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On weighted positivity and the
Wiener regularity of a boundary
point for the fractional Laplacian

Stefan FEilertsen

Abstract. A sufficient condition for the Wiener regularity of a boundary point with respect
to the operator (—A)# in R™, n>1, is obtained, for n€(0, 2n)\(1, in—1). This extends some
results for the polyharmonic operator obtained by Maz’'ya and Maz’ya-Donchev.

As in the polybarmonic case, the proof is based on a weighted positivity property of (—A)#,
where the weight is a fundamental solution of this operator. It is shown that this property holds
for p as above while there is an interval [An, %n—An}, where A, —1, as n—o0, with p-values for
which the property does not hold. This interval is non-empty for n>8.

1. Introduction

Wiener’s criterion, from 1924, for the regularity of a boundary point states that

the condition
o

> 20k cap(B(27F)\Q) = 00
k=0

is necessary and suflicient for the regularity of the point 0€9Q with respect to the
Laplace operator in a domain QCR", n>2, [10], [11]. Here B(r)={zcR":|z|<r}
and cap denotes the harmonic capacity.

For higher order operators, only a few facts of this type are known, namely
some suflicient conditions concerning the polyharmonic operators (—A)™, for cer-
tain dimensions. These results are due to Maz’ya [2], [3], for m=2, and to Maz’ya~-
Donchev [6], for m>2. The purpose of this paper is to obtain similar results for
fractional powers of the Laplacian. This involves extending an interesting integral
inequality invented by Maz’ya, the weighted positivity of (—A)™, to the fractional
case by using methods different from those in the cited papers.

Now, to be more specific about what is known and what is to be proved,
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consider the equation
(1) (—A)lu=feC(Q), weH;(Q),

along with the Wiener-type condition

2) S 90 cap, (B2 HN\D) = oo,
k=0

and the boundary point regularity condition
(3) u(x) =0, asz—0ecoQ.

(The notation is explained in the next section.) If (3) holds for the solution u
of (1), for any f, then the point 0€9Q is said to be regular with respect to the
operator (—A)“. We notice that (3) is automatically fulfilled if g>1in, by the
Sobolev embedding theorem.

We are interested in the implication (2) = (3), when p€ [0, ;n]. The knowledge
until now is that this implication holds for those values of y that are integers and
belong to the set

(4) (0,1]U[in—1, 3n],

and for the additional case p=2, n="7.
The case p=0 is trivial and the case u=1 is the sufficiency part of Wiener’s
criterion. For p>2, the proofs in [3] and [6] are based on inequalities of the type

(5) /"((—A)"u)uFM dz >0, wrealin CF°(R"),

where I',, is the fundamental solution of (—A)#. This inequality fails if g€ (1, 3n—1)
is an integer (except if p=2 and n=7), as is also shown in the same papers.

In the present paper we fill the gaps between 0 and 1, and between %n—l and
%n, both with respect to the validity of (5) (with an appropriate positive right-hand
side instead of 0), and to the validity of the implication (2) = (3). We also extend
the non-validity results for the inequality (5). For instance, the necessary condition
242> (pu—1)n fills the gaps between the integral points where this inequality does
not hold.

Whether the condition (2) is sufficient for the regularity when (5) fails is not
known (e.g. in the case =2, n=8). However, it is interesting that the left and the
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right intervals in (4) are close to the cases =0 respective u>1n, where (3) always
holds, and that the same proof, based on (5), works for both these intervals.

The outline of the paper is as follows. The appropriate variant of (5), inequality
(8), is established in Section 3 except that a large part of the proof (concerning
the right interval) is postponed until Section 4. The method used there involves
decomposing the Fourier transform of 4 in terms of spherical harmonic functions
and using properties of the Gegenbauer polynomials. In Section 5 we use a certain
integral representation of the bi-gamma function (see formula (29); the author does
not know whether this representation is new), and some preliminary results from
the previous section, to obtain necessary conditions for the inequality (5).

In Section 6, we combine some technical estimates with the result from Section 3
to obtain certain local estimates which contain the information that leads to the
implication (2) = (3). This result is finally obtained in Section 7, where we also
provide a more exact pointwise estimate of u near the boundary, see Theorem 17.

