
i.e. we prove the following theorem.

1.3. Theorem. Suppose X is g-concave-(n—q)-convez where 1<g<in (and
hence n>3). Then HP"~9(X, E) is Hausdorff for all p.

As an immediate consequence we obtain a result on the extension of CR-forms
of bidegree (p, g) from strictly (n—gq)-convex boundaries which we explain in Sec-
tion 4 at the end of the paper.

To prove Therorem 1.3 we follow the scheme of the proof of Theorem 1.2 given
above, but there is a difference: Since we do not have the extended manifold X,
we also do not have the family of compact subsets of X. We only have the trace of
this family in X and we have to study directly the cohomology supported by this
trace without using the compactly supported cohomology of X. This gives rise to
certain functional analytic difficulties which we want to explain now.

1.4. Definition. (i) A family ® of closed subsets of X will be called an admissible
Jamily of supports in X in each of the following three cases: (1) ® is the family of
all closed subsets of X; (2) ® is the family of all compact subsets of X; (3) there
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exists a C*° function g: X — R without minimum and maximum such that the sets
{z|s<p(z)<t}, inf p<s<t<supp, are compact and ® consists of all closed sets
CCX such that, for some t€]inf g, sup g|,

CC{z]|o(z) <t}

Then we may always additionally assume that all critical points of ¢ are nonde-
generate.(?) With this additional property (which is sometimes useful by technical
reasons), ¢ will be called a defining function for ®.

(ii) If @ is an admissible family of supports in X, then we denote by D5 (X, E)
the space of forms f€&P(X, E) with supp f €®, given the finest local convex topol-
ogy such that, for each C€®, the embedding DE?(X, F) D5 (X, E) is continuous
(here DY(X, F) carries the Fréchet topology introduced above). Further, we then
consider the factor space

D5Y(X,E)NKer 8
D2 Y (X,E)

HYUX,E)=

endowed with the factor topology.

(iii) If @ is an admissible family of supports in X then we denote by ®* the
family of all closed subsets C* of X such that C*NC is compact for all C€®. The
family ®* is called the dual family of ®.

If ® is an admissible family of supports defined by the function g, then ®* is
an admissible family of supports defined by —¢ and ®**=®. If ® is the family of
all compact sets, then ®* is the family of all closed sets and vice versa.

It is clear that admissible families of supports are families of supports in the
sense of Serre [S]. Also it is clear that such families ® are cofinal in the sense of
Chirka and Stout [CS], i.e. there exists a sequence C;€® such that each C€® is
contained in some C;. Hence the topology of Dy?(X, E) is the topology of an
LF-space (cf., e.g., [T, Chapter 13]) for any admissible family of supports ® in X.

The problem now is the following. To prove Theorem 1.3 by the scheme of the
proof of Theorem 1.2 given above, first we would have to prove that, for certain
admissible families of supports ® in X, the following two conjectures are true.

L.5. Conjecture. The space H3Y(X, E) is Hausdorff if and only if the space
HR P9 X | E*) is Hausdorff.

(%) This can always be achieved by small perturbations, as it follows, for example, from
Proposition 0.5 in Appendix B of [HL].
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1.6. Conjecture. The space HY¥(X, E} is either Hausdorff or

Dy (X, E)
D% (X, E)

where D597 (X, E) is the topological closure of D% (X, E) in DY (X, E).

(1.3) dim

k)

Both conjectures are true if ® is the family of all closed subsets or the family
of all compact subsets. This seems to be well known (at least it is frequently used
in the literature). But it is not so easy to find references for explicit proofs of this.
Therefore let us say some words about the proofs.

On the proofs of Congecture 1.5 and Conjecture 1.6 for the families of all closed
and compact sets, respectively. If ® is the family of all compact sets, then the ‘if’-
part in Conjecture 1.5 was proved by Serre [S]. In his proof it is used that, by the
open mapping theorem in Fréchet spaces, the operator

(1.4) §:£P9~1(X, E) —s EP9(X, E)

is relatively open, if its image is closed. It is not clear whether this is true also for
the operator

(1.5) 9: PP~ Y(X, E) — DP9(X, E).

Therefore the proof of the ‘only-if’-part is more difficult. This part was proved,
as it seems, by different authors independently. A complete proof can be found in the
work of Laufer [L]. Laufer observes that for Serre’s proof only the fact is important
that (1.4) sends weakly open sets to relatively open sets, and he proves that also
(1.5) has this property. (For another proof see [LL1, Section 3]).

Now about Conjecture 1.6. If ® is the family of all closed sets, then Conjec-
ture 1.6 follows easily from the open mapping theorem in Fréchet spaces. But this
is not so easy when ® is the family of all compact sets. Although DP9(X, FE) is
an LF-space and the open mapping theorem holds for continuous linear surjections
between LF-spaces, it is not clear whether the open mapping theorem holds if only
the source space is an LF-space and the target space is a closed subspace of an
LF-space.

