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1. Introduction 

If f is an analytic function in the unit disk U, the Dirichlet integral D ( f )  is 
defined by 

D ( f ) =  ( f v l f ' ( z ) l~dxdy /~r )  m, z =  x + i y .  

The following result is due to A. Chang and D. Marshall (of. [4], [7]). It is inspired 
by work of A. Beurling and J. Moser (cf. [3], [8]). 

Theorem A. There is a constant C< oo such that i f  f is analytic in U, f (0 )=0  
and D ( f )  ~ 1, then 

�9 I0 f~"  exp ([f(e~~ dO = < C. 

If f is univalent, ;zD(f) 2 is the area If(U)l of the rangef(U) off .  What can be 
said about functions f which are not necessarily univalent if the assumption on f 
is replaced by lf(U)l-<-~? Can this condition on the area o f f ( U )  be generalized? 

Let D be an open, connected subset in the plane and let O(r)=[{O: re'~ 
Let F be the class of locally bounded functions 7/: (0, oo)~(0, oo) which have the 
following properties: 

i) near the origin, we have 7t(r)=cr ~, c constant, 
ii) for each a>0,  we have inf,~ a ~( r )>0 ,  

iii) there exists R > 0  such that 7 ~ is increasing on (R, ,~); in the interval (0, R), 
7 j is continuous except possibly at finitely many points. 

Let p(r)=f'o(7~(t))Xt2dt/t and let #(r)=exp(p(r)~). The function #(Iz[) is 
subharmonic in {[zl>R}: this is clear since r#'(r) is increasing for r > R  and 
A#=r-X(d/dr)(r~'(r)).  Natural examples of functions satisfying these conditions 
are given in Corollaries 2 and 3. 
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We shall assume that the domain D is such that 

(1.1) f o T (r) 0 (r) dr/r = f f D  (Izl) I zl -~  dx dy = ~. 

Theorem 1. Let OCD and let TEF. I f  (1.1) holds, O([z[) has a harmonic 
majorant h in D, and h(O) has an upper bound c(T) only depending on ~ and not on the 
special form of  D. 

Corollary 1. Let D and T be as in Theorem 1, and let f :  U~ D be analyt& in U 
with f(O)=O. Then ~(If(e'~ and 

(1.2) f f  r176 dO <= c(T). 

Proof o f  Corollary 1. 

f f  ~([f(re'~ dO <- f~'~ --.,o h(f(re'~ = 2rob(f(0)) = 2nh(0) ~_ c(~). 

Letting rll,  we obtain Corollary 1. 

Remark. Absolute constants are denoted by C, Co, C1, ... and constants de- 
termined by ~ by c(go, c0(g0 . . . . .  They are not necessarily the same at each occurren- 
c e .  

Corollary 2. Let 2>0  be given. I f  D is a domain such that 0ED and 

f~  rO(r)dr + 2~S? #~-lO(t) dt -- 

then exp ([w[ ~x) has a harmonic majorant h in I) and there is a constant c(2) such that 
for all such domains, we have h(O)~=c(2). 

Proof. In Theorem 1, we choose T(r)=22r ~, r > l ,  and T(r)--r  ~, 0 < r < l .  

Corollary 3. I f  D is a domain such that OC D and 

f :  r0(r) dr + f ? O(r)/r dr = re, 

then exp ((1 +log + [w[) ~) has a harmonic majorant h in D and there is a constant C 
such that h (0)<-C for all such domains D. 

Proof. In Theorem l, we choose ~( r )=min  (1, rg, r>0.  
It is easy to write down the corresponding results for boundary values of analytic 

functions f :  U~D with f(O)=O (cf. 0.2)). 
The case 2-- 1 in Corollary 2 generalizes Theorem A of Chang and Marshall: 

also in cases when D ( f ) >  1, conclusions of type (1.2) hold provided that If(U)[ _-< rr. 
As a weak consequence of Theorem 1, we have a result of Phragm6n--Lindel6f 

type. 
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Corollary 4. Let  D and ~ be as in Theorem 1 and assume that (1.1) holds, l f  u 
is subharmonic in D with non-positive boundary values at all finite boundary points and i f  

(1.3) lim inf M (r)/ # (r) < 0% 

where M(r )=sup  u(rei~ ret~ then we have u<=O in D. 