2. Notation and preliminaries

For peR and u a tempered distribution, the operator (—A)* is defined by

((— D) ) E) = [¢1a(e),

where ” denotes the Fourier transform with
6©)= [ o, i peCFER),
For negative powers of —A, Riesz potentials, we have the representation

(=) u(z) = cq / w()|z—ylo dy,

n

if u is a sufficiently smooth function and e.g. 0<a<n. Except for this, we will only
need the representation (6). We denote the fundamental solution of (—A)* by I',.
Thus (—A)*T',=6 and for 0<p<in,

-~

FN(:E) = |$\72Ha Fu(x) :Cu|x‘2ugn7

where ¢, is a positive number. We define I'g=94.
Let © denote a bounded open set in R™. The space Hg (), A>0, is the
completion of C§°(€2) in the norm

1/2
o= ([ 1Carpas [ prac)
Rn R"
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We write Viu={(l!/a!)'/20%u} 4=, Viu=Vu (here o is a multiindex and o!=
atlas! ... apl). In the space C§°(€2), the equivalence

1/2
(/ |V)\u]2dm> , if {A\}=0,

u(z) — Vigu(y)|? /2
(//Rzn A]lx y‘n+2[?L} dwdy) , if {A} #0,

holds, where [A\] and {\} denotes the integral and fractional part of A respectively.
A function in H3(Q) will be considered as a function in Hj(R™), which is zero on
the complement of the closure of €.

For e an arbitrary compact set and 0 <y < %n we define the p-harmonic capacity
as the number

[[uflx ~

cap,(e) =inf{[[u]? :u € C5°(R™), u=1 in a neighborhood of e}.

Positive, unimportant constants, which may vary from place to place, will
be denoted by ¢. We allow such a constant to depend on the dimension and on
parameters like ¢ and A above (since when considering (—A)#, we regard p as
being constant). The notation a~b means that a and b are comparable.

Functions are assumed to be real-valued unless it is clear from the context that
it should be otherwise.

3. Weighted positivity of (—A)*

The following lemma will be used both to prove weighted positivity and in the
proof of Lemma 11.

Lemma 1. If u,veC§(R") and 0<s<1 then
(uz) —uy) (v@) —v(y)) ,

|z —y|m+2e

b

(6)  u(—A)Pvto(—A)u—(~A) (uv) = A, /

n

where A;>0 and Ag/s(1—s) has finite, positive limits as s—0, 1.

Proof. Integrating the right integral with a function ¢€C§°(R™) and using
Parseval’s formula, we get

u(e +9))(v(2)—v(z-1)
//Rzn |y["+28 Qb(ﬂi) dx dy

—£ _inyy .
27T ///R,En 1 : |yTn+125 eny)a(g)@(n)qs(g*n) dydfdn




On weighted positivity and the Wiener regularity 57

The fact that [¢]~25 [p, (1—cos(t-y))|y| ™2 dy=A; ' implies that the last integral
equals

A | (e =) i@ ) s dr
= | @A e u(-8) W un(-a)¢) da.

We complete the proof by integrating the last term by parts, so that (—A)® acts
onuv. O

If we take v=w in (6), multiply by 'y and integrate we obtain the identity

(7 2/ (—A)*u)ul'y dr =u(0)? + A, //Rm = y|”+25|2 s(x) dx dy,

valid for 0<s< 1. Thisis an instance of the weighted positivity property. Corollary 9
shows that if s is replaced by any number p greater than 1, then, for sufficiently
high dimension, the integral on the left can assume negative values. On the other
hand, (7) in conjunction with Proposition 10 implies positivity of the integral for
as in the next lemma. However, the proof in the next section is needed to obtain
the appropriate right-hand side.

Lemma 2. Let ucC3P(R"), —n 1<,u< n, 0<o,7,l, where | is an integer
and 0<o+7+1<u. Then,
5u(0)2>

/n((—A)”u)uFu dz— MO >c(/n(—A)"Vlu-((—A)TVZU)F0+T+Z -

where e=1, if l=07=0, and =0, otherwise.

If we take 0 =5, 7=0 and [=0, 1,..., m in Lemma 2 and then apply Lemma 1,
as we did to derive (7), we obtain the following corollary.

Corollary 3. Let ueC§®(R™), pe(0,in)\ (1, in~1), p=m+s, where m is
an integer and 0<s<1. If $>0 then

/n(( AYuyul'y, do > Fu(0 +c<//R% - y|"+2)5‘2 s(x)dx dy
(8) +Z/n \Viul’T; de

//R% |VmU|$ y\jfzbg(y) " Pints() dx dy) .

If s=0 then the same inequality but without the double integrals holds.

Remark. In the easy case p=1, (8) becomes an identity for a certain value of

¢ (cf. (7).
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4. Proof of Lemma 2

We need some facts and notation for this section. (Concerning the Gegenbauer
polynomials and the spherical harmonic functions, we refer to [1] and [9].)

Let the constant y= %(n—Z) be associated with R™. Then the area of the unit
sphere S"71 in R" is w=27""'T(y+1)"!. We write z€R"™ in polar coordinates
r>0 and ' €S"~! as z=ra’. The letters 7, k, 1, m will always denote non-negative
integers. Pochhammer’s symbol (A),, is defined by (A)o=1, and

MN)m =AA+1) ... A+m—=1)=T(A+m)/T(N),

if m is a positive integer, I denotes the gamma-function.
If A>0, we let ij\ denote the Gegenbauer polynomial defined by

1

) T azrap 2 G

We will need to know that C’j‘ is a polynomial of degree j which is odd (even) if j is
odd (even), and that these polynomials are orthogonal on the interval [—1, 1] with
respect to the weight function my(¢)=(1—-t2)*~1/2,

For the following theorem, the Funk—Hecke theorem, see [1].