Since we could not find an explicit reference for a proof of Conjecture 1.6, let
us sketch a proof here (for another proof see [LL1, Theorem 2.7 and Lemma 2.8]):

Denote by (£')74(X, F) the dual of E"~P"~9(X, E*), i.e. the space of E-valued
(p, g)-currents with compact support in X. Then it is well known (Dolbeault iso-
morphism) that the natural map

ENYPa(X, E)NKer §

g (
(1.6) HPY(X, E) — B3(E"P4-1(X, E)
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is an algebraic isomorphism.(®) Moreover, by the Hahn-Banach theorem,
(1.7

oDPa-1(X E)= {<p e DPI(X, E)

/ eAYp=0 for p € E"P"TI(X, E*)ﬁKeré}.
X

Further, since " P"~9( X, E*} is reflexive, the Hahn-Banach theorem also gives
(1.8)
HENPIHX,E)={pec(E)PUX,E)|{p,¥) =0 for p € E"P""9(X, E*)NKer 3},

where 3(')77~}(X, E) is the closure of d(£')P9~ (X, E) in (£')P9(X, E) with re-
spect to the strong topology. From (1.7) and (1.8) it follows that the natural
isomorphism (1.6) induces an isomorphism

FOPN(X,E) _ HEPXE)

(1.9) 0 ) .
pra-1(X,E)  d(E)Pa-1(X,E)

Now it remains to observe that (£')79(X, E) with the strong topology is a DFS-
space (the strong dual of a Fréchet-Schwartz space) and therefore the Banach open
mapping theorem can be applied to prove that the dimension of the space on the
right-hand side of (1.9) is always either 0 or co. [

Finally we want to note two general functional analytic problems.

1.7. Problem. Let E and F be LF-spaces and let A: E—F be a continuous
linear operator such that Im A is topologically closed in F. Is it true that then, for
each weakly open UCE, A(U) is open in Im A with respect to the topology induced
from F.

1.8. Problem. Let F be an LF-space, (F})52; a defining sequence of Fréchet
spaces for F', and H a linear subspace of F such that HNF is topologically closed
for all j. Is it true that then H is topologically closed?

An affirmative answer to Problem 1.7 would imply that Serre’s proof proves
also Conjecture 1.5 for any admissible family of supports. An affirmative answer
to Problem 1.8 would imply a simple proof of Conjecture 1.6 for all admissible
families of supports. Note that Problem 1.8 was stated already 50 years ago by
Dieudonné and Schwartz [DS, p. 97], but it seems to be still open. For the special
case F=DP4(X, E) and H=8DP9~1(X, E) the answer is affirmative (see [LL1]).

(3) Actually (1.8) is even a topological isomorphism if the right-hand side is given the factor
topology defined by the strong topology of (£/)P9(X, E), and the same is true if we use on both
sides the weak topologies [L]. But we do not use this here.
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We are very grateful to F. Haslinger for the interesting and helpful discussions
of these two problems. In particular, we learned from him that Problem 1.8 was
posed already in [DS]. Moreover, also for such useful discussions, we want to thank
Seén Dineen as well as the participants of the section lead by him during the two
complex analysis conferences held in August 1999 in Fukuoka.

2. Serre duality for admissible families of supports

In this section, X is an n-dimensional complex manifold, £— X a holomorphic
vector bundle and ® an admissible family of supports in X (see Definition 1.4)
which is neither the family of all closed, nor the family of all compact sets.(*) Since
we are unable to prove (or disprove) Conjectures 1.5 and 1.6, in the present section,
we establish some other results (sufficient for the proof of Theorem 1.3) which we
now describe.

2.1. Definition. (i) We denote by ®° the family of all open sets of the form
U={z|o(z)<t} where g is a defining function for ® and inf p<t<sup p. For U€®°,
we denote by ®|; the family of all Ce® with CCU.

Note that then ®|y is an admissible family of supports in U—if ¢ is a defining
function for ® with U={z|p(z)<t} for some t<sup p, then ®|y is defined by o|y.
Observe also that, for any U*€(®*)?, we then have the relation

(2.1) (8*|y-)* =BNU* (= {CNU* | C € B)).

(ii) Let 0<p<n and 1<g<n. We say that Hy?(X,E) is a-Hausdorff if,
for each C'€®, the space DZ(X, E)ﬂgﬁ')g’q_l()( ,E) is topologically closed in
DZY(X, E) (with respect to the Fréchet topology induced by £P9(X, E)). We say
that HY?(X, E) is §-Hausdorff if it is a-Hausdorff and moreover, for each C*€®*,
there exists U* €(®*)® with U*2C* such that H:Z,,.(U*, E) is a-Hausdorff.

The result which we want to prove in this section, now can be stated as follows.