Remark. For ~OD,  we define u(~)=limsup u(z), z-*(, z~D. 
The proof will be given in Section 4. 
The heart of our proof of Theorem 1 is an estimate of harmonic measure in 

certain multiply-connected domains which follows from Lemmas 1 and 2 in Section 
2. A second essential tool is an integral inequality due to J. Moser [8]: 

Theorem B. There is a constant C< oo such that i f  N is absolutely continuous on 
[0, oo), N(0)=0 and foN'(t)~dt<=l, then 

(N() ) exp t 3--t dt <= C. 

An alternative proof of Moser's theorem has been given by D. Marshall in con- 
nection with his proof of Theorem A (of. [7]). 

We note that if (1.1) is replaced by 

(1.1a) f ?  ~(r)O(r)dr/r  = 7~]A, A > 0 given, 

our proof shows that we get a harmonic majorant with a uniform upper bound for 
h(0) for the function exp (Ap(Izl)a). 

2. Proof of Theorem I 

If other domains than D appear, we use the notation 0j(r)=[{0: ref~ 
j =  1, 2 . . . . .  We write 

I(a, b) = I(a, b, 0( . ) )  = f 2  O(t)-X dt/t, 

Ij(a, b) = I(a, b, O, (.)),  j = 1, 2 , . . . .  

Let R be a positive number and let taR( ' )=taR( ' ,  D) be the harmonic measure 
of {Izl=R}c~B in that component D a of Dc~{lzl<R} which contains the origin. 
It is easy to see that if 

(2.1) J (# ,D)  = f o # ( O d ( - t a , ( O , D ) )  = l + f ? t a t ( O , D ) # ' ( t ) d t  ~ oo, 

then ~(Izl) has a harmonic majorant h in D and h(O)<=J(#, D). Thus it will be 
sufficient to study the integral in (2.1). 
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Remark. Conversely, if ~([zl) has a harmonic majorant in D, then we have 
J (~ ,  D)<oo provided that �9 satisfies certain regularity conditions. A detailed 
discussion of these questions can be found in Ess6n--Haliste--Lewis--Shea [6]. 

We introduce 

0 . ( r ) = { ~ f ) ,  if { l z l=r}c~CD~O 
if {Izl ---- r} c D. 

The circular symmetrization D~ of D R is defined by 

= {re'~ f01 < O * ( 0 / 2 ,  ," < R } ,  

with the convention that 0*(r)=r means that {Iz]=r}cD*. Let co~ be the har- 
monic measure of {Izl =R}nOD~ in D~. It is known that COR (0) <-- CO~ (0) (cf. Theo- 
rem 7 in Baernstein [2]; also cf. Theorem 9.4 in Ess6n [5]). Thus, if the analogue of 
(2.1) holds for the symmetrized region D*, (2.1) will hold for the original region DI 
Hence it suffices to study the symmetrized case. From now on, we assume that 

O = {re'~ 101 < O*(r)/2}. 

If 0*(r)=o% this means that {Izl=r}cD. To give a rough description of the 
proof, we introduce 

Do = {re'~ ]0[ < O(r)/2}, 

which is a simply connected domain, and 

OoR = Doc~{Izl < R}. 

A schematic sketch of the situation is given by Fig. 1. D R is the connected set contain- 
ing the origin, i.e., the centre of the figure, and Doa is D R cut along the negative real 
axis. Let h~176 be the harmonic measure of DoRn{lzl=R} with respect to DoR. 

= 

Figure 1 
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According to the Ahlfors distortion theorem (el. [1], Corollary p. 78), we have 

(2.2) h~ ~ 32 exp (-z~l(r, R)), r < R, 

provided that l(r, R)>= 1/2. The point of the following principal lemmas is to prove 
a similar estimate for m R. The difficulty is that D is not necessarily simply connected. 
For simplicity, we assume that ~ ( r ) = r  2, 0 < r <  1. 

Lemma 1. Assume that (1.1) holds and that OED. Then there is a constant c(tlO 
such that i f  q>=e -e, we have 

(2.3) ogR(q,D ) ~ c(~')exp(--zcI(q,R)), q <= R. 

Without loss of generality, we can assume that 0(.  ) is continuous. 

Lemma 2. Let D be as in Lemma 1. Assume that 

(2.4) min O(t) <- 1/8, e -a/2 ~ t ~ e -1. 