Theorem 4. Let n>3, S; be any surface harmonic of degree j, y' €S™~*, and
let F' be continuous on [—1,1]. Then

1
w [ FEse) e -ase) [ FOCOm, o,

where A;={4m) " T(v)5!/(j+2v—1)!.

The following decomposition of a function feC§°(R"™) will be useful. Namely,
f can be written as a sum

(11) (=) :Z 1i(r)S;(r,z")
(if n=1, then oo is to be replaced by 1) converging in the sense of L?(R™), such

that f;€C§°(R') with supp f;5; Csupp f and for any fixed r>0,

1, ifj=k,

(12) /SM1 S;i(r,2")Sk(r,x') dz :{ 0. ifj£k.
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Indeed, for n=1 we take
So(r,1)=8o(r,—=1) =81 (r, 1) =—S;(r, 1) =1/V2.

Then (11) is just a decomposition into even and odd parts. In the case n=2 we can
use a Fourier series expansion to get, if # is the argument of z’,

Zf] r) cos(j6)+b,(r) sin(j0)) ij(r )S;(r, z'),

where the functions f; are chosen so that (12) holds. Similarly, if n>3 and r>0 is
fixed, the function S;(r,z’) is a unit surface harmonic of degree j.

Henceforth, in this section, we let A=c+7+! be fixed with 0§A<%n:’y+ 1.
We introduce the quadratic form

T 20 27' JJ o
(13) IO’,Tl // | | |y| = y) f(x)f(y) dz dy
R2" lz—y|
The relevance of this form in connection with Lemma 2 is seen from the identity
IU>T’l(ﬁ)
14 —A)°? ((—A) Iyder=——F+-*
(14 RSN IR

for a real function v€C§°(R™). This identity is an immediate consequence of Par-
seval’s formula and the definition of (—A)# and V,. In order to linearize this form
(Lemma, 5) we need the following quantities.

For n>3, 2m+j>1 and A>0, let

(15) = A, / Vs (C W)y (v) o,

where A; is as in (10). It is a simplified special case of formula 2.21.18.15 in Vol. 2
of [8] that

(16) ;‘\ﬁ:w(A>m+j()‘_7)m.
' (v+ 1)m+j m!
We let this extend the definition to cover n=1, 2 and A=0. Now define the functions
(17) 7 = N A (Pamt 420 F P2 ja2r),
m—mqo

where my is the smallest non-negative integer with 2mgy+j>1 and

AR fort >0 and y=mnd.

t
t2+§2

It can be shown that the series converges uniformly for A as above.
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Lemma 5. If feC§°(R™) is decomposed as in (11), g;(t)=e™ f,;(e?), then

(18) ReI7T(f }:/ 3;(&)P77(€) dg

If n=1, the upper limit of the sum should be replaced by 1.

Proof. We give the proof only for n>3. With the new variables introduced by
r=e’z, y=evy, p:t—S, V:(E"y')
the kernel of the form (13) becomes

67(£+20)]p11 lfpzo,

- — 19" Ip! —2|ply—A
(19) H(z,y)=K(p,v)=v'(1-2¢"Plv+te ) {e—(H-QT)p’ ifp<0.

We define the functions
1
(20) K =4; [ KO wyma )
-1
Now, introducing the operator I, we have

HUS)W) = [ Haaf)s @) ds

=/°° 06(s) [ Kp)S () de! ds = (K; ;) () S5(),

— 00 Sn—1

(21)

where we in the last step used the Funk—Hecke theorem (10). Since the operator H
is bounded on L?(G), for any bounded domain G, this allows us to write

x0 oo

Ty =(HE ) =Y (H(£85), feSk) = _(H(f;55), [;5;)
(22) J,k=0 j=0
=D (Kjxg5,95) = Ei/ GO K;(8) de,
i=0

where (-, ) is the L?-scalar product. To complete the proof we must verify that

o, >
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Expanding the factor (1v26“p‘y+e’2|p‘)*>‘ in K in terms of the Gegenbauer poly-
nomials (as in (9)), we get for p>0,

1
K;(p)+ K;(—p) = Aj(e > +e 277 Ze (kH)p/ VZC]?C]me dv.
k=0 -1

Since, by the properties of these polynomials, each integral in this formula vanishes
unless k=2m+7j—1 and m>0, the formula

/°° e~ cos(ép) dp=p:(£), >0,
0

leads to (23). O
Lemma 6. Under the hypothesis of Lemma 2

L0 g > (BT —emwd),

(24)
@00 > 7T, i>1,

where e=1 if l=07=0, and £=0 otherwise.