2.2. Theorem. Let 0<p<n and 1<q<n. If HYY(X, F) is B-Hausdorff then
Hy P9 ( X E*) is Hausdorff.

2.3. Remarks. {A) The special case when ¥ is the family of all compact sets
fits into Theorem 2.2 as follows: Denote by 30 the family of all relatively compact
open subsets of X, and set (®*)°={X}. Then it is trivial that o-Hausdorffness

() For these two special cases, where the results are stronger, we refer to [LL1] (cf. also (A)
in the Remarks 2.3 below).
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and §-Hausdorffness coincide. Moreover, in [LL1] it was proved that then also a-
Hausdorffness and Hausdorffness coincide. Hence, for this special case, Theorem 2.2
follows from [LL1].

(B) Hausdorffness of HYY(X, E) always yields a-Hausdorfiness of H3?(X, E)
for any admissible family of supports ®. This is clear, because D%?(X, E) is topo-
logically closed in D%Y(X, E) for all C€®. We do not know however whether, in
general, a-Hausdorffness of H{?(X, E) yields Hausdorffness of Hy?(X, E), i.e. we
cannot solve Problem 1.8 for the special case F=D%%(X, E) and H=8D%*"'(X, E).

(C) We do not know examples when H3?(X, F) is a-Hausdorff but not g-
Hausdorff, because in all our examples the reason for a-Hausdorfiness is the fact
that, at the ends of the manifold, certain convexity or concavity conditions are
satisfied, and these conditions in all our examples immediately imply also S-Haus-
dorfiness.

For the proof of Theorem 2.2 we need some preparations. Let (D')59(X, E)
denote the dual of Dz, »"" (X, E*), i.e. the space of E-valued (p, g)-currents on X
which extend continuously to Dz. """ 9(X, E*). The following lemma shows that
(as indicated by the notation) (D')5?(X, E) is the space of E-valued (p, g)-currents
on X with support in ®.

2.4. Lemma. Let T be an E-valued (p,q)-current on X, 0<p,q<n. Then
Te(D")8X, E) if and only if suppTc®.

Proof. By definition, T is a continuous linear functional on D"~ P:"~4(X, E*).
First assume that supp T €®. Take a real C*°-function x on X with supp x&€®
and x=1 in a neighborhood of supp T. Then

(2.2) (T, p)=(T,xp) forall pe D" P""YX, E").

Moreover, for each p€Dz. ”" (X, E*), the form xy has compact support. There-
fore the multiplication by x defines a continuous map

M,: DX PP Y(X, E*) — D" P"9(X, E*)

such that, by (2.2), T=TM, on D"~P"~9(X, E*). Hence TM, extends T continu-
ously to £ 7" TI(X, E*).

Now we assume that supp7T¢®. Then there is a set C*€®* such that C*N
suppT is not compact and, therefore, we can find a sequence (p;)52; of forms
in D""P"79(X, E*) with supp ¢; CC*NsuppT for all j, (T, p;)=1 for all j, and
supp ¢;Nsupp @i =0 if j#k. Set Y=, +...+ k. Then the sequence (Yr)7>, con-
verges in D3, P""9(X, E*) whereas limy,_, o (T, ¥x) =limg_,oc k=00. Hence T is not
continuous with respect to the topology of D3 7"~ 4(X,E*). O
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2.5. Lemma. For all p and q with 0<p<n and 1<g<n, we have

/Xgo/\tp:O

for p € D P "X, E*)0Ker 5},

gpgq_l(xa E)= {80 eDYI(X, E)NKer

where 8D5YY (X, E) is the topological closure of 8D%* ' (X, E) in D}Y(X, E).

Proof. The “C”-part follows from Stokes’ formula. To prove the “2”-part, we
consider a form € D27 (X, E)NKer  which does not belong to 9D5? "1 (X, E). We
have to find ¢ €D, "~ Y X, E*)NKer § with

(2.3) /X YA £0.

By the Hahn—Banach theorem there is a current T€(D’)3. ”" " %(X, E*) with

(2.4) (T, ¢) #0,

but (T, 9¢)=0 for all peDLI" (X, E), i.e. T =0. If g=n, then, by the regularity
of d the equation T =0 implies that T is defined by a smooth form . By (2.4)
this 1 satisfies (2.3).

Now let ¢<n—1. Since supp7€®*, we can then find a neighborhood U™ of
suppT with U*€(®*)°, and, by regularity of 0, there exist a smooth form ¢ and
a current S with support in U* such that T=1+8S. Since 8p=0 and therefore
(88, ) =0, (2.3) again follows from (2.4). O

2.6. Lemma. Let 0<p<n, 1<q<n, Ce® and
G:=D%Y (X, E)ndDy* (X, E).

Then the following are true:

(i) If G is topologically closed in D%(X, E), then there exists a set Co€® with
G=D4(X, E)ndDLI" (X, E).

(i) If there exists a finite dimensional subspace F of DEY(X,E) such that
F+G is topologically closed in DRI (X, E), then G itself is topologically closed
in DLY(X,E).

