
On analytic functions which are in H p 
for some positive p 

Matts Ess6n 

1. Introduction. The main results 

We shall say that a domain G in the complex plane C is a H-domain (where 
H stands for Hardy) if every function analytic in the unit disk U with values in G 
belongs to H p for some p > 0 .  I f  E=CG is the complement of  G, we define 

~(r) = cap (E c~ {Iwl ~- r}), 

h (r) = (log (5r/] (r)))-l, 

1r = f~  h (s) cls/s. 
We shall prove 

Theorem 1. Suppose that 

(1) 

Then G is a H-domain. 

lim inf H(r)/log r > 0. 
r ~  

Theorem 2. Let a > 0  be given and suppose that for all sufficiently large r, we 
have the inequality v(r)<ar. Then, i f  a is small enough, G is a H-domain if  and only 
i f ( l )  holds. 

Remark. From the proof, we shall see that we can take a = 3 4  -8. If  
l imsupr~= y(r)/r=l,  G can be a H-domain also when condition (1) does not 
hold. An example is given after the proof  of Lemma 1 in Section 2. Some extra 
condition will be needed in situations which are not covered by Theorem 2. 

To introduce the condition which will be used in the present paper, let us con- 
sider an open subset M of {]w I =R} and let ~R(w, M)  be the harmonic measure 
of  M with respect to {Iw[<R}\E. We shall say that the complement E of  G is 
not too large if there exists a positive number A with the following property: for 
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each large circle {]w]=R} which does not intersect E and for each open subset M 
of {[w] =R} of  angular measure re, we define 

~2(r, R) = {ei~~ a~R(re i~~ M )  >= (r/R)a}. 

Then, if m ( . )  denotes Lebesgue measure on the unit circle, we have 

(2) mf2(r, R) >= zc, 0 < r <= R. 

Theorem 3. Assume that E is not too large. Then G is a H-domain i f  and only 
i f ( l )  holds. 

Remark. In the definition above, we might just as well have worked with an 
open subset M of  angular measure ~s, where s is a small given positive number, 
and required that we would have mE2(r, R)>-_zcs. The price "to pay would have 
been certain technical complications in Lemma 2. For simplicity, we have restricted 
ourselves to the situation discussed above. 

A similar question has been discussed by Hansen and Hayman [1]. They prove 
(in our terminology) that if the area A(r)  of  the set Gc~{IwI<r } satisfies certain 
conditions, G will be a H-domain. 

Many of the proofs in the present paper use techniques which are due to Hay- 
man and Pommerenke [3]. 

2. The main lemma 

Without loss of  generality, we can assume that 0EG. Let re=OR be the har- 
monic measure of {lw] =R} with respect to G, i.e., the function which is harmonic 
in G, 1 a.e. on { I w [ = R } \ E  and 0 on OGn{[wl<R},  except possibly on a set of  
capacity zero. We extend mR to a function subharmonic in the disk {lwl<R } by 
defining it to be zero elsewhere in the disk. 

Lemma 1. G is a H-domain i f  and only i f  for some positive constants Po and C, 
we have 

(3) mR(O, (7) <-- CR-Po, R >= 1. 

Proof. In the proof  that condition (3) is sufficient, we need a result of  Hayman 
and Weitsman [4]. Suppose that f is analytic in U, that f ( U ) c  G and that f ( 0 ) =  0. 
Let G(R) be that component of G c~ {lw] <R}  which contains the origin. Let 2~L(r, R) 
be the total length of  the arcs on {]z[=r} where I f (z)[>R. Then we have (of. 
Theorem 4 in [4]) that 

(4) L(r, R) ~ m. (0). 
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We also note that (cf. [4], p. 135) 

(2z)-l f2"lf(re*~ = - f y  R aL(r,R): P f o'" L(r'R)Rp-ldR' 

where M(r)=suPo ]f(rei~ Thus, if  (3) holds, we see that f E H  p for 0 < p < p 0 .  
Conversely, assume that G is a H-domain. Let F map U onto the infinite cover- 

ing surface R c over G in such a way that F (0)=0 .  Since G is a H-domain, there 
exists p > 0  such that 

(5) f ~  [F(rei~ <= Const. < 0% 0 -< r < 1. 