Proof. We recall that A=c+7+1 is fixed and notice that 0<A<pe[y,v+1),
by the hypothesis. Since the function CID?’T’l is continuous except if j={=07=0 in
which case its singular part is mwd, we see that all expressions in (24) are continuous.
(We used that p, A>0; notice that @8’0’0:27%05.) Thus it is enough to consider
points ££0 and forget about d-functions.

We first claim that

min(m,l)

A A0
(25) Ajom = E Ckj g
k=0

where |c| is bounded by a constant only depending on I (and A). To prove this, first
assume that 21 <2m-+j. Then the recursion formula for the Gegenbauer polynomials

(see [9]),

k k+2X—-2

vCp 4 (v) = mcﬁ(’/)+ m

CI;\*Q(V)a kZQ,

where we notice that the coeflicients are bounded by 1, leads to

V02m+gz E axC +2(m k) (v),
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which in turn gives (25). If 20>2m+j, then the sum in (25) contains the positive
term a;’g. Since this case occurs only for a limited number of combinations of j
and m, we can take ¢, =0 for k#m and c,, so that (25) holds, where ¢,, is bounded
as claimed.

By (25) and the relation ¢ /¢ <max(s/t,t/s), we obtain

o<
)l A,
(26) 7T <c E laj,y(:xt<p2m+j+2ﬂ'

m=0
We can now complete the proof by considering two cases.
(i) If y<A<p then formula (16) shows that |a;‘,’7?1|§ai’gl. Thus (24) follows
immediately from (26), with ¢ inverted.
(ii) Now let 0<A<7 (and thus y>1). This case will follow from the preceding
one, once we show that ®7"*< c@}”o’o. Notice that (16) gives

|(Z/-\YO | :| A,0 | (>‘+m)] < a}\,O | )\+m
P O (L tm)y P et

and, together with the definition of @;’0’0,

@700>a Dittry = Ly 2 )
30Ty = D5 = (J+27)2+€2
Writing by =(A+m)ay™> 'm»> We now have

2o 2bm|®F"
2m+j+2y)2+£2 wry

2,0
Iaj,m|902m+]'+27 < (
Summing this formula and using (26), with 2+ in place of 2, we obtain

(o o]
,Tl ,0,0
T <D b DT

m=0

The proof is completed by the fact that > °_ |bm| is convergent for the current
values of A and 4. In fact, if A<y (and y#£—1, —2,...) then

> 2 O D) A=)m
S =AY M—w,\f«“(/\ﬂ,x—y;wm).
m=0 m=0 FY+1 mm'

That is the finite value of a hypergeometric function at the point 1. Furthermore,
all but finitely many b, have the same sign. O
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Proof of Lemma 2. By Lemma 6,
1 & . 0T w(l—ce)|go(0)]?
(27) %Z/lgﬂz(@?vo’o_c@j, J) de > ( ;|90( )| ’
§=0

where ¢ is as in Lemma 2 and ¢ is the same on both sides. Now, let u be the real
function from Lemma 2, put f=14 and let g; correspond to f as in Lemma 5. We

notice that )
w|go(0)!
0)% = .

This can be verified directly or seen from the relation

oo

In view of this, Lemma 2 follows from (27), Lemma 5 and (14). O

=1"%%(@) =wlgo(0)*,

5. Non-positivity

In this section we will find a necessary condition for the inequality
(28) / ((=A)*u)ul’, dxr >0, wureal in C3°(R™).

By the previous section, (28) is equivalent to Re I*%%>0, which in turn, by (22),
is equivalent to all corresponding Re K ; being non-negative. The condition will be
furnished by a more suitable expansion of lim_,o Re Ko (¢) than the one we arrive
at via (23), from limg_,o ®45*°(¢) and the definition of this function.

Lemma 7. For every u>0 the identity

(29) I ((i—j—) ~1) de= v -4

holds, where ¢=I"/T" is the bi-gamma function.

Proof. For the following properties of the bi-gamma function, see [1] or [9],

Glut1) = i“”("‘)’ (t) =log(t)+O(1/t), as t— oo.
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Let ¢(p) denote the integral in (29). Since p(u)—@(u+1) equals

X T Tpe T 1 [/ 1—e# Y\’ 1
———dr=— / — ) de=—,
o (l+em)utt plo \(+e ™) p
we have for each integer m>0, if we put t=m+u, that
(30) Y(t)+o(t) = () +o(u)-
Define f by
o
f(t)zlog(t)—i-/ (14e *)"t—1)dz.
0

Then ¥(t)+¢(t)— f(t)—0, as t—o0, so if f(t) has a limit as t— o0, then (30) shows
that 1+ is constant, and we obtain (29).
For f we have

tf'(t) = l—t/ooo (1+e %) tlog(1+e %) dx
:1—t/0m(1+e2)—tez do+R() = O(1/t)+R(L),
where R can be estimated according to
IR(£)] < g /Ooo(ue—r)te‘% dz=0(1/¢).