In particular, if G is of finite codimension in DEY(X, E)NKerd, then G is
topologically closed in DZ(X, E).
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Proof. Take a sequence (C;)%2, of sets in ® such that each set in ® is con-
tained in some C;. Denote by D; the subspace of all (pE’Dg’f_l(X , E) with 8p=0
outside C. Note that each D; is topologically closed in Dg’f_l(X , E) and hence a
Fréchet space. Clearly

(2.5) G=Jép;.
=1

To prove (i), we now assume that G is topologically closed in D%9(X, E). Then
it follows from (2.5) that, for certain jo€N, 8D;, is of second Baire category in G.
Since 5Dj0 is the image of a continuous linear operator between Fréchet spaces, by
the open mapping theorem, this means that 5DjD=G. It remains to set Co=Cj,.

Now let F be as in (ii). Without loss of generality, we may assume that
moreover

(2.6) FnG={0}.

Using again the Baire category argument and the open mapping theorem, then it
follows from (2.5) that, for certain jo€N, F+G=F+8D;,. By (2.6) this means
that G=0Dj,. Therefore G is the finite codimensional image of a continuous linear
operator between Fréchet spaces and hence itself a Fréchet space. [

2.7. Definition. Let 0<p<n and 1<q<n. An ordered pair (U, Up) of open sets
U,Upe®° will be called an of?(X, E)-pair if there exist sets C, Co€® such that U
is contained in the interior of C, CCCyCU, and

DRY(X, E)ndDy*" (X, E) = D%Y(X, E)ndD%! (X, E).

From Lemma 2.6 we immediately obtain the following important corollary.

2.8. Corollary. Let 0<p<n and 1<q<n be such that Hy*(X, E) is a-Haus-
dorff. Then for each Uc®° there ezists Upe ®° such that (U,Uy) is an o (X, E)-
pair.

2.9. Lemma. Let 0<p<n and 1<q<n be such that HY¥(X,F) is a-Haus-
dorff. Then, for each pair U, Uy€® with UCUy, we have the relation

/ YAp=0
Uo

for € Dg. b~ (Uo, E”)NKer 5}.

D24(X, E)NdDL (X, E) 2 {<p € D5 (X, E)NKer d

2.7)
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Proof. Consider a form peDF(X, E)NKer 8 such that
(2.8) ¢ ¢ DL (X, E).
We have to find a form yeDg. 57~ (Up, E*)NKer § with

(2.9) /U YAP#0.

Since H2Y(X, E) is a-Hausdorff and Uy ®, D%’:(X, E)ndD5? (X, E) is topolog-
ically closed in ’Df—]’:(X , E). Therefore, by (2.8) and the Hahn-Banach theorem, we
can find a continuous linear form T: D%?(X, E)—C such that

(2.10) (T, ) #0
and
(2.11) (T,0w)=0 for all we DFI™' (X, E) with dw € DFI(X, E).

Since T is continuous on D%’:(X , E), it follows (in the same way as in the proof of
Lemma 2.4) that there is a compact set K CUy such that T=0 on D%’:\ (X, E).

Denote by T the E*-valued (n—p,n—gq)-current on Uy defined by T. Then

(2.12) supp T C KNUy
and, by (2.11),
(2.13) 8T =0.

If g=n, then, by the regularity of , the current T is defined by a smooth form
wEgZ;%S(UQ,E*) which satisfies (2.9), by (2.10).

Now let g<n—1. Then we take a set C*€®* which contains K in its interior.
Then, by (2.12), (2.13) and the regularity of 8, we can find a smooth form e
Dgty, “(Uo, E*)NKer d and an E*-valued (n—p,n—g—1)-current S on Up with
supp SCC*NUy such that

(2.14) (T,n)=(0S,n)+ ; YA

for all neDP4(Uy, E). Since UNsupp SCUNC* is compact, S extends continuously
to D%’QH(UO, E). Hence 3S extends continuously to DU, E). Since the same
is true for T and the current defined by v, (2.14) holds for all neDg?(Uo, E)=
DEY(X, E) and hence, in particular, for n=¢. Since dp=0 now (2.9) again follows
from (2.10). O

2.10. Remark. It is easy to see that we even have equality in (2.7) if Up is so
large that (U, Up) is an a5?(X, E)-pair (but we do not need this).
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2.11. Lemma. Let 0<p<n and 1<q<n be such that HY¥ (X, E) is a-Haus-
dorff and let (U, Up) be an o3 (X, E)-pair. Then, for any Ugo € ®° with Ugo 2Us, the
space D hi4(Ugo, E*)NKer 8 is dense in Dy 57" (Us, E*)NKer 3 with respect
to the topology of Dg. b~ (U, E*).