Let G1 be the component  of  {[w]<R} \E  which contains the origin and letfx map U 
onto the infinite covering surface RG1 over G1 in such a way that f~(0)=0.  As in 
Hayman and Pommerenke [3], we apply a result of  Nevanlinna (cf. [5], p. 33) which 
says that oJR(0 ) is exactly the proport ion of the circle OU which is mapped by f~ 
onto points of  {Iwl =R}. Thus we have 

~a(0)R' ~ (2r0-*f2 = lfl(ei~ ~= lim inf (2re) -1 f2= If,(re'~ 

<- lira inf (2z)-i f~/t - , -1-  IF(rei~ pdO <= Const. 

We have used Fatou's  lemma, subordination (cf. [2], pp. 74, 76) and (5). Thus (3) 
holds with po=p and the lemma is proved. 

Remark. We can now construct a H-domain for which condition (1) does not 
hold. Let R , = e x p  (n2), n =  1, 2, . . . .  Let 

E = ~ {w: [w[ =-R., [argw[ => 2rt/R.+l}, 
1 

and let G be the complement of  E. We see that 

o~R(0, G) ~ (Rn+l) -1 < R -1 ,  R n ~ R <~__ Rn+ 1. 

Consequently, all analytic functions in U with values in G are in H p, 0 < p <  1. 
A disk of radius r has capacity r. Thus, if  Rn<=R<-R,+I, we have 

~ , - 1  t'R,+1<, ))-lds/s < n l o g n ( l + o ( 1 ) ) ,  n _~o. H(R) <= ~ JR,  t log(5s/R~ = 

It  follows that lim infR_~ ~ H(R)/log R = 0 ,  i.e., condition (1) does not hold. 
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3. Proof of Theorem 1 

We can assume that 0EG. If  R is a large positive number, we define el=o~ R 
as in Section 2 and put B(r)=sUPlwl= r o~R(w), O<=r<=R. Let r > 0  be given such 
that 5r<R and choose woEC, lWo]=r. The capacity of Eo=En{]w-WoI<2r} is at 
least 7(r). Let ~o be the harmonic measure of  Eo with respect to {[w-wol<4r}\Eo.  
From a lemma of  Hayman and Pommerenke (cf. [3], p. 220), we have the estimate 

(6) O~o(Wo) >= log (5/4)/log(5r/7(r)), Iw0[ = r. 

Let us now consider the function h(w)=t~R(w)-B(5r)(1-t~o(w) ) which is har- 
monic in Go=Gn{[w-wo[<4r}.  On the outer circle with radius 4r, we have 
t%(w)=0 and t~R(w)~B(5r), and thus h is non-positive on this part of OGo. 
But h is non-positive also on that part of OGo which is inside this circle, since to e (w) = 0 
at all those points except possibly a set of  capacity zero. Thus the maximum principle 
shows that we have h(wo)~O, and we obtain from (6) that 

B(r)---- sup to(w0)<= sup B(5r)( l - t~o(w,)  ) -< B(5r)(1-h(r)log(5/4)) .  
IwoI =" lwol =~ 

Thus, if 1 ~ r <  5, we have 

< n log B (r) = - (•k =1 h(5 t -  1 f ) )  flog 5/4), 

where n is the largest integer such that 5"+1~R. It follows that 

I; s log ~ (0) ~ Const. log B(r) dr/r ~ - Const. h (s) ds/s. 

Thus, if (1) holds, there exists a positive number c such that 

~R (0) = co (0) <_- exp ( -  c log R) = R -  c, R => 1. 