It follows that f/(t)=0(1/t?) which implies that f(t) has a limit as t—oo0. This
completes the proof. U

The following condition looks complicated, but can be used to derive easier
ones, see Corollary 9.

Proposition 8. The condition

) i( W p—1 1))20

o m(%n)m m(m+p—

is necessary for (28) to hold.

Proof. We shall consider the Kj corresponding to ®f 2% From (19), where we
have A=c=p, {=7=0, and where we write z=|p|, i=v, we get

K(z, )+ K(—x,t) = (1+e2%)(1—2te” +€>*) 7

_ 1420 i —p\ [ —2te” ¥
~ (L+e2o)n =\ kJ\1+e> )
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(Compare this with the method used in the proof of Lemma 5, where the correspond-
ing factor (1—2te®+€2®) # was expanded in terms of the Gegenbauer polynomials.)
Now (20) gives

1+e2r 2 e” VP
K Ko(—z)=A B, )
o(z)+Ko(—2) = Ao 5y (1+e2e) O (1+62z>

where Ag=2m7"1/2T (v+ %)71

B = (—“) /1 12, () dt = <—“)F(—m+m+—%).

2m/) J_, 2m, T'{(y+m+1)

and

Using the formula

/°° 1+e2e [ 267 ™ dm_22m_1F(m+u)T(m)
o (1+e2)u\ 14e2= N T(2m+u)

we obtain after simplification

‘ . o0 1+€2,uz 0 (,u)m
(32) %%ReKo(g) :w/o (m41> dz+w Z T

By (29) and well-known expansions of 9(1)—(p) we have

[ 14eHT 1 = u s p—1
33 ———1llder=—— _— = _—
@ ((Hew)ﬂ ) 0T i) = 2 mm T T)
This gives the condition (31). O
Remark. The first equality in (33) is the special case y=p of the identity

T At - (#)m (1) m(te=7)m 1
34 — 1) dz+ SE\atA L -
( )/0 ((l—f—ew)” ) o mzl m(y+1)m Zjl (y+1)mm! m+m+u '

which we obtain by comparing (32) and (23).
Corollary 9. The condition

(35) 2u% > (u—1)n
s necessary for (28) to hold.

This shows that there is an interval [A,, 3n—A,], which is non-empty for n>8
and where A,—1, as n— o0, with p-values for which (28) does not hold.
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Proof. Assume that (35) does not hold. This is equivalent to a; <b;, where
we denote the series in (31) by >>°_ (am—by). It follows that <y and p?<
(u—1)(v+1)<wy—1, so the numerator minus the denominator of the right side of

ambmi1 (ptm—1)(v+14+m)
At 1bm (M+m)2

is (y—p)(m—1)+py—1-p?>0. This shows that a,,<b, for m>1 so that (31)
does not hold either. O

The following proposition shows that the weighted positivity property of (—A)*
is symmetric in p about the point in.
Proposition 10. Let O<,u<%n, The inequality (28) holds if and only if it
holds with %n—,u in place of .
Proof. Define v by
0=T,(—A)u.

Then, with /=2n—p and (z)=v(—2), we have 4=T,,(=A)* ¥ and the integral

2
/ ﬁudm:/ vﬁdx:/ ((~A)“/v)17FM/d:c

n (28) becomes
(0 real implies ¥=7). Since this integral is real, we see that if (28) holds for p/,
it must also hold for p. (We omit the details about approximating v by functions
in Cg°(R™).) O

Remark. Both (31) and (35) have the above symmetry. In fact, the series in
(31) remains unaffected if 4 is replaced by p'=24n—p, that is lime_g 8006y =
limg 0 <I>6‘/’0’0 (€). This identity applied to (32), with p=1, provides a third way to
obtain (33).

Another manifestation of the proposition (and the fact that the transformation
u—v in the proof “commutes” with the decomposition (11)) is that @ 00 and

0,0
<I>§‘ " seem to have the same zeros.

6. Local estimates

In this section we let p=m+s, where m is integer and O0<s<1. The case s=0
is much easier, but sometimes needs a slightly different formulation. Being already
known (and in fact implicitly contained in the present treatment), we omit this
case.
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We need some more notation. Let B;={zcR":|z|<277}, C;=B,_1\B;. For
J 3= J
E;=DBj;, C;, we introduce the “dimensionless” seminorm

. 1/2
(2@'2*)1 / IV,\ulzdw> , if {A\} =0,

9(n—2X)j u(y)lgd d L/2 if 1A} £0
//EJxE |:r yww dy ) o A0,

and similarly, for a measurable set F,

( / |Vaul?Ty d:v)l/z, if {A\}=0,

\Y% 2 1/2
(//E 5 lx y|n+2[,{\];;(y)l P,\<3U)d17dy> , if {A} #£0.