Then there exists q~_[e -z, 1] and a domain De with 

(2.5) ID  {Izj < q}} -<- }Dn0zl<q)l and D, 0z) > q} = enOz) > q}, 

and a constant c(~) such that 

(2.6) ogR(O,D) ~-- c(~)exp(-rcle(de,  R)), R >= q > d~, 

where de is the radius of  the largest disk centered at the origin contained in D2. 

If  Dc~{lzl<q} is simply connected, we can take D~=D. If  this is not the case, 
we shall choose De almost as the union of the Steiner symmetrization of Dr~ {Izl <q} 
with respect to the real axis and Dc~{lz I =>q}. The point q must be chosen in a care- 
ful way (of. Lemma 3.3 in Section 3). 

The proofs of Lemmas 1 and 2 are given in Section 3. 
Using (2.3) and (2.6), we shall find a uniform upper bound for the integrals 

in (2.1). First, we re-write Theorem B as 

Lemma 3. Let k: [0, ~o)-+[0, r be such that fo k(t) dt<-l" Let K(r)=  
fo (k(t)/2(t)) 1/~ dt where 2 is positive and L(r)=fo 2(t)-ldt  is unbounded as t ~  co. 
Then there is a constant C such that 

(2.7) 1 + f ~ 2 K ' ( r )  K(r) exp (K(,Oe--L(r)) dr = f o A ( r ) - l e x p  (K(r) z -L(r ) )  dr ~- C. 

Proof of  Lemma 3. We put L(r)=s and K(L-I(s))=N(s). Then N'(s)= 
K'(r)(dr/ds) and we have 

f?N'(s)eds  = f?k(r)(2(r))-X(dr/ds)eds = f o k ( r ) d r  <- 1, 

f0 ~(r)-Xexp (K(r)e--L(r)) dr = f ?  exp ( N(s)e-s) ds <- C, 

where the last inequality follows from Theorem B. 
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The basic idea in the estimate of  J ( ~ ,  D) defined in (2.1) is to apply Lemma 3 
on an interval (a, co) with 

= rO(r)/r , 

k (r) = r - :  ~ (r) 0 (r)/(re J=), 

K(r) = (p(r ) -p(u) )J~  :/2, 

where n j = f o ~  O(r)~(r)dr/r. From Lemma 3, we see that there is an absolute 
constant C such that 

(2.8) fS* '(0 exp (-~zI(~, t)) dt <= C, 

where ~ , ( r )=exp  ((p(r)-p(cO)~/J~). 

If (2.4) does not hold, there is a constant C1 = C: (~)  such that f0 ~ ~ (0 0 (t) dt/t >- 
nCl>0.  Let us choose ~=1  in (2.8). It is easy to see that if p(r)>-p(ro) = 
max (2p(1)/C:,p(2)), we have 

r  <_- 

Combining this inequality with (2.3), we see that it follows from (2.8) that 

J (~ ,  D) <-- �9 (ro) + c (~ ' ) f , [  e l ( 0  exp (--  rcI(1, t)) at <= c (~). 

Thus J ( ~ ,  D) has an upper bound depending only on ~u and the proof is complete 
in this case. 

In the remaining case when (2.4) holds, we use (2.6) and see that it is sufficient 
to estimate 

f ~  ~'  (r) exp ( -  ~I2(d~, r)) dr, 

where we know that (cf. (2.5)) 

(2.9) ~d]+ f~ ~(r) O~(r) dr/r <- zc. 

In the rest of  the argument, we drop the subscript 2. We shall use (2.8) with 
~=d<=e -: .  In particular, we have p(r)=r,  r<=2d. We shall prove that 

(2.10) ~" (r) <- 2 exp {(p(d)/d)~} ~ ( r ) ,  r >- 2d. 

If (2.10) holds, the same argument as in the previous case shows that we have a 
good bound for J ( ~ ,  D) and the proof  of  Theorem 1 is complete. 

To prove (2.10), we first note that 

p(r) <- p(2d)(p(2cO-p(d)) - : (p(r ) -p(d) ) ,  r >- 2d. 
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From (2.9), we know that Ja~_ l -dL  To handle the exponents, it suttices to 
prove that 

p (r) ~ --< (p (r) --p (d)) e (1 - -  d ~) -1 + (p (d)/d)'. 

It is easy to check that this inequality holds for all positive r. This finishes the proof  
of  (2.10). 