Applying Lemma 1, we see that G is a H-domain, and Theorem 1 is proved. 

4. A lemma on harmonic measures 

The following result will be needed in the proofs of  Theorems 2 and 3. 

L e m m a 2 .  Let E be a compact subset of  {Iw]<=R} such that if 7=cap  E, 
we have 

(7) ro = 2R(7/2R) 1/8 < R/17. 

Let M be an open subset of {[w[=R} of angular measure at least rc and such that 
M n E= 0. Let o~ ( . ,  M) be the harmonic measure of M with respect to {Iwl < R } \ E .  
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Then the measure of the set F=F(r)={cp: to(re i~, M ) ~ l / 1 6 }  is at least zc when 
ro~r<-R/17. 

Remark. When applying the lemma, we can take 7 ~ R  34 -8. 

Proof. Let N={[w[=R}\(MwE).  Let t o ( . , N )  be the harmonic measure 
of N with respect to {]wI<R}\E. As before, we extend to( . ,  M) and to ( . ,  N) 
to subharmonic functions in the disk {lwl <R}  by defining them to be zero at points 
in the interior where they are not defined. Finally, we have a superharmonic func- 
tion to ( . ,  E)  which is the harmonic measure of E with respect to {Iwl<R}\E in 
{[wI<R}\E and 1 on E. We dearly have 

(8) to(w, M)+to(w, N)+to(w,  E) --- 1, [w[ < R. 

We also define lx(r)=(2zO -1 f2o~ to(re i*, X)dg, where X can be either one of  the 
sets M, N and E. 

We first note that 

In(r) <= (log (2R/y)) -~ log (2R/r), 0 < r < R. 

The case r=R/2 can be found in Hayman and Pommerenke (of. [3], p. 221). The 
general case is handled in exactly the same way. Thus, if there exists rE[0, R) such 
that IE(r)>l/8, we must have r<ro. Consequently, we obtain 

(9) Ie(r)<= 1/8, r 0 ~ r < R .  

If  IE(0)~I/8,  (9) is clearly also true since Ie(r) is nonincreasing on (0, R). 
Let IX I denote the angular measure of the set X divided by 2ft. From Poisson's 

formula for the unit disk, we see that 

to(w,M) <- 91M1/8, to(w, N) -< 91N[/8 _<- 9(1- [MJ/8) ,  Iw] <-- R/17. 

From (8) and (9), it follows that lta(r)>-(9[MI-2)/8, ro<=r<=R/17. On the other 
hand, we have also the estimate 

IM(r) <- (1 -IFI)/16+9]MIIFI)/8, 0 <= r <= R/17. 

Combining these two estimates, we obtain Lemma 2. 

5. Proof  of  Theorem 2 

We shall construct a decreasing sequence of  harmonic minorants of the har- 
monic measure toR ( ' ,  G) for a large given R. 

Let E be a compact subset of a circular ring {RI_~ lw I <--R2} with the property 
that En{Iwl=r}~O for all rE[R1, R2]. Let E 0 be the circular projection of  E 
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onto the positive real axis, i.e., E 0 is the interval JR1, R2]. Then we know that 

(10) cap E ~ cap Eo = (R2--RO/4. 

We have assumed that v(r)<-ar for all sufficiently large r, where a > 0  i s  given. 
It follows from (10) that if aC(0, 1/20), say, there is at least one R in each interval 
of logarithmic length at least 5a such that 

(10) E n {rwl = R / =  0.  

We shall estimate cog(0) for numbers R such that (10) holds. Since ~R(0) is a non- 
increasing function of R, this will give us control of o~R(0) for all large R. 

Let now R be given such that (10) holds. To construct a decreasing sequence 
{r,}, let us take r~=R and assume that r2 . . . . .  r, are known. We choose r,+l in 
such a way that (10) holds with R=r ,+a  and that we have 

(11) 2r.(~ (r.)/2r~) ~/8 ~ r~+ 1 ~= (1 + 6a) 2r.(~ (r.)/2r.) I/s. 