Thus |ulx,z;~{uazg, if E;=C; and A>0, but not if E;=B;. We denote the L*-
1/2

IU’|>\7Ej -

(g =

norm ( [, u” dz)*/? by ||lu||g. Finally, we introduce the bilinear form

Qu(v,w):/Rn((—A)“v)wFM dz.

With this notation, the conclusion of Corollary 3 becomes
U(0)2
(36) Qu(uv ’U,) 2 2 ( s, R +Z l R” + m+s,R"> .

Lemma 11. Let neC§e(R™), n(0)=1 and a neighborhood of supp Vn be con-
tained in Cy. Let §<4s and ueCg°(R™). Then,

Qu s t) ~ Q0 70) (Z > 5*k*Z\u|20k e, )

k=—o00

Proof. Writing A=(—A)® and ¢=nI",,, the left-hand side of the inequality can
be written as a sum of terms of the form

= Jen (A% (u)) 0 (Yu) — (A6*u)9* (mpu)) dz,

where |a|=m. This, in turn, can be written as I +I5+ 13— 1,4, where

Il=/n([A,n]aau)aa(¢u) dx, Ig:/ (1A, ¥]0°u) [0, n]u dz,

n

h= [ et sude, L= [ Ao["a] vuds
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([A, B] denotes the commutator AB—BA). In fact, calculating the difference of the
integrands, we obtain that I —(I1+Io+I5— 1) equals

[ @@ inior su-aworwio®.iu) ds =o.

Let us consider the above splitting of I in some special cases: If s=0 then A

is the identity so Iy and I vanish while I3 and Iy consist of terms of the type

S €(0%u)07udz, where £€C5°(Cp). Such a term can immediately be estimated

by c(|u||2ﬁ”co+|u||27|’co). If m<1 then I, vanishes and if rn=0 then only I; remains.
We begin by estimating I; which we write as I5+ /g, where

I5= / X (A(n0“u) —nAd*u— (0%uw)An)0* (Yu) dx
Is= / i (An)(0%w) 3% (Yu) dz

From Lemma 1 we have I;=—A; [[g.. U dz dy, where

(n(z) ~n(y))(0*u(z) ~9*u(y))0 (Yu)(z)

Ulz,y)= |z —y[rres

For kl<0, the distance between ze€Cy and yeC) is comparable with 2~ min(k.D,
Hence the properties of n imply

I5§c<// |U| dx dy+ Z // |U|dxdy>:c(IA+IB),
CoxCy CpxChp)’

k,l=—00

where (Cj xCy) is the set {(z,y)€CL xCy, |z —y|>co2™ ™nED},
The term from I4 containing &%u (coming from 0%(¢u)) is majorized by

0% u(w) ~0"u(y)| o
//Rzn |z — y|n+23 1 |0°u(z)| dx dy

/2
0% u(z) |0%u(z) —0%u(y)|? !
<[ it e [ DO )

where the integrals are taken over CyxCy. Since s<1, the last expression is less or
equal than

clul|g),co [tlm+s,c0 < C(’“ﬁm,co HU|§n+s,Co)-

This completes the estimate of I4.
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Let us use the notation [f]z =sup¢, |f| and [f]s=supe, vc, |f(x)—f(y)]. Then
the term from I containing u(® =8Py can be estimated by
(37)

)
c Z 2min(k,l)(n+25) [n]k,l[¢(a_ﬁ)]k

k,l=—oc0

X(2_anu(a)||Ck”u(/@)HCk+2—n(k+l)/2|lu(a)”cl”u(ﬁ)”Ck).

Now, writing af =2*("/2717D |||, we have af <|u||,|,c, and we only need to
verify that the coeflicients for a,‘jag and a?ag are less than ¢2~ 4K+ for some

d>2s, since then the inequality

D 2 dEHIDgz gl <o N 27 kl((ag)?+(af)?),

kl=—o00 s
where m can be either & or [, gives us the desired result. We notice that
[kt [1 P, < cakn—lal=181-29)

where ¢=0 unless kI <0<k. Now we can calculate the coefficients in two cases:
(i) I<0<k. The coefficient for afa} is majorized by

C2k(nf\a|—i,8|—25—n/2+\a|7n/2+|ﬂ|)21(n+257n) — 62—25(k*l)’

so in this case we can take d=2s. Similarly, for af‘af, we can take d=2s+|al.