Proof. Let T: D3 2" 4(U, E*)—C be a continuous linear functional such that
(2.15) T(ply)=0 for all Y € D579 (Ugo, E*)NKer d.
By the Hahn—Banach theorem, then we have to prove that
(2.16) T(¢lu)=0 for all € Dg. by ?(Uo, E*)NKer 0.
By Lemma 2.4, T is an E-valued (p, q)-current on U with supp T'€ ®|y=(®*NU)*.
Take a set C€®|y such that suppT is contained in the interior of C. Since (2.15)
in particular means that 3T=0, then we can find a smooth form e D%Y(U, E)N

Ker 8=D2(X, E)NnKer J and an E-valued (p, g—1)-current S on X with supp SCC
such that

(2.17) (T,n)=(S, 5n)+/ A

U
for all ne D™ P"~9(U, E*). By Lemma 2.4, the current S extends continuously to
Da P79 (U, E*). Since, moreover, 8, T and the current defined by ¢ are con-

tinuous on D27~ 9(U, E*), it follows that (2.17) holds for all ne Dg. 57~ (U, E*).
Together with (2.15) this implies that

(2.18) YA = / YA@=0 for all Y € Dg 57 ¥(Ugo, E*)NKer d.
Uogo U

Since Ugo €9, it follows from Lemma 2.9 that 9€DR(X, E)ﬂa—Dg’q_l(X, E). Since
(U,Up) is an of%(X, E)-pair, this implies that ¢ is of the form ¢=0w with we
’Dg’lq[;l (X, E). Now let yeDg. A7 (Up, E*)NKer 8. Then (2.17) holds in particular
also for n=1|y, and hence

Ug

T(l&la):/vz&w:/[j YAOw==% | BYAw=0,

i.e. (2.16) holds. O
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2.12. Lemma. Let 0<p<n and 1<q<n be such that Hy*(X, E) is B-Haus-
dorff. Then, for each eDy.P" It (X, E*)NKerd satisfying the orthogonality
condition

(2.19) / WAp=0 for allcpEDg’q_l(X, E)nKer 0,
X

there ezists U*€®* such that, for any Ue®°, there ezists wy €Dg P (U, E*)
with |y =0wy .

Proof. Let v be as in the lemma. Take W*¢e(®*)? with suppyyCW*. Then
W:=X\W+*€® and, by Corollary 2.8, we can find V€& such that (W,V) is an
a5?(X, E)-pair. Denote by Dy the space of all cpe’D"i,‘q_l(X, E) with supp pCW.
Then 8: Dy —D%4(X, E)ndDy (X, E) is a continuous linear surjection between
Fréchet spaces and therefore open. Set(®)

Op:={peDy| max llp()l<1}.

Then Oy CDy is open and, hence, 30y is open in DEF(X, E)ndD% (X, E).
Therefore we can find a compact set K CW with

(2.20)

(X E)ndD5%" (X, E) C90y.

Since HY(X, E) is f-Hausdorff, we now can find U* € (®*)° such that W*UK CU*
and H5?,.(U*, E) is o-Hausdorff. To prove that U* has the desired property, we
consider Ue®°. Since both HYY(X, E) and H}S,,.(U*, E) are o-Hausdorff, then,
by Corollary 2.8, we can find Up€®° so large that both (U,Up) is an of?(X, E)-
pair and (UNU*,UpNU*) is an o . (U*, E)-pair. Moreover we may assume that
VCUo.

Denote by Dg,ny- the space of all wEDf]an,(U*,E) with supp G CUNU*.

Then 8: Dy, ry- —DgI (U~ E)ndD%A  (U*, E) is a continuous linear surjection

between Fréchet spaces and therefore open. Set
Opurw- = {9 € Dggry- |_maxlp(2)ll<1}.

Then 86}, is open in D% ol (U, E)NdD%3;} (U*, E) and, therefore, we can find a
continuous seminorm A on DE?  (U*, E) such that

unuU+*
AP9—1 30—
(2.21) {peDl? (U*, E)NGDYI (U, E) | M(p) <1} C8Og,ny--
(5) Here || - || denotes an arbitrary norm on the fibers of the bundle of E-valued forms which

depends continuously of the base point.
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Now we consider the set

Q:={ye Dy} (X, E)

_max (=)l <2}

and prove that then

(2.22) {¢eD2UX, E)NdDE (X, E) | olu- €38gyny-} SN

In fact, let peDPI(X, E)ﬂng’q_l(X, E) and ¢|y-=07* for some y* €Oy y-.
Take a C*°-function x: X —0, 1] such that x=0 in a neighborhood of X\U* and
x=1 in a neighborhood of W*UK. Then, after extension by zero, x7* is defined
on X and

P=0(x7") € DR (X, EYNIDG" ™! (X, E).

Hence, by (2.20), ¢ —3(xy*)=8vy for some 77 €Op. Set y=x7*+7y. Then =084
and yeQ.

Since 8 is surjective as an operator between D’(ij’:—l(X ,E) and DEY(X, E)N
DL (X, E), then there exists a uniquely defined linear map

T:D24(X, E)ndDy* (X, E) —C
with
(2.23) (T, 57) = / YAy for all y € DEI(X, B).
X

Since the embedding D?(X, E)—Dg? . (U*, E) is continuous, X defines a contin-

uous seminorm Ax on DE*(X, E). By (2.21) and (2.22),

(2.24) {p e DYY(X, E)NdDE (X, E) | Ax(p) <1} CIN.
Since, for all y€Q, supp(yAy)CUsNW* and UpNW* is compact, we have the
estimate
A::sup/ z/)/\'y‘<oo.
YEQIJ X

By (2.24) and (2.23), this implies that
IT(p)] < Ax(p) for all p € DEY(X, EYNGDY* (X, E).