3. Proofs of  Lemma 1 and Lemma 2 

The arguments are different in the two intervals (0, q) and (q, ,o), where q~ 
[e -2, 1] will be defined below after Lemma 3.3. In (q, oo), we would like to prove 
that if oJ R and h ~ are as in Section 2, we have o9 R <- Ch ~ However, it will not be possib- 
le to delete all intervals ( - b ,  - a )  with the property that {a<l z l<b}cD from 
D: we have to leave finitely many 'big' intervals in D. 

Without loss of  generality, we can assume that 0 ( . )  is continuous. For simpli- 
city, we assume in the proof  that kg~ F is increasing on (e-", oo) and that ~ ( r ) =  r ~, 
0 < r < l .  We start with the case (q, oo). 

We recall that the region D is of  the form {rei~ IOl<O*(r)/2}. This means 
that the "annuli" in Fig. 1 are not necessarily bounded by circular arcs centered at 
the origin. To pick out those annuli which make D multiply connected, we introduce 
the set { r > 0 : 0  (r)>re}= U I~, where the open intervals {I~} are disjoint. Let {Ij} 
be those intervals in {I~.} which are such that l"H~{r: 0*(r)= oo}~0. If  l~=(aj, bj), 
we have O(aj)=O(b~)=z~ for all indicesj.  Using the mapping w = l o g z ,  we map 
Do onto 

= { w : u + i v :  Ivl<O(e")/2}. 

Let c~j=log aj and f l j=log bj. We recall that Do is the region D cut along the 
negative real axis. In Fig. 2, we have sketched the graphs of  v =  -t-0(e")/2 in such 
an interval (~, fl)= (log a, log b) which is the image of  the interval (a, b) in Fig. 1 
(there is of  course much more fine structure in Fig. 2): (a, b) is one of  the intervals 
in {lj}. The next step is to find an estimate of  the harmonic measure F of  0 ~ n  
{w=u+iv: ~<u</~, Ivl =re} in ~ .  In Fig. 2 the boundary values of  F in (ct, B) are 
given. Let f (z )=F(log z) be the associated harmonic measure in the z-plane. To 
prove the estimate in Lemma 3.2, we need a preliminary result. 

Lemma 3.1. Let I(a, b)=f] O(t)-ldt/t and let (a, b) 
{Ij} with a>-e-L Then 

be one of  the intervals in 

(3.1) I(a, b) ~_ (n~g(e-~)) -1. 
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,r 

a. 

Figure 2 

P r o @  Since 0 ( t )~z  in [a, b], it follows from (1.1) that 

f~ 7,( )OC )d / rc•(a) log(b/a)  < = t t t t <= zc, 

I (a ,  b) <= r~ -1 log (b/a) ~ (ngt(a))  -1. 

The lemma is proved. 

Lemma 3.2. Le t  5= f~. ~(t) O(Odt/t. I f  5<=n~t'(a), there is an absolute cons- 

tant Ca such that 

(3.2) max F (u • in/2) ~ Ca exp ( - ~" ~P (a) (26)-a). 
c ~ u ~ p  

Remark.  This is an estimate of F on the dotted lines in Fig. 2. 
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Proof. Since N is symmetric with respect to the real axis, it is sufficient to consider 
the case v=rc/2. If ?(v)=l{u: u+ivE~, ~<u<fl}l ,  we have 

n 2/4 =< s  ?(v) dv f~/2 ~'(v)-ldv<-(2 ~ (a)) -x 6f~!2 ~(v) -1 dr, 

f ~  ?(v)-l dv => z~2 gJ (a) (2a)-L 
2 

According to the Ahlfors distortion theorem, (3.2) is true provided that zc ~ 7 t (a) _-> 6 
(cf. p. 78 in [I]; also of. w in [9]). 

Returning to the z-plane, we have proved that iffj* is the harmonic measure of  
ODoc~{z= - r :  aj<r<bj} in Do, we have 

(3.3) max {f~*(rdt): aj <= r <= bj, It[ <- re/2} -< Clexp(-~gj/6j) ,  

where 6j = (t) 0 (t) dt/t, 7tj = n a ~ (aj)/2 and 6j <= n z 7 t (a j). 

Let c l ( ~ ) = m a x  (2C2, 2C2 exp {(rcT~(e-~))-l}), where C2 is the absolute cons- 
tant in (3.7) below produced by the Ahlfors distortion theorem and the absolute 
constant C~ in (3.2). 