(if) k=0<{. Here we get d=n and d=n—|al, respectively. Since for any other
k., { the coefficients in (37) vanish, we have completed the estimate of I5.

For Iy, we proceed in the same manner as for I; and write Io=1I;+1g. The
corresponding I4 is handled identically. As for Ip we switch n and ¢ in (37),
noticing that ‘

[4f]51 < comax(k,D)(n—2]a|-2s)

and that n must be differentiated so that we only need to consider k=0. The result
is: (i) {<0=k. For a%ag and a;’a’g we can take d=2s and d=2s+a|, respectively.
(i) k=0<1. Here we can take d=2s+2|a| and d=2s+|a|, respectively.

The estimate of I follows easily, with d=2s, from the fact that An is bounded.
For the integral

Is= [ (Aw)orwior, uds

the result is immediate, since At is bounded on the support of the derivatives of 7.
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In the estimate of I3 and Iy we write A=Iy_s)(—A), where I _g=(—A)*""
denotes the Riesz potential of order 2(1—s). Integrating by parts, like

*/ In—sVv-Vwdz for I3,

NS
R? /vIQ(l_S)(—A)wd:v for Iy,
R'n-

we see that it suffices to consider the integrals
/ Iya—y (€0Pu)(0* " 7YY udr and / Ii—g (£0Pu)0%u dx,
R” R

where |o|=1, 0<8<q, 0<y<a, £€C§°(Ch). Using the easily proved operator norm
estimate

21— La(Co)-s La(Cy) < 2P ED 20 Dgmhn /2,
we obtain for the first integral that, for agaz and k>0, we can take d=2s+|a|—1.
(When this integral occurs, |a|>1.) The second integral is clearly better for k>0.
For ajaf and k<0 one gets d=2s+|a|—2. (Here we note that I, =0, if |o|<1). O

For ue HY (Q)NC>=(Q), d€(2s,4s), we introduce the quantities

Ajw)= sup u<p>2+2(2 lul%,Bmums,Bk),

pEQNB; k=7 M=1
J s m
— 85—k 2
M= 3 (2009 i, )+l
k=—o0 =0

We will write A;=A;(u) and N;=N;(u). Notice that N; is finite, since it can be
estimated by means of [|u]/Z.

The following lemma, gives a pointwise estimate without any requirements on
the boundary of the domain €.

Lemma 12. Let p=m+s be as in Corollary 3 and let ucHL () satisfy
(—A)*u=0 on QNB;. Then,

(38) Ajy1 <cNj.

Proof. For simplicity we prove this only for p=s€(0,1). The general case is
almost identical. Let veC§®(R™) and let 17 be as in Lemma 11. Combining that
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lemma with (36) applied to nu, we obtain,
o0
v(0)* 4+ 277 ol ¢, + (0)E B, < 0(0)7+clnw)] re < e1Qs(no, 1)
k=1

5@@4%%@+0(§:25WWKQ+WQ%)

k=—00

(The first step is only a simple estimate.) Since d>>2s we can take k; so large that
the sum on the left majorizes the sum of all terms where k>k; on the right. If we
then replace v(z) by v(279 2z +p), p€ Bj+1, and make a change of variables in the
integrals that define @), and the seminorms, we get

Itk
—dlk—7
U@RH%&&HSQ@m%ﬁH%H«(§j2' w%ﬁqw+mﬁqﬂ)

k=—o00

where v,(z)=v(z+p) and nj 2(x)=n(2""2z). Now let veC§°(2) tend to u in the
norm of HY(R™). Then the sum and the last term on the right tend to the same
expression with u in place of v. The fact that (—A)%u,=0, which in particular
makes u, smooth on supp(njz- 2Up), implies that @, on the right tends to zero. If
we, in addition, let v=w in a neighborhood of p, then we can replace v by u also on
the left.

Now, by replacing Cr12 and Cjy2 by By and By, respectively, and enlarging
the constant ¢, we can replace u, by u and j+k; by j on the right to obtain

J
(39) u(p)2+(up)iBj+2+|u|iBj+1 SC( Z 2_60%)!“'3,3;9+’“|§,Bf>.

k=—o0

(We have also added the term |u|? B, to the left, which is possible thanks to the
last term on the right.) Finally, the easily proved inequality,

(e 0]
Zluli,Bk §c<u>§\,B_7’ )\>07
k=7

shows that, for m=0, A;4, is majorized by a constant times the supremum over all
pEB;41 of the left-hand side of (39). Since, for m=0, the right-hand side of (39)
equals cV;, the proof is complete. U

The following inequality is proved in a similar way as Theorem 10.1.2 in [4].
See also Lemma 2.3 in [7].
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Lemma 13. Let ue Hf (O)NC™>(Q). Then

(10) ufl 5, < (Zm;m ol BJ)

where
~; =22 cap  (B;\Q).