Therefore, by the Hahn-Banach theorem, T' admits a continuous linear extension
T" to DRY(X, E) with

(2.25) IT'(¢)| < Axx(yp) for all pe DPU(X, E).
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Denote by T" the current on U defined by 7”. As A is continuous on DY (U™, E),
there is a compact set K*€U* such that Ax (p)=0 for all pe DF?(X, E) with K*N
supp ¢=0. Therefore it follows from (2.25) that suppT” CK*NU. Since U*NU
is a neighborhood of K*NU, therefore, by the regularity of 9, we can find wy €
Dgfr’;’;;_q(U, E*) such that 7" —wy =388 for some current S on U with supp SC
U*NU. Since, by (2.23), 9|y =+8T" then |y =+dwy. O

Proof of Theorem 2.2. Consider z/JEDg,_p’"_qH(X, E*)NKer J satisfying the

orthogonality condition
/ YAp=0 for all oDy ' (X, E)NKerd.
x

By Lemma 2.5 we have to prove that then there exists weDg. ”" (X, E*) with
P=0w.

By Lemma 2.12, we can find U*e®* with suppyCU* as well as sequences
(U;)32, and (w;)$2, of sets U;€®° and of forms w; €Dy P~ ?(U;, E*) such that
_ _ 2
U;CUjyq, Uj‘;l U;=X and |y, =0w;. Moreover we can find U**€(®*)° with
U*CU** such that HYZ,,..(U**, E) is a-Hausdorff. We may assume that, for each
JEN, (U;nU**,U;;1NU*) is an oy d ;.. (U™, E)-pair. In view of the approxima-
tion Lemma 2.11 (applied to the manifold U** and the family of supports ®NU**),
now we can modify the sequence (w;)$2, in such a way that (after the modifica-
tion), for each j€N, the sequence (wk)72 ; converges in Dgfg‘[;’;ﬁwj(U**ﬂUj, E*)=
Dg:g’;j_q(Uj,E*) to some &; eDgfr’;}Z_q(Uj,E*). Then w;=d;41 on U; and the
required form w can be defined by setting w]y, :=@;. This completes the proof of
Theorem 2.2.

3. Proof of Theorem 1.3

In this section, X is an n-dimensional complex manifold which is g-concave-
q*-convex in the sense of Definition 1.1, where 1<q, ¢* <n.(®) Moreover we assume
that p, so and £y have the same meaning as in Definition 1.1, where we additionally
assume that all critical points of ¢ are nondegenerate.(”) Furthermore we assume
that @ is the admissible family of supports defined by g (cf. Definition 1.4), ®* is
the dual family of ® , E is a holomorphic vector bundle over X, and p is an integer
with 1<p<n.

() For the proof of Theorem 1.3 one always may assume that ¢* =n—q and ¢< %n
(") This can always be achieved by small perturbations, as it follows, for example, from
Proposition 0.5 in Appendix B of [HL).
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3.1. Lemma. If max(g+1,¢*)<r<n, then dim H3. (X, F)<oo. In particu-
lar
dim HY' (X, E)<oco ifq*=n—q and ¢< 3n.

Proof. Let some integer r with max(g+1,¢*)<r<n be given. Let Cg’,l (X, E),
l=r—1,r, denote the space of E-valued continuous (p,!)-forms f on X with supp f€
®* and set =
_ CyV (X, E)NKer
~ C2T(X,E)NdCEI Y (X,E)

Since the natural map HZ! (X, E)— HE'g. (X, E) is an isomorphism (cf. e.g. Corol-
lary 2.15 in {HL]), we have to prove that ‘

HP%.(X, E)

3.1) dim HE'%. (X, E) < co.

For s and t with inf p<s<sy and tg<t<sup g, we denote by Bg"f, l=r—1,r,

the space of all E-valued continuous (p, !)-forms on {z|inf p<p(2)<t} vanishing on
{z]inf p<p(2)<s}. The spaces Bg:f will be considered as Banach spaces endowed
with the topology of uniform convergence on {z|s<p(z)<t}. Define the (algebraic)

factor spaces
HPY _—_Bg”{nKeré for infp<s< dto<t<
b = e or int p<s<sy and {g sup g
=t BPINaBrT !

and

pr (Uin o<s<so Bot ) NKer @
inf g,t — - — T
inf o (Uinf 0<s<s0 BZ,{) na(Uinf 0<5< 50 BE‘: )

To complete the proof of the lemma, it now is sufficient to prove the following three
inequalities (which then yield (3.1)):

for tg <t <supp.

(3.2) dim lﬁfi”n’frg’]t <dim HY, if inf p < s < sp and tg <t <sup p;
(33) dimHIY(X, E)< oo, if inf p<s<sgand tyg<t<supg;
(34) dimHEe.(X,E) <dimHJ{ ,, ifto<t<supo.