This means that we have got an estimate of  the harmonic measure f~* near the 
real axis in the interval (a j, b j). Once more applying the Ahlfors distorsion theorem 
in the simply connected domain Do, we can deduce an estimate off j* on the whole 
real axis (of. (3.7) below). 

To describe the main idea in remaining part of  the proof, we let co a be a s  in 
Section 2 and let h* be the harmonic measure of  D O n {[z[ = R} with respect to DoR. 
Since D is circularly symmetric, max0 CoR(rd ~ is assumed on the positive real axis 
and is increasing as a function of r (cf. Theorem 7 in Baernstein [2]). It follows that 

o~RCz ) ~= h~(z)+ ~jcoR(bj)fj*(z), zEDR. 

If  we could prove that ~jfj*(r)~-l/2,  say, when r<R,  then we would also be able 
to control r ) ola the real axis. Unfortunately, this argument is too simple: we can 
only prove that .~fj*(r)_-< 1/2 if we restrict ourselves to summing over "small" inter- 
vals (a j, b j) in a sense to be made precise below. Also, we have to replace fj* and 
h* by new harmonic measures f1 and h. The modified argument is as follows. 

We shall divide the intervals in {Ij} with aj_->e- 2 into two classes: big and small 
intervals. Since ~ 6j<-~ (of. (1.1)), it is easy to see that there exists a constant 
Co=Co(70 such that 

(3.4) z~' exp ( -  t/' (e-2) n3(263) -1) <_- Cl(~) -1, 

where ~ , '  means that we sum over all indices j with 6j<-Co(~). 
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Let us say that those intervals in {Ij} are big for which we have either 

(3.5) tSj > ~ 7t(aj), 

o r  

(3.6) 6j > co(Tt). 

Intervals such that neither one of  these alternatives hold are small. It follows from 
(1.1) that there are at most (rcTt(e-~))-x+rcco 1 big intervals in [e -2, co). 

Let us for a moment consider a block of  small intervals {I~}jcs which are situated 
between two intervals (a', b') and (a, b) in {lj}, b '<a.  Let co be the harmonic measure 
of Drqlzl=a} with respect to Du{Izl<b'} and let h be the harmonic measure 
of  Don{]z l=a } with respect to Dou{Izl<b'}. Let f j  be the harmonic measure of  
[ - b j , - a j ]  with respect to Dou{lzt<b'}.  It is clear that (3.3) holds with fj* 
replaced by f j .  Once more using the distortion theorem, we find that there is an 
absolute constant C2 such that 

(3.7) f j (r)  <- gj(r) = C2 exp ( -  ~J~j -rc l I ( r ,  aj)t), b" <= r <= a, jE J. 

For r>aj ,  we have used the estimate in Lemma 3.1. 
Again referring to Theorem 7 in Baernstein [2] (cf. the preliminary discussion 

above), we know that max0 og(re ~~ is assumed on the positive real axis and is increas- 
ing as a function of  r. It follows that 

og(z) <= h(z)+ ~j~sog(bj) f j (z ) ,  zCDw{lz] < b'}. (3.8) 

We define 
I2( r )=  h(r)+2 ~ j ~ j h ( b j ) g j ( r ) ,  b" <= r<= a, 

and claim that 

(3.9) f2(r) _-> o9 (r), b' -<- r _-< a. 

To prove (3.9), we first use (3.4) and (3.7) to deduce that 

(3.10) ,~je~ gj(r) <-- C2 Z '  exp (-- ~Pj6~) ~_ 1/2. 

Assume that we can prove that 

(3.11) f 2 ( r ) - 2 j c s f 2 ( b ~ ) g j ( r  ) >- h(r), b' <= r < a. 