Lemma 14. Let p=m+s be as in Corollary 3 and let ueHY(Q) satisfy
(—A)*u=0 on QNBj,. Let j1>1. Then, for j>jo,

-1
(41) Ajig S 2700 (26jONJ'0+ > 25kAk> +%(AJ_AJ'+1)’
7

k=jo+1
where c1, but not ¢, depends on j1.

Proof. Since the kth term from N; can be estimated by 27%0~%) A, and since
[ul3 5., <2" **Mul3 p,, we see that N, _1 is majorized by

9—8(3+51—-1) <2510N + Z 25kAk) +cl (Z |U|l B; +|u‘m+s B;j )

k=jo+1 =

Using Lemma 13 on f“%,Bj and then the boundedness from below of ('y{l)‘;-i,oo

it follows that N;;,_; is less than the righ-hand side of (41). The assertion now
follows from Lemma 12. [

7. Regularity of a boundary point

The remark about the case s=0 in the beginning of the previous section does
also apply here.

Definition 15. The point O€d(Q is said to be regular with respect to (—A)* if
the solution of the equation

(42) (-AYu=feC5(Q), ueH; (),

satisfies u(z)—0, as z—O.

It is shown in [5] that for =1, regularity in the above sense is equivalent to
the Wiener regularity.

Since supgqp, u(p)?<A;, the following lemma shows that divergence of the
series > . ___ vk is sufficient for regularity of the point 0€9Q.
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Lemma 16. Let p be as in Corollary 3 and let ue H{' (Q) satisfy (—A)*u=0
on QNB;,. Then,

(43) A; <eNj 2™ Shmio ™ 5> ot

Proof. To simplify notation in the proof, we redefine 4;, as
Ajo = Njo .

Since Ay, <Aj41, it then follows from (41) that

j—1
) - o o
(44) (14 2) Aygy < BN 000 R g 4y G2 G
Cc1 C1 :
k=jo
Before continuing the proof we choose the numbers ¢, ¢’ and j;. Take j; and
dq1>0 so that

7j—1
(45) 2¢o Z (e y=8)(g+j1—k) <1, d<d,
k=jo

where v majorizes all ;. Again due to the boundedness of (v;) there is a

d2>0, and then since 7; 1 <2""?*v;, a number d3>0 such that

e ]
j=—o0?

CN—1 s it =
(46) <1+;_9) < %% < 97¢ Yt ¢ < ds.
4]

Now choose ¢’=min(dy, d3). By Lemma 12, the fact that (4;)52_, decreases and
(75)$2 — o is bounded, and by the redefinition of A;,, we can take ¢ so that (43) is
satisfied for jo Sj S]O +_]1 —1.

We now complete the proof by an induction step from j to j+j;. First assume
that the following inequality holds,

j—1
(47) Ay <20y 27°0FTR 4,
k=jo

Then by the induction hypothesis,

-1
o s k—1
Aj+j1 < QéochO Z 2-5(g+]1_k)2—c Yo
k=jo

o j—1
<2ceN;, 27 T §T gl vt k),
k=jo
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Combining this with (45), we obtain (43) with j+7; in place of j. If on the other
hand (47) does not hold, then (44) gives

~;
A; -<(1 —J)
J+iji = +201

which together with (46) and the induction hypothesis again leads to (43) for j+
Ji- O

To formulate our theorem, we need the following continuous versions of some
earlier introduced quantities. Let B(r)={zcR"™:|z|<r}. Put

y(r)=r2-n capu(B(r)\Q).

Let p=m+s and 6€(2s,4s) be as before and define

3

N(u,r):Zr‘S /Rn Viul?(r+ a2 0 da

=0
_ 2
Ly 2mts)—n // |V imu(z) —Vmu(y)| da dy.
B(r)xB(r)

=g

Thus 7(279)=~; and we easily obtain N(u,277)~N;(u). As for N;(u), N(u,r) is
finite.

Theorem 17. Let p€(0,3n)\ (1, 4n—1) and let ve HY(Q) satisfy (—A)*u=
0 on QNB,,. Then, for r<irg,

To
(48) sup  u(p)? <eN(u,ro)exp (~c’ / (o) dg).
pEQNB(r) r o

Proof. By the inequality

2730

2~c/ Ef;;;—o T < exp <_c// / LQ)_ dQ)
2-7 0

and the equivalence of the continuous and discrete versions of N, (48) follows from
Lemma 16, for ry and r of the form 79=2"7° and r=2"7. From this, the assertion
follows for arbitrary TS%’I‘(). Finally, a transformation z—tx with t€[1,2), shows
that also ry can be arbitrary. O

Remark. It is shown in [5] that, for 4 an admissible integer, a similar estimate
holds, where N (u,rq) is replaced by the mean value of u? over the annulus B(rg)\
B (%7‘0) .
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