Proof of (3.2). Since r>q+1 and the Levi form of g has at least n—g+1
positive eigenvalues on {z]inf p<g(2)<s¢}, it follows from Lemma 1.2(i) in [LL3]
that, for all s and ¢ with inf p<s<sg and ty<t<sup g, the natural map

Hf:tr — Hipny;g,t

is surjective.
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Proof of {3.3). For this we prove the stronger statement,

for all s and ¢ with inf o< s < sp and to <t <sup p, the space B2 NOBY;~ !

is topologically closed and of finite codimension in Bf”tr NKer .

Let s and t with inf p<s<sg and ty<t<sup g be given, and let 'Hg’i, l=r—1,r, be
the subspace of all forms in B! s+ Which are Holder continuous with exponent 3 1 We

consider ’Hp '+ as Banach spaces endowed with the Holder norm with exponent
To prove (3.5), by Ascoli’s theorem and Fredholm theory, it now is sufficient to
construct continuous linear operators

A:BETNKerd — HE Y,
K: Bs,’t NKer d — HEY

such that
OAf=f+Kf forall feBl/NKerd.

To do this, we take >0 so small that s+£<sg and s—¢c>inf p. Since r>¢+1 and
the Levi form of g has at least n—q+1 positive eigenvalues on {z|inf g<g(2)<s¢},
then we obtain from Lemma 1.2(i) in [LL3] a continuous linear operator

- 1
Ag: BE NKerd — MY,

such that Ao f=f on {z|p(z)<s-+e} for all f€BY’y NKerd. Moreover, since r>¢*
and the Levi form of p has at least n—q¢* +1 positive eigenvalues on {z]¢g<g{z)<
sup g}, we can apply the local integral operators of Fischer and Lieb to the boundary
{zlo(z)=t} (see [FL], see also Sections 7 and 9 in [HL](®)). In this way we obtain
open sets Uy, ..., Uy € X with

{z|s+e<p(z) <t} CUU...UUN C{z|s< o(z) <sup p}
as well as continuous linear operators
Aj:BPTNKer § —s HET)

(8) To apply the formulas from {FL] we should assume that the surface {z]|g(z}=t} is smooth,
which, of course, we could do for the purpose of this proof. On the other hand, the formulas
from [HL] work also in the case when the surface {z]|g(z)=t} is not smooth, but all critical points
of o are nondegenerate, which we may assume—cf. the beginning of the present section.
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such that 8A;f=f on {2€U;|o(2)<t} for all fEBE;NKerd, j=1,...,N. Take
real C*°-functions Xo,...,xn on X with supp xo€{z|e(z)<s+¢}, suppx;€U; if
1<j<N, and xg+...4+x~n=1 on {z|s—e<g(z)<t}. Then the operators

N N
A::ZXJ'A]' and KI=Za—Xj/\Aj
Jj=0 J=0

have the required property.

Proof of (3.4). Let t with to<t<sup g be given. It is sufficient to prove that
the restriction map
HZ%. (X, E) —— HEY

inf g,¢

is injective. To do this, we consider feC%7 (X, E)NKerd which defines the zero
class in HY)Y ;i€ fl{z)inf o< p(z)<t} =Ou for some u€li s pescso By Take s, €
linf 0, o[ such that ueBY’, ! Since r>¢* and the Levi form of p has at least
n—q"+1 positive eigenvalues on {z|tg<g(z)<sup g} and since, by (3.5), the spaces
Ber NOBY, ™!, t<7<supp, are topologically closed in BE7, we can use Grauert’s
bumping method, in the same way as in the proof of Theorem 12.13(ii) in [HL},(®)
to obtain an E-valued continuous (p,r—1) form v on all of X solving the equation
f=0v on X, which, moreover, vanishes on {z|inf < p(z)<s,} and hence belongs

to C2I 71 (X, E), i.e. f defines the zero class in Hpw (X, E). O

3.2. Lemma. If 1<r<min(n—q,n—g¢*+1), then Hy "' (X, E*) is Hausdorff.
In particular, if g*=n—q and q<in, then Hy P9"(X, E*) is Hausdorff.

Proof. If 1<r<min(n—gq,n—q*+1), then max(q+1,¢*)<n—r+1<n. Hence,
by Lemma 3.1, dim H2? ""!(X,E)<co. By Lemma 2.6(ii) this implies that
HZI "X, E) is a-Hausdorff. Moreover it is clear that the same is true if, for
sufficiently small £>0, we replace X by X, :={z|inf p<p(z)<sup g—e} and ®* by
$*NX,, ie. HY' "t (X, F) is even B-Hausdorff. Therefore, it now follows from
Theorem 2.2 that Hy P" (X, E*) is Hausdorff. O

Proof of Theorem 1.3. Since the space HP"~9(X, E) is Hausdorff if and only
if H2=P9%1(X | E*) is Hausdorff (see e.g. [L] or [LL1)), it is sufficient to prove that
Hp~Patl(X E*) is Hausdorff. Moreover, since, by Theorem 2.7 in [LL1], for the
family of compact sets, Hausdorflness and a-Hausdorffness is the same, we only
have to prove that, for each compact set K €X, the space R.:=Dy ? X, E*)N
dD""P9(X, E*) is topologically closed in D}"”’qH(X, E*).