If  (3.11) holds, it follows from (3.8) that 

(og(r)-t2(r)) + ~ 2jes(og(bj)- f2(bs))+ gj(r), b "<- r < a, 

which will imply (3.9) since we have (3.10). 
A computation shows that (3.11) will be true if for all indices kEJ, we shall 

have 
gk(r)>-- 2 2 j e j g k ( b j ) g j ( r ) ,  b' ~ r  < a ,  
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which is equivalent to 

(3.12) 1 =~ 2C2 Z jesexp (rc[ ff, k O(t)-l dt/t[ - ~'~1'~ 

-'lf:: ~176 
Since 

I f]ko(t)-l  dt/t] ~_ If2' O(O-l dt/tJ +J f];O(t)-I dt/tJ, 

the sum of the integrals in each exponent is at most (cf. Lemma 3.1) 

{ I f r  bj 0 (t)--I dt/t] - I  f f , l  O(t)_ 1 dt/,l} ~ ~ fbj 0 (t)_l  dt/t <= (zcIP (e-~))-L 
a i, 

From (3.4), it follows that 

1 _~ c~(~) Z j  exp ( -  kvj//Sj) -> 2C2 exp {(rc~g(e-~)) -~} Z j ~ ,  exp { -  ~gflSj}. 

This inequality implies that (3.12) holds. Consequently, (3.11) and thus also (3.9) 
are true. 

Combining the estimate of h given by (2.2) and the definition of g j, we deduce 
that 

h (b j) gj (r) <_- 32 C2 exp {r~I(aj, b j) - ~gj/fj- nI(r, a)}. 

Once more using (3.4) and Lemma 3.1, we find our final estimate 

(3.13) ~o(r) -<_ f2(r) <_- 64 exp ( -h i (r ,  a)), b" <= r < a. 

Let us now discuss how we can combine these estimates for blocks of small 
intervals and obtain an estimate of the harmonic measure oR in D. Let {(A~, B~)}~ n 
be the big intervals in (e-3, oo), where {A~}~ n is an increasing sequence. We know that 
N<--N(~F). If R>=Bn+I, it follows from (3.13) and Lemma 3.1 that 

r <-- oga(Bn+l) 64 exp ( -nI (Bn,  A~+I)) 

<-- c(~)o~R(Bn+I) exp (-rcI(B~, .Bn+l)), 
and consequently that there is an absolute constant C such that if q>=e -2, 

(3.14) toR(q) <-- Cc(~) N~O exp (-zcl(q, R)), R >- q. 

This finishes the proof of Lemma 1. 
The conclusion of Lemma 2 is trivial if D o  {Izl < e-z}  is simply connected: we 

take D~=D and combine the Ahlfors distortion theorem with (3.14). 
We recall that D was assumed to be of the form {re~~ IOl<O*(r)}. The main 

idea of the proof of Lemma 2 when Dr~{lzl-<e -~} is not simply connected is to 
replace Dn{[zl<q} by its Steiner symmetrization (Dc~{lzl<q})S={z=x+iy: lyl < 
L(x)/2}, where L(x)=l{y: x+iyEDc~{lzl<q}[. It is well-known that this opera- 
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tion increases harmonic measure on the real axis. The new domain is simply connected 
and we can handle it. 

There is a discrepancy due to the fact that we compare harmonic measure for 
circular arcs to harmonic measure for segments contained in lines orthogonal to the 
real axis. The point of  the next lemma is to define q in such a way that the discrepancy 
will be small. 

Lemma 3.3. Assume that (2.4) holds. Then there exists a point q" E[e-Z, e -1/~] 
such that 
(3.15) {re'~ llog(r/q')[ < O(q') <= 1/8, 101 < O(q')/3} c D. 

We shall choose q=q" exp (O(q')). It is easy to check that q<-l. 

Proof of Lemma 3.3. We first find to such that mo=O(to)=min O(t), tE 
[e -3/~, e-l]. If  (3.15) holds with q'=to, there is nothing more to prove. If  this is 
not the case, there exists tl with Ilog (tl/to)l<-mo and O(tl)=ml<-2mo/3. Then we 
can either choose q'=tl or there exists t2 with [log(t2/tl)l<=ml and O(t2)=m~<= 
2m~/3. Inductively, we construct sequences {t,} and {m,} such that 

Ilogt,+l/t~)] <- rn, and O(t,+~) = r a n +  1 ~ 2m~/3, n = O, 1 . . . . .  

If  there is a first index N such that (3.15) holds with q' = tN, the lemma is proved. 
If  no such index exists, it is easy to see that lim,_= tn=T which is such that 
Ilog(T/to)l<=3mo and 0(T)=l im,~= 0(t , )=0 (we recall that 0 ( . )  is continuous!). 
But this is impossible since D is connected. Thus, there exists a first index N and the 
lemma is proved. 