This is possible since the logarithmic length of the interval defined in (11) is larger 
than 5a. We now use Lemma 2 to define a sequence {M.} of subsets of the circles 
{{lwl=r.}}. I f  M~={tw[=R } and 342, . . . ,M. are defined, we apply Lemma2 
to the disk {Iwl<r.} with E=Ec~{Iwl<=r.}. Consequently, there exists a subset 
M.+I of {lw[=r.+l} such that 

e~,(r,+ze i*', M,) >= 1/16, r,+lei~EM,+l, 

where co,(., M)=o~, ( . ,  21//,), the angular measure of M,+t  is at least ~ and 21'/.+1 
has a positive distance to E. From the maximum principle, we deduce 

(12) e0a(w) -~ o~2(w, M2)/16, Iwl <-- r2, 

(13) to.(w, M.) => t~.+l(w, M,,+a)/16, Iwl <- r , _ _ ,  n = 2 ,  3 . . . . .  

Let q be the last index such that we can choose rq+ 1 according to (11). From (12) 
and (13), we deduce that 
(14) sup toR(rq+te i~~ ~ 16-q. 

o 

Since the domain G is connected and the inequality 7(r)<=ar holds for all suffi- 
ciently large r, there exists a constant C=C(G) only depending on G such that 

(15) sup o~(rq+ l eie) <= CO~R(O). 
~o 

Since G is a H-domain, it follows from Lemma 1 and (14) that there exists p > 0  
such that 

(16) 16-q _<- Const. R -p. 
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We need an estimate of  q. From (11), we see that 

log (R/rq+~) = ~'~ log (rk/rk+~) >-- Const. ~ 'q log (2rk/](rk)). 

I t  follows from Schwarz inequality that we have 

q~ --< ( ~ 1  q log (2rk/7(rk))) ( , ~  (log (2rJT(r~)))-l), 
and we obtain 

log (Rlrq+ 0 >- Const. q2/ f?  (log (2sl,<s)))-' dsls. 

Combining this inequality with (16), we see that for all large R, we have 

(log R ) - I  f" (log (2s/y (s)))-i  ds/s >-_ Const. > 0. 

Thus G is a H-domain only if (1) holds. The sufficiency was proved in Theorem 1. 
This concludes the proof  of  Theorem 2. 

6. Proof of Theorem 3 

Let us assume that condition (1) does not hold. We shall prove that 
lira supR~ ~ log t~R(0)/Iog R = 0 ,  i.e., that G can not be a H-domain since we have 
Lemma 1. 

Let 6~-0 be given and define T=T(6)-={r~I: 7(r)>=r6} and T1 = 
{r=>l: s<=r<=s/6 for some sET}. 

Since 7 is continuous to the right, CTln(1, ~)  is an open set. I f  rETI and 
r => 1/6, there exists a dosed interval containing r, contained in T1 and of logarithmic 
length log (1/6). Thus (1, ~o) is a union of intervals contained in CT1 or T1. Essen- 
tially all intervals contained in T~ have logarithmic length at least log (1/6). We 
also note that we have 

(17) 7(r) >--_ r6 2, rET1, T(r) -< r6, rE~T1. 

The boundary points of these intervals form an increasing sequence with only a 
finite number of  points in each compact interval. Since (I) does not hold, there exists 
a sequence {R,} increasing to infinity such that H(R,)/log R,-~O, n-~ o~. Without 
loss of  generality, we can assume that  {[wl=R,}nE=O , n = l ,  2 . . . .  (of. the dis- 
cussion at the beginning of  Section 5). 

We assume in the sequel that 6 is so small that we can use Lemma 2. I f  RE {R,}, 
we shall succesively choose a decreasing sequence of  real numbers. Let t k = R  , 
and assume that r2, ..., r, have been chosen in such a way that {Iw[=rk}nE=O, 
k = l ,  2, ..., n. 