(%) The domain D in Theorem 12.13 of [HL] is assumed to be relatively compact, but
in the proof only the consequence is used that then (with the notation of [HL]) Zg,r(ﬁ, E)n
8C8 ._(D, E) is topologically closed in Z§ .(D,E).
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Let a compact set K €X be given. By Lemma 3.2, Hy P97(X, E*) is Haus-
dorff. In particular, the space Re:=D} P+ (X, E*)NdDE P(X, E*) is topolog-
ically closed in Dy P?"!(X, E*). Therefore, by Lemma 2.6(ii), it is sufficient to
prove that

Re

Re
Take s1 and s, with inf p<s) <$5<sg so small that K C{z|sy<g(z)<sup g} and set
D={z|s1<p(2)<s2}. Then it is clear that

dim

< 00o.

dim 2 < dim H"™P9(D, E*).
Re

Now we look at the boundary of D, which consists of the two parts &,.D={z|

o(z)=s1} and 9, D={z|g(z)=s3}. Since the Levi form of ¢ has at least n—g+1

positive eigenvalues on D, 8, D is g-concave and 8, D is g-convex. Since g< %n and

hence ¢<n—gq, by Andreotti-Grauert theory [AG] (see also Section 22 in [HL]) this

implies that dim H™~P4{D, E*)<oo, which completes the proof of Theorem 1.3.

4. Extension of C R-forms

Let X be an n-dimensional complex manifold, E a holomorphic vector bundle
over X, and let p and ¢ be integers with 0<p<n and 1<g<n—1. Furthermore let
DeX be a domain whose boundary 8D is C*® and compact, and let f be an E-
valued C*° smooth C'R-form of bidegree (p,q) on 8D. Consider the two conditions

(i) there exists a J-closed Cpey-form F on D with F|sp=f;

(ii) La p fAY=0 for any E_'* -valued J-closed Cr2 , nq—1-form ¢ in a neighbor-
hood of D such that supp ¥'ND is compact.

Then the following theorem is known.

4.1. Theorem. If D is relatively compact and (n—q)-convez in the sense of
Andreotti-Grauert, then the conditions (i) and (ii) are equivalent.

Why this theorem is known (although nowhere explicitly stated), we explain in
Remark 4.3 below. Under the stronger hypothesis that D is even strictly (n—q—1)-
convex (and hence g<n—2), it was proved in 1965 by Kohn and Rossi [KR].

If 1<¢< %n, from Theorem 1.3 one obtains the following generalization to the
case when D has some “g-convex holes”.

4.2. Theorem. Suppose X is q-concave-(n—q)-conver in the sense of Def-
inition 1.1. Let p and ty have the same meaning as in Definition 1.1, and let
D={z|inf p(z)<po<t}, where t is some number with to<t<sup o and do(2)#0 if
o(z)=t. If now 1<q<in, then the conditions (i) and (ii) are equivalent.
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Proof. That (i) implies (ii) follows from Stokes’ formula. Assume that (ii) is
satisfied. Since f is CR, there is a C;,’f’q form f on X such that f|3D: f and 8 f
vanishes to infinite order on dD. Since 8D is compact, we may moreover assume
that f has compact support. Setting ¢=38f in D and ¢=0 on X\D we obtain a

form peDP9t1(X, E)NKer 3. Moreover, by Stokes’ formula and condition (ii),
/ WA =/ dfny= ﬂ:/ fAY=0 forall ¢ E’Dgf”’"_q_lﬁKer 0.
X D ap

By Lemma 2.5 this means that ¢p€dDP9(X, E). Moreover, H* P"~4(X, E*) is
Hausdorff by Theorem 1.3. By Serre’s theorem [S], this implies that H?7t!(X, E)
is Hausdorff, i.e. 3DP%(X, E)=8D"%(X, E). Hence ¢=0w for some weDP9(X, E).

Since w|x\p is O-closed and has compact support and ¢>1, it follows from
Theorem 3.1 in [LL2] that wlx\5=5nlx\5 for some neDP I~ (X, E). Set o=w—
On. Then @=0 outside D and & f =¢=0x on D. Hence F:= f —& is the required
extension of f. (O

4.3. Remark. The proof of Theorem 4.2 becomes a proof of Theorem 4.1 if we
replace X by an (n—g)-convex neighborhood of D and if we use, instead of Theo-
rem 1.3, the fact from classical Andreotti-Grauert theory that H*P"~9(X, E*) is
then finite-dimensional and hence Hausdorff.

Note also that if we already know that f extends as a O-closed form to some
neighborhood of 8D, Theorem 4.1 can be proved without Theorem 3.1 of {LL2},
using only the other arguments of the proof given above (see Theorem 20.13 in [HL]).
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