If  O(q')=m, we define 

D~ = (Oc~{Izl < q'})u{re'~ q' <= r < q, 10l < m/3}. 

We first note that there is an absolute constant C > 0  such that 

(3.16) o)q(q" e ~~ 01) >= C -1, 10l <-- rn/4. 

To see this, let V be harmonic in {re~~ [log (r/q')l<m, [Ol<m/3} with boundary 
values 1 on r=q and 0 on the rest of the boundary. We have constructed q' in such 
a way that this (logarithmic) rectangle is contained in D~. From the maximum prin- 
ciple, we see that o)q(., D~)-  > V in the rectangle and (3.16) follows. 

We claim that 

(3.17) coq(0, D) <= 2Co)q(0, D,). 

The proof is short: if p(0, dO) is the harmonic measure of Dn{[z[<q'} on 
[z]=q', we have 

(o, D) = f lot <m[2 (.Dq (q' e '~ D) t~ (0, dO) ~ 2 f lol (o, ao) (.O q 

-<= 2C f lol.,mlaOq(q'e '~ D1) #(0, dO) <= 2Co9, (0, Dx). 
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If r < q < R ,  we have o)a(r, D)<=o~q(r, D)o~R(q, D) and it follows from (3.17) 
that 

(3.18) o)R(0,D ) <= coa(O,D)ogR(q,D) <= 2CoaR(q,D)o)~(O, DO. 

Hence, it is sufficient to estimate r Dx). 
We define Dz as the Steiner symmetrization of  D1. The symmetrization does not 

change anything near q': since we know that 01(r)=2m/3 for q'<=<r<q and 
01(r)~=2m/3 for q'e-m<r<q" and that cos(m/3)~=e -m (cf. ( 2 . 4 ) and  (3.15)), 
we have 

D3r~{q'< Izl < q} = Dlr~{q' < Izl < q}. 

Steiner symmetrization preserves the measure of  the set. Hence one more applica- 
tion of  (3.15) shows that 

IO31 = IOll <--IOn{Izl < q}l, 
which is required in Lemma 2 (eft (2.5)). 

If  0 = q  cos (m/3), we define H to be harmonic in D3c~{z=x+iy: x<Q} with 
boundary values 1 on x =  Q and 0 on the rest of  the boundary. From Theorem 7 in 
Baernstein [2], we see that 

(3.19) coq(x, DO <= H(x), 0 < x <= O. 

Remark. Baernstein's theorem deals with circular symmetrization. It is easy to 
see that the argument also works for Steiner symmetrization. 

We know that D~ is simply connected. Again applying the distortion theorem, 
we obtain 

(3.20) H(r) <- ogQ(r,D~) <-- Cexp (-rcI3(r  , 0)), d3 <---- r <- 0. 

Since o>q', we have 13(0, q)~-l~(q', q)=3/2. Combining this fact with (3.19) 
and (3.20), we find that 

coq(O,D~) <= Cexp (-zcI3(d3, q)+3/2),  

where d2 is the radius in the largest disk centered at the origin which is contained in 
D~. If  we define 02(r)=O(r), r>q, our final estimate is given by (3.18) and says 
that 

~oR(O, D) ~-- C(T) exp ( - n I ( d ~ ,  R)). 

We have proved Lemma 2. 

Remark. The reason for our special choice T(r)=r 3, 0 < r < l ,  is that we have 
to do a Steiner symmetrization near the origin: this operation does not change the 
area of  Dc~{lzl<q'} which can also be written fg'rO(r)dr. This means that we 
can control condition (1.1). 
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4. Proof of Corollary 4 

It follows from (2.1) that 

(4.1) lim q~(R)coR(O,D ) = O. 
R ~  

This is the basic fact needed in the proof. From our assumptions and from the 
maximum principle, it is clear that 

u(z) <= M(R)o~R(z,D ), zCDn([zl < R}. 

From (1.3), we see that there is a constant c and a sequence {R j} tending to infinity 
such that 

(4.2) u(z) <= c~(R)ogg(z,D), z6Dc~{lzl < R}, RC{Rj}. 

From Harnack's inequality, we deduce that if z~D is given, there is a number 
C(z, d) such that 

(4.3) coR(z, D) <= C(z, D) oJR(O, D). 

Combining (4.2) and (4.3), letting Rj-+,o and using (4.1), we find that u(z)<-O. 
The Corollary is proved. 
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