50 Matts Ess6n 

i) Suppose that 7(r,)_->3r, which means that we are in 7"1. Let a=sup,~_r r, 
rCCTx. Let (f, e) be the associated interval in CT1. If  2 f i<e ,  there exists 0C(f, e) 
such that { ]w/=Q}nE=0 and we choose r,+l = &  This is correct since we have 
7(r)<3r in ~Tx and 3 is small. Otherwise, let ax=supr_~a r, r6gTx, and let (fix, ax) 
be the next associated interval in ~Tx. If  2flx<ax, we find ~ as above in the interval 
~x,  al) and define r,+l--~. After a finite number of  steps, we have either found 
r,+l or got down to 1, since the logarithmic length of an interval in 7"1 is at least 
log (1/3). 

ii) Suppose y(r.)<6r.. Then, we find Q in the interval (2r.(y(r.)/2r.) ~/s, r./17) 
such that {Iw[=~}c~E=0 and define r ,+ l=  Q (cf. (7)in Lemma2). 

We have now found the finite, decreasing sequence {r,} and can define the 
harmonic minorants of the harmonic measure toR (cf. Section 2). We shall define a 
sequence {M,} of subsets of {{tw[=r,}}, all of angular measure at least ~. If  M I =  
{lwl =R} and Ms, ..., M, are defined, there are two possibilities. 

i) I f  ?(r.)=>br., we define 

Mn+ 1 = {rn+leie: to.(rn+le iq', Mn) >= (r.+l/r.)'4}. 

From our assumption that E is not too large, it is clear that the angular measure 
of M.+I is at least Jr. (As before, we write to. instead of  co,.) 

ii) I f  ~(r.)<3r., we define 

M.+ 1 = {rn+lei'e: t~.(r.+ae ~, M,,) >= 1/16}. 

According to Lemma 2, the angular measure of M.+I is at least re. We can now 
define the decreasing sequence of harmonic minorants. In the two possible cases, 
we have the following alternatives: 

(i) to.(w) ~_ to~(w, M2)(rJR) A, Iwl -<- r~. 
(ii) toR(w) -> to~(w, M2)/16, }w} --<_ r 2. 

(i) o .  (w) => to.+l(w, Mn+l)(rn+l/rn) A, Iwl =< r.+x, 
(ii) to o (w) => to.+l(W, 3/.+0/16, Iw[ =< r.+l,  

n = 2 ,  3,  . . . .  

Arguing in the same way as in the proof of Theorem 2, we see that 

(18) 0~R(0 ) => Const. 16-q ~ . c s  (r.+Jr.) A, 

where J is the index set which occurs in case (i) and q=q(R) is the number of steps 
from case (ii). The number of intervals in Ta(R)= Tx c~ [1, R] is approximately at 
most log R/(log (1/3)), and we have 

z~. e s log (r./r. + 1) <= mt 7"1 (171) + (log 2) (log R)/log (1/6), 

where m~ stands for logarithmic length. 
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The same reasoning as in the p r o o f  o f  Theorem 2 shows that  

q2 <_ Const. ( Z .  r s,  log (r/r. + a)) ( Z .  ~ ss (log (2r,/? (r .)))-l) ,  

where J J  is the index set which occurs in case (ii). Consequently,  we have 

( as/,. q= _--< Const. log R log (2s/? (s 

When  RE {R,}, we deduce that  q(Rn)/log R,-+O, n-+oo. Since (17) holds, we must  

also have that  mtTl(Rn)/ log Rn-+O , n~oo.  I t  follows f rom (18) that  

lim sup log oJR (0)/log R _-> - (log e)/( log (1/6)). 

Since 6 > 0  is arbitrary, the upper  limit mus t  in fact be zero, and Theorem 3 is 

proved.  
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